1. QQ plot of production traits variables

# Weight Gain
output.vl %>% ggplot(aes(sample =trial.day.rr )) +stat_qq_band(bandType = "pointwise", fill = "#8DA0CB", alpha = 0.4) +
  stat_qq_line(colour = "#8DA0CB") +stat_qq_point() + ggtitle("Normal") +
  xlab("Normal quantiles") +ylab("Weigth Gain measurements quantiles") + theme_light() 

# Average Fedd Intake
output.vl %>%ggplot(aes(sample = feed.intake.fitloc)) + stat_qq_band(bandType = "pointwise", fill = "#1DA0CB", alpha = 0.4) +
  stat_qq_line(colour = "#1DA0CB") + stat_qq_point() + ggtitle("Normal") +
  xlab("Normal quantiles") + ylab("Average Feed Intake measurements quantiles") + theme_light() 

# Feeder Occupation Time
output.vl %>%ggplot(aes(sample = visitl.fitloc)) + stat_qq_band(bandType = "pointwise", fill = "#9DA0CB", alpha = 0.4) +
  stat_qq_line(colour = "#9DA0CB") + stat_qq_point() + ggtitle("Normal") +
  xlab("Normal quantiles") + ylab("Feeder Ocupation Time measurements quantiles") + theme_light() 

# FOD 1
output.vl %>%ggplot(aes(sample = Visit.length)) + stat_qq_band(bandType = "pointwise", fill = "#8DA0CB", alpha = 0.4) +
  stat_qq_line(colour = "#8DA0CB") + stat_qq_point() + ggtitle("Normal") +
  xlab("Normal quantiles") + ylab("FOD 1 measurements quantiles") + theme_light() 

# FOD 2
output.vl %>%ggplot(aes(sample = vl.day)) + stat_qq_band(bandType = "pointwise", fill = "#2DA0CB", alpha = 0.4) +
  stat_qq_line(colour = "#2DA0CB") + stat_qq_point() + ggtitle("Normal") +
  xlab("Normal quantiles") + ylab("FOD 2 measurements quantiles") + theme_light() 

Shapiro willk test

\(Test\ of\ normality\ in\ frequentist\ statistics,\mathbf{the\ null\ hypothesis\ of\ this\ test\ is\ that\ the\ population\ is\ normally\ distributed.}\\ Thus,\ if\ the\ p-value\ is\ less\ than\ the\ choosen\ alpha\ level\, then\ \mathbf{H_{0}}\ is\ rejected\ and\ are\ is\ evidence\ that\ the\ data\ tested\ are\ not\ normally\ distributed,\\ if\ the\ p-value\ is\ greater\ than\ the\ chosen\ alpha\ level\ then\ \mathbf{H_{0}}\ can\ not\ be\ rejected\)

kable(a,caption = "Statistic Shapiro Willk of Production traits variables") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"),full_width = F, position = "center",font_size = 14)%>%column_spec(1, bold = T)
Statistic Shapiro Willk of Production traits variables
W p-value
WG 0.96697 0.00231
AFI 0.98857 0.32990
FOT 0.99256 0.70137
FOD1 0.98922 0.37899
FOD2 0.97671 0.97671