##載入兩筆資料
dta1 <- datasets::state.x77
dta2 <- datasets::USArrests
##看資料
help(state.x77)
## starting httpd help server ... done
help(USArrests)
dim(dta1)
## [1] 50 8
dim(dta2)
## [1] 50 4
head(dta1,n=10)
## Population Income Illiteracy Life Exp Murder HS Grad Frost Area
## Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
## Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
## Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417
## Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945
## California 21198 5114 1.1 71.71 10.3 62.6 20 156361
## Colorado 2541 4884 0.7 72.06 6.8 63.9 166 103766
## Connecticut 3100 5348 1.1 72.48 3.1 56.0 139 4862
## Delaware 579 4809 0.9 70.06 6.2 54.6 103 1982
## Florida 8277 4815 1.3 70.66 10.7 52.6 11 54090
## Georgia 4931 4091 2.0 68.54 13.9 40.6 60 58073
head(dta2,n=10)
## Murder Assault UrbanPop Rape
## Alabama 13.2 236 58 21.2
## Alaska 10.0 263 48 44.5
## Arizona 8.1 294 80 31.0
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
## Colorado 7.9 204 78 38.7
## Connecticut 3.3 110 77 11.1
## Delaware 5.9 238 72 15.8
## Florida 15.4 335 80 31.9
## Georgia 17.4 211 60 25.8
str(dta1)
## num [1:50, 1:8] 3615 365 2212 2110 21198 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
## ..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...
str(dta2)
## 'data.frame': 50 obs. of 4 variables:
## $ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
## $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
## $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
## $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
##由於有兩個Murder不同年份,因此先改名在畫圖
names(dta2)[names(dta2)=="Murder"]="Murder(1973)"
##合併資料
dta <- cbind(dta1,dta2)
str(dta)
## 'data.frame': 50 obs. of 12 variables:
## $ Population : num 3615 365 2212 2110 21198 ...
## $ Income : num 3624 6315 4530 3378 5114 ...
## $ Illiteracy : num 2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 ...
## $ Life Exp : num 69 69.3 70.5 70.7 71.7 ...
## $ Murder : num 15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 10.7 13.9 ...
## $ HS Grad : num 41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 52.6 40.6 ...
## $ Frost : num 20 152 15 65 20 166 139 103 11 60 ...
## $ Area : num 50708 566432 113417 51945 156361 ...
## $ Murder(1973): num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
## $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
## $ UrbanPop : int 58 48 80 50 91 78 77 72 80 60 ...
## $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
#算相關
cor(dta)
## Population Income Illiteracy Life Exp Murder
## Population 1.00000000 0.20822756 0.10762237 -0.06805195 0.34364275
## Income 0.20822756 1.00000000 -0.43707519 0.34025534 -0.23007761
## Illiteracy 0.10762237 -0.43707519 1.00000000 -0.58847793 0.70297520
## Life Exp -0.06805195 0.34025534 -0.58847793 1.00000000 -0.78084575
## Murder 0.34364275 -0.23007761 0.70297520 -0.78084575 1.00000000
## HS Grad -0.09848975 0.61993232 -0.65718861 0.58221620 -0.48797102
## Frost -0.33215245 0.22628218 -0.67194697 0.26206801 -0.53888344
## Area 0.02254384 0.36331544 0.07726113 -0.10733194 0.22839021
## Murder(1973) 0.32024487 -0.21520501 0.70677564 -0.77849850 0.93369089
## Assault 0.31702281 0.04093255 0.51101299 -0.62665800 0.73976479
## UrbanPop 0.51260491 0.48053302 -0.06219936 0.27146824 0.01638255
## Rape 0.30523361 0.35738678 0.15459686 -0.26956828 0.57996132
## HS Grad Frost Area Murder(1973) Assault
## Population -0.09848975 -0.3321525 0.02254384 0.32024487 0.31702281
## Income 0.61993232 0.2262822 0.36331544 -0.21520501 0.04093255
## Illiteracy -0.65718861 -0.6719470 0.07726113 0.70677564 0.51101299
## Life Exp 0.58221620 0.2620680 -0.10733194 -0.77849850 -0.62665800
## Murder -0.48797102 -0.5388834 0.22839021 0.93369089 0.73976479
## HS Grad 1.00000000 0.3667797 0.33354187 -0.52159126 -0.23030510
## Frost 0.36677970 1.0000000 0.05922910 -0.54139702 -0.46823989
## Area 0.33354187 0.0592291 1.00000000 0.14808597 0.23120879
## Murder(1973) -0.52159126 -0.5413970 0.14808597 1.00000000 0.80187331
## Assault -0.23030510 -0.4682399 0.23120879 0.80187331 1.00000000
## UrbanPop 0.35868123 -0.2461862 -0.06154747 0.06957262 0.25887170
## Rape 0.27072504 -0.2792054 0.52495510 0.56357883 0.66524123
## UrbanPop Rape
## Population 0.51260491 0.3052336
## Income 0.48053302 0.3573868
## Illiteracy -0.06219936 0.1545969
## Life Exp 0.27146824 -0.2695683
## Murder 0.01638255 0.5799613
## HS Grad 0.35868123 0.2707250
## Frost -0.24618618 -0.2792054
## Area -0.06154747 0.5249551
## Murder(1973) 0.06957262 0.5635788
## Assault 0.25887170 0.6652412
## UrbanPop 1.00000000 0.4113412
## Rape 0.41134124 1.0000000
##pairwise correlations
library(corrplot)
## corrplot 0.84 loaded
dtaw <- round(cor(dta), 2)
corrplot(dtaw,method = "number")
##Murder與Murder(1973) 高度正相關
#Assault與Murder(1973) 高度正相關
#Life Exp 與Murder(1973) 高度負相關