Importing the Data:

dat <- read.csv("~/Heather work/AlisonData.csv")
head(dat)
##              Business                              Address PhoneNumber
## 1 Dottie Lou's Market 10184 PA-706, Stevensville, PA 18845  5707461987
## 2 Dottie Lou's Market 10184 PA-706, Stevensville, PA 18845  5707461987
## 3 Dottie Lou's Market 10184 PA-706, Stevensville, PA 18845  5707461987
## 4 Dottie Lou's Market 10184 PA-706, Stevensville, PA 18845  5707461987
## 5 Dottie Lou's Market 10184 PA-706, Stevensville, PA 18845  5707461987
## 6 Dottie Lou's Market 10184 PA-706, Stevensville, PA 18845  5707461987
##         Date Dozen HalfDozen     lat      lon
## 1  2/10/2019    36         0 41.7676 -76.1558
## 2  4/14/2019    36         0 41.7676 -76.1558
## 3  6/28/2019    36         0 41.7676 -76.1558
## 4  8/10/2019    36         0 41.7676 -76.1558
## 5  9/22/2019    36         0 41.7676 -76.1558
## 6 10/26/2019    36         0 41.7676 -76.1558

Basic map to show each location sold to in 2019:

ggmap::register_google(key = "AIzaSyDAekVxezBu2NYSVeSW8xY-9ovSX9658Kc")
Map <- leaflet(dat)%>%
addTiles()%>%
addCircles(label = dat$Address, lng = dat$lon, lat = dat$lat, color = "black")
Map

Making a new column and adding all the dozens and half dozens sold to each business:

dat$Total_doz <- dat[,5]+ (dat[,6]*(1/2))
View(dat)

Adding the amounts sold to each store:

Map2 <- leaflet(dat)%>%
addTiles()%>%
addMarkers(clusterOptions = markerClusterOptions()) %>%
addCircles(label = dat$Address, lng = dat$lon, lat = dat$lat, color = "black", radius = dat$"Total_doz")
## Assuming "lon" and "lat" are longitude and latitude, respectively
Map2