Introduction
This is a protype forecast report. The goal is to assist users in assessing how an earth observation product can be used for making agricultural outlooks.
Four figures are shown:
- Mean Area, Production, and Yield over the years 1994 to 2014 -This provides context for interpreting the grain data
- Mean, Current Value, and Current Anomalie for the current month of whichever EO variable is being used for prediction (in this case CHIRPS) -
- Historical Out of Sample Forecast Error for the same product and statistical model in a similar set of months. In this case we look at what the past accuracy of a yield forecast (using CHIRPS) was in March, April, and May. Note, this is averaged over the 2000-2014 period. I would also like to compare this with analog years.
- Yield Forecast, (based on March 2020 CHIRPS ) expressed as percent of mean yield over the period 1994 - 2014.
Yield Forecast based on March 2020 CHIRPS
Forecast values expressed as percent of Mean Yields over the Years 1994 - 2014. Model forecasts are a generalized additive model (GAM). The figure shows predicted percent of mean (center) as well as lower (left) and higher (right) predicted percent of mean intervals.

LS0tCnRpdGxlOiAiRm9yZWNhc3QgUHJvdG90eXBlIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKZmlnX3dpZHRoOiA3CmZpZ19oZWlnaHQ6IDYKZmlnX2NhcHRpb246IHRydWUKLS0tCgpgYGB7cixldmFsPVRSVUUsZWNobz1GYWxzZSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CiMtLS1TZXQgUHJvamVjdCBEaXJlY3RvcmllcwpkaXJCYXNlPC0nL1ZvbHVtZXMvR29vZ2xlRHJpdmUvTXkgRHJpdmUvJwoKIy1Qcm9qZWN0IERpcmVjdG9yaWVzCmRpclByb2o8LXBhc3RlMChkaXJCYXNlLCdtYWl6ZV9mb3JlY2FzdC8nKSAjcHJvamVjdCBkaXJlY3RvcnkKZGlyUHJvajI8LXBhc3RlMChkaXJCYXNlLCdtYWl6ZV9mb3JlY2FzdF9yZXBvcnRpbmcvJykKZGlyUmRhdDwtcGFzdGUwKGRpclByb2osJ21haXplX2ZvcmVjYXN0X3JkYXRhLycpCmRpclJkYXQyPC1wYXN0ZTAoZGlyUHJvajIsJ2ZvcmVjYXN0X3JlcG9ydGluZ19yZGF0YS8nKQpkaXJEYXRfcmF3PC1wYXN0ZTAoZGlyUHJvaiwnbWFpemVfZm9yZWNhc3RfcmF3ZGF0YS8nKQpkaXJTaGFwZUZpbGVzPC1wYXN0ZTAoZGlyUHJvaiwnbWFpemVfZm9yZWNhc3Rfc2hhcGVmaWxlcy8nKQpkaXJTcGRhdDwtcGFzdGUwKGRpckJhc2UsJ1NwYXRpYWwvJykKZGlyTWFzazwtcGFzdGUwKGRpclByb2osJ21haXplX2ZvcmVjYXN0X2Nyb3BtYXNrLycpCgoKbGlicmFyeShyZXNoYXBlMikKbGlicmFyeShzdHJpbmdyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkocmFzdGVyKQpsaWJyYXJ5KHJnZGFsKQpsaWJyYXJ5KHNmKQpsaWJyYXJ5KGNhcikKbGlicmFyeShzY2FsZXMpCmxpYnJhcnkoa2FibGVFeHRyYSkKCmxpYnJhcnkoY293cGxvdCkgI21hc2tzIGdnc2F2ZQpsaWJyYXJ5KHZpcmlkaXMpCgoKIy0tTG9hZCBFeGlzdGluZyBQbG90cwpzZXR3ZChkaXJSZGF0MikKbG9hZCgnMjBfbWFpemVfZm9yZWNhc3RfcmVwb3J0aW5nX21haW5fcGxvdHMuUmRhdGEnKQpgYGAKIyBJbnRyb2R1Y3Rpb24KVGhpcyBpcyBhIHByb3R5cGUgZm9yZWNhc3QgcmVwb3J0LiAqKlRoZSBnb2FsIGlzIHRvIGFzc2lzdCB1c2VycyBpbiBhc3Nlc3NpbmcgaG93IGFuIGVhcnRoIG9ic2VydmF0aW9uIHByb2R1Y3QgY2FuIGJlIHVzZWQgZm9yIG1ha2luZyBhZ3JpY3VsdHVyYWwgb3V0bG9va3MuKioKCkZvdXIgZmlndXJlcyBhcmUgc2hvd246CgoxLiAqKipNZWFuIEFyZWEsIFByb2R1Y3Rpb24sIGFuZCBZaWVsZCBvdmVyIHRoZSB5ZWFycyBgciBsaXNfdmFyc19yZXBvcnQkbWluX2FnYCB0byBgciBsaXNfdmFyc19yZXBvcnQkbWF4X2FnYCoqKiAtVGhpcyBwcm92aWRlcyBjb250ZXh0IGZvciBpbnRlcnByZXRpbmcgdGhlIGdyYWluIGRhdGEKMi4gKioqTWVhbiwgQ3VycmVudCBWYWx1ZSwgYW5kIEN1cnJlbnQgQW5vbWFsaWUqKiogZm9yIHRoZSBjdXJyZW50IG1vbnRoIG9mIHdoaWNoZXZlciBFTyB2YXJpYWJsZSBpcyBiZWluZyB1c2VkIGZvciBwcmVkaWN0aW9uIChpbiB0aGlzIGNhc2UgYHIgbGlzX3ZhcnNfcmVwb3J0JHZhcl9uYW1lYCkgLSAKMy4gKioqSGlzdG9yaWNhbCBPdXQgb2YgU2FtcGxlIEZvcmVjYXN0IEVycm9yKioqIGZvciB0aGUgc2FtZSBwcm9kdWN0IGFuZCBzdGF0aXN0aWNhbCBtb2RlbCBpbiBhIHNpbWlsYXIgc2V0IG9mIG1vbnRocy4gSW4gdGhpcyBjYXNlIHdlIGxvb2sgYXQgd2hhdCB0aGUgcGFzdCBhY2N1cmFjeSBvZiBhIHlpZWxkIGZvcmVjYXN0ICh1c2luZyBgciBsaXNfdmFyc19yZXBvcnQkdmFyX25hbWVgKSB3YXMgaW4gTWFyY2gsIEFwcmlsLCBhbmQgTWF5LiAgTm90ZSwgdGhpcyBpcyBhdmVyYWdlZCBvdmVyIHRoZSAyMDAwLTIwMTQgcGVyaW9kLiBJIHdvdWxkIGFsc28gbGlrZSB0byBjb21wYXJlIHRoaXMgd2l0aCBhbmFsb2cgeWVhcnMuIAo0LiAqKipZaWVsZCBGb3JlY2FzdCoqKiwgKGJhc2VkIG9uIGByIGxpc192YXJzX3JlcG9ydCRtb250aF9uYW1lYCBgciBsaXNfdmFyc19yZXBvcnQkbWF4X2V2YXJfeWVhcmAgYHIgbGlzX3ZhcnNfcmVwb3J0JHZhcl9uYW1lYCApIGV4cHJlc3NlZCBhcyAqKnBlcmNlbnQgb2YgbWVhbiB5aWVsZCoqIG92ZXIgdGhlIHBlcmlvZCBgciBsaXNfdmFyc19yZXBvcnQkbWluX2FnYCAtIGByIGxpc192YXJzX3JlcG9ydCRtYXhfYWdgLgo8IS0tIDUuICoqKkJlc3QgUHJvZHVjdCBmb3IgYSBHaXZlbiBNb250aCoqKi5UaGlzIHNob3dzIGhpc3RvcmljYWxseSB3aGF0IHRoZSAnYmVzdCcgcHJvZHVjdCBpcyBmb3IgYSBnaXZlbiBtb250aCBvciB5ZWFyLiAtLT4KCiMgU3VtbWFyeSBGaWd1cmVzCgojIyMjIE1lYW4gYXJlYSwgcHJvZHVjdGlvbiwgYW5kIHlpZWxkcyBmb3IgdGhlIHllYXJzIGByIGxpc192YXJzX3JlcG9ydCRtaW5fYWdgIHRvIGByIGxpc192YXJzX3JlcG9ydCRtYXhfYWdgLgoKKioqCmBgYHtyLGVjaG89ZmFsc2Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFfQpwMWFsbApgYGAKKioqCgojIyMjIE1lYW4sIEN1cnJlbnQsIGFuZCBBbm9tYWxpZSBmb3IgYHIgbGlzX3ZhcnNfcmVwb3J0JG1vbnRoX25hbWVgIGByIGxpc192YXJzX3JlcG9ydCRtYXhfZXZhcl95ZWFyYCBgciBsaXNfdmFyc19yZXBvcnQkdmFyX25hbWVgIAoKTWVhbiBhbmQgQW5vbWFsaWUgYXJlIGJhc2VkIG9uIHRoZSB5ZWFycyBgciBsaXNfdmFyc19yZXBvcnQkbWluX2FnYCB0byBgciBsaXNfdmFyc19yZXBvcnQkbWF4X2V2YXJfeWVhcmAuCgoqKioKYGBge3IsZWNobz1mYWxzZSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CnAyYWxsCmBgYAoqKioKCiMjIyMgT3V0IG9mIFNhbXBsZSBGb3JlY2FzdCBFcnJvciBmb3IgQ0hJUlBTIE1hcmNoLCBBcHJpbCwgYW5kIE1heSBSYWluZmFsbApNZWFuIEFic29sdXRlIFBlcmNlbnQgRXJyb3IgKE1BUEUpIGNhbGN1bGF0ZWQgYmFzZWQgb24gb3V0IG9mIHNhbXBsZSBzZWFzb25mYWwgZm9yZWNhc3RzIGNvbmR1Y3RlZCBvdmVyIDIwMDEtMjAxNC4gKipMb3dlciBzY29yZXMgaW5kaWNhdGUgZ3JlYXRlciBhY2N1cmFjeSoqLiBGb3JlY2FzdHMgYXJlIGJhc2VkIG9uIG1vZGVsIHR5cGUgTU9EU1BFQ15bTW9kZWwgdHlwZShzKSB0byBiZSBmaWxsZWQgaW4gZHluYW1pY2FsbHldIAoKKioqCmBgYHtyLGVjaG89ZmFsc2Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFfQpwNApgYGAKKioqCgoKIyBZaWVsZCBGb3JlY2FzdCBiYXNlZCBvbiBgciBsaXNfdmFyc19yZXBvcnQkbW9udGhfbmFtZWAgYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9ldmFyX3llYXJgIGByIGxpc192YXJzX3JlcG9ydCR2YXJfbmFtZWAgCkZvcmVjYXN0IHZhbHVlcyBleHByZXNzZWQgYXMgcGVyY2VudCBvZiBNZWFuIFlpZWxkcyBvdmVyIHRoZSBZZWFycyBgciBsaXNfdmFyc19yZXBvcnQkbWluX2FnYCAtIGByIGxpc192YXJzX3JlcG9ydCRtYXhfYWdgLiAKTW9kZWwgZm9yZWNhc3RzIGFyZSBhIGdlbmVyYWxpemVkIGFkZGl0aXZlIG1vZGVsIChHQU0pXltUbyBrZWVwIHRoaW5ncyBzaW1wbGUgSSBhbSB1c2luZyBqdXN0IG9uZSBtb2RlbC4gRnV0dXJlIHZlcnNpb24gd2lsbCBzaG93IG1lYW4vbWVkaWFuIHJlc3VsdHMgZnJvbSBhbiBlbnNlbWJsZSBvZiBtb2RlbHNdLiBUaGUgZmlndXJlIHNob3dzICoqKnByZWRpY3RlZCBwZXJjZW50IG9mIG1lYW4qKiogKGNlbnRlcikgYXMgd2VsbCBhcyBsb3dlciAobGVmdCkgYW5kIGhpZ2hlciAocmlnaHQpICoqKnByZWRpY3RlZCBwZXJjZW50IG9mIG1lYW4qKiogaW50ZXJ2YWxzLgoKKioqCmBgYHtyLGVjaG89ZmFsc2Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFfQpwMwpgYGAKKioqCiMjIyMgVGhpcyB0YWJsZSBzaG93cyB0aGUgZm9yZWNhc3QgcGVyY2VudGFnZSBvZiBtZWFuIHZhbHVlcyBpbiB0aGUgYWJvdmUgdGFibGUgYWxvbmcgd2l0aCB0aGUgbWVhbiB5aWVsZCB2YWx1ZXMgZnJvbSB0aGUgZmlyc3QgZmlndXJlXltUbyBrZWVwIHRoZXNlIHJlcG9ydHMgc2ltcGxlLCBwcmludGFibGUsIGFuZCBwb3J0YWJsZSBJIG1heSBleGNsdWRlIHRoZSB0YWJsZXMgYW5kIG1heWJlIGp1c3QgaGF2ZSBhIGxpbmsgdG8gYSB6aXAgZmlsZSB0aGF0IGNvbnRhaW5zIHRoZSBhcHByb2F0aWUgc2hhcGUgZmlsZSBhbmQvb3IgY3N2IHZhbHVlcy5dLiAKKioqCmBgYHtyLGVjaG89ZmFsc2Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFfQp0MTwta25pdHI6OmthYmxlKGR0YWIsIGNhcHRpb24gPSAnVGFibGUgb2YgTWVhbiBZaWVsZHMgYW5kIFByZWRpY3RlZCBQZXJjZW50IG9mIE1lYW4gVmFsdWVzJykKdDE8LWthYmxlX3N0eWxpbmcodDEsYm9vdHN0cmFwX29wdGlvbnMgPSBjKCJzdHJpcGVkIiwgImhvdmVyIiwiY29uZGVuc2VkIikpCnNjcm9sbF9ib3godDEsIGhlaWdodCA9ICczMDBweCcsIHdpZHRoID0gJzEwMCUnLAogIGJveF9jc3MgPSAiYm9yZGVyOiAxcHggc29saWQgI2RkZDsgcGFkZGluZzogMXB4OyAiLCBleHRyYV9jc3MgPSBOVUxMLAogIGZpeGVkX3RoZWFkID0gVFJVRSkKCgpgYGAKKioqCgo8IS0tICMgQmVzdCBQcm9kdWN0IGZvciBFYWNoIE1vbnRoClRoaXMgbWFwIHNob3dzIHRoZSB3aGljaCBwcm9kdWN0IGNhbiBwcm92aWRlIHRoZSBtb3N0IGFjY3VyYXRlIGZvcmVjYXN0IChhbW9uZyBhIHJhbmdlIG9mIHN0YXRpc3RpY2FsIG1vZGVscykgZm9yIGEgZ2l2ZW4gbW9udGggYW5kIHJlZ2lvbi4gQXJlYXMgbWFya2VkIGFzICdub25lJyBpbmRpY2F0IHRoYXQgZWl0aGVyIHRoZSBwcmVkaWN0aW9uIGVycm9yIHdhcyBncmVhdGVyIHRoYW4gNTAlIG9yIGNvdWxkIG5vdCBvdXRwZXJmb3JtIGEgYmFzZWxpbmUgbW92aW5nIGF2ZXJhZ2UgbW9kZWxeW1RoaXMgbWF5IG5vdCBiZSBpbiB1cGNvbWluZyByZXBvcnRzIGFzIEkgbWF5IHVwZGF0ZSBpdF0uIC0tPgoKKioqCmBgYHtyLGVjaG89ZmFsc2Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFfQojcDUKYGBgCioqKg==