This data analysis report is written to show the efects of storms and other severe weather events on public health and its economic cost using the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. The main questions in this report targetted are: the types of weather events are the most harmful to the public health and types of weather events are the most costly economically.
Download the data from the U.S. National Oceanic and Atmospheric Administration’s (NOAA) website:
if(!file.exists("repdata-data-StormData.csv")) {
tempfile <- tempfile()
download.file("https://d396qusza40orc.cloudfront.net/repdata/data/repdata-data-StormData.csv.bz2",destfile = tempfile)
unzip(tempfile)
unlink(tempfile)
}
stormData<-read.csv("./repdata-data-StormData.csv", header=TRUE, stringsAsFactors=FALSE)
dim(stormData)
## [1] 902297 37
head(stormData)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE EVTYPE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL TORNADO
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL TORNADO
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL TORNADO
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL TORNADO
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL TORNADO
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL TORNADO
## BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1 0 0 NA
## 2 0 0 NA
## 3 0 0 NA
## 4 0 0 NA
## 5 0 0 NA
## 6 0 0 NA
## END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1 0 14.0 100 3 0 0 15 25.0
## 2 0 2.0 150 2 0 0 0 2.5
## 3 0 0.1 123 2 0 0 2 25.0
## 4 0 0.0 100 2 0 0 2 2.5
## 5 0 0.0 150 2 0 0 2 2.5
## 6 0 1.5 177 2 0 0 6 2.5
## PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1 K 0 3040 8812
## 2 K 0 3042 8755
## 3 K 0 3340 8742
## 4 K 0 3458 8626
## 5 K 0 3412 8642
## 6 K 0 3450 8748
## LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3051 8806 1
## 2 0 0 2
## 3 0 0 3
## 4 0 0 4
## 5 0 0 5
## 6 0 0 6
(echo = TRUE)
## [1] TRUE
names(stormData)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
(echo = TRUE)
## [1] TRUE
str(stormData)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : chr "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
## $ BGN_TIME : chr "0130" "0145" "1600" "0900" ...
## $ TIME_ZONE : chr "CST" "CST" "CST" "CST" ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: chr "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
## $ STATE : chr "AL" "AL" "AL" "AL" ...
## $ EVTYPE : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : chr "" "" "" "" ...
## $ BGN_LOCATI: chr "" "" "" "" ...
## $ END_DATE : chr "" "" "" "" ...
## $ END_TIME : chr "" "" "" "" ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : chr "" "" "" "" ...
## $ END_LOCATI: chr "" "" "" "" ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: chr "K" "K" "K" "K" ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: chr "" "" "" "" ...
## $ WFO : chr "" "" "" "" ...
## $ STATEOFFIC: chr "" "" "" "" ...
## $ ZONENAMES : chr "" "" "" "" ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : chr "" "" "" "" ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
(echo = TRUE)
## [1] TRUE
summary(stormData)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE
## Min. : 1.0 Length:902297 Length:902297 Length:902297
## 1st Qu.:19.0 Class :character Class :character Class :character
## Median :30.0 Mode :character Mode :character Mode :character
## Mean :31.2
## 3rd Qu.:45.0
## Max. :95.0
##
## COUNTY COUNTYNAME STATE EVTYPE
## Min. : 0.0 Length:902297 Length:902297 Length:902297
## 1st Qu.: 31.0 Class :character Class :character Class :character
## Median : 75.0 Mode :character Mode :character Mode :character
## Mean :100.6
## 3rd Qu.:131.0
## Max. :873.0
##
## BGN_RANGE BGN_AZI BGN_LOCATI END_DATE
## Min. : 0.000 Length:902297 Length:902297 Length:902297
## 1st Qu.: 0.000 Class :character Class :character Class :character
## Median : 0.000 Mode :character Mode :character Mode :character
## Mean : 1.484
## 3rd Qu.: 1.000
## Max. :3749.000
##
## END_TIME COUNTY_END COUNTYENDN END_RANGE
## Length:902297 Min. :0 Mode:logical Min. : 0.0000
## Class :character 1st Qu.:0 NA's:902297 1st Qu.: 0.0000
## Mode :character Median :0 Median : 0.0000
## Mean :0 Mean : 0.9862
## 3rd Qu.:0 3rd Qu.: 0.0000
## Max. :0 Max. :925.0000
##
## END_AZI END_LOCATI LENGTH WIDTH
## Length:902297 Length:902297 Min. : 0.0000 Min. : 0.000
## Class :character Class :character 1st Qu.: 0.0000 1st Qu.: 0.000
## Mode :character Mode :character Median : 0.0000 Median : 0.000
## Mean : 0.2301 Mean : 7.503
## 3rd Qu.: 0.0000 3rd Qu.: 0.000
## Max. :2315.0000 Max. :4400.000
##
## F MAG FATALITIES INJURIES
## Min. :0.0 Min. : 0.0 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.0 1st Qu.: 0.0 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :1.0 Median : 50.0 Median : 0.0000 Median : 0.0000
## Mean :0.9 Mean : 46.9 Mean : 0.0168 Mean : 0.1557
## 3rd Qu.:1.0 3rd Qu.: 75.0 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :5.0 Max. :22000.0 Max. :583.0000 Max. :1700.0000
## NA's :843563
## PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## Min. : 0.00 Length:902297 Min. : 0.000 Length:902297
## 1st Qu.: 0.00 Class :character 1st Qu.: 0.000 Class :character
## Median : 0.00 Mode :character Median : 0.000 Mode :character
## Mean : 12.06 Mean : 1.527
## 3rd Qu.: 0.50 3rd Qu.: 0.000
## Max. :5000.00 Max. :990.000
##
## WFO STATEOFFIC ZONENAMES LATITUDE
## Length:902297 Length:902297 Length:902297 Min. : 0
## Class :character Class :character Class :character 1st Qu.:2802
## Mode :character Mode :character Mode :character Median :3540
## Mean :2875
## 3rd Qu.:4019
## Max. :9706
## NA's :47
## LONGITUDE LATITUDE_E LONGITUDE_ REMARKS
## Min. :-14451 Min. : 0 Min. :-14455 Length:902297
## 1st Qu.: 7247 1st Qu.: 0 1st Qu.: 0 Class :character
## Median : 8707 Median : 0 Median : 0 Mode :character
## Mean : 6940 Mean :1452 Mean : 3509
## 3rd Qu.: 9605 3rd Qu.:3549 3rd Qu.: 8735
## Max. : 17124 Max. :9706 Max. :106220
## NA's :40
## REFNUM
## Min. : 1
## 1st Qu.:225575
## Median :451149
## Mean :451149
## 3rd Qu.:676723
## Max. :902297
##
(echo = TRUE)
## [1] TRUE
fields<-c("EVTYPE","FATALITIES","INJURIES","PROPDMG", "PROPDMGEXP","CROPDMG","CROPDMGEXP")
working<-stormData[fields]
(echo = TRUE)
## [1] TRUE
fatalities <- aggregate(FATALITIES ~ EVTYPE, data = working, FUN = sum)
injuries <- aggregate(INJURIES ~ EVTYPE, data = working, FUN = sum)
fatalities10 <- fatalities[order(-fatalities$FATALITIES),][1:10, ]
injuries10 <- injuries[order(-injuries$INJURIES),][1:10, ]
(echo = TRUE)
## [1] TRUE
unique(working$PROPDMGEXP)
## [1] "K" "M" "" "B" "m" "+" "0" "5" "6" "?" "4" "2" "3" "h" "7" "H" "-" "1" "8"
(echo = TRUE)
## [1] TRUE
unique(working$CROPDMGEXP)
## [1] "" "M" "K" "m" "B" "?" "0" "k" "2"
(echo = TRUE)
## [1] TRUE
unique(working$PROPDMGEXP)
## [1] "K" "M" "" "B" "m" "+" "0" "5" "6" "?" "4" "2" "3" "h" "7" "H" "-" "1" "8"
(echo = TRUE)
## [1] TRUE
unique(working$CROPDMGEXP)
## [1] "" "M" "K" "m" "B" "?" "0" "k" "2"
(echo = TRUE)
## [1] TRUE
working$PROPEXP[working$PROPDMGEXP == "K" ] <- 1000
working$PROPEXP[working$PROPDMGEXP == "M" ] <- 1000000
working$PROPEXP[working$PROPDMGEXP == "" ] <- 1
working$PROPEXP[working$PROPDMGEXP == "B" ] <- 1000000000
working$PROPEXP[working$PROPDMGEXP == "m" ] <- 1000000
working$PROPEXP[working$PROPDMGEXP == "+" ] <- 0
working$PROPEXP[working$PROPDMGEXP == "0" ] <- 1
working$PROPEXP[working$PROPDMGEXP == "5" ] <- 100000
working$PROPEXP[working$PROPDMGEXP == "6" ] <- 1000000
working$PROPEXP[working$PROPDMGEXP == "?" ] <- 0
working$PROPEXP[working$PROPDMGEXP == "4" ] <- 10000
working$PROPEXP[working$PROPDMGEXP == "2" ] <- 100
working$PROPEXP[working$PROPDMGEXP == "3" ] <- 1000
working$PROPEXP[working$PROPDMGEXP == "h" ] <- 100
working$PROPEXP[working$PROPDMGEXP == "7" ] <- 10000000
working$PROPEXP[working$PROPDMGEXP == "H" ] <- 100
working$PROPEXP[working$PROPDMGEXP == "-" ] <- 0
working$PROPEXP[working$PROPDMGEXP == "1" ] <- 10
working$PROPEXP[working$PROPDMGEXP == "8" ] <- 100000000
working$CROPEXP[working$CROPDMGEXP == "" ] <- 1
working$CROPEXP[working$CROPDMGEXP == "M" ] <- 1000000
working$CROPEXP[working$CROPDMGEXP == "K" ] <- 1000
working$CROPEXP[working$CROPDMGEXP == "m" ] <- 1000000000
working$CROPEXP[working$CROPDMGEXP == "B" ] <- 1000000
working$CROPEXP[working$CROPDMGEXP == "?" ] <- 0
working$CROPEXP[working$CROPDMGEXP == "0" ] <- 1
working$CROPEXP[working$CROPDMGEXP == "k" ] <- 1000
working$CROPEXP[working$CROPDMGEXP == "2" ] <- 100
working$PROPDMGVAL <- working$PROPDMG * working$PROPEXP
working$CROPDMGVAL <- working$CROPDMG * working$CROPEXP
working$ALLDMGVAL <- working$PROPDMGVAL + working$CROPDMGVAL
(echo = TRUE)
## [1] TRUE
par(mfrow = c(1, 2), mar = c(12, 4, 3, 2), mgp = c(3, 1, 0), las=3,cex = 0.8)
barplot(fatalities10$FATALITIES, names.arg=fatalities10$EVTYPE,col="blue",ylab="Fatalities", main="Top 10 Events with HighestFatalities")
barplot(injuries10$INJURIES, names.arg=injuries10$EVTYPE,col="yellow", ylab="Injuries", main="Top 10 Events with Highest Injuries")
(echo = TRUE)
## [1] TRUE
prop_crop_dmg <- aggregate(ALLDMGVAL ~ EVTYPE, data = working, FUN = sum)
prop_crop_dmg_10<-prop_crop_dmg[order(-prop_crop_dmg$ALLDMGVAL), ][1:10,]
(echo = TRUE)
## [1] TRUE
par(mfrow = c(1, 2), mar = c(12, 4, 3, 2), mgp = c(3, 1, 0), las=3,cex = 0.8, cex.main = 0.9)
barplot((prop_crop_dmg_10$ALLDMGVAL)/(1*1000000000), names.arg=prop_crop_dmg_10$EVTYPE, col="green", ylab="Property Damage ($ billions)", main="Top 10 Events of Highest Property/Crop Damage")
(echo = TRUE)
## [1] TRUE
From the hitograms; Top 10 Events with Highest Fatalities , Top 10 Events with Highest Injuries , Top 10 Events of Highest Property/Crop Damage can be seen that the most fatalities and injuries are caused by tornados and the most property and crop damage is caused by floods.