library(data.table)
library(ggplot2)
runoff_summary <- readRDS('./data/runoff_summary.rds')
runoff_stats <- readRDS('./data/runoff_stats.rds')
runoff_day <- readRDS('./data/runoff_day.rds')
runoff_month <- readRDS('./data/runoff_month.rds')
runoff_summer <- readRDS('./data/runoff_summer.rds')
runoff_winter <- readRDS('./data/runoff_winter.rds')
runoff_year <- readRDS('./data/runoff_year.rds')
There is no difference. It is the same thing.
Because the data are positively skewed. If there are many high positive values (outliers), they will increase the mean but will not affect the median. Sometimes we say that this distribution has a “fat” tail.
They are two very close stations where the runoff is maximum as Rhine reaches the sea. Although LOBI is downstream of REES, it is at higher altitude. This is not an error in data as the difference is too small. It is probably the exact location of the station and not the point of runoff measurement, which cannot be higher than the previous one.
runoff_summer_TM1 <- runoff_summer[, min(value), by = sname]
runoff_summer_TM2 <- runoff_summer[, max(value), by = sname]
runoff_summer_to_merge <- merge(runoff_summer_TM1, runoff_summer_TM2, by = 'sname')
colnames(runoff_summer_to_merge) <- c('sname', 'min', 'max')
runoff_summer_to_merge
runoff_summer
runoff_summer_minmax <- merge(runoff_summer, runoff_summer_to_merge, by = 'sname')
runoff_summer_minmax
runoff_summer_max_final <- runoff_summer_minmax[runoff_summer_minmax$value == runoff_summer_minmax$max]
runoff_summer_min_final <- runoff_summer_minmax[runoff_summer_minmax$value == runoff_summer_minmax$min]
ggplot(data = runoff_summer_max_final, aes(x = sname, y = max, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust = 0)
ggplot(data = runoff_summer_min_final, aes(x = sname, y = min, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust = 0)
runoff_w_TM1 <- runoff_winter[, min(value), by = sname]
runoff_w_TM2 <- runoff_winter[, max(value), by = sname]
runoff_w_to_merge <- merge(runoff_w_TM1, runoff_w_TM2, by = 'sname')
colnames(runoff_w_to_merge) <- c('sname', 'min', 'max')
runoff_w_minmax <- merge(runoff_winter, runoff_w_to_merge, by = 'sname')
runoff_w_max_final <- runoff_w_minmax[runoff_w_minmax$value == runoff_w_minmax$max]
runoff_w_min_final <- runoff_w_minmax[runoff_w_minmax$value == runoff_w_minmax$min]
ggplot(data = runoff_w_max_final, aes(x = sname, y = max, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust = 0)
ggplot(data = runoff_w_min_final, aes(x = sname, y = min, label = year)) +
geom_point() +
geom_text(aes(label = year),hjust = 0, vjust = 0)
runoff_m_TM1 <- runoff_month[,min(value),by = sname]
runoff_m_TM2 <- runoff_month[,max(value),by = sname]
runoff_m_to_merge <- merge(runoff_m_TM1, runoff_m_TM2, by = 'sname')
colnames(runoff_m_to_merge) <- c('sname', 'min', 'max')
runoff_m_minmax <- merge(runoff_month, runoff_m_to_merge, by = 'sname')
runoff_m_max_final <- runoff_m_minmax[runoff_m_minmax$value == runoff_m_minmax$max]
runoff_m_min_final <- runoff_m_minmax[runoff_m_minmax$value == runoff_m_minmax$min]
ggplot(data = runoff_m_max_final, aes(x = sname, y = max, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust=0)
ggplot(data = runoff_m_min_final, aes(x = sname, y = min, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust=0)
runoff_y_TM1 <- runoff_year[, min(value), by = sname]
runoff_y_TM2 <- runoff_year[, max(value), by = sname]
runoff_y_to_merge <- merge(runoff_y_TM1, runoff_y_TM2, by = 'sname')
colnames(runoff_y_to_merge) <- c('sname', 'min', 'max')
runoff_y_minmax <- merge(runoff_year, runoff_y_to_merge, by = 'sname')
runoff_y_max_final <- runoff_y_minmax[runoff_y_minmax$value == runoff_y_minmax$max]
runoff_y_min_final <- runoff_y_minmax[runoff_y_minmax$value == runoff_y_minmax$min]
ggplot(data = runoff_y_max_final, aes(x = sname, y = max, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust = 0)
ggplot(data = runoff_y_min_final, aes(x = sname, y = min, label = year)) +
geom_point() +
geom_text(aes(label = year), hjust = 0, vjust = 0)