Content

There are 10 steps in forecasting process

           1. Determine the purpose
           2. Set level of aggregation and units of measure
           3. Select horizon & planning bucket
           4. Gather and visualize the data
           5. Choose the forecastung technique
           6. Prepare the data for the technique
           7. Test the forecasting using horizontal data
           8. Forecast is based on modeling technique
           9. Achieve consensus on the forecasting
           10.  Continuous Improve forecast
date day week discount pizza weekday day1
2014-05-01 1 0 0 329 5 1
2014-05-02 2 1 0 357 6 2
2014-05-03 3 1 0 351 7 3
2014-05-04 4 0 0 346 1 4
2014-05-05 5 0 0 342 2 5
2014-05-06 6 0 0 344 3 6
2014-05-07 7 0 0 356 4 7
2014-05-08 8 0 0 357 5 8
2014-05-09 9 1 0 368 6 9
2014-05-10 10 1 0 367 7 10

Visualize the data

Histogram

Dentisy in 2 dimensions

Multiple points

Modeling

image

image

image

image

Based on UnAdjusted Dataset

## 
## Call:
## lm(formula = pizza ~ day + week + discount, data = dt_pr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.4498  -6.2685   0.1675   5.2634  12.9122 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 339.7599     1.5872 214.067  < 2e-16 ***
## day           0.6728     0.0295  22.804  < 2e-16 ***
## week         14.3794     1.7216   8.352 8.81e-13 ***
## discount     -2.8016     2.1560  -1.299    0.197    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.112 on 88 degrees of freedom
## Multiple R-squared:  0.8764, Adjusted R-squared:  0.8722 
## F-statistic: 208.1 on 3 and 88 DF,  p-value: < 2.2e-16

## 
##  Breusch-Godfrey test for serial correlation of order up to 10
## 
## data:  Residuals
## LM test = 8.1188, df = 10, p-value = 0.6172

Based on Adjusted Dataset

## 
## Call:
## lm(formula = pizza ~ day + weekday + discount, data = dt_pr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.3363  -6.6410   0.7636   6.3014  16.0324 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 333.7017     2.5171 132.575  < 2e-16 ***
## day           0.6669     0.0339  19.671  < 2e-16 ***
## weekday       2.5935     0.4569   5.677 1.73e-07 ***
## discount     -2.8460     2.5327  -1.124    0.264    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.146 on 88 degrees of freedom
## Multiple R-squared:  0.8379, Adjusted R-squared:  0.8323 
## F-statistic: 151.6 on 3 and 88 DF,  p-value: < 2.2e-16

## 
##  Breusch-Godfrey test for serial correlation of order up to 10
## 
## data:  Residuals
## LM test = 8.7966, df = 10, p-value = 0.5515

Summary