This is a web scraped social media review site of two chriopractic clinics offering massage, one low priced grocery store, and one high end massage retreat.The names of the doctors have been replaced with ‘DOCTOR’, and name of chiropracic facility to CHIROPRACTIC. The names of the high end massage retreat have been replaced with ‘HIGH END SPA’. The name of the low cost grocery store was replaced with ‘LOW COST GROCERY STORE.’

This data table originally had 1338 observations, but that was an error due to copy and paste in Excel, so there is a need to remove empty rows after reading in the data if your copy of RStudio reads in those empty rows. After reading in the data there will be 516 reviews of mixed ratings for these business models. There aren’t many reviews lower than four stars for the chiropractic clinics, but there is a lot of variation in the high end massage retreat and low cost grocery store reviews. These businesses are in the Corona area and the first to be listed when typing massage, except for the grocery store, because it was directly typed in. Note that the social media site will send your api information on your demographics to these businesses when extracting the data, so you should have an alias.

library(DT)
library(tidyverse)
library(dplyr)
library(lubridate)
library(tm)
library(SnowballC)
library(wordcloud)
library(ggplot2)
library(textstem)
library(stringr)
library(visNetwork)
library(igraph)

#the following packages are needed by throw errors on some of the functions in dplyr and the tidyvere that make this script not run, so I am adding them to a chunk in the ML section to use them instead, after the other commands have been entered.
# library(RANN) #this pkg supplements caret for out of bag validation
# library(e1071)
# library(caret)
# library(randomForest)
# library(MASS)
# library(gbm)

library(textdata)
library(tidytext)
library(ggraph)
reviews <- read.csv('ReviewsMassageChiropractorYelp_withCompanyNamesOmitted.csv',
                    sep=',',header=TRUE, na.strings=c('',' ','NA','NULL'))

Clean up this data of NA rows and empty fields if you have more than 516 observations. You should have five columns.

Reviews <- reviews[complete.cases(reviews),]
colnames(Reviews)
## [1] "review"                              
## [2] "rating_last_first_if_multipleUpdated"
## [3] "site"                                
## [4] "LowAvgHighCost"                      
## [5] "businessType"

You can download this data to follow along with this DT datatable.

Reviews_DT <- datatable(data=Reviews, rownames=FALSE,  
                      extensions=c('Buttons','Responsive'),
                      filter=list(position='top'),
                      options=list( dom='Bfrtip',scrollX = TRUE, scrollY=TRUE,
                        buttons=c('colvis','csv'),
                        language=list(sSearch='Filter:')
                        )
                      )
Reviews_DT

The rating has more than one rating, separated by a comma for those reviews that are updated and the other reviews displayed have different ratings. We will see this after running the next chunk. The first listed value is the rating for the latest review, and the subsequent ratings (1-5) are for the next subsequent reviews backtracking in time. Each review will have a date listed before each previous review that the later review updated.

unique(Reviews$rating_last_first_if_multipleUpdated)
##  [1] 5         1         3         5,5       4         4,3,1     2        
##  [8] 5,3       4,4       1,1       2,2       3,5       5,2       2,4      
## [15] 1,1,1     4,4,1,3,3 5,4      
## 17 Levels: 1 1,1 1,1,1 2 2,2 2,4 3 3,5 4 4,3,1 4,4 4,4,1,3,3 5 5,2 5,3 ... 5,5

You can see from the above there are various review values, and we could choose to keep these or make separate dummy fields for how many time the review was updated from last to first review. The most updates appears to be five times, so we could create dummy fields to capture that rating and if it is the first,second,…, or fifth review and rating for each reviewer. Why not lets just do this. And so the next chunk will add those dummy fields.

rating <- strsplit(as.character(paste(Reviews$rating_last_first_if_multipleUpdated)), split=',')

Reviews$mostRecentVisit_rating <- as.character(paste(lapply(rating,'[',1)))
Reviews$lastVisit_rating <- as.character(paste(lapply(rating,'[',2)))
Reviews$twoVisitsPrior_rating <- as.character(paste(lapply(rating,'[',3)))
Reviews$threeVisitsPrior_rating <- as.character(paste(lapply(rating,'[',4)))
Reviews$fourVisitsPrior_rating <- as.character(paste(lapply(rating,'[',5)))

Reviews1 <- Reviews[with(Reviews, order(fourVisitsPrior_rating,
                                        threeVisitsPrior_rating,
                                        twoVisitsPrior_rating,
                                        lastVisit_rating, decreasing=FALSE)),]

# head(Reviews1)

The order by decreasing=FALSE had to be used to see those sequential visits from last visit, because these fields are character fields. When using predictive analytics they can be changed to factor, or we can change them to numeric.

Reviews1$mostRecentVisit_rating <- as.numeric(paste(Reviews1$mostRecentVisit_rating))
Reviews1$lastVisit_rating <- as.numeric(paste(Reviews1$lastVisit_rating))
Reviews1$twoVisitsPrior_rating <- as.numeric(paste(Reviews1$twoVisitsPrior_rating))
Reviews1$threeVisitsPrior_rating <- as.numeric(paste(Reviews1$threeVisitsPrior_rating))
Reviews1$fourVisitsPrior_rating <- as.numeric(paste(Reviews1$fourVisitsPrior_rating))
str(Reviews1)
## 'data.frame':    516 obs. of  10 variables:
##  $ review                              : Factor w/ 516 levels "\t\nAffinity Z.\nCorona, CA\n64 friends\n216 reviews\n23 photos\n\n\n\n\n\n\n\n\n Affinity Z.\n\n\t5/6/2014\nSE"| __truncated__,..: 408 414 409 31 5 217 79 168 430 49 ...
##  $ rating_last_first_if_multipleUpdated: Factor w/ 17 levels "1","1,1","1,1,1",..: 12 3 10 2 2 2 5 14 15 11 ...
##  $ site                                : Factor w/ 1 level "yelp": 1 1 1 1 1 1 1 1 1 1 ...
##  $ LowAvgHighCost                      : Factor w/ 3 levels "Avg","High","Low": 2 2 1 2 2 2 2 2 3 2 ...
##  $ businessType                        : Factor w/ 3 levels "chiropractic",..: 3 3 1 3 3 3 3 3 2 3 ...
##  $ mostRecentVisit_rating              : num  4 1 4 1 1 1 2 5 5 4 ...
##  $ lastVisit_rating                    : num  4 1 3 1 1 1 2 2 3 4 ...
##  $ twoVisitsPrior_rating               : num  1 1 1 NA NA NA NA NA NA NA ...
##  $ threeVisitsPrior_rating             : num  3 NA NA NA NA NA NA NA NA NA ...
##  $ fourVisitsPrior_rating              : num  3 NA NA NA NA NA NA NA NA NA ...

Now our ‘NA’ filled dummy columns are recognized as actual missing values or NAs of numeric instead of character fields. It is easier to turn the character fields into numeric, then factors so I changed them into numeric. If we want to use them as factors, which they are, when running the models we can. But we are going to focus on extracting hidden features from the data first and cleaning up redundancies in the data from the web scraping extenstions. Like the header user information and the extra dates, or the actual dates, and the ‘updated’ header to every previous review update. Lets look at our table of Reviews right now, but using the DT package for the datatable function.

Reviews_DT1 <- datatable(data=Reviews1, rownames=FALSE, # width = 800, height = 700,
                      extensions=c('Buttons','Responsive'),#'FixedColumns'),
                      #filter=list(position='top'),
                      options=list(pageLength=1,
                        dom='Bfrtip',scrollX = TRUE,# scrollY=TRUE,fixedColumns = TRUE,
                        buttons=c('colvis','csv'),
                        language=list(sSearch='Filter:')
                        )
                      )
                  
Reviews_DT1

We should also look at the table within Rmarkdown, because DT is fussy and takes a while to load, plus the amount of text in the first column takes up the rest of the rows.

row.names(Reviews1) <- NULL
# head(Reviews1)

Reviews1 data table is ordered by the review with the most previous reviews in most to least. We see from this first observation in the table and many others that the reviews have a header that needs cleaning up. So, lets do that. We will use gsub to remove these headers with some regex commands. There are a lot of non character elements in the reviews that are considered white space characters for (tabs, ()newlines or a mac newline( or ()space. If any mistakes it’ll be easy to adjust instead of rerunning codes to get the Reviews1 table.

Reviews2 <- Reviews1 

Reviews2$review <- gsub('[P].*[.][\\t][\\n]','',perl=TRUE,Reviews2$review)
# head(Reviews2)

We see that the Photo… header was removed if the review included a header. That placemarker is removed. But lets also remove the observations that didn’t have a photo placemarker and with these observations remove anything between the header and the first listed date that is preceeded by two newlines and one tab.We will also extract the first name and the header of the observations we removed the photo placemarker from up to the first date listed.

Reviews2$review <- gsub('^[\\t][\\n]', '',  perl=TRUE, Reviews2$review)

# head(Reviews2)

I noticed there is a user name that begins with a single apostrophe, and it throws off this script if not fixed early, because later these names will be put into the userName field.So we have to add in the escape character backslash and apostrophe with a pipe for ‘or’ into this next command.

Reviews2$review <- gsub('^[a-zA-Z|\'].*[.]','', perl=TRUE, Reviews2$review)
# head(Reviews2)

We see that we have the city, state, number of friends, reviews, photos, and a status if they have more than a certain number of reviews. But also that this information could be useful, so we might want to split these string reviews by the 9 newline characters.

reviewStringSplit <- strsplit(Reviews2$review, split='[\n]{9}',perl=TRUE)
# head(reviewStringSplit,1)

This is great, because now we can separate the review with the header information. Lets name one string the headerData and the other the userObservation.

headerData <- lapply(reviewStringSplit, '[',1)
head(headerData)
## [[1]]
## [1] "\nMission Viejo, CA\n500 friends\n404 reviews\n452 photos\nElite '2020"
## 
## [[2]]
## [1] "\nRancho Cucamonga, CA\n12 friends\n12 reviews\n4 photos"
## 
## [[3]]
## [1] "\nCorona, CA\n10 friends\n95 reviews\n28 photos"
## 
## [[4]]
## [1] "\nWestminster, CA\n0 friends\n74 reviews\n78 photos"
## 
## [[5]]
## [1] "\nLos Angeles, CA\n92 friends\n69 reviews\n113 photos"
## 
## [[6]]
## [1] "\nVan Nuys, CA\n116 friends\n24 reviews\n30 photos"

We see the city, state, number of friends, the number of reviews, number of photos, and if elite separated by a newline. Lets remove the newline, then add all these separately to our table by feature identified accordingly.

headerData2 <- as.character(headerData)
headerData2 <- gsub('^[\n]','', headerData2, perl=TRUE)
headermetaSplit <- strsplit(headerData2,split='[\n]',perl=TRUE)
head(headermetaSplit)
## [[1]]
## [1] "Mission Viejo, CA" "500 friends"       "404 reviews"      
## [4] "452 photos"        "Elite '2020"      
## 
## [[2]]
## [1] "Rancho Cucamonga, CA" "12 friends"           "12 reviews"          
## [4] "4 photos"            
## 
## [[3]]
## [1] "Corona, CA" "10 friends" "95 reviews" "28 photos" 
## 
## [[4]]
## [1] "Westminster, CA" "0 friends"       "74 reviews"      "78 photos"      
## 
## [[5]]
## [1] "Los Angeles, CA" "92 friends"      "69 reviews"      "113 photos"     
## 
## [[6]]
## [1] "Van Nuys, CA" "116 friends"  "24 reviews"   "30 photos"
Reviews2$cityState <- lapply(headermetaSplit,'[',1)
Reviews2$friends <- lapply(headermetaSplit,'[',2)
Reviews2$reviews <- lapply(headermetaSplit,'[',3)
Reviews2$photos <- lapply(headermetaSplit,'[',4)
Reviews2$eliteStatus <- lapply(headermetaSplit,'[',5)
userObservation <- lapply(reviewStringSplit,'[',2)
# head(userObservation,1)

We can see from the second split of the string that the userObservation includes more meta data that includes the user name, date, if it was an updated review, and if available the number of check ins to the business and number of photos. The first name is the first part of this string. Lets split the string and make a field called userName to add to our table. We have to split by one newline and one tab, because one of the dates only has a prepend of one newline and one tab, although most are two newlines followed by a tab, we miss a review if we don’t.

obsStrSplit <- as.character(userObservation)
obsStrSplit2 <- strsplit(obsStrSplit,split='[\n][\t]', perl=TRUE)
Reviews2$userName <- lapply(obsStrSplit2,'[',1)
Reviews2$userName <- gsub('[\n][\n]','',perl=TRUE, Reviews2$userName)
Reviews2$userName <- gsub('^[ ]','',perl=TRUE, Reviews2$userName)
Reviews2$userName <- gsub('[\n]$','',perl=TRUE, Reviews2$userName)
head(Reviews2$userName)
## [1] "Patty A R." "Raven H."   "Phillip G." "Julie C."   "Amy S."    
## [6] "Jack K."

Lets now replace the review field that has been slightly adjusted to exclude the first header. There is still the user name header that occurs right before the data and if the review is updated.This is the obsStrSplit2 list.

# head(obsStrSplit2)

These top reviews are the ones that have more than one review ordered from most to least by rating when this analysis and data cleaning began. We see from our obsStrSplit2 object that there are at most 5 listed reviews that were separated by the double newline and tab that preceeds each date. So we can make dummy fields for these reviews as well by the listed item they correspond to for each user. Later we can gather those fields into one Review field by review by visit. In each of those fields we will take out the response by the business if there was one. They are shown above and start with a double newline and the words, ‘Business Customer Service.’ We’ll mark this so we know to search for this fix later. %^& its tagged. So, lets add in the latest review, previous review, 2nd previous review, 3rd previous review, and 4th previous review because the most reviews for this data is five.

Reviews2$mostRecentVisit_review <- as.character(paste(lapply(obsStrSplit2,'[',2)))
Reviews2$lastVisit_review <- as.character(paste(lapply(obsStrSplit2,'[',3)))
Reviews2$twoVisitsPrior_review <- as.character(paste(lapply(obsStrSplit2,'[',4)))
Reviews2$threeVisitsPrior_review <- as.character(paste(lapply(obsStrSplit2,'[',5)))
Reviews2$fourVisitsPrior_review <- as.character(paste(lapply(obsStrSplit2,'[',5)))

lets remove the first review field from our table using the dplyr package select function. We should also change these added list types so that they are character strings.

Reviews3 <- Reviews2 %>% select(-review)
Reviews3$cityState <- as.factor(paste(Reviews3$cityState))
Reviews3$friends <- gsub(' friends','',Reviews3$friends)
Reviews3$friends <- as.numeric(paste(Reviews3$friends))
Reviews3$reviews <- gsub(' reviews','', Reviews3$reviews)
Reviews3$reviews <- as.numeric(paste(Reviews3$reviews))
Reviews3$photos <- gsub(' photos','', Reviews3$photos)
Reviews3$photos <- as.numeric(paste(Reviews3$photos))
Reviews3$eliteStatus <- as.factor(paste(Reviews3$eliteStatus))
Reviews3$mostRecentVisit_review <- as.character(Reviews3$mostRecentVisit_review)
Reviews3$lastVisit_review <- as.character(Reviews3$lastVisit_review)
Reviews3$twoVisitsPrior_review <- as.character(Reviews3$twoVisitsPrior_review)
Reviews3$threeVisitsPrior_review <- as.character(Reviews3$threeVisitsPrior_review)
Reviews3$fourVisitsPrior_review <- as.character(Reviews3$fourVisitsPrior_review)
str(Reviews3)
## 'data.frame':    516 obs. of  20 variables:
##  $ rating_last_first_if_multipleUpdated: Factor w/ 17 levels "1","1,1","1,1,1",..: 12 3 10 2 2 2 5 14 15 11 ...
##  $ site                                : Factor w/ 1 level "yelp": 1 1 1 1 1 1 1 1 1 1 ...
##  $ LowAvgHighCost                      : Factor w/ 3 levels "Avg","High","Low": 2 2 1 2 2 2 2 2 3 2 ...
##  $ businessType                        : Factor w/ 3 levels "chiropractic",..: 3 3 1 3 3 3 3 3 2 3 ...
##  $ mostRecentVisit_rating              : num  4 1 4 1 1 1 2 5 5 4 ...
##  $ lastVisit_rating                    : num  4 1 3 1 1 1 2 2 3 4 ...
##  $ twoVisitsPrior_rating               : num  1 1 1 NA NA NA NA NA NA NA ...
##  $ threeVisitsPrior_rating             : num  3 NA NA NA NA NA NA NA NA NA ...
##  $ fourVisitsPrior_rating              : num  3 NA NA NA NA NA NA NA NA NA ...
##  $ cityState                           : Factor w/ 148 levels "Alhambra, CA",..: 73 101 24 144 66 138 113 54 13 116 ...
##  $ friends                             : num  500 12 10 0 92 116 258 117 107 408 ...
##  $ reviews                             : num  404 12 95 74 69 24 288 20 94 44 ...
##  $ photos                              : num  452 4 28 78 113 30 132 13 188 33 ...
##  $ eliteStatus                         : Factor w/ 2 levels "Elite '2020",..: 1 2 2 2 2 2 1 2 2 1 ...
##  $ userName                            : chr  "Patty A R." "Raven H." "Phillip G." "Julie C." ...
##  $ mostRecentVisit_review              : chr  "6/5/2018Updated review\n 6 photos\n\n 2 check-ins\n\nAnother fabulous trip to HIGH END SPA! Love the new additi"| __truncated__ "2/15/2019Updated review\nStill no update by this facility, don't think I'll ever go back nor will I ever refer "| __truncated__ "6/15/2018Updated review\n 3 check-ins\n\nI've been here consistently for the last few years. Mistake were made "| __truncated__ "1/11/2020Updated review\n 3 photos\n\nImagine planning a family event for the last three months only to be gree"| __truncated__ ...
##  $ lastVisit_review                    : chr  "3/30/2018Previous review\nBeen going here for over 27 years. I've seen all the growth and change. It's been bum"| __truncated__ "5/12/2018Previous review\nIt's odd to me how you see the complaint, then a response but no update from the cust"| __truncated__ "9/14/2015Previous review\nMy wife and myself had some issues with the secretary and massages. We had communicat"| __truncated__ "9/15/2019Previous review\nImagine planning a family event for the last three months only to be greeted by list "| __truncated__ ...
##  $ twoVisitsPrior_review               : chr  "2/10/2018Previous review\nI miss the old HIGH END SPA. I've waited 2 days to actually talk to someone there abo"| __truncated__ "5/7/2018Previous review\nIt's too bad, I had such a great time here and some bathroom attendant ruined my whole"| __truncated__ "9/11/2015Previous review\nHad major issues with this place. My wife signed up for a massage and chiropractic se"| __truncated__ "NA" ...
##  $ threeVisitsPrior_review             : chr  "8/27/2017Previous review\nI've been coming here for over 25 years and have seen the ups and downs of this place"| __truncated__ "NA" "NA" "NA" ...
##  $ fourVisitsPrior_review              : chr  "8/27/2017Previous review\nI've been coming here for over 25 years and have seen the ups and downs of this place"| __truncated__ "NA" "NA" "NA" ...

Lets rearrange the columns in our new table. We still need to extract from each of the five reviews by user (if exist) the business response (also if exists).

colnames(Reviews3)
##  [1] "rating_last_first_if_multipleUpdated"
##  [2] "site"                                
##  [3] "LowAvgHighCost"                      
##  [4] "businessType"                        
##  [5] "mostRecentVisit_rating"              
##  [6] "lastVisit_rating"                    
##  [7] "twoVisitsPrior_rating"               
##  [8] "threeVisitsPrior_rating"             
##  [9] "fourVisitsPrior_rating"              
## [10] "cityState"                           
## [11] "friends"                             
## [12] "reviews"                             
## [13] "photos"                              
## [14] "eliteStatus"                         
## [15] "userName"                            
## [16] "mostRecentVisit_review"              
## [17] "lastVisit_review"                    
## [18] "twoVisitsPrior_review"               
## [19] "threeVisitsPrior_review"             
## [20] "fourVisitsPrior_review"

First lets gather the review fields and the ratings fields and remove the NA values from the userReveiwSeries and userRatingSeries.

Reviews4 <- gather(Reviews3, 'userReviewSeries','userReviewContent',16:20)
Reviews4$userReviewContent <- gsub('NA','', Reviews4$userReviewContent)

#remove the char NAs because complete.cases won't work unless the table is read in with
# the correct NA values, even after converting to empty in the table.
write.csv(Reviews4, 'reviews4.csv', row.names=FALSE)
Reviews4 <- read.csv('reviews4.csv', sep=',', header=TRUE, na.strings=c('',' ','NA',NULL))

#now the table is 543 instead of 2580 observations.
Reviews4 <- Reviews4[complete.cases(Reviews4$userReviewContent),]

Reviews5 <- gather(Reviews4, 'userRatingSeries','userRatingValue',5:9)
#because this userRatingValue field is numeric, the NAs are already read by R as such
#we can remove the NAs with complete.cases to get a 614 obs table instead of 2715
Reviews5 <- Reviews5[complete.cases(Reviews5$userRatingValue),]

colnames(Reviews5)
##  [1] "rating_last_first_if_multipleUpdated"
##  [2] "site"                                
##  [3] "LowAvgHighCost"                      
##  [4] "businessType"                        
##  [5] "cityState"                           
##  [6] "friends"                             
##  [7] "reviews"                             
##  [8] "photos"                              
##  [9] "eliteStatus"                         
## [10] "userName"                            
## [11] "userReviewSeries"                    
## [12] "userReviewContent"                   
## [13] "userRatingSeries"                    
## [14] "userRatingValue"
Reviews6 <- Reviews5 %>% select(userReviewSeries, userReviewContent,
                                userRatingSeries, userRatingValue,
                                everything())
Reviews7 <- Reviews6 %>% select(-rating_last_first_if_multipleUpdated,
                                -site)
# head(Reviews7)

Lets now remove the business response from the review content field.

businessReplied <- grep('Comment from',Reviews7$userReviewContent)
Reviews7$businessReplied <- 'no'
Reviews7$businessReplied[businessReplied] <- 'yes'

Reviews8 <- Reviews7 %>% select(userReviewSeries:userRatingValue,businessReplied,
                                everything())
Reviews9 <- Reviews8[order(Reviews8$businessReplied, decreasing=TRUE),]
row.names(Reviews9) <- NULL

Lets make this field a new field of the public relations reply removed.

Reviews9$userReviewContent <- as.character(paste(Reviews9$userReviewContent))
Reviews9$userRatingSeries <- as.factor(paste(Reviews9$userRatingSeries))
Reviews9$businessReplied <- as.factor(Reviews9$businessReplied)

PR <- strsplit(Reviews9$userReviewContent, split='[C][o][m][m][e][n][t] [f][r][o][m]',
               perl=TRUE)
# head(PR,1)

Lets separate these into two separate character strings of user only review and PR_reply

userOnlyReview <- as.character(paste(lapply(PR,'[',1)))
PR_reply <- as.character(paste(lapply(PR,'[',2)))

Both of the above vectors are the same number of observations as our table.

Lets remove the other data on photos

userOnlyReview <- gsub('[\n][P][h][o][t][o] [o][f].*','', userOnlyReview,perl=TRUE)
grep('Comment', userOnlyReview)
## integer(0)

There shouldn’t be any comments from business owners in this first part of the string.

# head(userOnlyReview,1)

Also, the above shows the beginning is a date with a dropped zero for the months 1-9, and some observations have the photo[s] or check-in[s]. This should be modified with regex to add a date column and also add the numeric values for the photos or check-ins to those fields in our table.

Lets add these two strings of user only and PR reply to the data as two separate fields with ifelse functions.

Reviews9$userReviewOnlyContent <- userOnlyReview

Reviews9$businessReplyContent <- PR_reply

Reviews9$userReviewOnlyContent <- gsub('[\n][P][h][o][t][o] [o][f].*','', 
                                   Reviews9$userReviewOnlyContent,perl=TRUE)
Reviews9$userReviewOnlyContent <- gsub('[S][e][e] [a][l][l] [p].*','',
                                       Reviews9$userReviewOnlyContent,
                                   perl=TRUE)
# head(Reviews9[,13:15])

We just mentioned the date beginning each userReviewOnlyContent and userReviewContent columns, so lets create a date column for these dates. There are actually a bunch of anomolies in that first part of the string.

Reviews9$Date <- substr(Reviews9$userReviewOnlyContent,1,11)
date <- strsplit(Reviews9$Date, split='[a-zA-Z]', perl=TRUE)
Date <- as.character(paste(lapply(date,'[',1)))
Date <- trimws(Date, which='right',whitespace='[\n]')
Date <- gsub('[ ][\n][0-9]','', perl=TRUE, Date)
Date <- gsub('[\n][ ][0-9]','', perl=TRUE, Date)
Date <- gsub('[\n][ ]','', perl=TRUE, Date)
Date <- gsub('[\n][\" ][0-9]','', perl=TRUE, Date)
Date <- gsub('[\n][0-9]{2}','', perl=TRUE, Date)
Date <- gsub('[\n][\\]["]','', perl=TRUE, Date)
Date <- gsub('[\n][0-9]','', perl=TRUE,Date)

Date1 <- mdy(Date)

Reviews9$Date <-Date1

Remove the first date string in the userReviewOnlyContent.

Reviews9$userReviewOnlyContent <- gsub('[0-9]{1,2}[/][0-9]{1,2}[/][0-9]{4}','',
                                       perl=TRUE, Reviews9$userReviewOnlyContent)

Lets also remove any photo meta from the original userReviewContent column.

Reviews9$userReviewContent <- gsub('[S][e][e] [a][l][l] [p].*','',Reviews9$userReviewContent,
                                   perl=TRUE)
Reviews9$userReviewContent <- gsub('[\n][P][h][o][t][o] [o][f].*','',
                                   Reviews9$userReviewContent,perl=TRUE)

Now lets rearrange our columns and make this a searchable and downloadable datatable.

Reviews10 <- Reviews9 %>% select(userReviewSeries, userReviewOnlyContent,
                                 userRatingSeries, userRatingValue, businessReplied,                                                businessReplyContent, everything())
colnames(Reviews10)
##  [1] "userReviewSeries"      "userReviewOnlyContent" "userRatingSeries"     
##  [4] "userRatingValue"       "businessReplied"       "businessReplyContent" 
##  [7] "userReviewContent"     "LowAvgHighCost"        "businessType"         
## [10] "cityState"             "friends"               "reviews"              
## [13] "photos"                "eliteStatus"           "userName"             
## [16] "Date"

The userReviewContent has the text of both business response and the user as well as photo placemarker data.

Reviews10_DT <- datatable(data=Reviews10, rownames=FALSE, # width = 800, height = 700,
                      extensions=c('Buttons','Responsive'),#'FixedColumns'),
                      #filter=list(position='top'),
                      options=list(pageLength=1,
                        dom='Bfrtip',scrollX = TRUE,# scrollY=TRUE,fixedColumns = TRUE,
                        buttons=c('colvis','csv'),
                        language=list(sSearch='Filter:')
                        )
                      )
Reviews10_DT
# head(Reviews10)

The userReviewContent was kept in the table to compare the cleaned up columns on user reviews.

We should still remove the updated and previous review descriptions.

Reviews10$userReviewOnlyContent <- gsub('[uU][p][d][a][t][e][d].*[\n]','', perl=TRUE,
                                        Reviews10$userReviewOnlyContent)
Reviews10$userReviewOnlyContent <- gsub('[pP][r][e][v][i][o][u].*[w]','', perl=TRUE,
                                        Reviews10$userReviewOnlyContent)
Reviews10$id <- row.names(Reviews10)

pix <- grep('photo+',Reviews10$userReviewOnlyContent)
pix2 <- Reviews10$userReviewOnlyContent[pix]
pix3 <- trimws(pix2, which="left",whitespace="[\t\r\n]")
pixs <- as.data.frame(pix3)
colnames(pixs) <- 'busPhotos'
pixs$id <- pix
pixs$busPhotos <- gsub('^[ ]','', pixs$busPhotos)
pixs2 <- pixs[grep('^[0-9][ ][pP]',pixs$busPhotos, perl=TRUE),]
# head(pixs2)
pics <- strsplit(pixs2$busPhotos,split='[\n\n]',perl=TRUE)
# head(pics,1)

From the above, we our only interested in the first split of photos, the other reviews are split on the double newline and caused multiple splits for most single reviews.

pixs2$userBusinessPhotos <- as.character(paste(lapply(pics,'[',1)))
pixs2$userBusinessPhotos <- gsub(' photo','', pixs2$userBusinessPhotos)
pixs2$userBusinessPhotos <- gsub('s','',pixs2$userBusinessPhotos)
pixs2$userBusinessPhotos <- trimws(pixs2$userBusinessPhotos,which='right')
pixs2$userBusinessPhotos <- as.numeric(paste(pixs2$userBusinessPhotos))
# head(pixs2)

Lets keep only the id and userBusinessPhotos columns.

pics3 <- pixs2 %>% select(id,userBusinessPhotos)

Combine this new feature to the data table of all features thus far.

Reviews11 <- merge(Reviews10, pics3, by.x='id', by.y='id', all.x=TRUE)

Now lets do the same thing for the check-ins information. The number of times the user checked in or visited the business. Get only those reviews with the check-ins a header and not in the observation or found at the end of the observation.

checks <- Reviews11 %>% select(id,userReviewOnlyContent) 
  
checks$substring <- substr(checks$userReviewOnlyContent, 1,40) 
  
chekn <- grep('check-in',checks$substring)
checks1 <- checks[chekn,]

There are more check-ins than photos by the user.

chekn <- checks1 %>% select(id, substring)
# head(chekn,10)

Lets remove the reference to photos and double newline characters from our substring.

chekn$substring <- gsub('[0-9] [p][h][o][t][o][\n][\n]','', chekn$substring,perl=TRUE)
chekn$substring <- gsub('[0-9][0-9] [p][h][o][t][o][s][\n][\n]','', chekn$substring,perl=TRUE)
chekn$substring <- gsub('[0-9] [p][h][o][t][o][s][\n][\n]','', chekn$substring,perl=TRUE)

Split on the double newline characters and grab the first entries, after verifying the substring column only starts with the number of check-ins per user.

checkN <- strsplit(chekn$substring, split='[\n][\n]',perl=TRUE)
head(checkN)
## [[1]]
## [1] "\n 1 check-in"              " has been treating myself,"
## 
## [[2]]
## [1] "\n  1 check-in"   "My boyfriend too"
## 
## [[3]]
## [1] "\n  1 check-in"  "My wife and I h"
## 
## [[4]]
## [1] "\n 41 check-ins"          "When I first moved to Co"
## 
## [[5]]
## [1] "\n 1 check-in"              "So I was having back probl"
## 
## [[6]]
## [1] "\n 1 check-in"              "DOCTOR showed me great exe"
checkN2 <- as.character(paste(lapply(checkN,'[',1)))
checkN2 <- trimws(checkN2, which='left', whitespace="[\n]")
checkN2 <- gsub('^ ','',checkN2)
checkN2 <- gsub('^ ','',checkN2)
checkN2 <- gsub(' check-ins','',checkN2)
checkN2 <- gsub(' check-in','',checkN2)
checkN2 <- as.numeric(paste(checkN2))

head(checkN2)
## [1]  1  1  1 41  1  1
chekn$userCheckIns <- checkN2
head(chekn)
##     id                                   substring userCheckIns
## 8  105 \n 1 check-in\n\n has been treating myself,            1
## 13  11          \n  1 check-in\n\nMy boyfriend too            1
## 14 110           \n  1 check-in\n\nMy wife and I h            1
## 21 117 \n 41 check-ins\n\nWhen I first moved to Co           41
## 23 119 \n 1 check-in\n\nSo I was having back probl            1
## 26 121 \n 1 check-in\n\nDOCTOR showed me great exe            1

merge this with Reviews11 data.

Reviews12 <- merge(Reviews11, chekn, by.x='id', by.y='id', all.x=TRUE)
head(Reviews12[order(Reviews12$userCheckIns,decreasing=TRUE),c(17,19:20)])
##           Date                                   substring userCheckIns
## 207 2014-09-23 \n 45 check-ins\n\nEverywhere I live I alwa           45
## 133 2014-10-21 \n 43 check-ins\n\nLove it here, sucks my c           43
## 21  2018-04-13 \n 41 check-ins\n\nWhen I first moved to Co           41
## 301 2018-09-28   31 check-ins\n\nEveryone is very nice and           31
## 517 2018-09-28   31 check-ins\n\nEveryone is very nice and           31
## 217 2015-12-04 \n 30 check-ins\n\nWe can I say "We Love LO           30
Reviews13 <- Reviews12 %>% select(-id, -substring)
head(Reviews13[order(Reviews13$userCheckIns,decreasing=TRUE),c(16,18)])
##           Date userCheckIns
## 207 2014-09-23           45
## 133 2014-10-21           43
## 21  2018-04-13           41
## 301 2018-09-28           31
## 517 2018-09-28           31
## 217 2015-12-04           30

Lets remove the header from the userReviewOnlyContent column now that we have extracted the photos and check-in data per user.

subUser <- substr(Reviews13$userReviewOnlyContent,1,30)
head(subUser,30)
##  [1] " 2 photos\n\nWhat a wonderful wa"    "\n 12 photos\n\nMy sister and I b"  
##  [3] "\nI came to CHIROPRACTIC with s"     "\nI have to say.... This is by "    
##  [5] "\nDr.  is my chiropractor and h"     "\nMany in our family have seen "    
##  [7] "\nDr.  fixed my neck/shoulder p"     "\n 1 check-in\n\n has been treati"  
##  [9] "\nDr.  is great! I've been to o"     "\nI'm so happy I found CHIROPRA"    
## [11] "\nI got my first one hour full "     "\n2 months ago I was rear ended"    
## [13] "\n 1 photo\n\n 1 check-in\n\nMy boy" "\n 2 photos\n\n 1 check-in\n\nMy wi"
## [15] "\n is a good man and truly care"     "\nLies.  Shady. Overcharge.  Th"    
## [17] "\nFirst time here. Highly recom"     "\nDOCTOR is great and gives rea"    
## [19] "\nThis has been my spa for the "     "\nI really enjoyed my visit eve"    
## [21] "\n 41 check-ins\n\nWhen I first m"   "\nTo be honest I dont even know"    
## [23] "\n 1 check-in\n\nSo I was having "   "\n 3 photos\n\nI booked a Winter "  
## [25] "\nDr.  is honestly the best thu"     "\n 1 check-in\n\nDOCTOR showed me"  
## [27] "\nI was first suspicious of thi"     "\nThe team here at CHIROPRACTIC"    
## [29] "\n 1 photo\n\n 1 check-in\n\nCHIROP" "\n 1 check-in\n\nGreat experience"
subUser2 <- gsub('[0-9]{1,2}.*[\n][\n]','', subUser, perl=TRUE)
head(subUser2,30)
##  [1] " What a wonderful wa"            "\n My sister and I b"           
##  [3] "\nI came to CHIROPRACTIC with s" "\nI have to say.... This is by "
##  [5] "\nDr.  is my chiropractor and h" "\nMany in our family have seen "
##  [7] "\nDr.  fixed my neck/shoulder p" "\n  has been treati"            
##  [9] "\nDr.  is great! I've been to o" "\nI'm so happy I found CHIROPRA"
## [11] "\nI got my first one hour full " "\n2 months ago I was rear ended"
## [13] "\n  My boy"                      "\n  My wi"                      
## [15] "\n is a good man and truly care" "\nLies.  Shady. Overcharge.  Th"
## [17] "\nFirst time here. Highly recom" "\nDOCTOR is great and gives rea"
## [19] "\nThis has been my spa for the " "\nI really enjoyed my visit eve"
## [21] "\n When I first m"               "\nTo be honest I dont even know"
## [23] "\n So I was having "             "\n I booked a Winter "          
## [25] "\nDr.  is honestly the best thu" "\n DOCTOR showed me"            
## [27] "\nI was first suspicious of thi" "\nThe team here at CHIROPRACTIC"
## [29] "\n  CHIROP"                      "\n Great experience"
subUser3 <- gsub('[\n][ ][0-9]{1,2}.*[\n][\n]','',subUser2, perl=TRUE)
head(subUser3,50)
##  [1] " What a wonderful wa"            "\n My sister and I b"           
##  [3] "\nI came to CHIROPRACTIC with s" "\nI have to say.... This is by "
##  [5] "\nDr.  is my chiropractor and h" "\nMany in our family have seen "
##  [7] "\nDr.  fixed my neck/shoulder p" "\n  has been treati"            
##  [9] "\nDr.  is great! I've been to o" "\nI'm so happy I found CHIROPRA"
## [11] "\nI got my first one hour full " "\n2 months ago I was rear ended"
## [13] "\n  My boy"                      "\n  My wi"                      
## [15] "\n is a good man and truly care" "\nLies.  Shady. Overcharge.  Th"
## [17] "\nFirst time here. Highly recom" "\nDOCTOR is great and gives rea"
## [19] "\nThis has been my spa for the " "\nI really enjoyed my visit eve"
## [21] "\n When I first m"               "\nTo be honest I dont even know"
## [23] "\n So I was having "             "\n I booked a Winter "          
## [25] "\nDr.  is honestly the best thu" "\n DOCTOR showed me"            
## [27] "\nI was first suspicious of thi" "\nThe team here at CHIROPRACTIC"
## [29] "\n  CHIROP"                      "\n Great experience"            
## [31] "\nI am so impressed with CHIROP" "\n I came here bec"             
## [33] "\n Thanks for suppo"             "\nI love coming to CHIROPRACTIC"
## [35] "\n Had a gift card"              "\nI went in because I had pain "
## [37] "\nI came in about a month ago d" "\nI'd been to different chiro,b"
## [39] "\n  For ye"                      "\nBest place to get a massage a"
## [41] "\nGreat place, all the staff is" "\n  I love"                     
## [43] "\n Love this place!"             "\n I came to him wi"            
## [45] "\nI came here before I was diag" "\n I enjoyed every mo"          
## [47] "\n My favorite chir"             "\nMy favorite place to get my b"
## [49] "\n My wife booked m"             "\n  DOC"

Now that we tested the removal using regex on a string, we can apply these regex commands to the column userReviewOnlyContent.

Reviews13$userReviewOnlyContent <- gsub('[0-9]{1,2}.*[\n][\n]','',
                                        Reviews13$userReviewOnlyContent, perl=TRUE)

Reviews13$userReviewOnlyContent <- gsub('[\n][ ][0-9]{1,2}.*[\n][\n]','',
                                        Reviews13$userReviewOnlyContent, perl=TRUE)
Reviews13$userReviewOnlyContent <- trimws(Reviews13$userReviewOnlyContent, which='left',
                                          whitespace="[\n\t\r]")
# head(Reviews13,30)

Now it looks like we have our cleaned data to run sentiment and text analysis of in determining the rating the user review is given by the user. Lets write this file out to csv, and make a DT datatable for downloading from Rpubs.

write.csv(Reviews13, 'cleanedRegexReviews13.csv',row.names=FALSE)
Reviews13_DT <- datatable(data=Reviews13, rownames=FALSE,  #width = 800, height = 700,
                      extensions=c('Buttons','Responsive'),#,'FixedColumns'),
                      filter=list(position='top'),
                      options=list(pageLength=2,
                        dom='Bfrtip',scrollX = TRUE, scrollY=TRUE,#fixedColumns = TRUE,
                        buttons=c('colvis','csv'),
                        language=list(sSearch='Filter:')
                        )
                      )
Reviews13_DT

Lets keep only the cleaned user review and the rating for that user’s visit.

Reviews14 <- Reviews13 %>% select(userReviewOnlyContent,userRatingValue)
row.names(Reviews14) <- NULL
head(Reviews14)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   userRatingValue
## 1               5
## 2               4
## 3               5
## 4               5
## 5               5
## 6               5

We will have to create a corpus of documents for each rating, then we can clean up the text with the programs within these text mining libraries other than what we have done to the data already. We should also remove the words: ‘DOCTOR’, ‘CHIROPRACTIC,’HIGH END SPA’, and ‘LOW COST GROCERY STORE.’

Reviews14$userReviewOnlyContent <- gsub('DOCTOR','', Reviews14$userReviewOnlyContent)
Reviews14$userReviewOnlyContent <- gsub('CHIROPRACTIC','', Reviews14$userReviewOnlyContent)
Reviews14$userReviewOnlyContent <- gsub('HIGH END SPA','', Reviews14$userReviewOnlyContent)
Reviews14$userReviewOnlyContent <- gsub('LOW COST GROCERY STORE','',
                                        Reviews14$userReviewOnlyContent)

Lets lemmatize the document first to grab the root word and not the stem of each review.

lemma <- lemmatize_strings(Reviews14$userReviewOnlyContent, dictionary=lexicon::hash_lemmas)

Lemma <- as.data.frame(lemma)
Lemma <- cbind(Lemma, Reviews14)

colnames(Lemma) <- c('lemmatizedReview','review', 'rating')
Lemma$rating <- as.factor(paste(Lemma$rating))
head(Lemma)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      lemmatizedReview
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            What a wonderful way to start the year! This be my 2 time back to, and we have a great time. The crowd be very low ( seriously, it feel like we have the place to ourselves much of the day. ) We walk right into the mineral bath, club mud, and didn't wait in any kind of line for lunch. None of the pool be crowd, and we be even able to enjoy one of the hammock in the secret garden. Tiffany at the front check - in desk go above and beyond for us regard the robe. I have request a plus - size robe, since after my last review I know they have add some to their collection. Unfortunately, all of their plus - size robe be still dirty from the day before. Tiffany be so accommodate, though! She be able to get us robe from the cabana area that fit me perfectly! It be so great to know that not only do they now offer guest of all size the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything. All of the staff today be in good spirit. The only thing that would have make today good would have be a massage. We'll have to book one next time. My husband and I be go to make our annual New Year's Day tradition!
## 2 My sister and I bring my mom here for her birthday and overall, we really enjoy our time here. We're use to go to Korean spa, but this be definitely a upgrade. pro: - The resort itself be beautiful and so relax. Like seriously such a please escape from reality that I need. It's set up so nicely and feel very luxurious. - It be my mom's birthday so she receive free admission on birthday with a purchase of a service. Admission be $52, so she book a manicure for $50 and get in for free. WORTH. My mom have go 52 year without ever get her nail do, so it be kind of heartwarming to see how much she love her experience. - The three of us take a Yin Yoga class and really enjoy it. We definitely want to take advantage of the other class option next time we come. - CLUB MUD. We have so much fun there and even make a little clay sculpture. It really do do wonder for your skin, and the area be suprisingly very good - keep. - The shower and locker facility can get pretty crowd, but overall, they be super nice and clean. They have a ample amount of shower, so we didn't have to wait at all. - All the staff seem really friendly and helpful. There's always staff member roam around, so you always feel somewhat take care of. - I really appreciate the towel and water stand locate throughout the resort. So handy and necessary. - park be free, thank God. con: - We go on a fairly cold day ( around 60 degree ), so the hot pool be crowd,. Like there be a couple of time I touch other people's body part I definitely do not want to touch. I feel like some of the hot pool exceed capacity, and I'm sure it be mostly because it be a cold day, but I do wish there be much of the hot pool or they should just be large! - The food be incredibly expensive. Like as ridiculous as Disneyland, which be say something. Plan to spend around $20 per meal per person. The one thing that be worth it be the nachos ( $16 for the small, but this thing be huge ). - The kitchen move VERY SLOWLY. Especially the salad section because I come before the lunch rush and still wait 20 minute to order my salad. The kitchen staff seem a bite incompetent, or maybe it's just run inefficiently. - This be much of a side note, but I wish there be a much streamline reservation system. I make the entire reservation over the phone, which be fine, but it wasn't lay out as clearly as I would have like it with the premium admission price, service, etc. The online one also just seem really confuse. Overall, we have a positive experience with just a couple of kink here and there. We love that there's just a lot to do here and time fly when you're here so come as early as you can. We definitely want to try come back in the summer month when it's warm!
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          I come to with severe back and neck pain. be amaze and help me to feel much good than I have feel for year! The girl up front also be very sweet and always make sure that all my appointment be set and on time! Heather the bill manager be very kind as good, she be AWESOME when it come to deal with me and my insurance amd be definitely a huge help! I don't know what I would have do without Heather help me with all of the insurance problem I have!!! She be the good, thank you Heather!! I would definitely recommend go to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          I have to say.... This be by far the good Chiropractic place I've ever be to. The staff be super friendly and very professional. From the moment I walk in the door I get greet by name. The dr be amaze too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr. be my chiropractor and he be a fabulous individual. I've never wait much than few minute for him to see me. The front team ( Both lady " be great with a outstanding care and smile. Thank you guy for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Many in our family have see for chiropractic care. He be very warm and friendly, knowledgable, put your mind at ease during his adjustment. He give great explanation. Our 14yo son say, " he be really good at what he do and he be a good person. " We all feel good after visit him. Recommend him to everyone.
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       review
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              What a wonderful way to start the year! This was my second time back to , and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make  our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                I came to  with severe back and neck pain.  was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Many in our family have seen  for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   rating
## 1      5
## 2      4
## 3      5
## 4      5
## 5      5
## 6      5

From this table, we are going to subset the reviews by rating by the user of 1 through 5.

rating1 <- subset(Lemma, Lemma$rating==1)
rating2 <- subset(Lemma, Lemma$rating==2)
rating3 <- subset(Lemma, Lemma$rating==3)
rating4 <- subset(Lemma, Lemma$rating==4)
rating5 <- subset(Lemma, Lemma$rating==5)

Lets create a directory for each rating.Erase the eval=FALsE, if you want to run this script. I already have the files.

dir.create('./rating1')
dir.create('./rating2')
dir.create('./rating3')
dir.create('./rating4')
dir.create('./rating5')

r1 <- as.character(rating1$lemmatizedReview)
setwd('./rating1')

for (j in 1:length(r1)){
  write(r1[j], paste(paste('rating1',j, sep='.'), '.txt', sep=''))
}
setwd('../')

r2 <- as.character(rating2$lemmatizedReview)
setwd('./rating2')

for (j in 1:length(r2)){
  write(r2[j], paste(paste('rating2',j, sep='.'), '.txt', sep=''))
}
setwd('../')


r3 <- as.character(rating3$lemmatizedReview)
setwd('./rating3')

for (j in 1:length(r3)){
  write(r3[j], paste(paste('rating3',j, sep='.'), '.txt', sep=''))
}
setwd('../')

r4 <- as.character(rating4$lemmatizedReview)
setwd('./rating4')

for (j in 1:length(r4)){
  write(r4[j], paste(paste('rating4',j, sep='.'), '.txt', sep=''))
}
setwd('../')


r5 <- as.character(rating5$lemmatizedReview)
setwd('./rating5')

for (j in 1:length(r5)){
  write(r5[j], paste(paste('rating5',j, sep='.'), '.txt', sep=''))
}
setwd('../')

List the files in each folder rating 1-5.

list.files('./rating1')
##  [1] "rating1.1.txt"  "rating1.10.txt" "rating1.11.txt" "rating1.12.txt"
##  [5] "rating1.13.txt" "rating1.14.txt" "rating1.15.txt" "rating1.16.txt"
##  [9] "rating1.17.txt" "rating1.18.txt" "rating1.19.txt" "rating1.2.txt" 
## [13] "rating1.20.txt" "rating1.21.txt" "rating1.22.txt" "rating1.23.txt"
## [17] "rating1.24.txt" "rating1.25.txt" "rating1.26.txt" "rating1.27.txt"
## [21] "rating1.28.txt" "rating1.29.txt" "rating1.3.txt"  "rating1.30.txt"
## [25] "rating1.31.txt" "rating1.32.txt" "rating1.33.txt" "rating1.34.txt"
## [29] "rating1.35.txt" "rating1.36.txt" "rating1.37.txt" "rating1.38.txt"
## [33] "rating1.39.txt" "rating1.4.txt"  "rating1.40.txt" "rating1.41.txt"
## [37] "rating1.42.txt" "rating1.43.txt" "rating1.44.txt" "rating1.45.txt"
## [41] "rating1.46.txt" "rating1.47.txt" "rating1.48.txt" "rating1.49.txt"
## [45] "rating1.5.txt"  "rating1.50.txt" "rating1.51.txt" "rating1.52.txt"
## [49] "rating1.53.txt" "rating1.54.txt" "rating1.55.txt" "rating1.56.txt"
## [53] "rating1.57.txt" "rating1.58.txt" "rating1.59.txt" "rating1.6.txt" 
## [57] "rating1.60.txt" "rating1.61.txt" "rating1.62.txt" "rating1.63.txt"
## [61] "rating1.64.txt" "rating1.65.txt" "rating1.66.txt" "rating1.67.txt"
## [65] "rating1.68.txt" "rating1.69.txt" "rating1.7.txt"  "rating1.70.txt"
## [69] "rating1.71.txt" "rating1.72.txt" "rating1.73.txt" "rating1.74.txt"
## [73] "rating1.75.txt" "rating1.76.txt" "rating1.77.txt" "rating1.78.txt"
## [77] "rating1.79.txt" "rating1.8.txt"  "rating1.80.txt" "rating1.81.txt"
## [81] "rating1.82.txt" "rating1.83.txt" "rating1.84.txt" "rating1.85.txt"
## [85] "rating1.86.txt" "rating1.87.txt" "rating1.88.txt" "rating1.9.txt"
list.files('./rating2')
##  [1] "rating2.1.txt"  "rating2.10.txt" "rating2.11.txt" "rating2.12.txt"
##  [5] "rating2.13.txt" "rating2.14.txt" "rating2.15.txt" "rating2.16.txt"
##  [9] "rating2.17.txt" "rating2.18.txt" "rating2.19.txt" "rating2.2.txt" 
## [13] "rating2.20.txt" "rating2.21.txt" "rating2.22.txt" "rating2.23.txt"
## [17] "rating2.24.txt" "rating2.25.txt" "rating2.26.txt" "rating2.27.txt"
## [21] "rating2.28.txt" "rating2.29.txt" "rating2.3.txt"  "rating2.30.txt"
## [25] "rating2.31.txt" "rating2.32.txt" "rating2.33.txt" "rating2.34.txt"
## [29] "rating2.4.txt"  "rating2.5.txt"  "rating2.6.txt"  "rating2.7.txt" 
## [33] "rating2.8.txt"  "rating2.9.txt"
list.files('./rating3')
##  [1] "rating3.1.txt"  "rating3.10.txt" "rating3.11.txt" "rating3.12.txt"
##  [5] "rating3.13.txt" "rating3.14.txt" "rating3.15.txt" "rating3.16.txt"
##  [9] "rating3.17.txt" "rating3.18.txt" "rating3.19.txt" "rating3.2.txt" 
## [13] "rating3.20.txt" "rating3.21.txt" "rating3.22.txt" "rating3.23.txt"
## [17] "rating3.24.txt" "rating3.25.txt" "rating3.26.txt" "rating3.27.txt"
## [21] "rating3.28.txt" "rating3.29.txt" "rating3.3.txt"  "rating3.30.txt"
## [25] "rating3.31.txt" "rating3.32.txt" "rating3.33.txt" "rating3.34.txt"
## [29] "rating3.35.txt" "rating3.36.txt" "rating3.37.txt" "rating3.38.txt"
## [33] "rating3.39.txt" "rating3.4.txt"  "rating3.40.txt" "rating3.41.txt"
## [37] "rating3.42.txt" "rating3.43.txt" "rating3.44.txt" "rating3.45.txt"
## [41] "rating3.46.txt" "rating3.47.txt" "rating3.48.txt" "rating3.49.txt"
## [45] "rating3.5.txt"  "rating3.50.txt" "rating3.51.txt" "rating3.52.txt"
## [49] "rating3.53.txt" "rating3.54.txt" "rating3.6.txt"  "rating3.7.txt" 
## [53] "rating3.8.txt"  "rating3.9.txt"
list.files('./rating4')
##   [1] "rating4.1.txt"   "rating4.10.txt"  "rating4.100.txt" "rating4.101.txt"
##   [5] "rating4.102.txt" "rating4.103.txt" "rating4.11.txt"  "rating4.12.txt" 
##   [9] "rating4.13.txt"  "rating4.14.txt"  "rating4.15.txt"  "rating4.16.txt" 
##  [13] "rating4.17.txt"  "rating4.18.txt"  "rating4.19.txt"  "rating4.2.txt"  
##  [17] "rating4.20.txt"  "rating4.21.txt"  "rating4.22.txt"  "rating4.23.txt" 
##  [21] "rating4.24.txt"  "rating4.25.txt"  "rating4.26.txt"  "rating4.27.txt" 
##  [25] "rating4.28.txt"  "rating4.29.txt"  "rating4.3.txt"   "rating4.30.txt" 
##  [29] "rating4.31.txt"  "rating4.32.txt"  "rating4.33.txt"  "rating4.34.txt" 
##  [33] "rating4.35.txt"  "rating4.36.txt"  "rating4.37.txt"  "rating4.38.txt" 
##  [37] "rating4.39.txt"  "rating4.4.txt"   "rating4.40.txt"  "rating4.41.txt" 
##  [41] "rating4.42.txt"  "rating4.43.txt"  "rating4.44.txt"  "rating4.45.txt" 
##  [45] "rating4.46.txt"  "rating4.47.txt"  "rating4.48.txt"  "rating4.49.txt" 
##  [49] "rating4.5.txt"   "rating4.50.txt"  "rating4.51.txt"  "rating4.52.txt" 
##  [53] "rating4.53.txt"  "rating4.54.txt"  "rating4.55.txt"  "rating4.56.txt" 
##  [57] "rating4.57.txt"  "rating4.58.txt"  "rating4.59.txt"  "rating4.6.txt"  
##  [61] "rating4.60.txt"  "rating4.61.txt"  "rating4.62.txt"  "rating4.63.txt" 
##  [65] "rating4.64.txt"  "rating4.65.txt"  "rating4.66.txt"  "rating4.67.txt" 
##  [69] "rating4.68.txt"  "rating4.69.txt"  "rating4.7.txt"   "rating4.70.txt" 
##  [73] "rating4.71.txt"  "rating4.72.txt"  "rating4.73.txt"  "rating4.74.txt" 
##  [77] "rating4.75.txt"  "rating4.76.txt"  "rating4.77.txt"  "rating4.78.txt" 
##  [81] "rating4.79.txt"  "rating4.8.txt"   "rating4.80.txt"  "rating4.81.txt" 
##  [85] "rating4.82.txt"  "rating4.83.txt"  "rating4.84.txt"  "rating4.85.txt" 
##  [89] "rating4.86.txt"  "rating4.87.txt"  "rating4.88.txt"  "rating4.89.txt" 
##  [93] "rating4.9.txt"   "rating4.90.txt"  "rating4.91.txt"  "rating4.92.txt" 
##  [97] "rating4.93.txt"  "rating4.94.txt"  "rating4.95.txt"  "rating4.96.txt" 
## [101] "rating4.97.txt"  "rating4.98.txt"  "rating4.99.txt"
list.files('./rating5')
##   [1] "rating5.1.txt"   "rating5.10.txt"  "rating5.100.txt" "rating5.101.txt"
##   [5] "rating5.102.txt" "rating5.103.txt" "rating5.104.txt" "rating5.105.txt"
##   [9] "rating5.106.txt" "rating5.107.txt" "rating5.108.txt" "rating5.109.txt"
##  [13] "rating5.11.txt"  "rating5.110.txt" "rating5.111.txt" "rating5.112.txt"
##  [17] "rating5.113.txt" "rating5.114.txt" "rating5.115.txt" "rating5.116.txt"
##  [21] "rating5.117.txt" "rating5.118.txt" "rating5.119.txt" "rating5.12.txt" 
##  [25] "rating5.120.txt" "rating5.121.txt" "rating5.122.txt" "rating5.123.txt"
##  [29] "rating5.124.txt" "rating5.125.txt" "rating5.126.txt" "rating5.127.txt"
##  [33] "rating5.128.txt" "rating5.129.txt" "rating5.13.txt"  "rating5.130.txt"
##  [37] "rating5.131.txt" "rating5.132.txt" "rating5.133.txt" "rating5.134.txt"
##  [41] "rating5.135.txt" "rating5.136.txt" "rating5.137.txt" "rating5.138.txt"
##  [45] "rating5.139.txt" "rating5.14.txt"  "rating5.140.txt" "rating5.141.txt"
##  [49] "rating5.142.txt" "rating5.143.txt" "rating5.144.txt" "rating5.145.txt"
##  [53] "rating5.146.txt" "rating5.147.txt" "rating5.148.txt" "rating5.149.txt"
##  [57] "rating5.15.txt"  "rating5.150.txt" "rating5.151.txt" "rating5.152.txt"
##  [61] "rating5.153.txt" "rating5.154.txt" "rating5.155.txt" "rating5.156.txt"
##  [65] "rating5.157.txt" "rating5.158.txt" "rating5.159.txt" "rating5.16.txt" 
##  [69] "rating5.160.txt" "rating5.161.txt" "rating5.162.txt" "rating5.163.txt"
##  [73] "rating5.164.txt" "rating5.165.txt" "rating5.166.txt" "rating5.167.txt"
##  [77] "rating5.168.txt" "rating5.169.txt" "rating5.17.txt"  "rating5.170.txt"
##  [81] "rating5.171.txt" "rating5.172.txt" "rating5.173.txt" "rating5.174.txt"
##  [85] "rating5.175.txt" "rating5.176.txt" "rating5.177.txt" "rating5.178.txt"
##  [89] "rating5.179.txt" "rating5.18.txt"  "rating5.180.txt" "rating5.181.txt"
##  [93] "rating5.182.txt" "rating5.183.txt" "rating5.184.txt" "rating5.185.txt"
##  [97] "rating5.186.txt" "rating5.187.txt" "rating5.188.txt" "rating5.189.txt"
## [101] "rating5.19.txt"  "rating5.190.txt" "rating5.191.txt" "rating5.192.txt"
## [105] "rating5.193.txt" "rating5.194.txt" "rating5.195.txt" "rating5.196.txt"
## [109] "rating5.197.txt" "rating5.198.txt" "rating5.199.txt" "rating5.2.txt"  
## [113] "rating5.20.txt"  "rating5.200.txt" "rating5.201.txt" "rating5.202.txt"
## [117] "rating5.203.txt" "rating5.204.txt" "rating5.205.txt" "rating5.206.txt"
## [121] "rating5.207.txt" "rating5.208.txt" "rating5.209.txt" "rating5.21.txt" 
## [125] "rating5.210.txt" "rating5.211.txt" "rating5.212.txt" "rating5.213.txt"
## [129] "rating5.214.txt" "rating5.215.txt" "rating5.216.txt" "rating5.217.txt"
## [133] "rating5.218.txt" "rating5.219.txt" "rating5.22.txt"  "rating5.220.txt"
## [137] "rating5.221.txt" "rating5.222.txt" "rating5.223.txt" "rating5.224.txt"
## [141] "rating5.225.txt" "rating5.226.txt" "rating5.227.txt" "rating5.228.txt"
## [145] "rating5.229.txt" "rating5.23.txt"  "rating5.230.txt" "rating5.231.txt"
## [149] "rating5.232.txt" "rating5.233.txt" "rating5.234.txt" "rating5.235.txt"
## [153] "rating5.236.txt" "rating5.237.txt" "rating5.238.txt" "rating5.239.txt"
## [157] "rating5.24.txt"  "rating5.240.txt" "rating5.241.txt" "rating5.242.txt"
## [161] "rating5.243.txt" "rating5.244.txt" "rating5.245.txt" "rating5.246.txt"
## [165] "rating5.247.txt" "rating5.248.txt" "rating5.249.txt" "rating5.25.txt" 
## [169] "rating5.250.txt" "rating5.251.txt" "rating5.252.txt" "rating5.253.txt"
## [173] "rating5.254.txt" "rating5.255.txt" "rating5.256.txt" "rating5.257.txt"
## [177] "rating5.258.txt" "rating5.259.txt" "rating5.26.txt"  "rating5.260.txt"
## [181] "rating5.261.txt" "rating5.262.txt" "rating5.263.txt" "rating5.264.txt"
## [185] "rating5.265.txt" "rating5.266.txt" "rating5.267.txt" "rating5.268.txt"
## [189] "rating5.269.txt" "rating5.27.txt"  "rating5.270.txt" "rating5.271.txt"
## [193] "rating5.272.txt" "rating5.273.txt" "rating5.274.txt" "rating5.275.txt"
## [197] "rating5.276.txt" "rating5.277.txt" "rating5.278.txt" "rating5.279.txt"
## [201] "rating5.28.txt"  "rating5.280.txt" "rating5.281.txt" "rating5.282.txt"
## [205] "rating5.283.txt" "rating5.284.txt" "rating5.285.txt" "rating5.286.txt"
## [209] "rating5.287.txt" "rating5.288.txt" "rating5.289.txt" "rating5.29.txt" 
## [213] "rating5.290.txt" "rating5.291.txt" "rating5.292.txt" "rating5.293.txt"
## [217] "rating5.294.txt" "rating5.295.txt" "rating5.296.txt" "rating5.297.txt"
## [221] "rating5.298.txt" "rating5.299.txt" "rating5.3.txt"   "rating5.30.txt" 
## [225] "rating5.300.txt" "rating5.301.txt" "rating5.302.txt" "rating5.303.txt"
## [229] "rating5.304.txt" "rating5.305.txt" "rating5.306.txt" "rating5.307.txt"
## [233] "rating5.308.txt" "rating5.309.txt" "rating5.31.txt"  "rating5.310.txt"
## [237] "rating5.311.txt" "rating5.312.txt" "rating5.313.txt" "rating5.314.txt"
## [241] "rating5.315.txt" "rating5.316.txt" "rating5.317.txt" "rating5.318.txt"
## [245] "rating5.319.txt" "rating5.32.txt"  "rating5.320.txt" "rating5.321.txt"
## [249] "rating5.322.txt" "rating5.323.txt" "rating5.324.txt" "rating5.325.txt"
## [253] "rating5.326.txt" "rating5.327.txt" "rating5.328.txt" "rating5.329.txt"
## [257] "rating5.33.txt"  "rating5.330.txt" "rating5.331.txt" "rating5.332.txt"
## [261] "rating5.333.txt" "rating5.334.txt" "rating5.335.txt" "rating5.34.txt" 
## [265] "rating5.35.txt"  "rating5.36.txt"  "rating5.37.txt"  "rating5.38.txt" 
## [269] "rating5.39.txt"  "rating5.4.txt"   "rating5.40.txt"  "rating5.41.txt" 
## [273] "rating5.42.txt"  "rating5.43.txt"  "rating5.44.txt"  "rating5.45.txt" 
## [277] "rating5.46.txt"  "rating5.47.txt"  "rating5.48.txt"  "rating5.49.txt" 
## [281] "rating5.5.txt"   "rating5.50.txt"  "rating5.51.txt"  "rating5.52.txt" 
## [285] "rating5.53.txt"  "rating5.54.txt"  "rating5.55.txt"  "rating5.56.txt" 
## [289] "rating5.57.txt"  "rating5.58.txt"  "rating5.59.txt"  "rating5.6.txt"  
## [293] "rating5.60.txt"  "rating5.61.txt"  "rating5.62.txt"  "rating5.63.txt" 
## [297] "rating5.64.txt"  "rating5.65.txt"  "rating5.66.txt"  "rating5.67.txt" 
## [301] "rating5.68.txt"  "rating5.69.txt"  "rating5.7.txt"   "rating5.70.txt" 
## [305] "rating5.71.txt"  "rating5.72.txt"  "rating5.73.txt"  "rating5.74.txt" 
## [309] "rating5.75.txt"  "rating5.76.txt"  "rating5.77.txt"  "rating5.78.txt" 
## [313] "rating5.79.txt"  "rating5.8.txt"   "rating5.80.txt"  "rating5.81.txt" 
## [317] "rating5.82.txt"  "rating5.83.txt"  "rating5.84.txt"  "rating5.85.txt" 
## [321] "rating5.86.txt"  "rating5.87.txt"  "rating5.88.txt"  "rating5.89.txt" 
## [325] "rating5.9.txt"   "rating5.90.txt"  "rating5.91.txt"  "rating5.92.txt" 
## [329] "rating5.93.txt"  "rating5.94.txt"  "rating5.95.txt"  "rating5.96.txt" 
## [333] "rating5.97.txt"  "rating5.98.txt"  "rating5.99.txt"

Here is where we start removing the stopwords we kept in the first copy of this program.

R1 <- Corpus(DirSource("rating1"))


R1
## <<SimpleCorpus>>
## Metadata:  corpus specific: 1, document level (indexed): 0
## Content:  documents: 88
R1 <- tm_map(R1, removePunctuation)
R1 <- tm_map(R1, removeNumbers)
R1 <- tm_map(R1, tolower) # I want to capture the emotion the users write with when All caps
R1 <- tm_map(R1, removeWords, stopwords("english"))#Also the number of 'and's' and 'not' etc
R1 <- tm_map(R1, stripWhitespace)
#+R1 <- tm_map(R1, stemDocument)#we already lemmatized the document it is more robust to meaning

dtmR1 <- DocumentTermMatrix(R1)
freq <- colSums(as.matrix(dtmR1))
wordcloud(names(freq), freq, min.freq=30,colors=brewer.pal(3,'Dark2'))

freqR1 <- as.data.frame(colSums(as.matrix(dtmR1)))
colnames(freqR1) <- 'rating1'
freqR1$id <- row.names(freqR1)
FREQ_R1 <- freqR1[order(freqR1$rating1,decreasing=TRUE),]
row.names(FREQ_R1) <- NULL
head(FREQ_R1,50)
##    rating1         id
## 1       75        get
## 2       74       time
## 3       65       tell
## 4       57       good
## 5       55        say
## 6       51        ask
## 7       50        day
## 8       50      place
## 9       47        can
## 10      45       come
## 11      45      didnt
## 12      45    service
## 13      44       back
## 14      43       even
## 15      42       just
## 16      42       make
## 17      37     cabana
## 18      36 experience
## 19      35       much
## 20      34        bad
## 21      34   customer
## 22      33       call
## 23      33       food
## 24      32      check
## 25      31       will
## 26      31    manager
## 27      29       like
## 28      28       need
## 29      28       dont
## 30      28        one
## 31      28        pay
## 32      27        see
## 33      27       give
## 34      26     robert
## 35      26        try
## 36      25      never
## 37      25        use
## 38      25      wasnt
## 39      24     charge
## 40      24       ever
## 41      24      store
## 42      23       also
## 43      23       take
## 44      22     people
## 45      22        ive
## 46      22     little
## 47      22    massage
## 48      21      front
## 49      21       line
## 50      21       pool

People in general, speaking as American born and raised, when angry usually speak out of anger and disappointment when feeling they have been had, taken, or in some way been victimized for not getting what they paid for when promised or convinced into getting that experience, purchase, feeling, etc. As you can see by not excluding the stop words we now have a count of the number of connections to persuade the reader that he or she was wronged or rewarded by the number of interjections. We learn this early in persuasive writing in grammar school to have at least five paragraphs to build a persuasive story with an introduction, three body paragraphs, and a conclusion, and again in English composition in lower level undergrad work. This means build on three points or perspectives in the body paragraphs to persuade the reader your right, and find them if they aren’t readily considered.

Lets do the same for the other four folders in getting our ordered word counts or frequencies.

R2 <- Corpus(DirSource("rating2"))


R2
## <<SimpleCorpus>>
## Metadata:  corpus specific: 1, document level (indexed): 0
## Content:  documents: 34
R2 <- tm_map(R2, removePunctuation)
R2 <- tm_map(R2, removeNumbers)
R2 <- tm_map(R2, tolower) 
R2 <- tm_map(R2, removeWords, stopwords("english"))
R2 <- tm_map(R2, stripWhitespace)

dtmR2 <- DocumentTermMatrix(R2)

freq2 <- colSums(as.matrix(dtmR2))
wordcloud(names(freq2), freq2, min.freq=25,colors=brewer.pal(3,'Dark2'))

freqR2 <- as.data.frame(colSums(as.matrix(dtmR2)))
colnames(freqR2) <- 'rating2'
freqR2$id <- row.names(freqR2)
FREQ_R2 <- freqR2[order(freqR2$rating2,decreasing=TRUE),]
row.names(FREQ_R2) <- NULL
head(FREQ_R2,50)
##    rating2          id
## 1       44         get
## 2       37         spa
## 3       36        just
## 4       33  experience
## 5       33        good
## 6       28       drink
## 7       28        time
## 8       27        make
## 9       27         day
## 10      26         can
## 11      26      people
## 12      25       check
## 13      24        tell
## 14      23        even
## 15      22       relax
## 16      22        come
## 17      22        like
## 18      22        line
## 19      22        pool
## 20      22     service
## 21      20        much
## 22      19        food
## 23      18      grotto
## 24      18         pay
## 25      18       place
## 26      18      really
## 27      18         one
## 28      18      charge
## 29      17        dont
## 30      17        feel
## 31      16       water
## 32      14      around
## 33      14         see
## 34      14        pack
## 35      14  absolutely
## 36      14 reservation
## 37      14     another
## 38      14        card
## 39      13        back
## 40      13        want
## 41      12       first
## 42      12         use
## 43      12       never
## 44      12        take
## 45      12         mud
## 46      12        give
## 47      12       since
## 48      11        also
## 49      11         end
## 50      11        long
R3 <- Corpus(DirSource("rating3"))



R3
## <<SimpleCorpus>>
## Metadata:  corpus specific: 1, document level (indexed): 0
## Content:  documents: 54
R3 <- tm_map(R3, removePunctuation)
R3 <- tm_map(R3, removeNumbers)
R3 <- tm_map(R3, tolower) 
R3 <- tm_map(R3, removeWords, stopwords("english"))
R3 <- tm_map(R3, stripWhitespace)

dtmR3 <- DocumentTermMatrix(R3)

freq3 <- colSums(as.matrix(dtmR3))
wordcloud(names(freq3), freq3, min.freq=25,colors=brewer.pal(3,'Dark2'))

freqR3 <- as.data.frame(colSums(as.matrix(dtmR3)))
colnames(freqR3) <- 'rating3'
freqR3$id <- row.names(freqR3)
FREQ_R3 <- freqR3[order(freqR3$rating3,decreasing=TRUE),]
row.names(FREQ_R3) <- NULL
head(FREQ_R3,50)
##    rating3         id
## 1       52        get
## 2       38       good
## 3       35        spa
## 4       33       just
## 5       32       time
## 6       32       like
## 7       30     cabana
## 8       28       much
## 9       28       pool
## 10      27        day
## 11      27       feel
## 12      25        can
## 13      24       come
## 14      23      place
## 15      22       love
## 16      21      crowd
## 17      20     really
## 18      20      price
## 19      19     little
## 20      19      check
## 21      18        one
## 22      18       wait
## 23      18    service
## 24      17    massage
## 25      17     people
## 26      17     grotto
## 27      17       food
## 28      16      store
## 29      16        ive
## 30      15      thing
## 31      14       line
## 32      14       take
## 33      14        mud
## 34      14       make
## 35      13      great
## 36      13       look
## 37      13       dont
## 38      12       item
## 39      12       will
## 40      12 experience
## 41      12      visit
## 42      12      order
## 43      12      water
## 44      11       also
## 45      11      relax
## 46      11       keep
## 47      11      first
## 48      11       nice
## 49      10       give
## 50      10       hour
R4 <- Corpus(DirSource("rating4"))


R4
## <<SimpleCorpus>>
## Metadata:  corpus specific: 1, document level (indexed): 0
## Content:  documents: 103
R4 <- tm_map(R4, removePunctuation)
R4 <- tm_map(R4, removeNumbers)
R4 <- tm_map(R4, tolower) 
R4 <- tm_map(R4, removeWords, stopwords("english"))
R4 <- tm_map(R4, stripWhitespace)

dtmR4 <- DocumentTermMatrix(R4)

freq4 <- colSums(as.matrix(dtmR4))
wordcloud(names(freq4), freq4, min.freq=25,colors=brewer.pal(3,'Dark2'))

freqR4 <- as.data.frame(colSums(as.matrix(dtmR4)))
colnames(freqR4) <- 'rating4'
freqR4$id <- row.names(freqR4)
FREQ_R4 <- freqR4[order(freqR4$rating4,decreasing=TRUE),]
row.names(FREQ_R4) <- NULL
head(FREQ_R4,50)
##    rating4         id
## 1      103       good
## 2      100        get
## 3       80       pool
## 4       75        day
## 5       73       time
## 6       65       like
## 7       65       much
## 8       64        can
## 9       57    massage
## 10      54      great
## 11      52 experience
## 12      50        mud
## 13      48       just
## 14      44       come
## 15      42       food
## 16      38      relax
## 17      38        spa
## 18      37       love
## 19      36        one
## 20      35      price
## 21      35    service
## 22      34       feel
## 23      34     little
## 24      34      thing
## 25      32       make
## 26      32       want
## 27      32      place
## 28      31       also
## 29      31       back
## 30      31        hot
## 31      31       park
## 32      31     really
## 33      31       room
## 34      29       area
## 35      29       bath
## 36      28     grotto
## 37      27       cold
## 38      27       take
## 39      26     people
## 40      26     facial
## 41      26      drink
## 42      25       wait
## 43      25      check
## 44      25       robe
## 45      24       nice
## 46      24        put
## 47      23    overall
## 48      23      staff
## 49      23       dont
## 50      22       even
R5 <- Corpus(DirSource("rating5"))


R5
## <<SimpleCorpus>>
## Metadata:  corpus specific: 1, document level (indexed): 0
## Content:  documents: 335
R5 <- tm_map(R5, removePunctuation)
R5 <- tm_map(R5, removeNumbers)
R5 <- tm_map(R5, tolower) 
R5 <- tm_map(R5, removeWords, stopwords("english"))
R5 <- tm_map(R5, stripWhitespace)

dtmR5 <- DocumentTermMatrix(R5)

freq5 <- colSums(as.matrix(dtmR5))

wordcloud(names(freq5), freq5, min.freq=75,colors=brewer.pal(3,'Dark2'))

freqR5 <- as.data.frame(colSums(as.matrix(dtmR5)))
colnames(freqR5) <- 'rating5'
freqR5$id <- row.names(freqR5)
FREQ_R5 <- freqR5[order(freqR5$rating5,decreasing=TRUE),]
row.names(FREQ_R5) <- NULL
head(FREQ_R5,50)
##    rating5           id
## 1      272         good
## 2      178          get
## 3      152        staff
## 4      150        great
## 5      137         time
## 6      135      massage
## 7      130         come
## 8      128        place
## 9      122          can
## 10     117         much
## 11     113         love
## 12     110         make
## 13     109          day
## 14     108         feel
## 15     105       always
## 16     104         back
## 17     104    recommend
## 18      92        amaze
## 19      91   experience
## 20      90         pain
## 21      85     friendly
## 22      84         also
## 23      83      service
## 24      80       really
## 25      79         just
## 26      77         pool
## 27      71         will
## 28      70         like
## 29      70         year
## 30      70       office
## 31      69        first
## 32      69    treatment
## 33      68         care
## 34      68         help
## 35      67         know
## 36      67          one
## 37      67         take
## 38      66        price
## 39      65          see
## 40      63 chiropractor
## 41      63          ive
## 42      62         need
## 43      61        relax
## 44      60   adjustment
## 45      60         work
## 46      58       highly
## 47      56         nice
## 48      56        store
## 49      53         even
## 50      53          spa

Lets add a feature for the ratio of word frequencies to the number of documents in the reviews with each rating 1-5.

l1 <- length(list.files('./rating1'))
l2 <- length(list.files('./rating2'))
l3 <- length(list.files('./rating3'))
l4 <- length(list.files('./rating4'))
l5 <- length(list.files('./rating5'))

FREQ_R1$termTotalFilesRatio <-FREQ_R1$rating1/l1
FREQ_R2$termTotalFilesRatio <- FREQ_R2$rating2/l2
FREQ_R3$termTotalFilesRatio <- FREQ_R3$rating3/l3
FREQ_R4$termTotalFilesRatio <- FREQ_R4$rating4/l4
FREQ_R5$termTotalFilesRatio <- FREQ_R5$rating5/l5

FREQ_R1$termTotalTermsRatio <-FREQ_R1$rating1/length(FREQ_R1$id)
FREQ_R2$termTotalTermsRatio <- FREQ_R2$rating2/length(FREQ_R2$id)
FREQ_R3$termTotalTermsRatio <- FREQ_R3$rating3/length(FREQ_R3$id)
FREQ_R4$termTotalTermsRatio <- FREQ_R4$rating4/length(FREQ_R4$id)
FREQ_R5$termTotalTermsRatio <- FREQ_R5$rating5/length(FREQ_R5$id)

Lets change the column names of each rating table.

colnames(FREQ_R1) <-c('Rating1termfrequency',
                      'term',
                      'Rating1_termTotalFilesRatio',
                      'Rating1_termTotalTermsRatio')
colnames(FREQ_R2) <-c('Rating2termfrequency',
                      'term',
                      'Rating2_termTotalFilesRatio',
                      'Rating2_termTotalTermsRatio')
colnames(FREQ_R3) <-c('Rating3termfrequency',
                      'term',
                      'Rating3_termTotalFilesRatio',
                      'Rating3_termTotalTermsRatio')
colnames(FREQ_R4) <-c('Rating4termfrequency',
                      'term',
                      'Rating4_termTotalFilesRatio',
                      'Rating4_termTotalTermsRatio')
colnames(FREQ_R5) <-c('Rating5termfrequency',
                      'term',
                      'Rating5_termTotalFilesRatio',
                      'Rating5_termTotalTermsRatio')

Lets now combine all these term frequencies.

m1 <- merge(FREQ_R1,FREQ_R2, by.x='term', by.y='term', all=TRUE)
m2 <- merge(m1,FREQ_R3, by.x='term', by.y='term', all=TRUE)
m3 <- merge(m2,FREQ_R4, by.x='term', by.y='term', all=TRUE)
m4 <- merge(m3,FREQ_R5, by.x='term', by.y='term', all=TRUE)

allTerms <- m4 %>% select(term,Rating1termfrequency,Rating2termfrequency,
                          Rating3termfrequency,Rating4termfrequency,
                          Rating5termfrequency,Rating1_termTotalFilesRatio,
                          Rating2_termTotalFilesRatio,Rating3_termTotalFilesRatio,
                          Rating4_termTotalFilesRatio,Rating5_termTotalFilesRatio,
                          everything())
colnames(allTerms)
##  [1] "term"                        "Rating1termfrequency"       
##  [3] "Rating2termfrequency"        "Rating3termfrequency"       
##  [5] "Rating4termfrequency"        "Rating5termfrequency"       
##  [7] "Rating1_termTotalFilesRatio" "Rating2_termTotalFilesRatio"
##  [9] "Rating3_termTotalFilesRatio" "Rating4_termTotalFilesRatio"
## [11] "Rating5_termTotalFilesRatio" "Rating1_termTotalTermsRatio"
## [13] "Rating2_termTotalTermsRatio" "Rating3_termTotalTermsRatio"
## [15] "Rating4_termTotalTermsRatio" "Rating5_termTotalTermsRatio"

Lets add a median field for the word in each rating to this table.

allTerms$MedianCount <- apply(allTerms[2:6],1,median, na.rm=TRUE)

medianRating1 <- apply(allTerms[2],2,median,na.rm=TRUE)
medianRating2 <- apply(allTerms[3],2,median,na.rm=TRUE)
medianRating3 <- apply(allTerms[4],2,median,na.rm=TRUE)
medianRating4 <- apply(allTerms[5],2,median,na.rm=TRUE)
medianRating5 <- apply(allTerms[6],2,median,na.rm=TRUE)

meanRating1 <- floor(apply(allTerms[2],2,mean,na.rm=TRUE))
meanRating2 <- floor(apply(allTerms[3],2,mean,na.rm=TRUE))
meanRating3 <- floor(apply(allTerms[4],2,mean,na.rm=TRUE))
meanRating4 <- floor(apply(allTerms[5],2,mean,na.rm=TRUE))
meanRating5 <- floor(apply(allTerms[6],2,mean,na.rm=TRUE))

allTerms2 <- allTerms[order(allTerms$MedianCount,decreasing=TRUE),]

Lets add a bottom and top percentile to this table based on the terms in each rating subset.

allTerms2$Quantile5_R1 <- ifelse(allTerms2$Rating1termfrequency <=       
                                quantile(allTerms2$Rating1termfrequency, .05,na.rm=TRUE),
                              1,0)
allTerms2$Quantile95_R1 <- ifelse(allTerms2$Rating1termfrequency >=       
                                quantile(allTerms2$Rating1termfrequency, .95,na.rm=TRUE),
                              1,0)
allTerms2$Quantile5_R2 <- ifelse(allTerms2$Rating2termfrequency <=       
                                quantile(allTerms2$Rating2termfrequency, .05,na.rm=TRUE),
                              1,0)
allTerms2$Quantile95_R2 <- ifelse(allTerms2$Rating2termfrequency >=       
                                quantile(allTerms2$Rating2termfrequency, .95,na.rm=TRUE),
                              1,0)
allTerms2$Quantile5_R3 <- ifelse(allTerms2$Rating3termfrequency <=       
                                quantile(allTerms2$Rating3termfrequency, .05,na.rm=TRUE),
                              1,0)
allTerms2$Quantile95_R3 <- ifelse(allTerms2$Rating3termfrequency >=       
                                quantile(allTerms2$Rating3termfrequency, .95,na.rm=TRUE),
                              1,0)
allTerms2$Quantile5_R4 <- ifelse(allTerms2$Rating4termfrequency <=       
                                quantile(allTerms2$Rating4termfrequency, .05,na.rm=TRUE),
                              1,0)
allTerms2$Quantile95_R4 <- ifelse(allTerms2$Rating4termfrequency >=       
                                quantile(allTerms2$Rating4termfrequency, .95,na.rm=TRUE),
                              1,0)
allTerms2$Quantile5_R5 <- ifelse(allTerms2$Rating5termfrequency <=       
                                quantile(allTerms2$Rating5termfrequency, .05,na.rm=TRUE),
                              1,0)
allTerms2$Quantile95_R5 <- ifelse(allTerms2$Rating5termfrequency >=       
                                quantile(allTerms2$Rating5termfrequency, .95,na.rm=TRUE),
                              1,0)

We have to keep this data wide, but it is useful to filter by, and extracting those words more used in each rating for each review.

goodGreat <- subset(allTerms2, allTerms2$Quantile95_R5==1 &
                      allTerms2$Quantile95_R4==1 & 
                      allTerms2$Rating5termfrequency > allTerms2$MedianCount &
                      allTerms2$Rating4termfrequency > allTerms2$MedianCount |
                      allTerms2$Quantile5_R5==1 &
                      allTerms2$Quantile5_R4==1 |
                      allTerms2$Rating5termfrequency > meanRating5 |
                      allTerms2$Rating4termfrequency > meanRating4
                  )
average <- subset(allTerms2, allTerms2$Quantile95_R3==1 &
                      allTerms2$Quantile95_R2==1 & 
                      allTerms2$Rating3termfrequency > allTerms2$MedianCount &
                      allTerms2$Rating2termfrequency > allTerms2$MedianCount |
                      allTerms2$Quantile5_R3==1 &
                      allTerms2$Quantile5_R2==1  |
                      allTerms2$Rating3termfrequency > meanRating3 |
                      allTerms2$Rating2termfrequency > meanRating2
                 )
poor <- subset(allTerms2, allTerms2$Quantile95_R1==1 &
                      allTerms2$Quantile95_R2==1 & 
                      allTerms2$Rating1termfrequency > allTerms2$MedianCount &
                      allTerms2$Rating2termfrequency > allTerms2$MedianCount |
                      allTerms2$Quantile5_R1==1 &
                      allTerms2$Quantile5_R2==1 |
                      allTerms2$Rating1termfrequency > meanRating1 |
                      allTerms2$Rating2termfrequency > meanRating2
                 )

Here is bar chart of the word counts for the poor ratings.

wf <- data.frame(word=poor$term, freq=poor$Rating1termfrequency)
p <- ggplot(subset(wf, freq>40), aes(word, freq))
p <- p + geom_bar(stat= 'identity') 
p <- p + theme(axis.text.x=element_text(angle=90, hjust=1)) 
p

Lets make a word cloud of each of these data tables terms by weights of the lowest for poor, highest for average, and highest for goodGreat The NAs have to be removed before using word cloud.

poorNA <- poor[complete.cases(poor$Rating1termfrequency),]

Poor1 <- as.data.frame(t(poorNA$Rating1termfrequency))
colnames(Poor1) <- poorNA$term

freqPoor <- colSums(as.matrix(Poor1))
wordcloud(names(freqPoor), freqPoor, min.freq=25,
          colors=brewer.pal(6,'Dark2'))

wordcloud(names(freqPoor), freqPoor, min.freq=25,colors=brewer.pal(3,'Dark2'))

Here is bar chart of the word counts for the average ratings.

wf <- data.frame(word=average$term, freq=average$Rating3termfrequency)
p <- ggplot(subset(wf, freq>25), aes(word, freq))
p <- p + geom_bar(stat= 'identity') 
p <- p + theme(axis.text.x=element_text(angle=90, hjust=1)) 
p

Lets make a word cloud.

avgNA <- average[complete.cases(average$Rating3termfrequency),]

Avg1 <- as.data.frame(t(avgNA$Rating3termfrequency))
colnames(Avg1) <- avgNA$term
freqAvg <- colSums(as.matrix(Avg1))
wordcloud(names(freqAvg), freqAvg, min.freq=20,
          colors=brewer.pal(6,'Dark2'))

wordcloud(names(freqAvg), freqAvg, min.freq=25,colors=brewer.pal(3,'Dark2'))

Here is bar chart of the word counts for the good or great ratings.

wf <- data.frame(word=goodGreat$term, freq=goodGreat$Rating5termfrequency)
p <- ggplot(subset(wf, freq>70), aes(word, freq))
p <- p + geom_bar(stat= 'identity') 
p <- p + theme(axis.text.x=element_text(angle=90, hjust=1)) 
p

Lets make a word cloud.

grtNA <- goodGreat[complete.cases(goodGreat$Rating5termfrequency),]

Grt1 <- as.data.frame(t(grtNA$Rating5termfrequency))
colnames(Grt1) <- grtNA$term
Grt1 <- Grt1[,-c(1:4)] #remove the first 4 words, (the,and,for,have)

freqGrt <- colSums(as.matrix(Grt1))
wordcloud(names(freqGrt), freqGrt, min.freq=80,
          colors=brewer.pal(6,'Dark2'))

wordcloud(names(freqGrt), freqGrt, min.freq=95,colors=brewer.pal(3,'Dark2'))


That was a great way to look at the word clouds of these ratings and the words in each set of words in the top and bottom 5th percentiles as well as higher than the median or mean values. The last couple of word plots I removed the interjection words at the top of the list. Otherwise, you would have seen and,the,for, and have. But the for is a keyword and the data table had to be sliced instead of deselecting those words.




We still haven’t done predictive analytics to predict the rating by the review. We will do that next. I would also like to create a visNetwork of these words, with the ratings, and the business type these words are associated with.

The way that sentiment analysis works is to build the document term matrix (dtm) of counts based on the reveiws, and use those counts of words and given ratings to determine the best fit from any particular algorithm that can predict a review as being a specific rating. We have the dtms of all five of our ratings. But we don’t have anything set up manually to count all those words from every review or at least any keywords to build those models in predicting our reviews. Normally, you have each row in a dtm is a review, and the columns are each specific word, and evertime that word is found, the word will be added to its last count to get a final count of each word per document. We could do something like this based on our key words.

We could also quickly jump over to python and wait a bit in running the datatable we cleaned up into a bunch of algorithms like random forest, decision trees, generalized linear models, boosted trees, naive bayes, etc. Or we could look up the text mining and natural language processing packages in the libraries we attached to this document or add to as needed.

Since this document has been manual from the beginning by cleaning up and extracting features from the reviews. We could just use those features, instead of the words, or we could pick a handful of words, even stopwords, that our program will count in each review, and use as features to predict the reviews with what we already know how to do from previous work in github and rpubs.

Lets look again at the features we do have from our big cleaned up table.

colnames(Reviews13)
##  [1] "userReviewSeries"      "userReviewOnlyContent" "userRatingSeries"     
##  [4] "userRatingValue"       "businessReplied"       "businessReplyContent" 
##  [7] "userReviewContent"     "LowAvgHighCost"        "businessType"         
## [10] "cityState"             "friends"               "reviews"              
## [13] "photos"                "eliteStatus"           "userName"             
## [16] "Date"                  "userBusinessPhotos"    "userCheckIns"

Our target variable would be the 4th column feature above called userRatingValue. We can keep every feature column except the 7th for userReveiwContent that is not our cleaned up review feature and Date. Although, we could get the day of the date feature, because that might have a value added benefit to predicting the rating from these reviews. We also don’t need the business Reply Content and won’t need the user reviews cleaned up as a predictor once we extract the keyword counts we want. We will just use the words we saw from our word clouds above for a poor, average, or great review subsets. Lets keep the top 10 from each, including the stopwords.

The poor ratings keywords are for ratings of 1 or 2.

KW_poor <- poor %>% select(term,Rating1termfrequency,Rating2termfrequency)
KW_poor$medianLowRate <- apply(KW_poor[2:3],1,median, na.rm=TRUE)
keywords_low <- KW_poor[order(KW_poor$medianLowRate,decreasing=TRUE)[1:10],]
keywords_low
##            term Rating1termfrequency Rating2termfrequency medianLowRate
## 1308        get                   75                   44          59.5
## 3192       time                   74                   28          51.0
## 1336       good                   57                   33          45.0
## 3124       tell                   65                   24          44.5
## 1684       just                   42                   36          39.0
## 834         day                   50                   27          38.5
## 490         can                   47                   26          36.5
## 1123 experience                   36                   33          34.5
## 1860       make                   42                   27          34.5
## 2297      place                   50                   18          34.0

We can now use these as our poor keywords.

low_keys <- as.data.frame(t(keywords_low$medianLowRate))
colnames(low_keys) <- keywords_low$term
row.names(low_keys) <- 'lowRating'
low_keys
##            get time good tell just  day  can experience make place
## lowRating 59.5   51   45 44.5   39 38.5 36.5       34.5 34.5    34

And these are our average rating keywords. from the median of 2-4 ratings.

KW_avg <- average %>% select(term,Rating2termfrequency,Rating3termfrequency,
                             Rating4termfrequency)
KW_avg$medianAvgRate <- apply(KW_avg[2:4],1,median, na.rm=TRUE)
keywords_avg <- KW_avg[order(KW_avg$medianAvgRate,decreasing=TRUE)[1:10],]
keywords_avg
##            term Rating2termfrequency Rating3termfrequency Rating4termfrequency
## 1308        get                   44                   52                  100
## 1336       good                   33                   38                  103
## 2927        spa                   37                   35                   38
## 1684       just                   36                   33                   48
## 1123 experience                   33                   12                   52
## 3192       time                   28                   32                   73
## 1786       like                   22                   32                   65
## 2023       much                   20                   28                   65
## 2326       pool                   22                   28                   80
## 834         day                   27                   27                   75
##      medianAvgRate
## 1308            52
## 1336            38
## 2927            37
## 1684            36
## 1123            33
## 3192            32
## 1786            32
## 2023            28
## 2326            28
## 834             27

The keywords for the average ratings is a median value of the ratings 2 through 4.

avg_keys <- as.data.frame(t(keywords_avg$medianAvgRate))
colnames(avg_keys) <- keywords_avg$term
row.names(avg_keys) <- 'avgRating'
avg_keys
##           get good spa just experience time like much pool day
## avgRating  52   38  37   36         33   32   32   28   28  27

Lets get our great ratings as the median of the 4-5 ratings.

KW_grt <- goodGreat %>% select(term,Rating5termfrequency,Rating4termfrequency)
KW_grt$medianGrtRate <- apply(KW_grt[2:3],1,median, na.rm=TRUE)
keywords_grt <- KW_grt[order(KW_grt$medianGrtRate,decreasing=TRUE)[1:10],]
keywords_grt
##         term Rating5termfrequency Rating4termfrequency medianGrtRate
## 1336    good                  272                  103         187.5
## 1308     get                  178                  100         139.0
## 3192    time                  137                   73         105.0
## 1355   great                  150                   54         102.0
## 1891 massage                  135                   57          96.0
## 490      can                  122                   64          93.0
## 834      day                  109                   75          92.0
## 2023    much                  117                   65          91.0
## 2966   staff                  152                   23          87.5
## 653     come                  130                   44          87.0

Lets start joinging the key words together from lowest, average, then greatest.

The keywords for the great ratings is a median value of the ratings 4 through 5.

grt_keys <- as.data.frame(t(keywords_grt$medianGrtRate))
colnames(grt_keys) <- keywords_grt$term
row.names(grt_keys) <- 'grtRating'
grt_keys
##            good get time great massage can day much staff come
## grtRating 187.5 139  105   102      96  93  92   91  87.5   87

Now lets combine these tables.

j1 <- full_join(low_keys,avg_keys)
j1
##    get time good tell just  day  can experience make place spa like much pool
## 1 59.5   51   45 44.5   39 38.5 36.5       34.5 34.5    34  NA   NA   NA   NA
## 2 52.0   32   38   NA   36 27.0   NA       33.0   NA    NA  37   32   28   28
j2 <- full_join(j1,grt_keys)
row.names(j2) <- c('low','average','great')
j2
##           get time  good tell just  day  can experience make place spa like
## low      59.5   51  45.0 44.5   39 38.5 36.5       34.5 34.5    34  NA   NA
## average  52.0   32  38.0   NA   36 27.0   NA       33.0   NA    NA  37   32
## great   139.0  105 187.5   NA   NA 92.0 93.0         NA   NA    NA  NA   NA
##         much pool great massage staff come
## low       NA   NA    NA      NA    NA   NA
## average   28   28    NA      NA    NA   NA
## great     91   NA   102      96  87.5   87

There are too many of the words to fill in manually, so we well pick the first 12 and get those words directly from each of the three tables of word counts

keyNames <- as.data.frame(colnames(j2)[1:12])
colnames(keyNames) <- 'keyNames'
keyNames
##      keyNames
## 1         get
## 2        time
## 3        good
## 4        tell
## 5        just
## 6         day
## 7         can
## 8  experience
## 9        make
## 10      place
## 11        spa
## 12       like
kwavg <- KW_avg[,c(1,5)]
kwgrt <- KW_grt[,c(1,4)]
kwpr <- KW_poor[,c(1,4)]

kw1 <- merge(keyNames,kwpr, by.x='keyNames', by.y='term')
kw2 <- merge(kw1,kwavg,by.x='keyNames', by.y='term')
kw3 <- merge(kw2,kwgrt,by.x='keyNames',by.y='term')

row.names(kw3) <- kw3$keyNames
kw4 <- kw3[,-1]
colnames(kw4) <- c('low','average','great')
keys <- kw4
keys
##             low average great
## can        36.5      26  93.0
## day        38.5      27  92.0
## experience 34.5      33  71.5
## get        59.5      52 139.0
## good       45.0      38 187.5
## just       39.0      36  63.5
## like       25.5      32  67.5
## make       34.5      27  71.0
## place      34.0      23  80.0
## spa        26.5      37  45.5
## tell       44.5       6  11.0
## time       51.0      32 105.0
s1 <- sum(Reviews13$userRatingValue==1)+sum(Reviews13$userRatingValue==2)
s2 <- sum(Reviews13$userRatingValue==2)+sum(Reviews13$userRatingValue==3)+
              sum(Reviews13$userRatingValue==4)
s3 <- sum(Reviews13$userRatingValue==4)+sum(Reviews13$userRatingValue==5)

keys$low <- round(((keys$low)/s1),2)
keys$great <- round(((keys$great)/s3),2)
keys$average <- round(((keys$average)/s2),2)
keys
##             low average great
## can        0.30    0.14  0.21
## day        0.32    0.14  0.21
## experience 0.28    0.17  0.16
## get        0.49    0.27  0.32
## good       0.37    0.20  0.43
## just       0.32    0.19  0.14
## like       0.21    0.17  0.15
## make       0.28    0.14  0.16
## place      0.28    0.12  0.18
## spa        0.22    0.19  0.10
## tell       0.36    0.03  0.03
## time       0.42    0.17  0.24

The above table is for document term frequency on average that is how many times the term shows up in a single document by category of low, average, or great rating. We made these tables earlier, FREQ_R1, …,FREQ_R5.

What about the ratio for the term against the number in terms in total for all ratings? Lets put that table together.

termKeys <- as.data.frame(row.names(keys))
colnames(termKeys) <- 'term'

tk1 <- merge(termKeys, FREQ_R1, by.x='term', by.y='term')
tk2 <- merge(tk1,FREQ_R2, by.x='term', by.y='term')
tk3 <- merge(tk2, FREQ_R3, by.x='term', by.y='term')
tk4 <- merge(tk3, FREQ_R4, by.x='term', by.y='term')
tk5 <- merge(tk4, FREQ_R5, by.x='term', by.y='term')

tk5$Rating1_totalTerms <- sum(FREQ_R1$Rating1termfrequency)
tk5$Rating2_totalTerms <- sum(FREQ_R2$Rating2termfrequency)
tk5$Rating3_totalTerms <- sum(FREQ_R3$Rating3termfrequency)
tk5$Rating4_totalTerms <- sum(FREQ_R4$Rating4termfrequency)
tk5$Rating5_totalTerms <- sum(FREQ_R5$Rating5termfrequency)

#these are total terms over all by rating, not unique terms
tk5$Rating1_term2totalTerm <- tk5$Rating1termfrequency/tk5$Rating1_totalTerms
tk5$Rating2_term2totalTerm <- tk5$Rating2termfrequency/tk5$Rating2_totalTerms
tk5$Rating3_term2totalTerm <- tk5$Rating3termfrequency/tk5$Rating3_totalTerms
tk5$Rating4_term2totalTerm <- tk5$Rating4termfrequency/tk5$Rating4_totalTerms
tk5$Rating5_term2totalTerm <- tk5$Rating5termfrequency/tk5$Rating5_totalTerms

termToTotalTerms <- tk5 %>% select(term,Rating1_term2totalTerm,
                                   Rating2_term2totalTerm,
                                   Rating3_term2totalTerm,
                                   Rating4_term2totalTerm,
                                   Rating5_term2totalTerm)
term_to_totalTerms <- round(termToTotalTerms[,2:6],3)
row.names(term_to_totalTerms) <- termToTotalTerms$term
wordToAllWords <- as.data.frame(t(term_to_totalTerms))
wordToAllWords
##                          can   day experience   get  good  just  like  make
## Rating1_term2totalTerm 0.007 0.008      0.006 0.012 0.009 0.007 0.005 0.007
## Rating2_term2totalTerm 0.008 0.008      0.010 0.013 0.010 0.011 0.007 0.008
## Rating3_term2totalTerm 0.008 0.008      0.004 0.016 0.012 0.010 0.010 0.004
## Rating4_term2totalTerm 0.009 0.010      0.007 0.014 0.014 0.007 0.009 0.004
## Rating5_term2totalTerm 0.009 0.008      0.006 0.013 0.019 0.006 0.005 0.008
##                        place   spa  tell  time
## Rating1_term2totalTerm 0.008 0.002 0.010 0.012
## Rating2_term2totalTerm 0.005 0.011 0.007 0.008
## Rating3_term2totalTerm 0.007 0.011 0.001 0.010
## Rating4_term2totalTerm 0.004 0.005 0.001 0.010
## Rating5_term2totalTerm 0.009 0.004 0.001 0.010

This table is the total word ratio to all words (not unique words) in each subset of ratings 1-5. Lets write this last table out to csv. We will use it later, and this script will be a long one, with manu objects.

write.csv(wordToAllWords,'wordToAllWords.csv', row.names=TRUE)

!@# Once we get our counts of each word in each review, we can compare it to these words and see if it appears in the document this percent of the time to aid in classifying each review into the correct rating.

Lets use the stringr library’s function str_match_all function. Lets clean up the first observation and store it as a string. Then we will use str_match_all to find the exact number of times each keyword is in the review. and put it in our table.

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[1]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- row.names(keys)

can <- str_match_all(str1,' [cC][aA][nN] ')
CAN <- length(can[[1]])

day <- str_match_all(str1,' [dD][aA][yY] ')
DAY <- length(day[[1]])

experience <- str_match_all(str1,' [eE][xX][pP][eE][rR][iI][eE][nN][cC][eE] ')
EXPERIENCE <- length(experience[[1]])

get <- str_match_all(str1,' [gG][eE][tT] ')
GET <- length(get[[1]])

good <- str_match_all(str1,' [gG][oO][oO][dD] ')
GOOD <- length(good[[1]])

just <- str_match_all(str1,' [jJ][uU][sS][tT] ')
JUST <- length(just[[1]])

like <- str_match_all(str1,' [lL][iI][kK][eE] ')
LIKE <- length(like[[1]])

make <- str_match_all(str1,' [mM][aA][kK][eE] ')
MAKE <- length(make[[1]])

place <- str_match_all(str1,' [pP][lL][aA][cC][eE] ')
PLACE <- length(place[[1]])

spa <- str_match_all(str1,' [sS][pP][aA] ')
SPA <- length(spa[[1]])

tell <- str_match_all(str1,' [tT][eE][lL][lL] ')
TELL <- length(tell[[1]])

time <- str_match_all(str1,' [tT][iI][mM][eE] ')
TIME <- length(time[[1]])

values <- as.data.frame(c(CAN,DAY,EXPERIENCE,GET,GOOD,JUST,LIKE,MAKE,PLACE,SPA,TELL,TIME))
row.names(values) <- termKeys$term

keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c('documentTermCount','term_to_totalDocumentTerms')
keyValues3 <- round(keyValues3,3)
keyValues3
##                            can   day experience   get  good just  like  make
## documentTermCount            0 4.000          0 1.000 2.000    0 1.000 2.000
## term_to_totalDocumentTerms   0 0.015          0 0.004 0.007    0 0.004 0.007
##                            place   spa tell  time
## documentTermCount          1.000 2.000    0 3.000
## term_to_totalDocumentTerms 0.004 0.007    0 0.011

Join this table to the wordToAllWords table using dplyr’s full join function.

joinKeys <- full_join(wordToAllWords,keyValues3)
r1 <- row.names(wordToAllWords)
r2 <- row.names(keyValues3)
names <- c(r1,r2)
row.names(joinKeys) <- names
joinKeys
##                              can   day experience   get  good  just  like  make
## Rating1_term2totalTerm     0.007 0.008      0.006 0.012 0.009 0.007 0.005 0.007
## Rating2_term2totalTerm     0.008 0.008      0.010 0.013 0.010 0.011 0.007 0.008
## Rating3_term2totalTerm     0.008 0.008      0.004 0.016 0.012 0.010 0.010 0.004
## Rating4_term2totalTerm     0.009 0.010      0.007 0.014 0.014 0.007 0.009 0.004
## Rating5_term2totalTerm     0.009 0.008      0.006 0.013 0.019 0.006 0.005 0.008
## documentTermCount          0.000 4.000      0.000 1.000 2.000 0.000 1.000 2.000
## term_to_totalDocumentTerms 0.000 0.015      0.000 0.004 0.007 0.000 0.004 0.007
##                            place   spa  tell  time
## Rating1_term2totalTerm     0.008 0.002 0.010 0.012
## Rating2_term2totalTerm     0.005 0.011 0.007 0.008
## Rating3_term2totalTerm     0.007 0.011 0.001 0.010
## Rating4_term2totalTerm     0.004 0.005 0.001 0.010
## Rating5_term2totalTerm     0.009 0.004 0.001 0.010
## documentTermCount          1.000 2.000 0.000 3.000
## term_to_totalDocumentTerms 0.004 0.007 0.000 0.011

Looking at the table above, we can use the term_to_totalDocumentTerms values of this observation compared to the ratios of the term2totalTerm ratings for each of these 12 words, and choose the rating with the lowest difference or distance between, then to add up the votes for ratings 1-5 for all 12 choices. There should be a clear winner in this algorithm of selecting or predicting the sentiment rating. So, lets try it out.

can_diff <- joinKeys$can[1:5]-joinKeys$can[7]
day_diff <- joinKeys$day[1:5]-joinKeys$day[7]
experience_diff <- joinKeys$experience[1:5]-joinKeys$experience[7]
get_diff <- joinKeys$get[1:5]-joinKeys$get[7]
good_diff <- joinKeys$good[1:5]-joinKeys$good[7]
just_diff <- joinKeys$just[1:5]-joinKeys$just[7]
like_diff <- joinKeys$like[1:5]-joinKeys$like[7]
make_diff <- joinKeys$make[1:5]-joinKeys$make[7]
place_diff <- joinKeys$place[1:5]-joinKeys$place[7]
spa_diff <- joinKeys$spa[1:5]-joinKeys$spa[7]
tell_diff <- joinKeys$tell[1:5]-joinKeys$tell[7]
time_diff <- joinKeys$time[1:5]-joinKeys$time[7]

diff <- as.data.frame(t(cbind(can_diff, day_diff, experience_diff, get_diff, good_diff,
          just_diff,like_diff, make_diff, place_diff, spa_diff, tell_diff, time_diff)))
colnames(diff) <- r1

diff$minValue <- apply(diff,1, min)
diff$vote <- ifelse(diff$Rating1_term2totalTerm==diff$minValue,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue,
                                         4,
                                         5)
                                  )
                           )
                    )

diff$minValue2 <- ifelse(abs(diff$minValue)>abs(diff$Rating1_term2totalTerm),
                         diff$Rating1_term2totalTerm,
                         ifelse(abs(diff$minValue)>abs(diff$Rating2_term2totalTerm),
                                diff$Rating2_term2totalTerm,
                                ifelse(abs(diff$minValue)>abs(diff$Rating3_term2totalTerm),
                                       diff$Rating3_term2totalTerm,
                                       ifelse(abs(diff$minValue)>abs(diff$Rating4_term2totalTerm),
                                              diff$Rating4_term2totalTerm,
                                                ifelse(abs(diff$minValue)>abs(diff$Rating5_term2totalTerm),
                                                  diff$Rating5_term2totalTerm,
                                                   diff$minValue)
                                              )
                                      )
                                )
                          )
  
diff$vote2 <- ifelse(diff$Rating1_term2totalTerm==diff$minValue2,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue2,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue2,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue2,
                                         4,
                                         5)
                                  )
                           )
                    )  


diff
##                 Rating1_term2totalTerm Rating2_term2totalTerm
## can_diff                         0.007                  0.008
## day_diff                        -0.007                 -0.007
## experience_diff                  0.006                  0.010
## get_diff                         0.008                  0.009
## good_diff                        0.002                  0.003
## just_diff                        0.007                  0.011
## like_diff                        0.001                  0.003
## make_diff                        0.000                  0.001
## place_diff                       0.004                  0.001
## spa_diff                        -0.005                  0.004
## tell_diff                        0.010                  0.007
## time_diff                        0.001                 -0.003
##                 Rating3_term2totalTerm Rating4_term2totalTerm
## can_diff                         0.008                  0.009
## day_diff                        -0.007                 -0.005
## experience_diff                  0.004                  0.007
## get_diff                         0.012                  0.010
## good_diff                        0.005                  0.007
## just_diff                        0.010                  0.007
## like_diff                        0.006                  0.005
## make_diff                       -0.003                 -0.003
## place_diff                       0.003                  0.000
## spa_diff                         0.004                 -0.002
## tell_diff                        0.001                  0.001
## time_diff                       -0.001                 -0.001
##                 Rating5_term2totalTerm minValue vote minValue2 vote2
## can_diff                         0.009    0.007    1     0.007     1
## day_diff                        -0.007   -0.007    1    -0.005     4
## experience_diff                  0.006    0.004    3     0.004     3
## get_diff                         0.009    0.008    1     0.008     1
## good_diff                        0.012    0.002    1     0.002     1
## just_diff                        0.006    0.006    5     0.006     5
## like_diff                        0.001    0.001    1     0.001     1
## make_diff                        0.001   -0.003    3     0.000     1
## place_diff                       0.005    0.000    4     0.000     4
## spa_diff                        -0.003   -0.005    1     0.004     2
## tell_diff                        0.001    0.001    3     0.001     3
## time_diff                       -0.001   -0.003    2     0.001     1

There is actually a tie between the review being a 5 or a 1 when using vote 1 that takes the minimum value that includes very negative values. We need to make a rule for when this happens. How about try out for if there is a tie, the best of the median rounded up or the mean rounded down. There is also a vote2 field that takes the shortest distance to the review ratio out of each review and votes for that review. Lets see the results of the first vote with only the minimum.

bestVote <- diff %>% group_by(vote) %>% count()
bestVote$maxVote <- ifelse(bestVote$n==max(bestVote$n),
                           1,0)
bestVote$ratingMean <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(mean(bestVote$vote*bestVote$n))>5,
                                 5, ceiling(mean(bestVote$vote*bestVote$n))), 
                           ifelse(bestVote$n==max(bestVote$n),
                                  bestVote$vote,
                                  0)
                          )
bestVote$ratingMedian <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(median(bestVote$vote*bestVote$n))>5,
                                 5,ceiling(median(bestVote$vote*bestVote$n))), 
                           ifelse(bestVote$n==max(bestVote$n),
                                  bestVote$vote,
                                  0)
                          )

max(bestVote$ratingMean)
## [1] 1
max(bestVote$ratingMedian)
## [1] 1
bestVote
## # A tibble: 5 x 5
## # Groups:   vote [5]
##    vote     n maxVote ratingMean ratingMedian
##   <dbl> <int>   <dbl>      <dbl>        <dbl>
## 1     1     6       1          1            1
## 2     2     1       0          1            1
## 3     3     3       0          1            1
## 4     4     1       0          1            1
## 5     5     1       0          1            1

From the above table, it identified a tie in votes, and calculated the mean and medians of the votes*the count for each vote as a dot product. The mean is actually 7, so a constraint was also placed or wrapped around the ceiling of the mean if it is greater than our highest rating, that it be the highest rating. Same for the median. Lets use Vote2 which takes the shortest distance from the term to Total Term frequency ratio of the review to each ratings term to Total Term frequency ratio. We could choose to accept the mean driven vote of 5 or median driven vote of 4.But lets see how vote2 measures in for predicting most likely reveiw.

bestVote2 <- diff %>% group_by(vote2) %>% count()
bestVote2$maxVote2 <- ifelse(bestVote2$n==max(bestVote2$n),
                           1,0)
bestVote2$ratingMean2 <- ifelse(sum(bestVote2$maxVote2) > 1,
                          ifelse(ceiling(mean(bestVote2$vote2*bestVote2$n))>5,
                                 5, ceiling(mean(bestVote2$vote2*bestVote2$n))), 
                           ifelse(bestVote2$n==max(bestVote2$n),
                                  bestVote2$vote2,
                                  0)
                          )
bestVote2$ratingMedian2 <- ifelse(sum(bestVote2$maxVote2) > 1,
                          ifelse(ceiling(median(bestVote2$vote2*bestVote2$n))>5,
                                 5,ceiling(median(bestVote2$vote2*bestVote2$n))), 
                           ifelse(bestVote2$n==max(bestVote2$n),
                                  bestVote2$vote2,
                                  0)
                          )

max(bestVote2$ratingMean2)
## [1] 1
max(bestVote2$ratingMedian2)
## [1] 1
bestVote2
## # A tibble: 5 x 5
## # Groups:   vote2 [5]
##   vote2     n maxVote2 ratingMean2 ratingMedian2
##   <dbl> <int>    <dbl>       <dbl>         <dbl>
## 1     1     6        1           1             1
## 2     2     1        0           1             1
## 3     3     2        0           1             1
## 4     4     2        0           1             1
## 5     5     1        0           1             1

When using the shortest distance between the ratio of term to total terms in the review, instead of the minimum distance, the highest votes were not a tie, but for a 1 rating.

Lets see what this rating is. The string object was taken from the first review of the business.

Reviews13$userRatingValue[1]
## [1] 5

Both the mean and median voted a 1 because there was no tie, the most votes by term in the document to total terms was for rating 1. The actual rating value is a 5.




Lets use the 2nd review this time.

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[2]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- row.names(keys)

can <- str_match_all(str1,' [cC][aA][nN] ')
CAN <- length(can[[1]])

day <- str_match_all(str1,' [dD][aA][yY] ')
DAY <- length(day[[1]])

experience <- str_match_all(str1,' [eE][xX][pP][eE][rR][iI][eE][nN][cC][eE] ')
EXPERIENCE <- length(experience[[1]])

get <- str_match_all(str1,' [gG][eE][tT] ')
GET <- length(get[[1]])

good <- str_match_all(str1,' [gG][oO][oO][dD] ')
GOOD <- length(good[[1]])

just <- str_match_all(str1,' [jJ][uU][sS][tT] ')
JUST <- length(just[[1]])

like <- str_match_all(str1,' [lL][iI][kK][eE] ')
LIKE <- length(like[[1]])

make <- str_match_all(str1,' [mM][aA][kK][eE] ')
MAKE <- length(make[[1]])

place <- str_match_all(str1,' [pP][lL][aA][cC][eE] ')
PLACE <- length(place[[1]])

spa <- str_match_all(str1,' [sS][pP][aA] ')
SPA <- length(spa[[1]])

tell <- str_match_all(str1,' [tT][eE][lL][lL] ')
TELL <- length(tell[[1]])

time <- str_match_all(str1,' [tT][iI][mM][eE] ')
TIME <- length(time[[1]])

values <- as.data.frame(c(CAN,DAY,EXPERIENCE,GET,GOOD,JUST,LIKE,MAKE,PLACE,SPA,TELL,TIME))
row.names(values) <- termKeys$term

keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c('documentTermCount','term_to_totalDocumentTerms')
keyValues3 <- round(keyValues3,3)
keyValues3
##                              can   day experience   get good  just  like make
## documentTermCount          2.000 2.000      2.000 1.000    0 5.000 4.000    0
## term_to_totalDocumentTerms 0.003 0.003      0.003 0.002    0 0.008 0.007    0
##                            place spa tell  time
## documentTermCount              0   0    0 3.000
## term_to_totalDocumentTerms     0   0    0 0.005

Join this table to the wordToAllWords table using dplyr’s full join function.

joinKeys <- full_join(wordToAllWords,keyValues3)
r1 <- row.names(wordToAllWords)
r2 <- row.names(keyValues3)
names <- c(r1,r2)
row.names(joinKeys) <- names
joinKeys
##                              can   day experience   get  good  just  like  make
## Rating1_term2totalTerm     0.007 0.008      0.006 0.012 0.009 0.007 0.005 0.007
## Rating2_term2totalTerm     0.008 0.008      0.010 0.013 0.010 0.011 0.007 0.008
## Rating3_term2totalTerm     0.008 0.008      0.004 0.016 0.012 0.010 0.010 0.004
## Rating4_term2totalTerm     0.009 0.010      0.007 0.014 0.014 0.007 0.009 0.004
## Rating5_term2totalTerm     0.009 0.008      0.006 0.013 0.019 0.006 0.005 0.008
## documentTermCount          2.000 2.000      2.000 1.000 0.000 5.000 4.000 0.000
## term_to_totalDocumentTerms 0.003 0.003      0.003 0.002 0.000 0.008 0.007 0.000
##                            place   spa  tell  time
## Rating1_term2totalTerm     0.008 0.002 0.010 0.012
## Rating2_term2totalTerm     0.005 0.011 0.007 0.008
## Rating3_term2totalTerm     0.007 0.011 0.001 0.010
## Rating4_term2totalTerm     0.004 0.005 0.001 0.010
## Rating5_term2totalTerm     0.009 0.004 0.001 0.010
## documentTermCount          0.000 0.000 0.000 3.000
## term_to_totalDocumentTerms 0.000 0.000 0.000 0.005

Looking at the table above, we can use the term_to_totalDocumentTerms values of this observation compared to the ratios of the term2totalTerm ratings for each of these 12 words, and choose the rating with the lowest difference or distance between, then to add up the votes for ratings 1-5 for all 12 choices. There should be a clear winner in this algorithm of selecting or predicting the sentiment rating. So, lets try it out.

can_diff <- joinKeys$can[1:5]-joinKeys$can[7]
day_diff <- joinKeys$day[1:5]-joinKeys$day[7]
experience_diff <- joinKeys$experience[1:5]-joinKeys$experience[7]
get_diff <- joinKeys$get[1:5]-joinKeys$get[7]
good_diff <- joinKeys$good[1:5]-joinKeys$good[7]
just_diff <- joinKeys$just[1:5]-joinKeys$just[7]
like_diff <- joinKeys$like[1:5]-joinKeys$like[7]
make_diff <- joinKeys$make[1:5]-joinKeys$make[7]
place_diff <- joinKeys$place[1:5]-joinKeys$place[7]
spa_diff <- joinKeys$spa[1:5]-joinKeys$spa[7]
tell_diff <- joinKeys$tell[1:5]-joinKeys$tell[7]
time_diff <- joinKeys$time[1:5]-joinKeys$time[7]

diff <- as.data.frame(t(cbind(can_diff, day_diff, experience_diff, get_diff, good_diff,
          just_diff,like_diff, make_diff, place_diff, spa_diff, tell_diff, time_diff)))
colnames(diff) <- r1
diff$minValue <- apply(diff,1, min)
diff$vote <- ifelse(diff$Rating1_term2totalTerm==diff$minValue,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue,
                                         4,
                                         5)
                                  )
                           )
                    )

diff$minValue2 <- ifelse(abs(diff$minValue)>abs(diff$Rating1_term2totalTerm),
                         diff$Rating1_term2totalTerm,
                         ifelse(abs(diff$minValue)>abs(diff$Rating2_term2totalTerm),
                                diff$Rating2_term2totalTerm,
                                ifelse(abs(diff$minValue)>abs(diff$Rating3_term2totalTerm),
                                       diff$Rating3_term2totalTerm,
                                       ifelse(abs(diff$minValue)>abs(diff$Rating4_term2totalTerm),
                                              diff$Rating4_term2totalTerm,
                                                ifelse(abs(diff$minValue)>abs(diff$Rating5_term2totalTerm),
                                                  diff$Rating5_term2totalTerm,
                                                   diff$minValue)
                                              )
                                      )
                                )
                          )
  
diff$vote2 <- ifelse(diff$Rating1_term2totalTerm==diff$minValue2,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue2,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue2,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue2,
                                         4,
                                         5)
                                  )
                           )
                    )  


diff
##                 Rating1_term2totalTerm Rating2_term2totalTerm
## can_diff                         0.004                  0.005
## day_diff                         0.005                  0.005
## experience_diff                  0.003                  0.007
## get_diff                         0.010                  0.011
## good_diff                        0.009                  0.010
## just_diff                       -0.001                  0.003
## like_diff                       -0.002                  0.000
## make_diff                        0.007                  0.008
## place_diff                       0.008                  0.005
## spa_diff                         0.002                  0.011
## tell_diff                        0.010                  0.007
## time_diff                        0.007                  0.003
##                 Rating3_term2totalTerm Rating4_term2totalTerm
## can_diff                         0.005                  0.006
## day_diff                         0.005                  0.007
## experience_diff                  0.001                  0.004
## get_diff                         0.014                  0.012
## good_diff                        0.012                  0.014
## just_diff                        0.002                 -0.001
## like_diff                        0.003                  0.002
## make_diff                        0.004                  0.004
## place_diff                       0.007                  0.004
## spa_diff                         0.011                  0.005
## tell_diff                        0.001                  0.001
## time_diff                        0.005                  0.005
##                 Rating5_term2totalTerm minValue vote minValue2 vote2
## can_diff                         0.006    0.004    1     0.004     1
## day_diff                         0.005    0.005    1     0.005     1
## experience_diff                  0.003    0.001    3     0.001     3
## get_diff                         0.011    0.010    1     0.010     1
## good_diff                        0.019    0.009    1     0.009     1
## just_diff                       -0.002   -0.002    5    -0.001     1
## like_diff                       -0.002   -0.002    1     0.000     2
## make_diff                        0.008    0.004    3     0.004     3
## place_diff                       0.009    0.004    4     0.004     4
## spa_diff                         0.004    0.002    1     0.002     1
## tell_diff                        0.001    0.001    3     0.001     3
## time_diff                        0.005    0.003    2     0.003     2

We need to make a rule for when this happens. How about try out for if there is a tie, the best of the median rounded up or the mean rounded down. There is also a vote2 field that takes the shortest distance to the review ratio out of each review and votes for that review. Lets see the results of the first vote with only the minimum.

bestVote <- diff %>% group_by(vote) %>% count()
bestVote$maxVote <- ifelse(bestVote$n==max(bestVote$n),
                           1,0)
bestVote$ratingMean <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(mean(bestVote$vote*bestVote$n))>5,
                                 5, ceiling(mean(bestVote$vote*bestVote$n))), 
                           ifelse(bestVote$n==max(bestVote$n),
                                  bestVote$vote,
                                  0)
                          )
bestVote$ratingMedian <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(median(bestVote$vote*bestVote$n))>5,
                                 5,ceiling(median(bestVote$vote*bestVote$n))), 
                           ifelse(bestVote$n==max(bestVote$n),
                                  bestVote$vote,
                                  0)
                          )

max(bestVote$ratingMean)
## [1] 1
max(bestVote$ratingMedian)
## [1] 1

Our best algorithm selected 5 as the best vote, the first run of this program it was a 5 and the mean rating won that prediction.

bestVote
## # A tibble: 5 x 5
## # Groups:   vote [5]
##    vote     n maxVote ratingMean ratingMedian
##   <dbl> <int>   <dbl>      <dbl>        <dbl>
## 1     1     6       1          1            1
## 2     2     1       0          1            1
## 3     3     3       0          1            1
## 4     4     1       0          1            1
## 5     5     1       0          1            1

Lets see how vote2 measures in for predicting most likely reveiw.

bestVote2 <- diff %>% group_by(vote2) %>% count()
bestVote2$maxVote2 <- ifelse(bestVote2$n==max(bestVote2$n),
                           1,0)
bestVote2$ratingMean2 <- ifelse(sum(bestVote2$maxVote2) > 1,
                          ifelse(ceiling(mean(bestVote2$vote2*bestVote2$n))>5,
                                 5, ceiling(mean(bestVote2$vote2*bestVote2$n))), 
                           ifelse(bestVote2$n==max(bestVote2$n),
                                  bestVote2$vote2,
                                  0)
                          )
bestVote2$ratingMedian2 <- ifelse(sum(bestVote2$maxVote2) > 1,
                          ifelse(ceiling(median(bestVote2$vote2*bestVote2$n))>5,
                                 5,ceiling(median(bestVote2$vote2*bestVote2$n))), 
                           ifelse(bestVote2$n==max(bestVote2$n),
                                  bestVote2$vote2,
                                  0)
                          )

max(bestVote2$ratingMean2)
## [1] 1
max(bestVote2$ratingMedian2)
## [1] 1
bestVote2
## # A tibble: 4 x 5
## # Groups:   vote2 [4]
##   vote2     n maxVote2 ratingMean2 ratingMedian2
##   <dbl> <int>    <dbl>       <dbl>         <dbl>
## 1     1     6        1           1             1
## 2     2     2        0           1             1
## 3     3     3        0           1             1
## 4     4     1        0           1             1

Well they have the same results almost for both vote and vote2, except that vote2 this time included all ratings, the first run the rating 3 had no votes, but the vote is the same as a 1 rating, while the ceiling of the mean is a 5 rating, and the ceiling of the median is a 4 rating.

Lets see what this rating is. The string object was taken from the first review of the business.

Reviews13$userRatingValue[2]
## [1] 4

This time, the ceiling of the median using the minimum difference between the document to corpus of each rating ratios of term to total terms in the document versus term to total terms within all documents in each rating.

We should try another, maybe a review closer to the tail to see if the minimum distance is still the best, but choosing mean or median is still a fixer upper. We still haven’t used the Reviews13 regular features we spent some time extracting and adding to base what the review’s rating will be. Also, adding a visNetwork link analysis plot to show how the ratings and keywords look or link to each other by weight as the term to total terms ratio, or forgetting these keywords and using the top full join keywords by frequency in each rating.




Lets re-run this script on another review closer to the tail to see how the results are predicted.

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[600]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

can <- str_match_all(str1,' [cC][aA][nN] ')
CAN <- length(can[[1]])

day <- str_match_all(str1,' [dD][aA][yY] ')
DAY <- length(day[[1]])

experience <- str_match_all(str1,' [eE][xX][pP][eE][rR][iI][eE][nN][cC][eE] ')
EXPERIENCE <- length(experience[[1]])

get <- str_match_all(str1,' [gG][eE][tT] ')
GET <- length(get[[1]])

good <- str_match_all(str1,' [gG][oO][oO][dD] ')
GOOD <- length(good[[1]])

just <- str_match_all(str1,' [jJ][uU][sS][tT] ')
JUST <- length(just[[1]])

like <- str_match_all(str1,' [lL][iI][kK][eE] ')
LIKE <- length(like[[1]])

make <- str_match_all(str1,' [mM][aA][kK][eE] ')
MAKE <- length(make[[1]])

place <- str_match_all(str1,' [pP][lL][aA][cC][eE] ')
PLACE <- length(place[[1]])

spa <- str_match_all(str1,' [sS][pP][aA] ')
SPA <- length(spa[[1]])

tell <- str_match_all(str1,' [tT][eE][lL][lL] ')
TELL <- length(tell[[1]])

time <- str_match_all(str1,' [tT][iI][mM][eE] ')
TIME <- length(time[[1]])

values <- as.data.frame(c(CAN,DAY,EXPERIENCE,GET,GOOD,JUST,LIKE,MAKE,PLACE,SPA,TELL,TIME))
row.names(values) <- termKeys$term


keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c('documentTermCount','term_to_totalDocumentTerms')
keyValues3 <- round(keyValues3,3)
keyValues3
##                              can   day experience get good just like make place
## documentTermCount          1.000 1.000          0   0    0    0    0    0     0
## term_to_totalDocumentTerms 0.015 0.015          0   0    0    0    0    0     0
##                            spa tell time
## documentTermCount            0    0    0
## term_to_totalDocumentTerms   0    0    0

Join this table to the wordToAllWords table using dplyr’s full join function.

joinKeys <- full_join(wordToAllWords,keyValues3)
r1 <- row.names(wordToAllWords)
r2 <- row.names(keyValues3)
names <- c(r1,r2)
row.names(joinKeys) <- names
joinKeys
##                              can   day experience   get  good  just  like  make
## Rating1_term2totalTerm     0.007 0.008      0.006 0.012 0.009 0.007 0.005 0.007
## Rating2_term2totalTerm     0.008 0.008      0.010 0.013 0.010 0.011 0.007 0.008
## Rating3_term2totalTerm     0.008 0.008      0.004 0.016 0.012 0.010 0.010 0.004
## Rating4_term2totalTerm     0.009 0.010      0.007 0.014 0.014 0.007 0.009 0.004
## Rating5_term2totalTerm     0.009 0.008      0.006 0.013 0.019 0.006 0.005 0.008
## documentTermCount          1.000 1.000      0.000 0.000 0.000 0.000 0.000 0.000
## term_to_totalDocumentTerms 0.015 0.015      0.000 0.000 0.000 0.000 0.000 0.000
##                            place   spa  tell  time
## Rating1_term2totalTerm     0.008 0.002 0.010 0.012
## Rating2_term2totalTerm     0.005 0.011 0.007 0.008
## Rating3_term2totalTerm     0.007 0.011 0.001 0.010
## Rating4_term2totalTerm     0.004 0.005 0.001 0.010
## Rating5_term2totalTerm     0.009 0.004 0.001 0.010
## documentTermCount          0.000 0.000 0.000 0.000
## term_to_totalDocumentTerms 0.000 0.000 0.000 0.000
can_diff <- joinKeys$can[1:5]-joinKeys$can[7]
day_diff <- joinKeys$day[1:5]-joinKeys$day[7]
experience_diff <- joinKeys$experience[1:5]-joinKeys$experience[7]
get_diff <- joinKeys$get[1:5]-joinKeys$get[7]
good_diff <- joinKeys$good[1:5]-joinKeys$good[7]
just_diff <- joinKeys$just[1:5]-joinKeys$just[7]
like_diff <- joinKeys$like[1:5]-joinKeys$like[7]
make_diff <- joinKeys$make[1:5]-joinKeys$make[7]
place_diff <- joinKeys$place[1:5]-joinKeys$place[7]
spa_diff <- joinKeys$spa[1:5]-joinKeys$spa[7]
tell_diff <- joinKeys$tell[1:5]-joinKeys$tell[7]
time_diff <- joinKeys$time[1:5]-joinKeys$time[7]

diff <- as.data.frame(t(cbind(can_diff, day_diff, experience_diff, get_diff, good_diff,
          just_diff,like_diff, make_diff, place_diff, spa_diff, tell_diff, time_diff)))
colnames(diff) <- r1
diff$minValue <- apply(diff,1, min)
diff$vote <- ifelse(diff$Rating1_term2totalTerm==diff$minValue,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue,
                                         4,
                                         5)
                                  )
                           )
                    )

diff$minValue2 <- ifelse(abs(diff$minValue)>abs(diff$Rating1_term2totalTerm),
                         diff$Rating1_term2totalTerm,
                         ifelse(abs(diff$minValue)>abs(diff$Rating2_term2totalTerm),
                                diff$Rating2_term2totalTerm,
                                ifelse(abs(diff$minValue)>abs(diff$Rating3_term2totalTerm),
                                       diff$Rating3_term2totalTerm,
                                       ifelse(abs(diff$minValue)>abs(diff$Rating4_term2totalTerm),
                                              diff$Rating4_term2totalTerm,
                                                ifelse(abs(diff$minValue)>abs(diff$Rating5_term2totalTerm),
                                                  diff$Rating5_term2totalTerm,
                                                   diff$minValue)
                                              )
                                      )
                                )
                          )
  
diff$vote2 <- ifelse(diff$Rating1_term2totalTerm==diff$minValue2,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue2,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue2,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue2,
                                         4,
                                         5)
                                  )
                           )
                    )  


diff
##                 Rating1_term2totalTerm Rating2_term2totalTerm
## can_diff                        -0.008                 -0.007
## day_diff                        -0.007                 -0.007
## experience_diff                  0.006                  0.010
## get_diff                         0.012                  0.013
## good_diff                        0.009                  0.010
## just_diff                        0.007                  0.011
## like_diff                        0.005                  0.007
## make_diff                        0.007                  0.008
## place_diff                       0.008                  0.005
## spa_diff                         0.002                  0.011
## tell_diff                        0.010                  0.007
## time_diff                        0.012                  0.008
##                 Rating3_term2totalTerm Rating4_term2totalTerm
## can_diff                        -0.007                 -0.006
## day_diff                        -0.007                 -0.005
## experience_diff                  0.004                  0.007
## get_diff                         0.016                  0.014
## good_diff                        0.012                  0.014
## just_diff                        0.010                  0.007
## like_diff                        0.010                  0.009
## make_diff                        0.004                  0.004
## place_diff                       0.007                  0.004
## spa_diff                         0.011                  0.005
## tell_diff                        0.001                  0.001
## time_diff                        0.010                  0.010
##                 Rating5_term2totalTerm minValue vote minValue2 vote2
## can_diff                        -0.006   -0.008    1    -0.007     2
## day_diff                        -0.007   -0.007    1    -0.005     4
## experience_diff                  0.006    0.004    3     0.004     3
## get_diff                         0.013    0.012    1     0.012     1
## good_diff                        0.019    0.009    1     0.009     1
## just_diff                        0.006    0.006    5     0.006     5
## like_diff                        0.005    0.005    1     0.005     1
## make_diff                        0.008    0.004    3     0.004     3
## place_diff                       0.009    0.004    4     0.004     4
## spa_diff                         0.004    0.002    1     0.002     1
## tell_diff                        0.001    0.001    3     0.001     3
## time_diff                        0.010    0.008    2     0.008     2

Lets see the results of the first vote with only the minimum.

bestVote <- diff %>% group_by(vote) %>% count()
bestVote$maxVote <- ifelse(bestVote$n==max(bestVote$n),
                           1,0)
bestVote$ratingMean <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(mean(bestVote$vote*bestVote$n))>5,
                                 5, ceiling(mean(bestVote$vote*bestVote$n))), 
                           ifelse(bestVote$n==max(bestVote$n),
                                  bestVote$vote,
                                  0)
                          )
bestVote$ratingMedian <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(median(bestVote$vote*bestVote$n))>5,
                                 5,ceiling(median(bestVote$vote*bestVote$n))), 
                           ifelse(bestVote$n==max(bestVote$n),
                                  bestVote$vote,
                                  0)
                          )

max(bestVote$ratingMean)
## [1] 1
max(bestVote$ratingMedian)
## [1] 1
bestVote
## # A tibble: 5 x 5
## # Groups:   vote [5]
##    vote     n maxVote ratingMean ratingMedian
##   <dbl> <int>   <dbl>      <dbl>        <dbl>
## 1     1     6       1          1            1
## 2     2     1       0          1            1
## 3     3     3       0          1            1
## 4     4     1       0          1            1
## 5     5     1       0          1            1

Lets see how vote2 measures in for predicting most likely reveiw.

bestVote2 <- diff %>% group_by(vote2) %>% count()
bestVote2$maxVote2 <- ifelse(bestVote2$n==max(bestVote2$n),
                           1,0)
bestVote2$ratingMean2 <- ifelse(sum(bestVote2$maxVote2) > 1,
                          ifelse(ceiling(mean(bestVote2$vote2*bestVote2$n))>5,
                                 5, ceiling(mean(bestVote2$vote2*bestVote2$n))), 
                           ifelse(bestVote2$n==max(bestVote2$n),
                                  bestVote2$vote2,
                                  0)
                          )
bestVote2$ratingMedian2 <- ifelse(sum(bestVote2$maxVote2) > 1,
                          ifelse(ceiling(median(bestVote2$vote2*bestVote2$n))>5,
                                 5,ceiling(median(bestVote2$vote2*bestVote2$n))), 
                           ifelse(bestVote2$n==max(bestVote2$n),
                                  bestVote2$vote2,
                                  0)
                          )

max(bestVote2$ratingMean2)
## [1] 1
max(bestVote2$ratingMedian2)
## [1] 1
bestVote2
## # A tibble: 5 x 5
## # Groups:   vote2 [5]
##   vote2     n maxVote2 ratingMean2 ratingMedian2
##   <dbl> <int>    <dbl>       <dbl>         <dbl>
## 1     1     4        1           1             1
## 2     2     2        0           1             1
## 3     3     3        0           1             1
## 4     4     2        0           1             1
## 5     5     1        0           1             1

Lets see what this rating is. The string object was taken from the first review of the business.

Reviews13[600,]
##           userReviewSeries
## 600 mostRecentVisit_review
##                                                                                                                                                                                                                                                                                       userReviewOnlyContent
## 600 DOCTOR is great, and has friendly staff. I have had lower back pain for years and he fixed it right up in a few visits. Every now and then the pain comes back and he always gets me in the same day without a problem for an adjustment. He also has a laser that he can use to treat different areas.
##           userRatingSeries userRatingValue businessReplied businessReplyContent
## 600 mostRecentVisit_rating               5              no                   NA
##                                                                                                                                                                                                                                                                                                      userReviewContent
## 600 2/19/2013\nDOCTOR is great, and has friendly staff. I have had lower back pain for years and he fixed it right up in a few visits. Every now and then the pain comes back and he always gets me in the same day without a problem for an adjustment. He also has a laser that he can use to treat different areas.
##     LowAvgHighCost businessType cityState friends reviews photos eliteStatus
## 600            Avg chiropractic Norco, CA      23      36     NA        <NA>
##     userName       Date userBusinessPhotos userCheckIns
## 600  Mike D. 2013-02-19                 NA           NA

The rating is actually a 5. These words are worse than our other use of keywords as the top 12 stopwords. None of the predictions from the first three are correct. In fact, every prediction was for a 1 rating. We need to go back and change our words. We should pick only those words that aren’t relative to one business type that are in our keywords.


!@# We are going to use the same manual algorithm, but we need new keywords. Lets go back to the freqR1-freqR5 term frequency tables by rating and select the terms by frequencies occuring more often than other terms.

allTermFreqs <- merge(freqR1,freqR2, by.x='id', by.y='id')
allTermFreqs1 <- merge(allTermFreqs,freqR3, by.x='id', by.y='id')
allTermFreqs2 <- merge(allTermFreqs1, freqR4, by.x='id', by.y='id')
allTermFreqs3 <- merge(allTermFreqs2, freqR5, by.x='id', by.y='id')
head(allTermFreqs3)
##           id rating1 rating2 rating3 rating4 rating5
## 1       able       8       6       6      10      31
## 2 absolutely       4      14       2       1      21
## 3   actually       4       7       3       8      12
## 4        add       4       1       4       6       6
## 5   addition       1       2       2       2       2
## 6  admission       3       3       4      20       8

Lets order the table we mades of all combined ratings by frquency count of terms from most to least for rating 1,…,rating 5.

allTermFreqsOrdered <- allTermFreqs3[with(allTermFreqs3, order(rating1,rating2,rating3,rating4,rating5, decreasing=TRUE)),]
head(allTermFreqsOrdered,20)
##             id rating1 rating2 rating3 rating4 rating5
## 146        get      75      44      52     100     178
## 376       time      74      28      32      73     137
## 365       tell      65      24       4       6      16
## 149       good      57      33      38     103     272
## 315        say      55      11      10      19      52
## 23         ask      51       7       5      18       9
## 85         day      50      27      27      75     109
## 267      place      50      18      23      32     128
## 53         can      47      26      25      64     122
## 69        come      45      22      24      44     130
## 325    service      45      22      18      35      83
## 89       didnt      45       6       7      21      31
## 29        back      44      13      10      31     104
## 109       even      43      23       1      22      53
## 189       just      42      36      33      48      79
## 216       make      42      27      14      32     110
## 49      cabana      37       9      30       7      22
## 120 experience      36      33      12      52      91
## 233       much      35      20      28      65     117
## 30         bad      34       9       2       7      14

lets do the same for the term frequencies but order from rating5,…,rating1.

allTermsFreqsOrdered5_1 <- allTermFreqs3[with(allTermFreqs3, order(rating5,rating4,rating3,rating2,rating1,decreasing=TRUE)),]
head(allTermsFreqsOrdered5_1,20)
##             id rating1 rating2 rating3 rating4 rating5
## 149       good      57      33      38     103     272
## 146        get      75      44      52     100     178
## 346      staff      20       9      10      23     152
## 151      great      16       9      13      54     150
## 376       time      74      28      32      73     137
## 219    massage      22       8      17      57     135
## 69        come      45      22      24      44     130
## 267      place      50      18      23      32     128
## 53         can      47      26      25      64     122
## 233       much      35      20      28      65     117
## 215       love      12       8      22      37     113
## 216       make      42      27      14      32     110
## 85         day      50      27      27      75     109
## 130       feel      10      17      27      34     108
## 12      always      13       2       5      17     105
## 29        back      44      13      10      31     104
## 296  recommend      10       6       6      17     104
## 13       amaze       5       6       4      12      92
## 120 experience      36      33      12      52      91
## 141   friendly       4       3       4      16      85

Looking at the above lets take those words that are increasing monotonically from rating 1 through rating 5 with an ifelse function column for each.

allTermsOrdered <- allTermsFreqsOrdered5_1

allTermsOrdered$monotonicIncrease <- ifelse(allTermsOrdered$rating1<allTermsOrdered$rating2,
            ifelse(allTermsOrdered$rating2<allTermsOrdered$rating3,
              ifelse(allTermsOrdered$rating3<allTermsOrdered$rating4,
                ifelse(allTermsOrdered$rating4<allTermsOrdered$rating5, 1, 
                                            0), 
                0), 
              0),
            0)
allTFs <- allTermsOrdered[order(allTermsOrdered$monotonicIncrease,
                decreasing=TRUE),]
head(allTFs,20)
##             id rating1 rating2 rating3 rating4 rating5 monotonicIncrease
## 130       feel      10      17      27      34     108                 1
## 20        area       4       5       9      29      40                 1
## 87  definitely       2       3       4      16      40                 1
## 213        lot       1       5       7      15      34                 1
## 218       many       5       6       7      18      30                 1
## 253       open       2       3       9      11      29                 1
## 387        two       2       5       8      10      25                 1
## 412      worth       2       6       8      13      24                 1
## 37         big       1       3       4      15      18                 1
## 47        busy       1       4       6       8      13                 1
## 236     nachos       3       5       6       9      11                 1
## 271       plus       1       2       3       4       8                 1
## 303 restaurant       1       2       5       6       7                 1
## 149       good      57      33      38     103     272                 0
## 146        get      75      44      52     100     178                 0
## 346      staff      20       9      10      23     152                 0
## 151      great      16       9      13      54     150                 0
## 376       time      74      28      32      73     137                 0
## 219    massage      22       8      17      57     135                 0
## 69        come      45      22      24      44     130                 0

We see from the above list that there are very few words that are increasing monotonically in word counts by frequency of occurence from rating 1 through rating 5. Lets see what words those are.

monoKeys <- subset(allTermsOrdered, allTermsOrdered$monotonicIncrease==1)
monoKeys$id
##  [1] "feel"       "area"       "definitely" "lot"        "many"      
##  [6] "open"       "two"        "worth"      "big"        "busy"      
## [11] "nachos"     "plus"       "restaurant"

We could remove the nachos and restaurant, because those are not going to be in certain business types, and we have 11 keywords. But we need another. So, lets pick the highest word that starts at rating 3 as the minimum of ratings 1 through 5, but then increases monotonicall in word count on both sides from rating 4 to 5 on the right and from rating 2 to 1 on the left. But also, there has to be a constraint that the rating 2 is > 10% of rating 3, and rating 1 is > 10% of rating 2, and rating 4 is greater than 10% of rating 1 and rating5 is greater than 10% of rating 4. We can do this with an ifelse statement.

allTermsOrdered$min3 <- apply(allTermsOrdered[,2:6],1,min)
allTermsOrdered$min3_yes <- ifelse(allTermsOrdered$rating3 == allTermsOrdered$min3,
                                   1,0)

allTermsOrdered$min3_RgrtrIncr <- ifelse(allTermsOrdered$min3_yes==1,
          ifelse(allTermsOrdered$rating2>(1.1*allTermsOrdered$min3),
            ifelse(allTermsOrdered$rating1>(1.1*allTermsOrdered$rating2),
              ifelse(allTermsOrdered$rating4>(1.1*allTermsOrdered$rating1),
                ifelse(allTermsOrdered$rating5>(1.1*allTermsOrdered$rating4),
                       1,
                       0),
                     0),              
                   0),
                 0),
                                         0)

Rgrtr3min <- subset(allTermsOrdered, allTermsOrdered$min3_RgrtrIncr==1)
Rgrtr3min
##        id rating1 rating2 rating3 rating4 rating5 monotonicIncrease min3
## 415  year      14      10       4      18      70                 0    4
## 352 still      12       7       4      17      19                 0    4
## 377 today       8       2       1      13      15                 0    1
## 88   desk       7       3       2      10      15                 0    2
## 235  must       3       2       1       5      11                 0    1
##     min3_yes min3_RgrtrIncr
## 415        1              1
## 352        1              1
## 377        1              1
## 88         1              1
## 235        1              1

Lets pick the top word, since there is more variation from rating 3 < rating 2 < rating 1 < rating 4 < rating 5. Now, we should combine are monotonic words and this top word into our new 12 keywords and see if these words can provide better accuracy in predicting the rating of the review.

keyNames <- c(monoKeys$id[c(1:10,12)], Rgrtr3min$id[1])#leave out the 'nachos' and 'restaurant'
keyNames
##  [1] "feel"       "area"       "definitely" "lot"        "many"      
##  [6] "open"       "two"        "worth"      "big"        "busy"      
## [11] "plus"       "year"
termKeys <- as.data.frame(keyNames)
colnames(termKeys) <- 'term'

tk1 <- merge(termKeys, FREQ_R1, by.x='term', by.y='term')
tk2 <- merge(tk1,FREQ_R2, by.x='term', by.y='term')
tk3 <- merge(tk2, FREQ_R3, by.x='term', by.y='term')
tk4 <- merge(tk3, FREQ_R4, by.x='term', by.y='term')
tk5 <- merge(tk4, FREQ_R5, by.x='term', by.y='term')

tk5$Rating1_totalTerms <- sum(FREQ_R1$Rating1termfrequency)
tk5$Rating2_totalTerms <- sum(FREQ_R2$Rating2termfrequency)
tk5$Rating3_totalTerms <- sum(FREQ_R3$Rating3termfrequency)
tk5$Rating4_totalTerms <- sum(FREQ_R4$Rating4termfrequency)
tk5$Rating5_totalTerms <- sum(FREQ_R5$Rating5termfrequency)

#these are total terms over all by rating, not unique terms
tk5$Rating1_term2totalTerm <- tk5$Rating1termfrequency/tk5$Rating1_totalTerms
tk5$Rating2_term2totalTerm <- tk5$Rating2termfrequency/tk5$Rating2_totalTerms
tk5$Rating3_term2totalTerm <- tk5$Rating3termfrequency/tk5$Rating3_totalTerms
tk5$Rating4_term2totalTerm <- tk5$Rating4termfrequency/tk5$Rating4_totalTerms
tk5$Rating5_term2totalTerm <- tk5$Rating5termfrequency/tk5$Rating5_totalTerms

termToTotalTerms <- tk5 %>% select(term,Rating1_term2totalTerm,
                                   Rating2_term2totalTerm,
                                   Rating3_term2totalTerm,
                                   Rating4_term2totalTerm,
                                   Rating5_term2totalTerm)
# Round to 5 because these value ratios are very small
term_to_totalTerms <- round(termToTotalTerms[,2:6],5)
row.names(term_to_totalTerms) <- termToTotalTerms$term
wordToAllWords <- as.data.frame(t(term_to_totalTerms))
wordToAllWords
##                           area     big    busy definitely    feel     lot
## Rating1_term2totalTerm 0.00062 0.00016 0.00016    0.00031 0.00156 0.00016
## Rating2_term2totalTerm 0.00149 0.00089 0.00119    0.00089 0.00506 0.00149
## Rating3_term2totalTerm 0.00282 0.00125 0.00188    0.00125 0.00846 0.00219
## Rating4_term2totalTerm 0.00405 0.00210 0.00112    0.00224 0.00475 0.00210
## Rating5_term2totalTerm 0.00284 0.00128 0.00092    0.00284 0.00768 0.00242
##                           many    open    plus     two   worth    year
## Rating1_term2totalTerm 0.00078 0.00031 0.00016 0.00031 0.00031 0.00219
## Rating2_term2totalTerm 0.00178 0.00089 0.00059 0.00149 0.00178 0.00297
## Rating3_term2totalTerm 0.00219 0.00282 0.00094 0.00251 0.00251 0.00125
## Rating4_term2totalTerm 0.00252 0.00154 0.00056 0.00140 0.00182 0.00252
## Rating5_term2totalTerm 0.00213 0.00206 0.00057 0.00178 0.00171 0.00498

Write this table out to csv as our new word ratio table.

write.csv(wordToAllWords,'wordToAllWords.csv', row.names=TRUE)

We are going to have a problem if we don’t handle the missing values being reported as zero in our algorithm. The zeros are getting categorized closer to the monotonically increasing values of 1. so we need to add some constraints that will say that if the value of any of the keywords are 0.00000 or lower, that the value is an NA and to skip, just vote on the words that do have values.Because not every reveiw will have every one of our keywords. This throws off the algorithm to include words with no values as zero. We should go back to the values of the keyword counts table to make this constraint.!@#$%

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[1]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- colnames(wordToAllWords)

area <- str_match_all(str1,' [aA][rR][eE][aA] ')
AREA <- length(area[[1]])

big <- str_match_all(str1,' [bB][iI][gG] ')
BIG <- length(big[[1]])

busy <- str_match_all(str1,' [bB][uU][sS][yY] ')
BUSY <- length(busy[[1]])

definitely <- str_match_all(str1,' [dD][eE][fF][iI][nN][iI][tT][eE][lL][yY] ')
DEFINITELY <- length(definitely[[1]])

feel <- str_match_all(str1,' [fF][eE][Ee][lL] ')
FEEL <- length(feel[[1]])

lot <- str_match_all(str1,' [lL][oO][tT] ')
LOT <- length(lot[[1]])

many <- str_match_all(str1,' [mM][aA][nN][yY] ')
MANY <- length(many[[1]])

open <- str_match_all(str1,' [oO][pP][eE][nN] ')
OPEN <- length(open[[1]])

plus <- str_match_all(str1,' [pP][lL][uU][sS] ')
PLUS <- length(plus[[1]])

two <- str_match_all(str1,' [tT][wW][oO] ')
TWO <- length(two[[1]])

worth <- str_match_all(str1,' [wW][oO][rR][tT][hH] ')
WORTH <- length(worth[[1]])

year <- str_match_all(str1,' [yY][eE][aA][rR] ')
YEAR <- length(year[[1]])

values <- as.data.frame(c(AREA,BIG,BUSY,DEFINITELY,FEEL,LOT,MANY,OPEN,PLUS,TWO,WORTH,YEAR))
row.names(values) <- termKeys$term

#add constraint for missing terms as NA not 0
colnames(values) <- 'termCount'
values$termCount <- gsub(0,NA,values$termCount)
values$termCount <- as.numeric(paste(values$termCount)) 

keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c('documentTermCount','term_to_totalDocumentTerms')
keyValues3 <- round(keyValues3,5)


keyValues3
##                               feel area definitely lot many open two worth big
## documentTermCount          1.00000   NA         NA  NA   NA   NA  NA    NA  NA
## term_to_totalDocumentTerms 0.00369   NA         NA  NA   NA   NA  NA    NA  NA
##                            busy plus    year
## documentTermCount            NA   NA 2.00000
## term_to_totalDocumentTerms   NA   NA 0.00738
#!@#
joinKeys <- full_join(wordToAllWords,keyValues3)
r1 <- row.names(wordToAllWords)
r2 <- row.names(keyValues3)
names <- c(r1,r2)
row.names(joinKeys) <- names
joinKeys
##                               area     big    busy definitely    feel     lot
## Rating1_term2totalTerm     0.00062 0.00016 0.00016    0.00031 0.00156 0.00016
## Rating2_term2totalTerm     0.00149 0.00089 0.00119    0.00089 0.00506 0.00149
## Rating3_term2totalTerm     0.00282 0.00125 0.00188    0.00125 0.00846 0.00219
## Rating4_term2totalTerm     0.00405 0.00210 0.00112    0.00224 0.00475 0.00210
## Rating5_term2totalTerm     0.00284 0.00128 0.00092    0.00284 0.00768 0.00242
## documentTermCount               NA      NA      NA         NA 1.00000      NA
## term_to_totalDocumentTerms      NA      NA      NA         NA 0.00369      NA
##                               many    open    plus     two   worth    year
## Rating1_term2totalTerm     0.00078 0.00031 0.00016 0.00031 0.00031 0.00219
## Rating2_term2totalTerm     0.00178 0.00089 0.00059 0.00149 0.00178 0.00297
## Rating3_term2totalTerm     0.00219 0.00282 0.00094 0.00251 0.00251 0.00125
## Rating4_term2totalTerm     0.00252 0.00154 0.00056 0.00140 0.00182 0.00252
## Rating5_term2totalTerm     0.00213 0.00206 0.00057 0.00178 0.00171 0.00498
## documentTermCount               NA      NA      NA      NA      NA 2.00000
## term_to_totalDocumentTerms      NA      NA      NA      NA      NA 0.00738
feel_diff <- joinKeys$feel[1:5]-joinKeys$feel[7]
area_diff <- joinKeys$area[1:5]-joinKeys$area[7]
definitely_diff <- joinKeys$definitely[1:5]-joinKeys$definitely[7]
lot_diff <- joinKeys$lot[1:5]-joinKeys$lot[7]
many_diff <- joinKeys$many[1:5]-joinKeys$many[7]
open_diff <- joinKeys$open[1:5]-joinKeys$open[7]
two_diff <- joinKeys$two[1:5]-joinKeys$two[7]
worth_diff <- joinKeys$worth[1:5]-joinKeys$worth[7]
big_diff <- joinKeys$big[1:5]-joinKeys$big[7]
busy_diff <- joinKeys$busy[1:5]-joinKeys$busy[7]
plus_diff <- joinKeys$plus[1:5]-joinKeys$plus[7]
year_diff <- joinKeys$year[1:5]-joinKeys$year[7]

diff <- as.data.frame(t(cbind(feel_diff, area_diff, definitely_diff, lot_diff, many_diff,
          open_diff,two_diff, worth_diff, big_diff, busy_diff, plus_diff, year_diff)))
colnames(diff) <- r1

diff$minValue <- apply(diff,1, min)
diff$vote <- ifelse(diff$Rating1_term2totalTerm==diff$minValue,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue,
                                         4,
                                         5)
                                  )
                           )
                    )

diff$minValue2 <- ifelse(abs(diff$minValue)>abs(diff$Rating1_term2totalTerm),
                         diff$Rating1_term2totalTerm,
                         ifelse(abs(diff$minValue)>abs(diff$Rating2_term2totalTerm),
                                diff$Rating2_term2totalTerm,
                                ifelse(abs(diff$minValue)>abs(diff$Rating3_term2totalTerm),
                                       diff$Rating3_term2totalTerm,
                                       ifelse(abs(diff$minValue)>abs(diff$Rating4_term2totalTerm),
                                              diff$Rating4_term2totalTerm,
                                                ifelse(abs(diff$minValue)>abs(diff$Rating5_term2totalTerm),
                                                  diff$Rating5_term2totalTerm,
                                                   diff$minValue)
                                              )
                                      )
                                )
                          )
  
diff$vote2 <- ifelse(diff$Rating1_term2totalTerm==diff$minValue2,
                    1, 
                    ifelse(diff$Rating2_term2totalTerm==diff$minValue2,
                           2,
                           ifelse(diff$Rating3_term2totalTerm==diff$minValue2,
                                  3,
                                  ifelse(diff$Rating4_term2totalTerm==diff$minValue2,
                                         4,
                                         5)
                                  )
                           )
                    )  


diff
##                 Rating1_term2totalTerm Rating2_term2totalTerm
## feel_diff                     -0.00213                0.00137
## area_diff                           NA                     NA
## definitely_diff                     NA                     NA
## lot_diff                            NA                     NA
## many_diff                           NA                     NA
## open_diff                           NA                     NA
## two_diff                            NA                     NA
## worth_diff                          NA                     NA
## big_diff                            NA                     NA
## busy_diff                           NA                     NA
## plus_diff                           NA                     NA
## year_diff                     -0.00519               -0.00441
##                 Rating3_term2totalTerm Rating4_term2totalTerm
## feel_diff                      0.00477                0.00106
## area_diff                           NA                     NA
## definitely_diff                     NA                     NA
## lot_diff                            NA                     NA
## many_diff                           NA                     NA
## open_diff                           NA                     NA
## two_diff                            NA                     NA
## worth_diff                          NA                     NA
## big_diff                            NA                     NA
## busy_diff                           NA                     NA
## plus_diff                           NA                     NA
## year_diff                     -0.00613               -0.00486
##                 Rating5_term2totalTerm minValue vote minValue2 vote2
## feel_diff                      0.00399 -0.00213    1   0.00137     2
## area_diff                           NA       NA   NA        NA    NA
## definitely_diff                     NA       NA   NA        NA    NA
## lot_diff                            NA       NA   NA        NA    NA
## many_diff                           NA       NA   NA        NA    NA
## open_diff                           NA       NA   NA        NA    NA
## two_diff                            NA       NA   NA        NA    NA
## worth_diff                          NA       NA   NA        NA    NA
## big_diff                            NA       NA   NA        NA    NA
## busy_diff                           NA       NA   NA        NA    NA
## plus_diff                           NA       NA   NA        NA    NA
## year_diff                     -0.00240 -0.00613    3  -0.00519     1

!@#$%

bestVote <- diff %>% group_by(vote) %>% count()

#modified due to NAs getting votes as max
bestVote$isNA <- ifelse(is.na(bestVote$vote),1,0)

#this will now eliminate the NA from being included in best vote for rating values
bestVote$preNotNA <- ifelse(bestVote$isNA != 1 , bestVote$n,
                           0)

#this will count how many ratings are the max number of votes to find ties
bestVote$maxVote <- ifelse(bestVote$preNotNA==max(bestVote$preNotNA),1,0)

bestVote$ratingMean <- ifelse(sum(bestVote$maxVote) > 1,
                          ifelse(ceiling(mean(bestVote$vote*bestVote$preNotNA,na.rm=TRUE))>5,
                                 5,
                                 ceiling(mean(bestVote$vote*bestVote$preNotNA,na.rm=TRUE))), 
                           ifelse(bestVote$preNotNA==max(bestVote$preNotNA),
                                  bestVote$vote,
                                  0)
                          )

bestVote$ratingMedian <- ifelse(sum(bestVote$maxVote) > 1, ifelse(ceiling(median(bestVote$vote*bestVote$preNotNA,na.rm=TRUE))>5,
              5,ceiling(median(bestVote$vote*bestVote$preNotNA,na.rm=TRUE))), 
                           ifelse(bestVote$preNotNA==max(bestVote$preNotNA),
                                  bestVote$vote,
                                  0)
                          )

max(bestVote$ratingMean)
## [1] 2
max(bestVote$ratingMedian)
## [1] 2
bestVote
## # A tibble: 3 x 7
## # Groups:   vote [3]
##    vote     n  isNA preNotNA maxVote ratingMean ratingMedian
##   <dbl> <int> <dbl>    <dbl>   <dbl>      <dbl>        <dbl>
## 1     1     1     0        1       1          2            2
## 2     3     1     0        1       1          2            2
## 3    NA    10     1        0       0          2            2

This is the actual shortest distance as the minimum to vote for the rating by word ratios of words available.

bestVote2 <- diff %>% group_by(vote2) %>% count()

#modified due to NAs getting votes as max
bestVote2$isNA <- ifelse(is.na(bestVote2$vote2),1,0)

#this will now eliminate the NA from being included in best vote for rating values
bestVote2$preNotNA <- ifelse(bestVote2$isNA != 1 , bestVote$n,
                           0)

#this will count how many ratings are the max number of votes to find ties
bestVote2$maxVote2 <- ifelse(bestVote2$preNotNA==max(bestVote2$preNotNA),1,0)

bestVote2$ratingMean2 <- ifelse(sum(bestVote2$maxVote2) > 1, ifelse(ceiling(mean(bestVote2$vote2*bestVote2$preNotNA,na.rm=TRUE))>5,5,                             ceiling(mean(bestVote2$vote2*bestVote2$preNotNA,na.rm=TRUE))), 
                           ifelse(bestVote2$preNotNA==max(bestVote2$preNotNA),
                                  bestVote2$vote2,
                                  0)
                          )

bestVote2$ratingMedian2 <- ifelse(sum(bestVote2$maxVote2) > 1,
    ifelse(ceiling(median(bestVote2$vote2*bestVote2$preNotNA,na.rm=TRUE))>5,5,
           ceiling(median(bestVote2$vote2*bestVote2$preNotNA,na.rm=TRUE))), 
                           ifelse(bestVote2$preNotNA==max(bestVote2$preNotNA),
                                  bestVote2$vote2,
                                  0)
                          )

max(bestVote2$ratingMean2)
## [1] 2
max(bestVote2$ratingMedian2)
## [1] 2
bestVote2
## # A tibble: 3 x 7
## # Groups:   vote2 [3]
##   vote2     n  isNA preNotNA maxVote2 ratingMean2 ratingMedian2
##   <dbl> <int> <dbl>    <dbl>    <dbl>       <dbl>         <dbl>
## 1     1     1     0        1        1           2             2
## 2     2     1     0        1        1           2             2
## 3    NA    10     1        0        0           2             2

Lets see what this rating is. The string object was taken from the first review of the business.

Reviews13$userRatingValue[1]
## [1] 5

!@# ***

Lets visualize these keywords by the layout of these keywords to rating by ratios as weight, ratings as edges, and nodes as keywords. We have to first take this information from the data table on the ratios of terms counted each per documents in each rating to total terms per documents per rating. This data table is the wordToAllWords table. From this table we have our weights and our ratings. The weights are what will make the arrows width smaller or larger than the other arrow widths depending on how much weight they have on each word linked to a specific rating. The ratings are the edges. The nodes are the words, and those are also in this table. The label in the nodes table will be the keyword, and the title will be the rating. The id is the row number from the nodes table, which is the from column in the edges table. and the to column in the edges table will be the rating. Lets also add another feature from the Reviews13 data table for the day of the week as Monday through Sunday by adding a feature that takes the day of the week from the date field we added earlier in the data. Lets read in those two data tables and make sure our libraries are loaded in to Rstudio from the top of this script.The visNetwork and igraph link analysis and visualization libraries will be used for this link analysis. The package igraph makes the visNetwork package work faster in uploading and allows editing and modifying the link analysis network using various customized plot layouts and color schemes as well as other added value to the visualization.

Lets add the day of the week using the lubridate package to the Reviews13 datatable Date field.

head(Reviews13)
##         userReviewSeries
## 1 mostRecentVisit_review
## 2 mostRecentVisit_review
## 3 mostRecentVisit_review
## 4 mostRecentVisit_review
## 5 mostRecentVisit_review
## 6 mostRecentVisit_review
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##         userRatingSeries userRatingValue businessReplied
## 1 mostRecentVisit_rating               5             yes
## 2 mostRecentVisit_rating               4             yes
## 3 mostRecentVisit_rating               5              no
## 4 mostRecentVisit_rating               5              no
## 5 mostRecentVisit_rating               5              no
## 6 mostRecentVisit_rating               5              no
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  businessReplyContent
## 1  Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n1/2/20191/15/2018-\nHi Michelle, HIGH END SPA is proud to welcome men and women of all shapes and sizes. In response to your day, we are now in the process of ordering a few XL robes so we can continue to have offerings for all of our guests.  I wanted to reach out to you to let you know we have sent you a private message as we would like to connect with you directly. Thank you again for communicating your concern with us.\nAlexa Gallegos\n\n1/2/2019 -\n\nHi Michelle,\nI am so happy to hear that you had a great returning experience! Our team members do the best they can to accommodate all of our guests needs and we are very glad to hear you were happy with the solution.\nWe hope to see you and your husband again!\n\nBest,\nAmber Peyghambari\n\nRead less\n
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n3/25/2019Hi Cathy,\n\nThank you for taking the time to share your experience with us. We are happy to hear that you enjoyed your day at HIGH END SPA. We appreciate all feedback and will share these concerns with our team. We hope to see you back this summer!\n\nWith kind,\nAmber Peyghambari\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           userReviewContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1/1/2019Updated review\n 2 photos\n\nWhat a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\nComment from Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n1/2/20191/15/2018-\nHi Michelle, HIGH END SPA is proud to welcome men and women of all shapes and sizes. In response to your day, we are now in the process of ordering a few XL robes so we can continue to have offerings for all of our guests.  I wanted to reach out to you to let you know we have sent you a private message as we would like to connect with you directly. Thank you again for communicating your concern with us.\nAlexa Gallegos\n\n1/2/2019 -\n\nHi Michelle,\nI am so happy to hear that you had a great returning experience! Our team members do the best they can to accommodate all of our guests needs and we are very glad to hear you were happy with the solution.\nWe hope to see you and your husband again!\n\nBest,\nAmber Peyghambari\n\nRead less\n
## 2 3/24/2019\n 12 photos\n\nMy sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\nComment from Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n3/25/2019Hi Cathy,\n\nThank you for taking the time to share your experience with us. We are happy to hear that you enjoyed your day at HIGH END SPA. We appreciate all feedback and will share these concerns with our team. We hope to see you back this summer!\n\nWith kind,\nAmber Peyghambari\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1/26/2020\nI came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1/24/2020\nI have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 10/22/2019\nDr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         12/23/2019\nMany in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   LowAvgHighCost             businessType         cityState friends reviews
## 1           High high end massage retreat        Orange, CA      26      33
## 2           High high end massage retreat   Los Angeles, CA     894     311
## 3            Avg             chiropractic  Laguna Beach, CA       0      NA
## 4            Avg             chiropractic Moreno Valley, CA       0      NA
## 5            Avg             chiropractic        Corona, CA       0      11
## 6            Avg             chiropractic        Corona, CA       0       2
##   photos eliteStatus    userName       Date userBusinessPhotos userCheckIns
## 1     21        <NA> Michelle A. 2019-01-01                  2           NA
## 2   1187 Elite '2020    Cathy P. 2019-03-24                 NA           NA
## 3     NA        <NA>     Brie W. 2020-01-26                 NA           NA
## 4     NA        <NA>    Yoles A. 2020-01-24                 NA           NA
## 5     NA        <NA>    Rafeh T. 2019-10-22                 NA           NA
## 6     NA        <NA>     Kort U. 2019-12-23                 NA           NA

When looking at the table above there are other factors that could be grouped by, such as the business type, the cost as low, average, or high, then number of photos each user has, etc. But we will just focus on using the day of the week. Lets add the day of the week now. First lets make sure the Date feature is recognized as a date feature.

class(Reviews13$Date)
## [1] "Date"

It is a factor, so we will change it to a date feature type.

Reviews13$Date <- as.Date(Reviews13$Date)
class(Reviews13$Date)
## [1] "Date"

Now lets extract the day of the week from our date feature.

date <- ymd(Reviews13$Date)
date <- day(Reviews13$Date)

Reviews13$weekday <- wday(date, label=TRUE, week_start=1)#set start of week to Monday)
head(Reviews13$weekday)
## [1] Sun Tue Thu Tue Sun Mon
## Levels: Mon < Tue < Wed < Thu < Fri < Sat < Sun

Now, we could have attached this information to the count of keywords in each review, but we skipped that step, and we have to make the process automated with a for loop to take every row in data table feature and keep applying this string filter program that counts the 12 words in each observation, and returns a vector that is row binded to the previous vector until now more observations left. We could do that later, you could do it now, or we could try it now and see if it is as simple as it sounds to set up. I will try it once, and if it will take more manipulation, or time, we will just work with what is readily available to focus on the link analysis network design we already planned and created instructions though loose on how to create. This is the keyword extraction script:

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[1]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- colnames(wordToAllWords)

area <- str_match_all(str1,' [aA][rR][eE][aA] ')
AREA <- length(area[[1]])

big <- str_match_all(str1,' [bB][iI][gG] ')
BIG <- length(big[[1]])

busy <- str_match_all(str1,' [bB][uU][sS][yY] ')
BUSY <- length(busy[[1]])

definitely <- str_match_all(str1,' [dD][eE][fF][iI][nN][iI][tT][eE][lL][yY] ')
DEFINITELY <- length(definitely[[1]])

feel <- str_match_all(str1,' [fF][eE][Ee][lL] ')
FEEL <- length(feel[[1]])

lot <- str_match_all(str1,' [lL][oO][tT] ')
LOT <- length(lot[[1]])

many <- str_match_all(str1,' [mM][aA][nN][yY] ')
MANY <- length(many[[1]])

open <- str_match_all(str1,' [oO][pP][eE][nN] ')
OPEN <- length(open[[1]])

plus <- str_match_all(str1,' [pP][lL][uU][sS] ')
PLUS <- length(plus[[1]])

two <- str_match_all(str1,' [tT][wW][oO] ')
TWO <- length(two[[1]])

worth <- str_match_all(str1,' [wW][oO][rR][tT][hH] ')
WORTH <- length(worth[[1]])

year <- str_match_all(str1,' [yY][eE][aA][rR] ')
YEAR <- length(year[[1]])

values <- as.data.frame(c(AREA,BIG,BUSY,DEFINITELY,FEEL,LOT,MANY,OPEN,PLUS,TWO,WORTH,YEAR))
row.names(values) <- termKeys$term

#add constraint for missing terms as NA not 0
colnames(values) <- 'termCount'
values$termCount <- gsub(0,NA,values$termCount)
values$termCount <- as.numeric(paste(values$termCount)) 

keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c('documentTermCount','term_to_totalDocumentTerms')
keyValues3 <- round(keyValues3,5)


keyValues3
#!@#

We see from this output per review, that we could first add a paste function to attach a new name to every review by row number in the data table Reviews13. We need to make sure they are the correct row number values by order of their listed review.

row.names(Reviews13) <- NULL
row.names(Reviews13) <- as.character(paste(row.names(Reviews13)))
head(row.names(Reviews13))
## [1] "1" "2" "3" "4" "5" "6"

%&%& Looks like they are ordered. There are 614 reviews to extract the 12 keyword counts and ratio of words per document to total words per document. Lets try wrapping this up in a for loop.

str <- as.character(paste(Reviews13$userReviewOnlyContent))
for (review in (str))
  { 
    
      str1 <- as.character(paste(Reviews13$userReviewOnlyContent[1]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- colnames(wordToAllWords)

area <- str_match_all(str1,' [aA][rR][eE][aA] ')
AREA <- length(area[[1]])

big <- str_match_all(str1,' [bB][iI][gG] ')
BIG <- length(big[[1]])

busy <- str_match_all(str1,' [bB][uU][sS][yY] ')
BUSY <- length(busy[[1]])

definitely <- str_match_all(str1,' [dD][eE][fF][iI][nN][iI][tT][eE][lL][yY] ')
DEFINITELY <- length(definitely[[1]])

feel <- str_match_all(str1,' [fF][eE][Ee][lL] ')
FEEL <- length(feel[[1]])

lot <- str_match_all(str1,' [lL][oO][tT] ')
LOT <- length(lot[[1]])

many <- str_match_all(str1,' [mM][aA][nN][yY] ')
MANY <- length(many[[1]])

open <- str_match_all(str1,' [oO][pP][eE][nN] ')
OPEN <- length(open[[1]])

plus <- str_match_all(str1,' [pP][lL][uU][sS] ')
PLUS <- length(plus[[1]])

two <- str_match_all(str1,' [tT][wW][oO] ')
TWO <- length(two[[1]])

worth <- str_match_all(str1,' [wW][oO][rR][tT][hH] ')
WORTH <- length(worth[[1]])

year <- str_match_all(str1,' [yY][eE][aA][rR] ')
YEAR <- length(year[[1]])

      values1 <- c(THE,AND,FOR1,HAVE,THAT,THEY,THIS,YOU,NOT,BUT,GOOD,WITH)

      values2 <- values1/totalTerms
      
      ##cat function to save the values and work out another way to read in and combine
      cat(values1,file="values1.csv",sep="\n",append ="TRUE",fill=TRUE)
      cat(values2,file="values2.csv",sep="\n",append ="TRUE",fill=TRUE)
}

I played around with the for loop longer than expected, and it needs more work. It isn’t doing what I want it to do. I will manually get a handful of values later as needed, or move on to the vis network. I fixed the code, but this chunk won’t evaluate. The script will be assumed to err until we encounter it again so as to move on to the visNetwork link analysis plots.




Lets move onto the visNetwork. We are using the wordToAllWords and Reviews13 tables. Lets select our columns from each.These were both written to csv earlier as ReviewsCleanedWithKeywordsAndRatios.csv for Reviews13 and wordToAllWords.csv for that table. If you cleaned out your environment and left or shut down Rstudio then you can read in these two as their table names and test the script below.

visNodes <- Reviews13 %>% select(userRatingValue,LowAvgHighCost, businessType,weekday)

visNodes$label <- visNodes$userRatingValue
visNodes$label <- paste('rate',visNodes$label,sep='')

visNodes$title <- visNodes$LowAvgHighCost
visNodes$title <- paste(visNodes$title,'Cost',sep='')

visNodes$group <- visNodes$weekday

visEdges <- as.data.frame(t(wordToAllWords ))
colnames(visEdges) <- c('rate1','rate2','rate3','rate4','rate5')
visEdges$label <- row.names(visEdges)

#the weight is the ratio term2alltermsPerRating
visEdges <- gather(visEdges, 'rating','weight', 1:5) 
head(visNodes)
##   userRatingValue LowAvgHighCost             businessType weekday label
## 1               5           High high end massage retreat     Sun rate5
## 2               4           High high end massage retreat     Tue rate4
## 3               5            Avg             chiropractic     Thu rate5
## 4               5            Avg             chiropractic     Tue rate5
## 5               5            Avg             chiropractic     Sun rate5
## 6               5            Avg             chiropractic     Mon rate5
##      title group
## 1 HighCost   Sun
## 2 HighCost   Tue
## 3  AvgCost   Thu
## 4  AvgCost   Tue
## 5  AvgCost   Sun
## 6  AvgCost   Mon
Nodes1 <- visNodes %>% select(label,title,group)
head(Nodes1)
##   label    title group
## 1 rate5 HighCost   Sun
## 2 rate4 HighCost   Tue
## 3 rate5  AvgCost   Thu
## 4 rate5  AvgCost   Tue
## 5 rate5  AvgCost   Sun
## 6 rate5  AvgCost   Mon

It moves from 614 to 7368 obsrevations because of the 12 keywords and 614 reveiws which equals 7368.

Nodes2 <- merge(Nodes1, visEdges, by.x='label', by.y='rating')
Nodes2$id <- as.factor(paste(row.names(Nodes2)))
Nodes2$term <- Nodes2$label.y
Nodes3 <- Nodes2 %>% select(id,label,title,group,term)
Nodes3$label <- as.factor(paste(Nodes3$label))
Nodes3$term <-  as.factor(paste(Nodes3$term))         
Nodes3$title <- as.factor(paste(Nodes3$title))
head(Nodes3)
##   id label   title group       term
## 1  1 rate1 LowCost   Mon        two
## 2  2 rate1 LowCost   Mon       plus
## 3  3 rate1 LowCost   Mon       area
## 4  4 rate1 LowCost   Mon        big
## 5  5 rate1 LowCost   Mon       busy
## 6  6 rate1 LowCost   Mon definitely

visEdges only has 60 because it was 5 ratings ratios foe 12 words each.

visEdges$label <- as.factor(paste(visEdges$label))
visEdges$rating <- as.factor(paste(visEdges$rating))
head(visEdges)
##        label rating  weight
## 1       area  rate1 0.00062
## 2        big  rate1 0.00016
## 3       busy  rate1 0.00016
## 4 definitely  rate1 0.00031
## 5       feel  rate1 0.00156
## 6        lot  rate1 0.00016

Because there are only 60 fields in the edges and 7368 in the nodes, there will be errors for those values in the nodes that don’t have values in the edges. But we will still have a plot. I will suppress these warnings messages within the chunk.The nodes have to have unique IDs but the edges don’t.

Edges2 <- visEdges %>% mutate(from=plyr::mapvalues(visEdges$rating,
                                                 from=Nodes3$label,to=Nodes3$id))
Edges3 <- Edges2 %>% mutate(to=plyr::mapvalues(Edges2$label, 
                                               from=Nodes3$term, to=Nodes3$id))

Edges4 <- Edges3 %>% select(from,to,label,weight)
head(Edges4,20)
##    from   to      label  weight
## 1     1 2223       area 0.00062
## 2     1 3334        big 0.00016
## 3     1 4445       busy 0.00016
## 4     1 5556 definitely 0.00031
## 5     1 6667       feel 0.00156
## 6     1 7147        lot 0.00016
## 7     1 7258       many 0.00078
## 8     1    2       open 0.00031
## 9     1 1112       plus 0.00016
## 10    1    1        two 0.00031
## 11    1  113      worth 0.00031
## 12    1  224       year 0.00219
## 13   66 2223       area 0.00149
## 14   66 3334        big 0.00089
## 15   66 4445       busy 0.00119
## 16   66 5556 definitely 0.00089
## 17   66 6667       feel 0.00506
## 18   66 7147        lot 0.00149
## 19   66 7258       many 0.00178
## 20   66    2       open 0.00089

Now lets use visNetwork and igraph to plot these nodes and edges.

visNetwork(nodes=Nodes3, edges=Edges4, main='Weekday Groups of Rating and 12 Keywords') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=FALSE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout() %>%
  visLegend

The above is very large because it has the added groups and keywords of 12 to run combinations against the original 614 observations. Lets try limiting the observations.


We will work from the beginning of the last visNetwork plot.

visNodes <- Reviews13 %>% select(userRatingValue,LowAvgHighCost, businessType,weekday)

visNodes$label <- visNodes$userRatingValue
visNodes$label <- paste('rate',visNodes$label,sep='')

visNodes$title <- visNodes$LowAvgHighCost
visNodes$title <- paste(visNodes$title,'Cost',sep='')

visNodes$group <- visNodes$weekday
head(visNodes)
##   userRatingValue LowAvgHighCost             businessType weekday label
## 1               5           High high end massage retreat     Sun rate5
## 2               4           High high end massage retreat     Tue rate4
## 3               5            Avg             chiropractic     Thu rate5
## 4               5            Avg             chiropractic     Tue rate5
## 5               5            Avg             chiropractic     Sun rate5
## 6               5            Avg             chiropractic     Mon rate5
##      title group
## 1 HighCost   Sun
## 2 HighCost   Tue
## 3  AvgCost   Thu
## 4  AvgCost   Tue
## 5  AvgCost   Sun
## 6  AvgCost   Mon
visEdges <- as.data.frame(t(wordToAllWords ))
colnames(visEdges) <- c('rate1','rate2','rate3','rate4','rate5')
visEdges$label <- row.names(visEdges)

#the weight is the ratio term2alltermsPerRating
visEdges <- gather(visEdges, 'rating','weight', 1:5) 
head(visEdges)
##        label rating  weight
## 1       area  rate1 0.00062
## 2        big  rate1 0.00016
## 3       busy  rate1 0.00016
## 4 definitely  rate1 0.00031
## 5       feel  rate1 0.00156
## 6        lot  rate1 0.00016
Nodes1 <- visNodes %>% select(weekday:group)
head(Nodes1)
##   weekday label    title group
## 1     Sun rate5 HighCost   Sun
## 2     Tue rate4 HighCost   Tue
## 3     Thu rate5  AvgCost   Thu
## 4     Tue rate5  AvgCost   Tue
## 5     Sun rate5  AvgCost   Sun
## 6     Mon rate5  AvgCost   Mon
Nodes2 <- merge(Nodes1, visEdges, by.x='label', by.y='rating')
Nodes2$term <- Nodes2$label.y
Nodes2$id <- row.names(Nodes2)
Nodes3 <- Nodes2 %>% select(id,label,title,group,term,weight)
head(Nodes3)
##   id label   title group       term  weight
## 1  1 rate1 LowCost   Mon        two 0.00031
## 2  2 rate1 LowCost   Mon       plus 0.00016
## 3  3 rate1 LowCost   Mon       area 0.00062
## 4  4 rate1 LowCost   Mon        big 0.00016
## 5  5 rate1 LowCost   Mon       busy 0.00016
## 6  6 rate1 LowCost   Mon definitely 0.00031

Now subset from Nodes3 and make the edges table from this table.

Nodes3b <- subset(Nodes3, (Nodes3$group=='Mon'|Nodes3$group=='Wed'|Nodes3$group=='Sat') )
t <- Nodes3b$term[1:6]
Nodes4 <- subset(Nodes3b, Nodes3b$term==t[1] | Nodes3b$term==t[2] |
                   Nodes3b$term==t[3] | Nodes3b$term==t[4] |
                   Nodes3b$term==t[5] | Nodes3b$term==t[6])


row.names(Nodes4) <- NULL
Nodes4$id <- as.factor(row.names(Nodes4))
head(Nodes4)
##   id label   title group       term  weight
## 1  1 rate1 LowCost   Mon        two 0.00031
## 2  2 rate1 LowCost   Mon       plus 0.00016
## 3  3 rate1 LowCost   Mon       area 0.00062
## 4  4 rate1 LowCost   Mon        big 0.00016
## 5  5 rate1 LowCost   Mon       busy 0.00016
## 6  6 rate1 LowCost   Mon definitely 0.00031
Edges1 <- Nodes4 %>% select(label,term,group,weight)
Edges2 <- Edges1 %>% mutate(from=plyr::mapvalues(Edges1$label, 
                                                 from=Nodes4$label,to=Nodes4$id))
Edges3 <- Edges2 %>% mutate(to=plyr::mapvalues(Edges2$term, 
                                               from=Nodes4$term, to=Nodes4$id))
Edges4 <- Edges3 %>% select(from,to,label,term,group,weight)
Edges4$label <- Edges4$term
head(Edges4)
##   from  to      label       term group  weight
## 1    1   1        two        two   Mon 0.00031
## 2    1 535       plus       plus   Mon 0.00016
## 3    1 646       area       area   Mon 0.00062
## 4    1 757        big        big   Mon 0.00016
## 5    1 868       busy       busy   Mon 0.00016
## 6    1 979 definitely definitely   Mon 0.00031
visNetwork(nodes=Nodes4, edges=Edges4, main='Three Weekday Groups of Five Ratings and Five Keywords') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=FALSE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout() %>%
  visLegend

Lets make another visualization on price and ratings with terms omitted. I used five keywords instead of three as planned.

We well use the Reviews13 data table. And select the features needed.

visNodes3 <- Reviews13 %>% select(userRatingValue,LowAvgHighCost,businessReplied,friends)

visNodes3$id <- row.names(visNodes3)
visNodes3$weight <- visNodes3$friends/max(visNodes3$friends,na.rm=TRUE)
visNodes3$group <- visNodes3$LowAvgHighCost
visNodes3$label <- as.factor(paste('rating', visNodes3$userRatingValue, sep=' '))
visNodes3$title <- visNodes3$businessReplied

head(visNodes3)
##   userRatingValue LowAvgHighCost businessReplied friends id weight group
## 1               5           High             yes      26  1 0.0052  High
## 2               4           High             yes     894  2 0.1788  High
## 3               5            Avg              no       0  3 0.0000   Avg
## 4               5            Avg              no       0  4 0.0000   Avg
## 5               5            Avg              no       0  5 0.0000   Avg
## 6               5            Avg              no       0  6 0.0000   Avg
##      label title
## 1 rating 5   yes
## 2 rating 4   yes
## 3 rating 5    no
## 4 rating 5    no
## 5 rating 5    no
## 6 rating 5    no
nodes1 <- visNodes3 %>% select(id,label,title, group)

edges1 <- visNodes3 %>% select(id,label,group,weight)
edges1$from <- edges1$id
edges2 <- edges1 %>% mutate(to = plyr::mapvalues(edges1$group, from=nodes1$group, to = nodes1$id))

edges3 <- edges2 %>% select(from,to,label, group,weight)
head(edges3)
##   from to    label group weight
## 1    1  1 rating 5  High 0.0052
## 2    2  1 rating 4  High 0.1788
## 3    3  3 rating 5   Avg 0.0000
## 4    4  3 rating 5   Avg 0.0000
## 5    5  3 rating 5   Avg 0.0000
## 6    6  3 rating 5   Avg 0.0000
head(nodes1)
##   id    label title group
## 1  1 rating 5   yes  High
## 2  2 rating 4   yes  High
## 3  3 rating 5    no   Avg
## 4  4 rating 5    no   Avg
## 5  5 rating 5    no   Avg
## 6  6 rating 5    no   Avg
visNetwork(nodes=nodes1, edges=edges3, main='Ratings Cost if business replied and Number of Friends as arrow weights') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=FALSE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout() %>%
  visLegend

We can see in the above plot of the ratings in groups by cost of either high, average, or low, that there are almost the same amount of reviews in each group. When hovering the nodes are going to show if the business replied to his or her review as yes if they did and as no if not. When zooming in on the nodes of each group you can see the rating and arrow weights of the number of friends each review has as ratios of the number of friends a user has divided by the max number of friends all users have.

Lets build another network but with different groupings.

visNodes3 <- Reviews13 %>% select(userRatingValue,LowAvgHighCost,businessReplied,friends)

visNodes3$id <- row.names(visNodes3)
visNodes3$weight <- visNodes3$friends/max(visNodes3$friends,na.rm=TRUE)
visNodes3$label <- as.factor(paste(visNodes3$LowAvgHighCost,'cost',sep=' '))
visNodes3$group <- as.factor(paste('rating', visNodes3$userRatingValue, sep=' '))
visNodes3$title <- paste(visNodes3$friends,'friends',sep=' ')

head(visNodes3)
##   userRatingValue LowAvgHighCost businessReplied friends id weight     label
## 1               5           High             yes      26  1 0.0052 High cost
## 2               4           High             yes     894  2 0.1788 High cost
## 3               5            Avg              no       0  3 0.0000  Avg cost
## 4               5            Avg              no       0  4 0.0000  Avg cost
## 5               5            Avg              no       0  5 0.0000  Avg cost
## 6               5            Avg              no       0  6 0.0000  Avg cost
##      group       title
## 1 rating 5  26 friends
## 2 rating 4 894 friends
## 3 rating 5   0 friends
## 4 rating 5   0 friends
## 5 rating 5   0 friends
## 6 rating 5   0 friends
nodes1 <- visNodes3 %>% select(id,label,title, group)

edges1 <- visNodes3 %>% select(id,label,group,weight)
edges1$from <- edges1$id
edges2 <- edges1 %>% mutate(to = plyr::mapvalues(edges1$group, from=nodes1$group, to = nodes1$id))

edges3 <- edges2 %>% select(from,to,label, group,weight)
head(edges3)
##   from to     label    group weight
## 1    1  1 High cost rating 5 0.0052
## 2    2  2 High cost rating 4 0.1788
## 3    3  1  Avg cost rating 5 0.0000
## 4    4  1  Avg cost rating 5 0.0000
## 5    5  1  Avg cost rating 5 0.0000
## 6    6  1  Avg cost rating 5 0.0000
head(nodes1)
##   id     label       title    group
## 1  1 High cost  26 friends rating 5
## 2  2 High cost 894 friends rating 4
## 3  3  Avg cost   0 friends rating 5
## 4  4  Avg cost   0 friends rating 5
## 5  5  Avg cost   0 friends rating 5
## 6  6  Avg cost   0 friends rating 5
visNetwork(nodes=nodes1, edges=edges3, main='Ratings as Groups and Cost as Labels with Number of Friends as Arrow Weights') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=FALSE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout() %>%
  visLegend(ncol=2)

The above visual network is great for looking at the number of reviews in each rating, but also when zooming in to see the cost as Low, High, or Average and hovering shows how many social media friends each reviewer has.




We should make a visual network of the keywords and the ratings to go with and maybe a couple different visualizations on our manually built best model for predicting ratings based on the ceiling of the median of the dot product of votes times ratings when there is a tie between rating votes that were voted on by which review has the minimum value of the ratio of term to total terms in the document to term to total terms by rating.

I worked on the for loop outside this script and thankfully it works and it doesn’t take very long for it to run. Less than two minutes. Here is that content and the new file Reviews15 we will be working with.

!!! CAUTION: !!!

Make sure to only run this once if you already have these files or delete the keyValues3.csv and the keyValues3_ratios, as it will append to your files. When running the chunks even with eval set to FALSE, everything is ran, those header commands only work when kitting the file. It takes about a minute to load all 614 reviews into those 12 keywords with ratios. So it is ok to delete the files. !@#$%

for (num in 1:length(Reviews13$userReviewOnlyContent)){

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[num]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- colnames(wordToAllWords)

area <- str_match_all(str1,' [aA][rR][eE][aA] ')
AREA <- length(area[[1]])

big <- str_match_all(str1,' [bB][iI][gG] ')
BIG <- length(big[[1]])

busy <- str_match_all(str1,' [bB][uU][sS][yY] ')
BUSY <- length(busy[[1]])

definitely <- str_match_all(str1,' [dD][eE][fF][iI][nN][iI][tT][eE][lL][yY] ')
DEFINITELY <- length(definitely[[1]])

feel <- str_match_all(str1,' [fF][eE][Ee][lL] ')
FEEL <- length(feel[[1]])

lot <- str_match_all(str1,' [lL][oO][tT] ')
LOT <- length(lot[[1]])

many <- str_match_all(str1,' [mM][aA][nN][yY] ')
MANY <- length(many[[1]])

open <- str_match_all(str1,' [oO][pP][eE][nN] ')
OPEN <- length(open[[1]])

plus <- str_match_all(str1,' [pP][lL][uU][sS] ')
PLUS <- length(plus[[1]])

two <- str_match_all(str1,' [tT][wW][oO] ')
TWO <- length(two[[1]])

worth <- str_match_all(str1,' [wW][oO][rR][tT][hH] ')
WORTH <- length(worth[[1]])

year <- str_match_all(str1,' [yY][eE][aA][rR] ')
YEAR <- length(year[[1]])

values <- as.data.frame(c(AREA,BIG,BUSY,DEFINITELY,FEEL,LOT,MANY,OPEN,PLUS,TWO,WORTH,YEAR))
row.names(values) <- termKeys$term

#add constraint for missing terms as NA not 0
colnames(values) <- 'termCount'
values$termCount <- gsub(0,NA,values$termCount)
values$termCount <- as.numeric(paste(values$termCount)) 

keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c('documentTermCount','term_to_totalDocumentTerms')
keyValues3 <- round(keyValues3,5)

keyValues4 <- as.matrix(keyValues3)
cat(keyValues4[1,1:12],file='keyValues3.csv',append=TRUE, sep='\n',fill=TRUE)
cat(keyValues4[2,1:12],file='keyValues3_ratios.csv',append=TRUE, sep='\n',fill=TRUE)
}

Well, great news! The above looks like it worked and now we have the rest of our keyword data to make a matrix and then data frame out of. It took about one minute as I watched the kb file size in the file window change for each keyValues csv file in the for loop above. These are actually all the records, because they were appended to the other records. So we should have 614X12= r614*12 observations. Lets find out.

all_kws <- read.csv('keyValues3.csv', sep=',', header=FALSE, na.strings=c('',' ','NA'))

Ok, good, because it does say 7368 obs and 1 variable, (if you have more rows than this, you ran the code twice. search for keywords3.csv within Rstudio with the magnifying glass in the toolbar and see if you did, otherwise continue) as expected or anticipating it to. Now lets make this into a data frame after first making it into a matrix.

all_kws1 <- all_kws$V1
ALL_kws <- matrix(all_kws1, nrow=12,ncol=614,byrow=FALSE)
ALL_KWs <- as.data.frame(t(ALL_kws))
row.names(ALL_KWs) <- NULL
colnames(ALL_KWs) <- colnames(wordToAllWords)

Now lets get the ratios for all of these reviews and keywords.

all_kwrs <- read.csv('keyValues3_ratios.csv', header=FALSE, sep=',',
                     na.strings=c('',' ','NA'))
all_kwrs1 <- all_kwrs$V1
ALL_kwrs <- matrix(all_kwrs1, nrow=12,ncol=614,byrow=FALSE)
ALL_KWRs <- as.data.frame(t(ALL_kwrs))
row.names(ALL_KWRs) <- NULL
colnames(ALL_KWRs) <- paste(colnames(wordToAllWords),'ratios', sep='_')

Now lets combine the two tables together.

ALL_keywords <- cbind(ALL_KWs,ALL_KWRs)
head(ALL_keywords)
##   area big busy definitely feel lot many open plus two worth year area_ratios
## 1    1  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA    2     0.00369
## 2    1  NA   NA          4    2   1   NA   NA   NA  NA     2   NA     0.00166
## 3   NA  NA   NA          2    1  NA   NA   NA   NA  NA    NA   NA          NA
## 4   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA          NA
## 5   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA          NA
## 6   NA  NA   NA         NA    1  NA   NA   NA   NA  NA    NA   NA          NA
##   big_ratios busy_ratios definitely_ratios feel_ratios lot_ratios many_ratios
## 1         NA          NA                NA          NA         NA          NA
## 2         NA          NA           0.00662     0.00331    0.00166          NA
## 3         NA          NA           0.01626     0.00813         NA          NA
## 4         NA          NA                NA          NA         NA          NA
## 5         NA          NA                NA          NA         NA          NA
## 6         NA          NA                NA     0.01493         NA          NA
##   open_ratios plus_ratios two_ratios worth_ratios year_ratios
## 1          NA          NA         NA           NA     0.00738
## 2          NA          NA         NA      0.00331          NA
## 3          NA          NA         NA           NA          NA
## 4          NA          NA         NA           NA          NA
## 5          NA          NA         NA           NA          NA
## 6          NA          NA         NA           NA          NA

Looking at the table above we know that because some of these rows have entire NAs that our algorithm won’t be able to predict a rating for that row as a review. We should add the stopwords from the first version of this script for those instances. We will have to bring it in from our script one or we can read it in from that file, ‘ALL_keywords.csv’ in that folder. Lets also write this 2nd version of keywords and ratios out to file. The row names are not important because they are the order listed the same as the reviews listed from the Reviews13 data table.

write.csv(ALL_keywords,'ALL_keywords2.csv', row.names=FALSE)

stopKeywords <- read.csv('ALL_keywords.csv', header=TRUE, sep=',', na.strings=c('',' ','NA'))

Lets now combine these two tables of words. There are now 12 keywords and 12 stopwords relative to this data of 614 reviews. There are also 24 ratios for those 24 terms.

for (col in col(stopKeywords)){
    gsub(0,NA,stopKeywords$col)
}
keys24df <- cbind(ALL_keywords,stopKeywords)

The above command isn’t able to convert the zeros in the stopKeywords table into NAs, so we have to run the script manually to generate the values that won’t count zeros as values but as NAs.

!@#

for (num in 1:length(Reviews13$userReviewOnlyContent)){

str1 <- as.character(paste(Reviews13$userReviewOnlyContent[num]))
str1 <- gsub('[!|.|,|\n|\']',' ',str1,perl=TRUE)
str1 <- gsub('[  ]',' ',str1)
str1 <- trimws(str1, which=c('both'), whitespace='[\t\r\n ]')

totalTerms <- length((strsplit(str1, split=' ')[[1]]))

keys <- c("the",  "and" , "for" , "have" ,"that" ,"they" ,"this" ,"you" , 
          "not" , "but"  ,"good" ,"with")

and <- str_match_all(str1,' [aA][nN][dD] ')
AND <- length(and[[1]])

the <- str_match_all(str1,' [tT][hH][eE] ')
THE <- length(the[[1]])

for1 <- str_match_all(str1,' [fF][oO][rR] ')
FOR1 <- length(for1[[1]])

have <- str_match_all(str1,' [hH][aA][vV][eE] ')
HAVE <- length(have[[1]])

that <- str_match_all(str1,' [tT][hH][aA][tT] ')
THAT <- length(that[[1]])

they <- str_match_all(str1,' [tT][hH][eE][yY] ')
THEY <- length(they[[1]])

this <- str_match_all(str1,' [tT][hH][iI][sS] ')
THIS <- length(this[[1]])

you <- str_match_all(str1,' [yY][oO][uU] ')
YOU <- length(you[[1]])

not <- str_match_all(str1,' [nN][oO][tT] ')
NOT <- length(not[[1]])

but <- str_match_all(str1,' [bB][uU][tT] ')
BUT <- length(but[[1]])

good <- str_match_all(str1,' [gG][oO][oO][dD] ')
GOOD <- length(good[[1]])

with <- str_match_all(str1,' [wW][iI][tT][hH] ')
WITH <- length(with[[1]])

values <- as.data.frame(c(THE,AND,FOR1,HAVE,THAT,THEY,THIS,YOU,NOT,BUT,GOOD,WITH))
row.names(values) <- c('the','and','for','have','that','they','this','you','not','but','good','with')
#add constraint for missing terms as NA not 0
colnames(values) <- 'termCount'
values$termCount <- gsub(0,NA,values$termCount)
values$termCount <- as.numeric(paste(values$termCount)) 


keyValues <- as.data.frame(t(values))
keyValues2 <- keyValues/totalTerms
keyValues3 <- rbind(keyValues,keyValues2)
row.names(keyValues3) <- c(paste('documentTermCount', num, sep='_'),
                           paste('term_to_totalDocumentTerms', num, sep='_'))
keyValues3 <- round(keyValues3,5)

keyValues4 <- as.matrix(keyValues3)
cat(keyValues4[1,1:12],file='keyValues3s.csv',append=TRUE, sep='\n',fill=TRUE)
cat(keyValues4[2,1:12],file='keyValues3_ratioss.csv',append=TRUE, sep='\n',fill=TRUE)
}

Well, great news! The above looks like it worked and now we have the rest of our keyword data to make a matrix and then data frame out of. It took about one minute as I watched the kb file size in the file window change for each keyValues csv file in the for loop above. These are actually all the records, because they were appended to the other records. So we should have 614X12= r614*12 observations. Lets find out.

stop_kws <- read.csv('keyValues3s.csv', sep=',', header=FALSE, na.strings=c('',' ','NA'))

Ok, good, because it does say 7368 obs and 1 variable, as expected or anticipating it to. Now lets make this into a data frame after first making it into a matrix.

stop_kws1 <- stop_kws$V1
stop_kws <- matrix(stop_kws1, nrow=12,ncol=614,byrow=FALSE)
stop_KWs <- as.data.frame(t(stop_kws))
row.names(stop_KWs) <- NULL
colnames(stop_KWs) <- c('the','and','for','have','that','they','this','you','not','but','good','with')

Now lets get the ratios for all of these reviews and keywords.

stop_kwrs <- read.csv('keyValues3_ratioss.csv', header=FALSE, sep=',',
                     na.strings=c('',' ','NA'))
stop_kwrs1 <- stop_kwrs$V1
stop_kwrs <- matrix(stop_kwrs1, nrow=12,ncol=614,byrow=FALSE)
stop_KWRs <- as.data.frame(t(stop_kwrs))
row.names(stop_KWRs) <- NULL
colnames(stop_KWRs) <- paste(colnames(stop_KWs),'ratios', sep='_')

Now lets combine the two tables together.

ALL_stops_and_keywords <- cbind(ALL_KWs,stop_KWs,ALL_KWRs,stop_KWRs)
head(ALL_stops_and_keywords)
##   area big busy definitely feel lot many open plus two worth year the and for
## 1    1  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA    2  15   5   3
## 2    1  NA   NA          4    2   1   NA   NA   NA  NA     2   NA  24  17   5
## 3   NA  NA   NA          2    1  NA   NA   NA   NA  NA    NA   NA   4   5   1
## 4   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA   5   2  NA
## 5   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA   1   2   2
## 6   NA  NA   NA         NA    1  NA   NA   NA   NA  NA    NA   NA  NA   2   1
##   have that they this you not but good with area_ratios big_ratios busy_ratios
## 1    4    4    3    1   2   1   1    2   NA     0.00369         NA          NA
## 2    3    3    3    3   3   1   6   NA    3     0.00166         NA          NA
## 3    2    1   NA    1   1  NA  NA   NA    3          NA         NA          NA
## 4    1   NA   NA    2  NA  NA  NA   NA   NA          NA         NA          NA
## 5   NA   NA   NA   NA   2  NA  NA   NA    1          NA         NA          NA
## 6    1   NA   NA   NA  NA  NA  NA    2   NA          NA         NA          NA
##   definitely_ratios feel_ratios lot_ratios many_ratios open_ratios plus_ratios
## 1                NA          NA         NA          NA          NA          NA
## 2           0.00662     0.00331    0.00166          NA          NA          NA
## 3           0.01626     0.00813         NA          NA          NA          NA
## 4                NA          NA         NA          NA          NA          NA
## 5                NA          NA         NA          NA          NA          NA
## 6                NA     0.01493         NA          NA          NA          NA
##   two_ratios worth_ratios year_ratios the_ratios and_ratios for_ratios
## 1         NA           NA     0.00738    0.05535    0.01845    0.01107
## 2         NA      0.00331          NA    0.03974    0.02815    0.00828
## 3         NA           NA          NA    0.03252    0.04065    0.00813
## 4         NA           NA          NA    0.08333    0.03333         NA
## 5         NA           NA          NA    0.02083    0.04167    0.04167
## 6         NA           NA          NA         NA    0.02985    0.01493
##   have_ratios that_ratios they_ratios this_ratios you_ratios not_ratios
## 1     0.01476     0.01476     0.01107     0.00369    0.00738    0.00369
## 2     0.00497     0.00497     0.00497     0.00497    0.00497    0.00166
## 3     0.01626     0.00813          NA     0.00813    0.00813         NA
## 4     0.01667          NA          NA     0.03333         NA         NA
## 5          NA          NA          NA          NA    0.04167         NA
## 6     0.01493          NA          NA          NA         NA         NA
##   but_ratios good_ratios with_ratios
## 1    0.00369     0.00738          NA
## 2    0.00993          NA     0.00497
## 3         NA          NA     0.02439
## 4         NA          NA          NA
## 5         NA          NA     0.02083
## 6         NA     0.02985          NA

Lets now combine this with a merge of IDs as row numbers shall we?

Reviews14 <- Reviews13
Reviews14$id <- row.names(Reviews13)
ALL_stops_and_keywords$id <- row.names(ALL_stops_and_keywords)

Now merge by id.

Reviews15 <- merge(Reviews14, ALL_stops_and_keywords, by.x='id', by.y='id')
head(Reviews15)
##    id       userReviewSeries
## 1   1 mostRecentVisit_review
## 2  10 mostRecentVisit_review
## 3 100 mostRecentVisit_review
## 4 101  twoVisitsPrior_review
## 5 102 mostRecentVisit_review
## 6 103 mostRecentVisit_review
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    userReviewOnlyContent
## 1  What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I'm so happy I found CHIROPRACTIC!\n\nBrenda was so sweet and attentive, from making my appointment to greeting me upon arrival.\n\nI saw Bertha for a prenatal massage, how I survived my first pregnancy without one, I'm clueless. Bertha listened to my needs and my bodies. She helped relieve tension in my neck and shoulders.\n\nI could have fell asleep, only complaint would be - why aren't massages longer than an hour lol\n\nI cannot wait to come back monthly through this pregnancy. I also am excited to try a prenatal adjustment
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Their staff is super nice. The doctor is also great and always gets the knots out of my back. I felt better right after my first appointment!
## 4                                                                                                                                                                                                                                                           It's too bad, I had such a great time here and some bathroom attendant ruined my whole experience!! Just the worst manners and let's just say customer service was not her specialty or even close.\nThis young girl had some nerve to correct a customer for accidentally missing the trash with some paper from a cinco de mayo mustache.. (jokes) she chases after me to tell me to throw it in the trash I explained half way down the hall I was sorry and had to\nLeAve, my friend was sick and need me to tend to her. She then chased me down again and started to harass me to tell her where my friend threw up. Really? Well, maybe she had a bad day.. but after explaining what happen to management and the front office,  Jose, the manager, didn't look too surprised.. I guess this is normal behavior for her.. needless to say I'm almost afraid to go back. I may not hold my tongue next time.. personal space was not In her vocabulary she tapped me on the shoulder, she's lucky i was in a great mood till then..\n
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Fabulous place to get adjusted. The office is calm and clean. The staff is friendly. Dr. Ramada is fantastic! He really understood the cause of my pain and was able to adjust me quickly. I love the availability and evening appointments. Highly recommend!
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      I was looking for a Chiropractor in my area and I stumbled upon CHIROPRACTIC. It is a really awesome place. The staff and facilities are very nice. And they are very reasonably priced, much better price then my last Chiropractor. Conveniently located off of the 15 freeway two exits south of the 91. What is really cool is they also offer massages also. If you are looking for a Chiropractor in Corona/Riverside area look no further.
##         userRatingSeries userRatingValue businessReplied
## 1 mostRecentVisit_rating               5             yes
## 2 mostRecentVisit_rating               5              no
## 3 mostRecentVisit_rating               5              no
## 4       lastVisit_rating               1             yes
## 5 mostRecentVisit_rating               5              no
## 6 mostRecentVisit_rating               5              no
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  businessReplyContent
## 1  Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n1/2/20191/15/2018-\nHi Michelle, HIGH END SPA is proud to welcome men and women of all shapes and sizes. In response to your day, we are now in the process of ordering a few XL robes so we can continue to have offerings for all of our guests.  I wanted to reach out to you to let you know we have sent you a private message as we would like to connect with you directly. Thank you again for communicating your concern with us.\nAlexa Gallegos\n\n1/2/2019 -\n\nHi Michelle,\nI am so happy to hear that you had a great returning experience! Our team members do the best they can to accommodate all of our guests needs and we are very glad to hear you were happy with the solution.\nWe hope to see you and your husband again!\n\nBest,\nAmber Peyghambari\n\nRead less\n
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
## 4                              Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n5/8/2018Hi Raven, thank you for taking the time to write a review of your recent visit. I am sorry to hear about your incident in the bath house at the end of your visit. I spoke with Jose and he mentioned you all were a pleasure to have and that after speaking with you about this occurrence, he internally addressed the issue so this wouldn't happen again. We take our guest comments very seriously because guest comments, good and bad, help us to learn and grow. A guest who makes the commitment to reach out and tell us what was not perfect is invaluable to our company. Always feel free to contact me regarding any of your visits or if you ever have any questions or comments.\nBest regards, Alexa Gallegos, HIGH END SPA Hot Springs
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NA
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           userReviewContent
## 1 1/1/2019Updated review\n 2 photos\n\nWhat a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\nComment from Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n1/2/20191/15/2018-\nHi Michelle, HIGH END SPA is proud to welcome men and women of all shapes and sizes. In response to your day, we are now in the process of ordering a few XL robes so we can continue to have offerings for all of our guests.  I wanted to reach out to you to let you know we have sent you a private message as we would like to connect with you directly. Thank you again for communicating your concern with us.\nAlexa Gallegos\n\n1/2/2019 -\n\nHi Michelle,\nI am so happy to hear that you had a great returning experience! Our team members do the best they can to accommodate all of our guests needs and we are very glad to hear you were happy with the solution.\nWe hope to see you and your husband again!\n\nBest,\nAmber Peyghambari\n\nRead less\n
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         11/29/2018\nI'm so happy I found CHIROPRACTIC!\n\nBrenda was so sweet and attentive, from making my appointment to greeting me upon arrival.\n\nI saw Bertha for a prenatal massage, how I survived my first pregnancy without one, I'm clueless. Bertha listened to my needs and my bodies. She helped relieve tension in my neck and shoulders.\n\nI could have fell asleep, only complaint would be - why aren't massages longer than an hour lol\n\nI cannot wait to come back monthly through this pregnancy. I also am excited to try a prenatal adjustment
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3/20/2018\n 2 check-ins\n\nTheir staff is super nice. The doctor is also great and always gets the knots out of my back. I felt better right after my first appointment!
## 4                                                                                                                                                                                                                                                                                                  5/7/2018Previous review\nIt's too bad, I had such a great time here and some bathroom attendant ruined my whole experience!! Just the worst manners and let's just say customer service was not her specialty or even close.\nThis young girl had some nerve to correct a customer for accidentally missing the trash with some paper from a cinco de mayo mustache.. (jokes) she chases after me to tell me to throw it in the trash I explained half way down the hall I was sorry and had to\nLeAve, my friend was sick and need me to tend to her. She then chased me down again and started to harass me to tell her where my friend threw up. Really? Well, maybe she had a bad day.. but after explaining what happen to management and the front office,  Jose, the manager, didn't look too surprised.. I guess this is normal behavior for her.. needless to say I'm almost afraid to go back. I may not hold my tongue next time.. personal space was not In her vocabulary she tapped me on the shoulder, she's lucky i was in a great mood till then..\nComment from Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n5/8/2018Hi Raven, thank you for taking the time to write a review of your recent visit. I am sorry to hear about your incident in the bath house at the end of your visit. I spoke with Jose and he mentioned you all were a pleasure to have and that after speaking with you about this occurrence, he internally addressed the issue so this wouldn't happen again. We take our guest comments very seriously because guest comments, good and bad, help us to learn and grow. A guest who makes the commitment to reach out and tell us what was not perfect is invaluable to our company. Always feel free to contact me regarding any of your visits or if you ever have any questions or comments.\nBest regards, Alexa Gallegos, HIGH END SPA Hot Springs
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8/30/2016\n 1 check-in\n\nFabulous place to get adjusted. The office is calm and clean. The staff is friendly. Dr. Ramada is fantastic! He really understood the cause of my pain and was able to adjust me quickly. I love the availability and evening appointments. Highly recommend!
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2/26/2018\n 27 check-ins\n\nI was looking for a Chiropractor in my area and I stumbled upon CHIROPRACTIC. It is a really awesome place. The staff and facilities are very nice. And they are very reasonably priced, much better price then my last Chiropractor. Conveniently located off of the 15 freeway two exits south of the 91. What is really cool is they also offer massages also. If you are looking for a Chiropractor in Corona/Riverside area look no further.
##   LowAvgHighCost             businessType            cityState friends reviews
## 1           High high end massage retreat           Orange, CA      26      33
## 2            Avg             chiropractic     Fayetteville, NC       0       7
## 3            Avg             chiropractic           Corona, CA     943       7
## 4           High high end massage retreat Rancho Cucamonga, CA      12      12
## 5            Avg             chiropractic      Los Angeles, CA      11      24
## 6            Avg             chiropractic           Corona, CA       4      NA
##   photos eliteStatus    userName       Date userBusinessPhotos userCheckIns
## 1     21        <NA> Michelle A. 2019-01-01                  2           NA
## 2     NA        <NA>    Devin S. 2018-11-29                 NA           NA
## 3      2        <NA> Courtney S. 2018-03-20                 NA            2
## 4      4        <NA>    Raven H. 2018-05-07                 NA           NA
## 5     11        <NA>  Monique O. 2016-08-30                 NA            1
## 6     NA        <NA>  Matthew B. 2018-02-26                 NA           27
##   weekday area big busy definitely feel lot many open plus two worth year the
## 1     Sun    1  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA    2  15
## 2     Sun   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA  NA
## 3     Fri   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA   2
## 4     Sat   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA   7
## 5     Mon   NA  NA   NA         NA   NA  NA   NA   NA   NA  NA    NA   NA   4
## 6     Thu    2  NA   NA         NA   NA  NA   NA   NA   NA   1    NA   NA   3
##   and for have that they this you not but good with area_ratios big_ratios
## 1   5   3    4    4    3    1   2   1   1    2   NA     0.00369         NA
## 2   3   1    1   NA   NA    1  NA  NA  NA   NA   NA          NA         NA
## 3   1  NA   NA   NA   NA   NA  NA  NA  NA   NA   NA          NA         NA
## 4   6   2   NA   NA   NA    2  NA   3   1   NA    1          NA         NA
## 5   3  NA   NA   NA   NA   NA  NA  NA  NA   NA   NA          NA         NA
## 6   3   2   NA   NA    2   NA   1  NA  NA   NA   NA     0.02410         NA
##   busy_ratios definitely_ratios feel_ratios lot_ratios many_ratios open_ratios
## 1          NA                NA          NA         NA          NA          NA
## 2          NA                NA          NA         NA          NA          NA
## 3          NA                NA          NA         NA          NA          NA
## 4          NA                NA          NA         NA          NA          NA
## 5          NA                NA          NA         NA          NA          NA
## 6          NA                NA          NA         NA          NA          NA
##   plus_ratios two_ratios worth_ratios year_ratios the_ratios and_ratios
## 1          NA         NA           NA     0.00738    0.05535    0.01845
## 2          NA         NA           NA          NA         NA    0.02752
## 3          NA         NA           NA          NA    0.06897    0.03448
## 4          NA         NA           NA          NA    0.03182    0.02727
## 5          NA         NA           NA          NA    0.08000    0.06000
## 6          NA    0.01205           NA          NA    0.03614    0.03614
##   for_ratios have_ratios that_ratios they_ratios this_ratios you_ratios
## 1    0.01107     0.01476     0.01476     0.01107     0.00369    0.00738
## 2    0.00917     0.00917          NA          NA     0.00917         NA
## 3         NA          NA          NA          NA          NA         NA
## 4    0.00909          NA          NA          NA     0.00909         NA
## 5         NA          NA          NA          NA          NA         NA
## 6    0.02410          NA          NA     0.02410          NA    0.01205
##   not_ratios but_ratios good_ratios with_ratios
## 1    0.00369    0.00369     0.00738          NA
## 2         NA         NA          NA          NA
## 3         NA         NA          NA          NA
## 4    0.01364    0.00455          NA     0.00455
## 5         NA         NA          NA          NA
## 6         NA         NA          NA          NA

Now we need to write this out to csv to read in to other file or just to have.

write.csv(Reviews15,'ReviewsCleanedWithStopsAndKeywordsAndRatios.csv', row.names=FALSE)

This file is 1 Mb in file size, which actually isn’t that large.


Now that we have our table with the added ratios we can now look at building different data sets with feature selection to predict any of our other targets, but most likely the rating by review. But also we can now use our best prediction model of the mean votes algorithm and other big name machine learning algorithms I have used many times. We will do that next. Caret Cheatsheet is available from the available cheatsheets in the toolbar in Rstudio in the Help menu under Cheatsheets, scroll to the ‘Contributed Cheatsheets’ at the bottom and select the caret cheatsheet if you would like to refresh or learn about the algorithms caret has to work with in R for machine learning on the above data set.

Before moving on to the machine learning algorithms in R, specifically the caret package. Lets make a test and train set out of this data frame, and test the features we individually select on the target variable of the rating using our best model, the ceiling of the mean of the dot product of the votes and ratings or the top votes.We will use our database Reviews15. If you don’t have it in your environment go ahead and read it in from the ReviewsCleanedWithKeywordsAndRatios.csv file.

Reviews15 <- read.csv('ReviewsCleanedWithStopsAndKeywordsAndRatios.csv',sep=',',
                      header=TRUE, na.strings=c('',' ','NA'))
wordToAllWords <- read.csv('wordToAllWords.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'),
                           row.names=1)

We need to make the wordToAllWords table for the stopwords or just read it in from our other table. There aren’t any NAs in it, so it shouldn’t be a problem.

wordToAllWordsStops <- read.csv('wordToAllWordsStops.csv', sep=',', header=TRUE ,
                                na.strings=c('',' ','NA'),row.names=1)
wordToAllWordsStops
##                          and   but  for.  good  have   not  that   the  they
## Rating1_term2totalTerm 0.046 0.008 0.018 0.006 0.016 0.011 0.015 0.057 0.012
## Rating2_term2totalTerm 0.042 0.011 0.014 0.006 0.016 0.011 0.013 0.073 0.011
## Rating3_term2totalTerm 0.043 0.010 0.021 0.008 0.020 0.010 0.012 0.072 0.009
## Rating4_term2totalTerm 0.046 0.011 0.016 0.010 0.016 0.007 0.012 0.061 0.010
## Rating5_term2totalTerm 0.059 0.006 0.018 0.013 0.023 0.004 0.010 0.056 0.010
##                         this  with   you
## Rating1_term2totalTerm 0.013 0.008 0.009
## Rating2_term2totalTerm 0.010 0.008 0.017
## Rating3_term2totalTerm 0.011 0.009 0.013
## Rating4_term2totalTerm 0.008 0.009 0.015
## Rating5_term2totalTerm 0.010 0.010 0.012

Now lets see the table we will compare each review ratio of term to total terms to the term to total terms in all reviews by rating.

wordToAllWords
##                           area     big    busy definitely    feel     lot
## Rating1_term2totalTerm 0.00062 0.00016 0.00016    0.00031 0.00156 0.00016
## Rating2_term2totalTerm 0.00149 0.00089 0.00119    0.00089 0.00506 0.00149
## Rating3_term2totalTerm 0.00282 0.00125 0.00188    0.00125 0.00846 0.00219
## Rating4_term2totalTerm 0.00405 0.00210 0.00112    0.00224 0.00475 0.00210
## Rating5_term2totalTerm 0.00284 0.00128 0.00092    0.00284 0.00768 0.00242
##                           many    open    plus     two   worth    year
## Rating1_term2totalTerm 0.00078 0.00031 0.00016 0.00031 0.00031 0.00219
## Rating2_term2totalTerm 0.00178 0.00089 0.00059 0.00149 0.00178 0.00297
## Rating3_term2totalTerm 0.00219 0.00282 0.00094 0.00251 0.00251 0.00125
## Rating4_term2totalTerm 0.00252 0.00154 0.00056 0.00140 0.00182 0.00252
## Rating5_term2totalTerm 0.00213 0.00206 0.00057 0.00178 0.00171 0.00498

We will now combine these two tables to each other.

wordToAllWords2 <- cbind(wordToAllWords,wordToAllWordsStops)
wordToAllWords2
##                           area     big    busy definitely    feel     lot
## Rating1_term2totalTerm 0.00062 0.00016 0.00016    0.00031 0.00156 0.00016
## Rating2_term2totalTerm 0.00149 0.00089 0.00119    0.00089 0.00506 0.00149
## Rating3_term2totalTerm 0.00282 0.00125 0.00188    0.00125 0.00846 0.00219
## Rating4_term2totalTerm 0.00405 0.00210 0.00112    0.00224 0.00475 0.00210
## Rating5_term2totalTerm 0.00284 0.00128 0.00092    0.00284 0.00768 0.00242
##                           many    open    plus     two   worth    year   and
## Rating1_term2totalTerm 0.00078 0.00031 0.00016 0.00031 0.00031 0.00219 0.046
## Rating2_term2totalTerm 0.00178 0.00089 0.00059 0.00149 0.00178 0.00297 0.042
## Rating3_term2totalTerm 0.00219 0.00282 0.00094 0.00251 0.00251 0.00125 0.043
## Rating4_term2totalTerm 0.00252 0.00154 0.00056 0.00140 0.00182 0.00252 0.046
## Rating5_term2totalTerm 0.00213 0.00206 0.00057 0.00178 0.00171 0.00498 0.059
##                          but  for.  good  have   not  that   the  they  this
## Rating1_term2totalTerm 0.008 0.018 0.006 0.016 0.011 0.015 0.057 0.012 0.013
## Rating2_term2totalTerm 0.011 0.014 0.006 0.016 0.011 0.013 0.073 0.011 0.010
## Rating3_term2totalTerm 0.010 0.021 0.008 0.020 0.010 0.012 0.072 0.009 0.011
## Rating4_term2totalTerm 0.011 0.016 0.010 0.016 0.007 0.012 0.061 0.010 0.008
## Rating5_term2totalTerm 0.006 0.018 0.013 0.023 0.004 0.010 0.056 0.010 0.010
##                         with   you
## Rating1_term2totalTerm 0.008 0.009
## Rating2_term2totalTerm 0.008 0.017
## Rating3_term2totalTerm 0.009 0.013
## Rating4_term2totalTerm 0.009 0.015
## Rating5_term2totalTerm 0.010 0.012

Since the stop word ‘for’ is a keyword for R it was named/read in as ‘for.’. This wasn’t done by me.

Now lets select our features we want to use the top model on. Since our model was based on the ratios, we will only be using the rating and those features, and from their it will create a voting system to grab the rating with the highest votes for the term to total terms per document. Make sure to read in all the packages this Rmarkdown file uses. The following will use stringr, dplyr, and tidyr or tidyverse for sure. Later we will use the caret package for Machine learning models to compare against our model.

colnames(Reviews15)
##  [1] "id"                    "userReviewSeries"      "userReviewOnlyContent"
##  [4] "userRatingSeries"      "userRatingValue"       "businessReplied"      
##  [7] "businessReplyContent"  "userReviewContent"     "LowAvgHighCost"       
## [10] "businessType"          "cityState"             "friends"              
## [13] "reviews"               "photos"                "eliteStatus"          
## [16] "userName"              "Date"                  "userBusinessPhotos"   
## [19] "userCheckIns"          "weekday"               "area"                 
## [22] "big"                   "busy"                  "definitely"           
## [25] "feel"                  "lot"                   "many"                 
## [28] "open"                  "plus"                  "two"                  
## [31] "worth"                 "year"                  "the"                  
## [34] "and"                   "for."                  "have"                 
## [37] "that"                  "they"                  "this"                 
## [40] "you"                   "not"                   "but"                  
## [43] "good"                  "with"                  "area_ratios"          
## [46] "big_ratios"            "busy_ratios"           "definitely_ratios"    
## [49] "feel_ratios"           "lot_ratios"            "many_ratios"          
## [52] "open_ratios"           "plus_ratios"           "two_ratios"           
## [55] "worth_ratios"          "year_ratios"           "the_ratios"           
## [58] "and_ratios"            "for_ratios"            "have_ratios"          
## [61] "that_ratios"           "they_ratios"           "this_ratios"          
## [64] "you_ratios"            "not_ratios"            "but_ratios"           
## [67] "good_ratios"           "with_ratios"
ML_rating_data <- Reviews15 %>% select(userRatingValue,
                                       area_ratios:with_ratios)
head(ML_rating_data)
##   userRatingValue area_ratios big_ratios busy_ratios definitely_ratios
## 1               5     0.00369         NA          NA                NA
## 2               5          NA         NA          NA                NA
## 3               5          NA         NA          NA                NA
## 4               1          NA         NA          NA                NA
## 5               5          NA         NA          NA                NA
## 6               5     0.02410         NA          NA                NA
##   feel_ratios lot_ratios many_ratios open_ratios plus_ratios two_ratios
## 1          NA         NA          NA          NA          NA         NA
## 2          NA         NA          NA          NA          NA         NA
## 3          NA         NA          NA          NA          NA         NA
## 4          NA         NA          NA          NA          NA         NA
## 5          NA         NA          NA          NA          NA         NA
## 6          NA         NA          NA          NA          NA    0.01205
##   worth_ratios year_ratios the_ratios and_ratios for_ratios have_ratios
## 1           NA     0.00738    0.05535    0.01845    0.01107     0.01476
## 2           NA          NA         NA    0.02752    0.00917     0.00917
## 3           NA          NA    0.06897    0.03448         NA          NA
## 4           NA          NA    0.03182    0.02727    0.00909          NA
## 5           NA          NA    0.08000    0.06000         NA          NA
## 6           NA          NA    0.03614    0.03614    0.02410          NA
##   that_ratios they_ratios this_ratios you_ratios not_ratios but_ratios
## 1     0.01476     0.01107     0.00369    0.00738    0.00369    0.00369
## 2          NA          NA     0.00917         NA         NA         NA
## 3          NA          NA          NA         NA         NA         NA
## 4          NA          NA     0.00909         NA    0.01364    0.00455
## 5          NA          NA          NA         NA         NA         NA
## 6          NA     0.02410          NA    0.01205         NA         NA
##   good_ratios with_ratios
## 1     0.00738          NA
## 2          NA          NA
## 3          NA          NA
## 4          NA     0.00455
## 5          NA          NA
## 6          NA          NA

If, or when, we use the caret algorithms to make predictions with many of the available models in caret, the target variable would be the userRatingValue, and the keyword ratios (12) would be the predictors. But we aren’t right at this moment and so we don’t have to separate the target from the predictors just yet. We can keep it attached to compare to our model we build on the ceiling of the mean if a tie in votes for the minimum values of the review ratio to the five rating rations.

Keep the rating column as an integer instead of a factor, because we need it as an integer to use the dot product on those reviews that there is a tie against the votes (the minimum value of the difference between the term to total terms in the document to the ratios of the same for all the documents in each rating). We saw earlier that there are some instances where there is a tie, but that the ceiling of the mean or the highest rating will beat out the ceiling of the median or the shortest distance (absolute value) between the reveiw ratio and rating ratios. We need to also get our data frame on ratios of total of each of these 12 words or terms to the total of all words in each corpus or file of reviews by rating in the wordToAllWords table.

colnames(wordToAllWords2)[15] <- 'for_' #this is special keyword in R
w2w <- wordToAllWords2 #shorten name
MLr <- ML_rating_data #shorten the name

Lets see how many NAs are in each keyword column for these 614 observations.

colSums(is.na(MLr))
##   userRatingValue       area_ratios        big_ratios       busy_ratios 
##                 0               567               594               587 
## definitely_ratios       feel_ratios        lot_ratios       many_ratios 
##               561               540               571               563 
##       open_ratios       plus_ratios        two_ratios      worth_ratios 
##               583               605               573               565 
##       year_ratios        the_ratios        and_ratios        for_ratios 
##               578                81                76               218 
##       have_ratios       that_ratios       they_ratios       this_ratios 
##               340               354               354               336 
##        you_ratios        not_ratios        but_ratios       good_ratios 
##               341               429               362               478 
##       with_ratios 
##               336

We can see all values are less than 614, so that means the words were counted right to begin with and when extracting the counts, rations, writing the values out and reading back in and also formatting into a matrix and then a data frame.

MLr$R1_area <- rep(w2w[1,1],length(MLr$userRatingValue))
MLr$R2_area <- rep(w2w[2,1],length(MLr$userRatingValue))
MLr$R3_area <- rep(w2w[3,1],length(MLr$userRatingValue))
MLr$R4_area <- rep(w2w[4,1],length(MLr$userRatingValue))
MLr$R5_area <- rep(w2w[5,1],length(MLr$userRatingValue))

MLr$R1_big <- rep(w2w[1,2],length(MLr$userRatingValue))
MLr$R2_big <- rep(w2w[2,2],length(MLr$userRatingValue))
MLr$R3_big <- rep(w2w[3,2],length(MLr$userRatingValue))
MLr$R4_big <- rep(w2w[4,2],length(MLr$userRatingValue))
MLr$R5_big <- rep(w2w[5,2],length(MLr$userRatingValue))

MLr$R1_busy <- rep(w2w[1,3],length(MLr$userRatingValue))
MLr$R2_busy <- rep(w2w[2,3],length(MLr$userRatingValue))
MLr$R3_busy <- rep(w2w[3,3],length(MLr$userRatingValue))
MLr$R4_busy <- rep(w2w[4,3],length(MLr$userRatingValue))
MLr$R5_busy <- rep(w2w[5,3],length(MLr$userRatingValue))

MLr$R1_definitely <- rep(w2w[1,4],length(MLr$userRatingValue))
MLr$R2_definitely <- rep(w2w[2,4],length(MLr$userRatingValue))
MLr$R3_definitely <- rep(w2w[3,4],length(MLr$userRatingValue))
MLr$R4_definitely <- rep(w2w[4,4],length(MLr$userRatingValue))
MLr$R5_definitely <- rep(w2w[5,4],length(MLr$userRatingValue))

MLr$R1_feel <- rep(w2w[1,5],length(MLr$userRatingValue))
MLr$R2_feel <- rep(w2w[2,5],length(MLr$userRatingValue))
MLr$R3_feel <- rep(w2w[3,5],length(MLr$userRatingValue))
MLr$R4_feel <- rep(w2w[4,5],length(MLr$userRatingValue))
MLr$R5_feel <- rep(w2w[5,5],length(MLr$userRatingValue))

MLr$R1_lot <- rep(w2w[1,6],length(MLr$userRatingValue))
MLr$R2_lot <- rep(w2w[2,6],length(MLr$userRatingValue))
MLr$R3_lot <- rep(w2w[3,6],length(MLr$userRatingValue))
MLr$R4_lot <- rep(w2w[4,6],length(MLr$userRatingValue))
MLr$R5_lot <- rep(w2w[5,6],length(MLr$userRatingValue))

MLr$R1_many <- rep(w2w[1,7],length(MLr$userRatingValue))
MLr$R2_many <- rep(w2w[2,7],length(MLr$userRatingValue))
MLr$R3_many <- rep(w2w[3,7],length(MLr$userRatingValue))
MLr$R4_many <- rep(w2w[4,7],length(MLr$userRatingValue))
MLr$R5_many <- rep(w2w[5,7],length(MLr$userRatingValue))

MLr$R1_open <- rep(w2w[1,8],length(MLr$userRatingValue))
MLr$R2_open <- rep(w2w[2,8],length(MLr$userRatingValue))
MLr$R3_open <- rep(w2w[3,8],length(MLr$userRatingValue))
MLr$R4_open <- rep(w2w[4,8],length(MLr$userRatingValue))
MLr$R5_open <- rep(w2w[5,8],length(MLr$userRatingValue))

MLr$R1_plus <- rep(w2w[1,9],length(MLr$userRatingValue))
MLr$R2_plus <- rep(w2w[2,9],length(MLr$userRatingValue))
MLr$R3_plus <- rep(w2w[3,9],length(MLr$userRatingValue))
MLr$R4_plus <- rep(w2w[4,9],length(MLr$userRatingValue))
MLr$R5_plus <- rep(w2w[5,9],length(MLr$userRatingValue))

MLr$R1_two <- rep(w2w[1,10],length(MLr$userRatingValue))
MLr$R2_two <- rep(w2w[2,10],length(MLr$userRatingValue))
MLr$R3_two <- rep(w2w[3,10],length(MLr$userRatingValue))
MLr$R4_two <- rep(w2w[4,10],length(MLr$userRatingValue))
MLr$R5_two <- rep(w2w[5,10],length(MLr$userRatingValue))

MLr$R1_worth <- rep(w2w[1,11],length(MLr$userRatingValue))
MLr$R2_worth <- rep(w2w[2,11],length(MLr$userRatingValue))
MLr$R3_worth <- rep(w2w[3,11],length(MLr$userRatingValue))
MLr$R4_worth <- rep(w2w[4,11],length(MLr$userRatingValue))
MLr$R5_worth <- rep(w2w[5,11],length(MLr$userRatingValue))

MLr$R1_year <- rep(w2w[1,12],length(MLr$userRatingValue))
MLr$R2_year <- rep(w2w[2,12],length(MLr$userRatingValue))
MLr$R3_year <- rep(w2w[3,12],length(MLr$userRatingValue))
MLr$R4_year <- rep(w2w[4,12],length(MLr$userRatingValue))
MLr$R5_year <- rep(w2w[5,12],length(MLr$userRatingValue))

MLr$R1_and <- rep(w2w[1,13],length(MLr$userRatingValue))
MLr$R2_and <- rep(w2w[2,13],length(MLr$userRatingValue))
MLr$R3_and <- rep(w2w[3,13],length(MLr$userRatingValue))
MLr$R4_and <- rep(w2w[4,13],length(MLr$userRatingValue))
MLr$R5_and <- rep(w2w[5,13],length(MLr$userRatingValue))

MLr$R1_but <- rep(w2w[1,14],length(MLr$userRatingValue))
MLr$R2_but <- rep(w2w[2,14],length(MLr$userRatingValue))
MLr$R3_but <- rep(w2w[3,14],length(MLr$userRatingValue))
MLr$R4_but <- rep(w2w[4,14],length(MLr$userRatingValue))
MLr$R5_but <- rep(w2w[5,14],length(MLr$userRatingValue))

MLr$R1_for <- rep(w2w[1,15],length(MLr$userRatingValue))
MLr$R2_for <- rep(w2w[2,15],length(MLr$userRatingValue))
MLr$R3_for <- rep(w2w[3,15],length(MLr$userRatingValue))
MLr$R4_for <- rep(w2w[4,15],length(MLr$userRatingValue))
MLr$R5_for <- rep(w2w[5,15],length(MLr$userRatingValue))

MLr$R1_good <- rep(w2w[1,16],length(MLr$userRatingValue))
MLr$R2_good <- rep(w2w[2,16],length(MLr$userRatingValue))
MLr$R3_good <- rep(w2w[3,16],length(MLr$userRatingValue))
MLr$R4_good <- rep(w2w[4,16],length(MLr$userRatingValue))
MLr$R5_good <- rep(w2w[5,16],length(MLr$userRatingValue))

MLr$R1_have <- rep(w2w[1,17],length(MLr$userRatingValue))
MLr$R2_have <- rep(w2w[2,17],length(MLr$userRatingValue))
MLr$R3_have <- rep(w2w[3,17],length(MLr$userRatingValue))
MLr$R4_have <- rep(w2w[4,17],length(MLr$userRatingValue))
MLr$R5_have <- rep(w2w[5,17],length(MLr$userRatingValue))

MLr$R1_not <- rep(w2w[1,18],length(MLr$userRatingValue))
MLr$R2_not <- rep(w2w[2,18],length(MLr$userRatingValue))
MLr$R3_not <- rep(w2w[3,18],length(MLr$userRatingValue))
MLr$R4_not <- rep(w2w[4,18],length(MLr$userRatingValue))
MLr$R5_not <- rep(w2w[5,18],length(MLr$userRatingValue))

MLr$R1_that <- rep(w2w[1,19],length(MLr$userRatingValue))
MLr$R2_that <- rep(w2w[2,19],length(MLr$userRatingValue))
MLr$R3_that <- rep(w2w[3,19],length(MLr$userRatingValue))
MLr$R4_that <- rep(w2w[4,19],length(MLr$userRatingValue))
MLr$R5_that <- rep(w2w[5,19],length(MLr$userRatingValue))

MLr$R1_the <- rep(w2w[1,20],length(MLr$userRatingValue))
MLr$R2_the <- rep(w2w[2,20],length(MLr$userRatingValue))
MLr$R3_the <- rep(w2w[3,20],length(MLr$userRatingValue))
MLr$R4_the <- rep(w2w[4,20],length(MLr$userRatingValue))
MLr$R5_the <- rep(w2w[5,20],length(MLr$userRatingValue))

MLr$R1_they <- rep(w2w[1,21],length(MLr$userRatingValue))
MLr$R2_they <- rep(w2w[2,21],length(MLr$userRatingValue))
MLr$R3_they <- rep(w2w[3,21],length(MLr$userRatingValue))
MLr$R4_they <- rep(w2w[4,21],length(MLr$userRatingValue))
MLr$R5_they <- rep(w2w[5,21],length(MLr$userRatingValue))

MLr$R1_this <- rep(w2w[1,22],length(MLr$userRatingValue))
MLr$R2_this <- rep(w2w[2,22],length(MLr$userRatingValue))
MLr$R3_this <- rep(w2w[3,22],length(MLr$userRatingValue))
MLr$R4_this <- rep(w2w[4,22],length(MLr$userRatingValue))
MLr$R5_this <- rep(w2w[5,22],length(MLr$userRatingValue))

MLr$R1_with <- rep(w2w[1,23],length(MLr$userRatingValue))
MLr$R2_with <- rep(w2w[2,23],length(MLr$userRatingValue))
MLr$R3_with <- rep(w2w[3,23],length(MLr$userRatingValue))
MLr$R4_with <- rep(w2w[4,23],length(MLr$userRatingValue))
MLr$R5_with <- rep(w2w[5,23],length(MLr$userRatingValue))

MLr$R1_you <- rep(w2w[1,24],length(MLr$userRatingValue))
MLr$R2_you <- rep(w2w[2,24],length(MLr$userRatingValue))
MLr$R3_you <- rep(w2w[3,24],length(MLr$userRatingValue))
MLr$R4_you <- rep(w2w[4,24],length(MLr$userRatingValue))
MLr$R5_you <- rep(w2w[5,24],length(MLr$userRatingValue))
MLr$area_diff1 <- MLr$R1_area-MLr$area_ratios
MLr$area_diff2 <- MLr$R2_area-MLr$area_ratios
MLr$area_diff3 <- MLr$R3_area-MLr$area_ratios
MLr$area_diff4 <- MLr$R4_area-MLr$area_ratios
MLr$area_diff5 <- MLr$R5_area-MLr$area_ratios

MLr$big_diff1 <- MLr$R1_big-MLr$big_ratios
MLr$big_diff2 <- MLr$R2_big-MLr$big_ratios
MLr$big_diff3 <- MLr$R3_big-MLr$big_ratios
MLr$big_diff4 <- MLr$R4_big-MLr$big_ratios
MLr$big_diff5 <- MLr$R5_big-MLr$big_ratios

MLr$busy_diff1 <- MLr$R1_busy-MLr$busy_ratios 
MLr$busy_diff2 <- MLr$R2_busy-MLr$busy_ratios 
MLr$busy_diff3 <- MLr$R3_busy-MLr$busy_ratios 
MLr$busy_diff4 <- MLr$R4_busy-MLr$busy_ratios 
MLr$busy_diff5 <- MLr$R5_busy-MLr$busy_ratios 

MLr$definitely_diff1 <- MLr$R1_definitely-MLr$definitely_ratios
MLr$definitely_diff2 <- MLr$R2_definitely-MLr$definitely_ratios
MLr$definitely_diff3 <- MLr$R3_definitely-MLr$definitely_ratios
MLr$definitely_diff4 <- MLr$R4_definitely-MLr$definitely_ratios
MLr$definitely_diff5 <- MLr$R5_definitely-MLr$definitely_ratios

MLr$feel_diff1 <- MLr$R1_feel-MLr$feel_ratios
MLr$feel_diff2 <- MLr$R2_feel-MLr$feel_ratios
MLr$feel_diff3 <- MLr$R3_feel-MLr$feel_ratios
MLr$feel_diff4 <- MLr$R4_feel-MLr$feel_ratios
MLr$feel_diff5 <- MLr$R5_feel-MLr$feel_ratios

MLr$lot_diff1 <- MLr$R1_lot-MLr$lot_ratios
MLr$lot_diff2 <- MLr$R2_lot-MLr$lot_ratios
MLr$lot_diff3 <- MLr$R3_lot-MLr$lot_ratios
MLr$lot_diff4 <- MLr$R4_lot-MLr$lot_ratios
MLr$lot_diff5 <- MLr$R5_lot-MLr$lot_ratios

MLr$many_diff1 <- MLr$R1_many-MLr$many_ratios
MLr$many_diff2 <- MLr$R2_many-MLr$many_ratios
MLr$many_diff3 <- MLr$R3_many-MLr$many_ratios
MLr$many_diff4 <- MLr$R4_many-MLr$many_ratios
MLr$many_diff5 <- MLr$R5_many-MLr$many_ratios

MLr$open_diff1 <- MLr$R1_open-MLr$open_ratios
MLr$open_diff2 <- MLr$R2_open-MLr$open_ratios
MLr$open_diff3 <- MLr$R3_open-MLr$open_ratios
MLr$open_diff4 <- MLr$R4_open-MLr$open_ratios
MLr$open_diff5 <- MLr$R5_open-MLr$open_ratios

MLr$plus_diff1 <- MLr$R1_plus-MLr$plus_ratios
MLr$plus_diff2 <- MLr$R2_plus-MLr$plus_ratios
MLr$plus_diff3 <- MLr$R3_plus-MLr$plus_ratios
MLr$plus_diff4 <- MLr$R4_plus-MLr$plus_ratios
MLr$plus_diff5 <- MLr$R5_plus-MLr$plus_ratios

MLr$two_diff1 <- MLr$R1_two-MLr$two_ratios
MLr$two_diff2 <- MLr$R2_two-MLr$two_ratios
MLr$two_diff3 <- MLr$R3_two-MLr$two_ratios
MLr$two_diff4 <- MLr$R4_two-MLr$two_ratios
MLr$two_diff5 <- MLr$R5_two-MLr$two_ratios

MLr$worth_diff1 <- MLr$R1_worth-MLr$worth_ratios
MLr$worth_diff2 <- MLr$R2_worth-MLr$worth_ratios
MLr$worth_diff3 <- MLr$R3_worth-MLr$worth_ratios
MLr$worth_diff4 <- MLr$R4_worth-MLr$worth_ratios
MLr$worth_diff5 <- MLr$R5_worth-MLr$worth_ratios

MLr$year_diff1 <- MLr$R1_year-MLr$year_ratios
MLr$year_diff2 <- MLr$R2_year-MLr$year_ratios
MLr$year_diff3 <- MLr$R3_year-MLr$year_ratios
MLr$year_diff4 <- MLr$R4_year-MLr$year_ratios
MLr$year_diff5 <- MLr$R5_year-MLr$year_ratios




MLr$and_diff1 <- MLr$R1_and-MLr$and_ratios
MLr$and_diff2 <- MLr$R2_and-MLr$and_ratios
MLr$and_diff3 <- MLr$R3_and-MLr$and_ratios
MLr$and_diff4 <- MLr$R4_and-MLr$and_ratios
MLr$and_diff5 <- MLr$R5_and-MLr$and_ratios

MLr$but_diff1 <- MLr$R1_but-MLr$but_ratios
MLr$but_diff2 <- MLr$R2_but-MLr$but_ratios
MLr$but_diff3 <- MLr$R3_but-MLr$but_ratios
MLr$but_diff4 <- MLr$R4_but-MLr$but_ratios
MLr$but_diff5 <- MLr$R5_but-MLr$but_ratios

MLr$for_diff1 <- MLr$R1_for-MLr$for_ratios 
MLr$for_diff2 <- MLr$R2_for-MLr$for_ratios 
MLr$for_diff3 <- MLr$R3_for-MLr$for_ratios 
MLr$for_diff4 <- MLr$R4_for-MLr$for_ratios 
MLr$for_diff5 <- MLr$R5_for-MLr$for_ratios 

MLr$good_diff1 <- MLr$R1_good-MLr$good_ratios
MLr$good_diff2 <- MLr$R2_good-MLr$good_ratios
MLr$good_diff3 <- MLr$R3_good-MLr$good_ratios
MLr$good_diff4 <- MLr$R4_good-MLr$good_ratios
MLr$good_diff5 <- MLr$R5_good-MLr$good_ratios

MLr$have_diff1 <- MLr$R1_have-MLr$have_ratios
MLr$have_diff2 <- MLr$R2_have-MLr$have_ratios
MLr$have_diff3 <- MLr$R3_have-MLr$have_ratios
MLr$have_diff4 <- MLr$R4_have-MLr$have_ratios
MLr$have_diff5 <- MLr$R5_have-MLr$have_ratios

MLr$not_diff1 <- MLr$R1_not-MLr$not_ratios
MLr$not_diff2 <- MLr$R2_not-MLr$not_ratios
MLr$not_diff3 <- MLr$R3_not-MLr$not_ratios
MLr$not_diff4 <- MLr$R4_not-MLr$not_ratios
MLr$not_diff5 <- MLr$R5_not-MLr$not_ratios

MLr$that_diff1 <- MLr$R1_that-MLr$that_ratios
MLr$that_diff2 <- MLr$R2_that-MLr$that_ratios
MLr$that_diff3 <- MLr$R3_that-MLr$that_ratios
MLr$that_diff4 <- MLr$R4_that-MLr$that_ratios
MLr$that_diff5 <- MLr$R5_that-MLr$that_ratios

MLr$the_diff1 <- MLr$R1_the-MLr$the_ratios
MLr$the_diff2 <- MLr$R2_the-MLr$the_ratios
MLr$the_diff3 <- MLr$R3_the-MLr$the_ratios
MLr$the_diff4 <- MLr$R4_the-MLr$the_ratios
MLr$the_diff5 <- MLr$R5_the-MLr$the_ratios

MLr$they_diff1 <- MLr$R1_they-MLr$they_ratios
MLr$they_diff2 <- MLr$R2_they-MLr$they_ratios
MLr$they_diff3 <- MLr$R3_they-MLr$they_ratios
MLr$they_diff4 <- MLr$R4_they-MLr$they_ratios
MLr$they_diff5 <- MLr$R5_they-MLr$they_ratios

MLr$this_diff1 <- MLr$R1_this-MLr$this_ratios
MLr$this_diff2 <- MLr$R2_this-MLr$this_ratios
MLr$this_diff3 <- MLr$R3_this-MLr$this_ratios
MLr$this_diff4 <- MLr$R4_this-MLr$this_ratios
MLr$this_diff5 <- MLr$R5_this-MLr$this_ratios

MLr$with_diff1 <- MLr$R1_with-MLr$with_ratios
MLr$with_diff2 <- MLr$R2_with-MLr$with_ratios
MLr$with_diff3 <- MLr$R3_with-MLr$with_ratios
MLr$with_diff4 <- MLr$R4_with-MLr$with_ratios
MLr$with_diff5 <- MLr$R5_with-MLr$with_ratios

MLr$you_diff1 <- MLr$R1_you-MLr$you_ratios
MLr$you_diff2 <- MLr$R2_you-MLr$you_ratios
MLr$you_diff3 <- MLr$R3_you-MLr$you_ratios
MLr$you_diff4 <- MLr$R4_you-MLr$you_ratios
MLr$you_diff5 <- MLr$R5_you-MLr$you_ratios

Get the minimum value of the term/total terms per document difference from the ratings term/total terms per rating values.

MLr$areaMin <- apply(MLr[146:150],1, min,na.rm=TRUE)
MLr$areavote <- ifelse(MLr$area_diff1==MLr$areaMin,
                    1, 
                    ifelse(MLr$area_diff2==MLr$areaMin,
                           2,
                           ifelse(MLr$area_diff3==MLr$areaMin,
                                  3,
                                  ifelse(MLr$area_diff4==MLr$areaMin,
                                         4,
                                         ifelse(MLr$area_diff5==MLr$areaMin,
                                              5, NA )
                                         )
                                  )
                           )
                    )

MLr$bigMin <- apply(MLr[151:155],1, min,na.rm=TRUE)
MLr$bigvote <- ifelse(MLr$big_diff1==MLr$bigMin,
                    1, 
                    ifelse(MLr$big_diff2==MLr$bigMin,
                           2,
                           ifelse(MLr$big_diff3==MLr$bigMin,
                                  3,
                                  ifelse(MLr$big_diff4==MLr$bigMin,
                                         4,
                                         ifelse(MLr$big_diff5==MLr$bigMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$busyMin <- apply(MLr[156:160],1, min,na.rm=TRUE)
MLr$busyvote <- ifelse(MLr$busy_diff1==MLr$busyMin,
                    1, 
                    ifelse(MLr$busy_diff2==MLr$busyMin,
                           2,
                           ifelse(MLr$busy_diff3==MLr$busyMin,
                                  3,
                                  ifelse(MLr$busy_diff4==MLr$busyMin,
                                         4,
                                         ifelse(MLr$busy_diff5==MLr$busyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$definitelyMin <- apply(MLr[161:165],1, min, na.rm=TRUE)
MLr$definitelyvote <- ifelse(MLr$definitely_diff1==MLr$definitelyMin,
                    1, 
                    ifelse(MLr$definitely_diff2==MLr$definitelyMin,
                           2,
                           ifelse(MLr$definitely_diff3==MLr$definitelyMin,
                                  3,
                                  ifelse(MLr$definitely_diff4==MLr$definitelyMin,
                                         4,
                                         ifelse(MLr$definitely_diff5==MLr$definitelyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$feelMin <- apply(MLr[166:170],1, min, na.rm=TRUE)
MLr$feelvote <- ifelse(MLr$feel_diff1==MLr$feelMin,
                    1, 
                    ifelse(MLr$feel_diff2==MLr$feelMin,
                           2,
                           ifelse(MLr$feel_diff3==MLr$feelMin,
                                  3,
                                  ifelse(MLr$feel_diff4==MLr$feelMin,
                                         4,
                                         ifelse(MLr$feel_diff5==MLr$feelMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$lotMin <- apply(MLr[171:175],1, min, na.rm=TRUE)
MLr$lotvote <- ifelse(MLr$lot_diff1==MLr$lotMin,
                    1, 
                    ifelse(MLr$lot_diff2==MLr$lotMin,
                           2,
                           ifelse(MLr$lot_diff3==MLr$lotMin,
                                  3,
                                  ifelse(MLr$lot_diff4==MLr$lotMin,
                                         4,
                                         ifelse(MLr$lot_diff5==MLr$lotMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$manyMin <- apply(MLr[176:180],1, min, na.rm=TRUE)
MLr$manyvote <- ifelse(MLr$many_diff1==MLr$manyMin,
                    1, 
                    ifelse(MLr$many_diff2==MLr$manyMin,
                           2,
                           ifelse(MLr$many_diff3==MLr$manyMin,
                                  3,
                                  ifelse(MLr$many_diff4==MLr$manyMin,
                                         4,
                                         ifelse(MLr$many_diff5==MLr$manyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$openMin <- apply(MLr[181:185],1, min, na.rm=TRUE)
MLr$openvote <- ifelse(MLr$open_diff1==MLr$openMin,
                    1, 
                    ifelse(MLr$open_diff2==MLr$openMin,
                           2,
                           ifelse(MLr$open_diff3==MLr$openMin,
                                  3,
                                  ifelse(MLr$open_diff4==MLr$openMin,
                                         4,
                                         ifelse(MLr$open_diff5==MLr$openMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$plusMin <- apply(MLr[186:190],1, min, na.rm=TRUE)
MLr$plusvote <- ifelse(MLr$plus_diff1==MLr$plusMin,
                    1, 
                    ifelse(MLr$plus_diff2==MLr$plusMin,
                           2,
                           ifelse(MLr$plus_diff3==MLr$plusMin,
                                  3,
                                  ifelse(MLr$plus_diff4==MLr$plusMin,
                                         4,
                                         ifelse(MLr$plus_diff5==MLr$plusMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$twoMin <- apply(MLr[191:195],1, min, na.rm=TRUE)
MLr$twovote <- ifelse(MLr$two_diff1==MLr$twoMin,
                    1, 
                    ifelse(MLr$two_diff2==MLr$twoMin,
                           2,
                           ifelse(MLr$two_diff3==MLr$twoMin,
                                  3,
                                  ifelse(MLr$two_diff4==MLr$twoMin,
                                         4,
                                         ifelse(MLr$two_diff5==MLr$twoMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$worthMin <- apply(MLr[196:200],1, min, na.rm=TRUE)
MLr$worthvote <- ifelse(MLr$worth_diff1==MLr$worthMin,
                    1, 
                    ifelse(MLr$worth_diff2==MLr$worthMin,
                           2,
                           ifelse(MLr$worth_diff3==MLr$worthMin,
                                  3,
                                  ifelse(MLr$worth_diff4==MLr$worthMin,
                                         4,
                                         ifelse(MLr$worth_diff5==MLr$worthMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$yearMin <- apply(MLr[201:205],1, min, na.rm=TRUE)
MLr$yearvote <- ifelse(MLr$year_diff1==MLr$yearMin,
                    1, 
                    ifelse(MLr$year_diff2==MLr$yearMin,
                           2,
                           ifelse(MLr$year_diff3==MLr$yearMin,
                                  3,
                                  ifelse(MLr$year_diff4==MLr$yearMin,
                                         4,
                                         ifelse(MLr$year_diff5==MLr$yearMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )





MLr$andMin <- apply(MLr[206:210],1, min,na.rm=TRUE)
MLr$andvote <- ifelse(MLr$and_diff1==MLr$andMin,
                    1, 
                    ifelse(MLr$and_diff2==MLr$andMin,
                           2,
                           ifelse(MLr$and_diff3==MLr$andMin,
                                  3,
                                  ifelse(MLr$and_diff4==MLr$andMin,
                                         4,
                                         ifelse(MLr$and_diff5==MLr$andMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$butMin <- apply(MLr[211:215],1, min, na.rm=TRUE)
MLr$butvote <- ifelse(MLr$but_diff1==MLr$butMin,
                    1, 
                    ifelse(MLr$but_diff2==MLr$butMin,
                           2,
                           ifelse(MLr$but_diff3==MLr$butMin,
                                  3,
                                  ifelse(MLr$but_diff4==MLr$butMin,
                                         4,
                                         ifelse(MLr$but_diff5==MLr$butMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$forMin <- apply(MLr[216:220],1, min, na.rm=TRUE)
MLr$forvote <- ifelse(MLr$for_diff1==MLr$forMin,
                    1, 
                    ifelse(MLr$for_diff2==MLr$forMin,
                           2,
                           ifelse(MLr$for_diff3==MLr$forMin,
                                  3,
                                  ifelse(MLr$for_diff4==MLr$forMin,
                                         4,
                                         ifelse(MLr$for_diff5==MLr$forMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$goodMin <- apply(MLr[221:225],1, min, na.rm=TRUE)
MLr$goodvote <- ifelse(MLr$good_diff1==MLr$goodMin,
                    1, 
                    ifelse(MLr$good_diff2==MLr$goodMin,
                           2,
                           ifelse(MLr$good_diff3==MLr$goodMin,
                                  3,
                                  ifelse(MLr$good_diff4==MLr$goodMin,
                                         4,
                                         ifelse(MLr$good_diff5==MLr$goodMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$haveMin <- apply(MLr[226:230],1, min, na.rm=TRUE)
MLr$havevote <- ifelse(MLr$have_diff1==MLr$haveMin,
                    1, 
                    ifelse(MLr$have_diff2==MLr$haveMin,
                           2,
                           ifelse(MLr$have_diff3==MLr$haveMin,
                                  3,
                                  ifelse(MLr$have_diff4==MLr$haveMin,
                                         4,
                                         ifelse(MLr$have_diff5==MLr$haveMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$notMin <- apply(MLr[231:235],1, min, na.rm=TRUE)
MLr$notvote <- ifelse(MLr$not_diff1==MLr$notMin,
                    1, 
                    ifelse(MLr$not_diff2==MLr$notMin,
                           2,
                           ifelse(MLr$not_diff3==MLr$notMin,
                                  3,
                                  ifelse(MLr$not_diff4==MLr$notMin,
                                         4,
                                         ifelse(MLr$not_diff5==MLr$notMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$thatMin <- apply(MLr[236:240],1, min, na.rm=TRUE)
MLr$thatvote <- ifelse(MLr$that_diff1==MLr$thatMin,
                    1, 
                    ifelse(MLr$that_diff2==MLr$thatMin,
                           2,
                           ifelse(MLr$that_diff3==MLr$thatMin,
                                  3,
                                  ifelse(MLr$that_diff4==MLr$thatMin,
                                         4,
                                         ifelse(MLr$that_diff5==MLr$thatMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$theMin <- apply(MLr[241:245],1, min, na.rm=TRUE)
MLr$thevote <- ifelse(MLr$the_diff1==MLr$theMin,
                    1, 
                    ifelse(MLr$the_diff2==MLr$theMin,
                           2,
                           ifelse(MLr$the_diff3==MLr$theMin,
                                  3,
                                  ifelse(MLr$the_diff4==MLr$theMin,
                                         4,
                                         ifelse(MLr$the_diff5==MLr$theMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$theyMin <- apply(MLr[246:250],1, min, na.rm=TRUE)
MLr$theyvote <- ifelse(MLr$they_diff1==MLr$theyMin,
                    1, 
                    ifelse(MLr$they_diff2==MLr$theyMin,
                           2,
                           ifelse(MLr$they_diff3==MLr$theyMin,
                                  3,
                                  ifelse(MLr$they_diff4==MLr$theyMin,
                                         4,
                                         ifelse(MLr$they_diff5==MLr$theyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$thisMin <- apply(MLr[251:255],1, min, na.rm=TRUE)
MLr$thisvote <- ifelse(MLr$this_diff1==MLr$thisMin,
                    1, 
                    ifelse(MLr$this_diff2==MLr$thisMin,
                           2,
                           ifelse(MLr$this_diff3==MLr$thisMin,
                                  3,
                                  ifelse(MLr$this_diff4==MLr$thisMin,
                                         4,
                                         ifelse(MLr$this_diff5==MLr$thisMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$withMin <- apply(MLr[256:260],1, min, na.rm=TRUE)
MLr$withvote <- ifelse(MLr$with_diff1==MLr$withMin,
                    1, 
                    ifelse(MLr$with_diff2==MLr$withMin,
                           2,
                           ifelse(MLr$with_diff3==MLr$withMin,
                                  3,
                                  ifelse(MLr$with_diff4==MLr$withMin,
                                         4,
                                         ifelse(MLr$with_diff5==MLr$withMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$youMin <- apply(MLr[261:265],1, min, na.rm=TRUE)
MLr$youvote <- ifelse(MLr$you_diff1==MLr$youMin,
                    1, 
                    ifelse(MLr$you_diff2==MLr$youMin,
                           2,
                           ifelse(MLr$you_diff3==MLr$youMin,
                                  3,
                                  ifelse(MLr$you_diff4==MLr$youMin,
                                         4,
                                         ifelse(MLr$you_diff5==MLr$youMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )
bestVote <- MLr %>% select(areavote, bigvote , busyvote, definitelyvote, 
                           feelvote, lotvote, manyvote, openvote, plusvote, 
                           twovote, worthvote, yearvote, andvote, butvote, forvote,      
                           goodvote, havevote, notvote, thatvote, thevote,       
                           theyvote, thisvote, withvote, youvote )
summary(bestVote)
##     areavote      bigvote       busyvote   definitelyvote    feelvote  
##  Min.   :1     Min.   :1     Min.   :1     Min.   :1      Min.   :1    
##  1st Qu.:1     1st Qu.:1     1st Qu.:1     1st Qu.:1      1st Qu.:1    
##  Median :1     Median :1     Median :1     Median :1      Median :1    
##  Mean   :1     Mean   :1     Mean   :1     Mean   :1      Mean   :1    
##  3rd Qu.:1     3rd Qu.:1     3rd Qu.:1     3rd Qu.:1      3rd Qu.:1    
##  Max.   :1     Max.   :1     Max.   :1     Max.   :1      Max.   :1    
##  NA's   :567   NA's   :594   NA's   :587   NA's   :561    NA's   :540  
##     lotvote       manyvote      openvote      plusvote      twovote   
##  Min.   :1     Min.   :1     Min.   :1     Min.   :1     Min.   :1    
##  1st Qu.:1     1st Qu.:1     1st Qu.:1     1st Qu.:1     1st Qu.:1    
##  Median :1     Median :1     Median :1     Median :1     Median :1    
##  Mean   :1     Mean   :1     Mean   :1     Mean   :1     Mean   :1    
##  3rd Qu.:1     3rd Qu.:1     3rd Qu.:1     3rd Qu.:1     3rd Qu.:1    
##  Max.   :1     Max.   :1     Max.   :1     Max.   :1     Max.   :1    
##  NA's   :571   NA's   :563   NA's   :583   NA's   :605   NA's   :573  
##    worthvote      yearvote      andvote      butvote       forvote   
##  Min.   :1     Min.   :3     Min.   :2    Min.   :5     Min.   :2    
##  1st Qu.:1     1st Qu.:3     1st Qu.:2    1st Qu.:5     1st Qu.:2    
##  Median :1     Median :3     Median :2    Median :5     Median :2    
##  Mean   :1     Mean   :3     Mean   :2    Mean   :5     Mean   :2    
##  3rd Qu.:1     3rd Qu.:3     3rd Qu.:2    3rd Qu.:5     3rd Qu.:2    
##  Max.   :1     Max.   :3     Max.   :2    Max.   :5     Max.   :2    
##  NA's   :565   NA's   :578   NA's   :76   NA's   :362   NA's   :218  
##     goodvote      havevote      notvote       thatvote      thevote  
##  Min.   :1     Min.   :1     Min.   :5     Min.   :5     Min.   :5   
##  1st Qu.:1     1st Qu.:1     1st Qu.:5     1st Qu.:5     1st Qu.:5   
##  Median :1     Median :1     Median :5     Median :5     Median :5   
##  Mean   :1     Mean   :1     Mean   :5     Mean   :5     Mean   :5   
##  3rd Qu.:1     3rd Qu.:1     3rd Qu.:5     3rd Qu.:5     3rd Qu.:5   
##  Max.   :1     Max.   :1     Max.   :5     Max.   :5     Max.   :5   
##  NA's   :478   NA's   :340   NA's   :429   NA's   :354   NA's   :81  
##     theyvote      thisvote      withvote      youvote   
##  Min.   :3     Min.   :4     Min.   :1     Min.   :1    
##  1st Qu.:3     1st Qu.:4     1st Qu.:1     1st Qu.:1    
##  Median :3     Median :4     Median :1     Median :1    
##  Mean   :3     Mean   :4     Mean   :1     Mean   :1    
##  3rd Qu.:3     3rd Qu.:4     3rd Qu.:1     3rd Qu.:1    
##  Max.   :3     Max.   :4     Max.   :1     Max.   :1    
##  NA's   :354   NA's   :336   NA's   :336   NA's   :341
bestVote$areavote <- as.factor(paste(bestVote$areavote)) 
bestVote$bigvote <- as.factor(paste(bestVote$bigvote)) 
bestVote$busyvote <- as.factor(paste(bestVote$busyvote)) 
bestVote$definitelyvote <- as.factor(paste(bestVote$definitelyvote)) 
bestVote$feelvote <- as.factor(paste(bestVote$feelvote))
bestVote$lotvote <- as.factor(paste(bestVote$lotvote))  
bestVote$manyvote <- as.factor(paste(bestVote$manyvote))                                  
bestVote$openvote <- as.factor(paste(bestVote$openvote))
bestVote$plusvote <- as.factor(paste(bestVote$plusvote))
bestVote$twovote <- as.factor(paste(bestVote$twovote))
bestVote$worthvote <- as.factor(paste(bestVote$worthvote))
bestVote$yearvote <- as.factor(paste(bestVote$yearvote))
bestVote$andvote <- as.factor(paste(bestVote$andvote)) 
bestVote$butvote <- as.factor(paste(bestVote$butvote)) 
bestVote$forvote <- as.factor(paste(bestVote$forvote)) 
bestVote$goodvote <- as.factor(paste(bestVote$goodvote)) 
bestVote$havevote <- as.factor(paste(bestVote$havevote))
bestVote$notvote <- as.factor(paste(bestVote$notvote))  
bestVote$thatvote <- as.factor(paste(bestVote$thatvote))                                  
bestVote$thevote <- as.factor(paste(bestVote$thevote))
bestVote$theyvote <- as.factor(paste(bestVote$theyvote))
bestVote$thisvote <- as.factor(paste(bestVote$thisvote))
bestVote$withvote <- as.factor(paste(bestVote$withvote))
bestVote$youvote <- as.factor(paste(bestVote$youvote))

bestVote$counts1 <- 0
bestVote$counts2 <- 0
bestVote$counts3 <- 0
bestVote$counts4 <- 0
bestVote$counts5 <- 0

a5 <- grep('5',bestVote$andvote)
a4 <- grep('4', bestVote$andvote)
a3 <- grep('3',bestVote$andvote)
a2 <- grep('2',bestVote$andvote)
a1 <- grep('1',bestVote$andvote)

b5 <- grep('5',bestVote$butvote)
b4 <- grep('4', bestVote$butvote)
b3 <- grep('3',bestVote$butvote)
b2 <- grep('2',bestVote$butvote)
b1 <- grep('1',bestVote$butvote)

c5 <- grep('5',bestVote$forvote)
c4 <- grep('4', bestVote$forvote)
c3 <- grep('3',bestVote$forvote)
c2 <- grep('2',bestVote$forvote)
c1 <- grep('1',bestVote$forvote)

d5 <- grep('5',bestVote$goodvote)
d4 <- grep('4', bestVote$goodvote)
d3 <- grep('3',bestVote$goodvote)
d2 <- grep('2',bestVote$goodvote)
d1 <- grep('1',bestVote$goodvote)

e5 <- grep('5',bestVote$havevote)
e4 <- grep('4', bestVote$havevote)
e3 <- grep('3',bestVote$havevote)
e2 <- grep('2',bestVote$havevote)
e1 <- grep('1',bestVote$havevote)

f5 <- grep('5',bestVote$notvote)
f4 <- grep('4', bestVote$notvote)
f3 <- grep('3',bestVote$notvote)
f2 <- grep('2',bestVote$notvote)
f1 <- grep('1',bestVote$notvote)

g5 <- grep('5',bestVote$thatvote)
g4 <- grep('4', bestVote$thatvote)
g3 <- grep('3',bestVote$thatvote)
g2 <- grep('2',bestVote$thatvote)
g1 <- grep('1',bestVote$thatvote)

h5 <- grep('5',bestVote$thevote)
h4 <- grep('4', bestVote$thevote)
h3 <- grep('3',bestVote$thevote)
h2 <- grep('2',bestVote$thevote)
h1 <- grep('1',bestVote$thevote)

i5 <- grep('5',bestVote$theyvote)
i4 <- grep('4', bestVote$theyvote)
i3 <- grep('3',bestVote$theyvote)
i2 <- grep('2',bestVote$theyvote)
i1 <- grep('1',bestVote$theyvote)

j5 <- grep('5',bestVote$thisvote)
j4 <- grep('4', bestVote$thisvote)
j3 <- grep('3',bestVote$thisvote)
j2 <- grep('2',bestVote$thisvote)
j1 <- grep('1',bestVote$thisvote)

k5 <- grep('5',bestVote$withvote)
k4 <- grep('4', bestVote$withvote)
k3 <- grep('3',bestVote$withvote)
k2 <- grep('2',bestVote$withvote)
k1 <- grep('1',bestVote$withvote)

l5 <- grep('5',bestVote$youvote)
l4 <- grep('4', bestVote$youvote)
l3 <- grep('3',bestVote$youvote)
l2 <- grep('2',bestVote$youvote)
l1 <- grep('1',bestVote$youvote)

A5 <- grep('5',bestVote$areavote)
A4 <- grep('4', bestVote$areavote)
A3 <- grep('3',bestVote$areavote)
A2 <- grep('2',bestVote$areavote)
A1 <- grep('1',bestVote$areavote)

B5 <- grep('5',bestVote$bigvote)
B4 <- grep('4', bestVote$bigvote)
B3 <- grep('3',bestVote$bigvote)
B2 <- grep('2',bestVote$bigvote)
B1 <- grep('1',bestVote$bigvote)

C5 <- grep('5',bestVote$busyvote)
C4 <- grep('4', bestVote$busyvote)
C3 <- grep('3',bestVote$busyvote)
C2 <- grep('2',bestVote$busyvote)
C1 <- grep('1',bestVote$busyvote)

D5 <- grep('5',bestVote$definitelyvote)
D4 <- grep('4', bestVote$definitelyvote)
D3 <- grep('3',bestVote$definitelyvote)
D2 <- grep('2',bestVote$definitelyvote)
D1 <- grep('1',bestVote$definitelyvote)

E5 <- grep('5',bestVote$feelvote)
E4 <- grep('4', bestVote$feelvote)
E3 <- grep('3',bestVote$feelvote)
E2 <- grep('2',bestVote$feelvote)
E1 <- grep('1',bestVote$feelvote)

F5 <- grep('5',bestVote$lotvote)
F4 <- grep('4', bestVote$lotvote)
F3 <- grep('3',bestVote$lotvote)
F2 <- grep('2',bestVote$lotvote)
F1 <- grep('1',bestVote$lotvote)

G5 <- grep('5',bestVote$manyvote)
G4 <- grep('4', bestVote$manyvote)
G3 <- grep('3',bestVote$manyvote)
G2 <- grep('2',bestVote$manyvote)
G1 <- grep('1',bestVote$manyvote)

H5 <- grep('5',bestVote$openvote)
H4 <- grep('4', bestVote$openvote)
H3 <- grep('3',bestVote$openvote)
H2 <- grep('2',bestVote$openvote)
H1 <- grep('1',bestVote$openvote)

I5 <- grep('5',bestVote$plusvote)
I4 <- grep('4', bestVote$plusvote)
I3 <- grep('3',bestVote$plusvote)
I2 <- grep('2',bestVote$plusvote)
I1 <- grep('1',bestVote$plusvote)

J5 <- grep('5',bestVote$twovote)
J4 <- grep('4', bestVote$twovote)
J3 <- grep('3',bestVote$twovote)
J2 <- grep('2',bestVote$twovote)
J1 <- grep('1',bestVote$twovote)

K5 <- grep('5',bestVote$worthvote)
K4 <- grep('4', bestVote$worthvote)
K3 <- grep('3',bestVote$worthvote)
K2 <- grep('2',bestVote$worthvote)
K1 <- grep('1',bestVote$worthvote)

L5 <- grep('5',bestVote$yearvote)
L4 <- grep('4', bestVote$yearvote)
L3 <- grep('3',bestVote$yearvote)
L2 <- grep('2',bestVote$yearvote)
L1 <- grep('1',bestVote$yearvote)

bestVote$counts1[l1] <- bestVote$counts1[l1]+ 1
bestVote$counts1[k1] <- bestVote$counts1[k1]+ 1
bestVote$counts1[j1] <- bestVote$counts1[j1]+ 1
bestVote$counts1[i1] <- bestVote$counts1[i1]+ 1
bestVote$counts1[h1] <- bestVote$counts1[h1]+ 1
bestVote$counts1[g1] <- bestVote$counts1[g1]+ 1
bestVote$counts1[f1] <- bestVote$counts1[f1]+ 1
bestVote$counts1[e1] <- bestVote$counts1[e1]+ 1
bestVote$counts1[d1] <- bestVote$counts1[d1]+ 1
bestVote$counts1[c1] <- bestVote$counts1[c1]+ 1
bestVote$counts1[b1] <- bestVote$counts1[b1]+ 1
bestVote$counts1[a1] <- bestVote$counts1[a1]+ 1

bestVote$counts2[l2]  <- bestVote$counts2[l2] + 1
bestVote$counts2[k2]  <- bestVote$counts2[k2] + 1
bestVote$counts2[j2]  <- bestVote$counts2[j2] + 1
bestVote$counts2[i2]  <- bestVote$counts2[i2] + 1
bestVote$counts2[h2]  <- bestVote$counts2[h2] + 1
bestVote$counts2[g2]  <- bestVote$counts2[g2] + 1
bestVote$counts2[f2]  <- bestVote$counts2[f2] + 1
bestVote$counts2[e2]  <- bestVote$counts2[e2] + 1
bestVote$counts2[d2]  <- bestVote$counts2[d2] + 1
bestVote$counts2[c2]  <- bestVote$counts2[c2] + 1
bestVote$counts2[b2]  <- bestVote$counts2[b2] + 1
bestVote$counts2[a2]  <- bestVote$counts2[a2] + 1

bestVote$counts3[l3]  <- bestVote$counts3[l3] + 1
bestVote$counts3[k3]  <- bestVote$counts3[k3] + 1
bestVote$counts3[j3]  <- bestVote$counts3[j3] + 1
bestVote$counts3[i3]  <- bestVote$counts3[i3] + 1
bestVote$counts3[h3]  <- bestVote$counts3[h3] + 1
bestVote$counts3[g3]  <- bestVote$counts3[g3] + 1
bestVote$counts3[f3]  <- bestVote$counts3[f3] + 1
bestVote$counts3[e3]  <- bestVote$counts3[e3] + 1
bestVote$counts3[d3]  <- bestVote$counts3[d3] + 1
bestVote$counts3[c3]  <- bestVote$counts3[c3] + 1
bestVote$counts3[b3]  <- bestVote$counts3[b3] + 1
bestVote$counts3[a3]  <- bestVote$counts3[a3] + 1

bestVote$counts4[l4]  <- bestVote$counts4[l4] + 1
bestVote$counts4[k4]  <- bestVote$counts4[k4] + 1
bestVote$counts4[j4]  <- bestVote$counts4[j4] + 1
bestVote$counts4[i4]  <- bestVote$counts4[i4] + 1
bestVote$counts4[h4]  <- bestVote$counts4[h4] + 1
bestVote$counts4[g4]  <- bestVote$counts4[g4] + 1
bestVote$counts4[f4]  <- bestVote$counts4[f4] + 1
bestVote$counts4[e4]  <- bestVote$counts4[e4] + 1
bestVote$counts4[d4]  <- bestVote$counts4[d4] + 1
bestVote$counts4[c4]  <- bestVote$counts4[c4] + 1
bestVote$counts4[b4]  <- bestVote$counts4[b4] + 1
bestVote$counts4[a4]  <- bestVote$counts4[a4] + 1

bestVote$counts5[l5]  <- bestVote$counts5[l5] + 1
bestVote$counts5[k5]  <- bestVote$counts5[k5] + 1
bestVote$counts5[j5]  <- bestVote$counts5[j5] + 1
bestVote$counts5[i5]  <- bestVote$counts5[i5] + 1
bestVote$counts5[h5]  <- bestVote$counts5[h5] + 1
bestVote$counts5[g5]  <- bestVote$counts5[g5] + 1
bestVote$counts5[f5]  <- bestVote$counts5[f5] + 1
bestVote$counts5[e5]  <- bestVote$counts5[e5] + 1
bestVote$counts5[d5]  <- bestVote$counts5[d5] + 1
bestVote$counts5[c5]  <- bestVote$counts5[c5] + 1
bestVote$counts5[b5]  <- bestVote$counts5[b5] + 1
bestVote$counts5[a5]  <- bestVote$counts5[a5] + 1



bestVote$counts1[L1] <- bestVote$counts1[L1]+ 1
bestVote$counts1[K1] <- bestVote$counts1[K1]+ 1
bestVote$counts1[J1] <- bestVote$counts1[J1]+ 1
bestVote$counts1[I1] <- bestVote$counts1[I1]+ 1
bestVote$counts1[H1] <- bestVote$counts1[H1]+ 1
bestVote$counts1[G1] <- bestVote$counts1[G1]+ 1
bestVote$counts1[F1] <- bestVote$counts1[F1]+ 1
bestVote$counts1[E1] <- bestVote$counts1[E1]+ 1
bestVote$counts1[D1] <- bestVote$counts1[D1]+ 1
bestVote$counts1[C1] <- bestVote$counts1[C1]+ 1
bestVote$counts1[B1] <- bestVote$counts1[B1]+ 1
bestVote$counts1[A1] <- bestVote$counts1[A1]+ 1

bestVote$counts2[L2]  <- bestVote$counts2[L2] + 1
bestVote$counts2[K2]  <- bestVote$counts2[K2] + 1
bestVote$counts2[J2]  <- bestVote$counts2[J2] + 1
bestVote$counts2[I2]  <- bestVote$counts2[I2] + 1
bestVote$counts2[H2]  <- bestVote$counts2[H2] + 1
bestVote$counts2[G2]  <- bestVote$counts2[G2] + 1
bestVote$counts2[F2]  <- bestVote$counts2[F2] + 1
bestVote$counts2[E2]  <- bestVote$counts2[E2] + 1
bestVote$counts2[D2]  <- bestVote$counts2[D2] + 1
bestVote$counts2[C2]  <- bestVote$counts2[C2] + 1
bestVote$counts2[B2]  <- bestVote$counts2[B2] + 1
bestVote$counts2[A2]  <- bestVote$counts2[A2] + 1

bestVote$counts3[L3]  <- bestVote$counts3[L3] + 1
bestVote$counts3[K3]  <- bestVote$counts3[K3] + 1
bestVote$counts3[J3]  <- bestVote$counts3[J3] + 1
bestVote$counts3[I3]  <- bestVote$counts3[I3] + 1
bestVote$counts3[H3]  <- bestVote$counts3[H3] + 1
bestVote$counts3[G3]  <- bestVote$counts3[G3] + 1
bestVote$counts3[F3]  <- bestVote$counts3[F3] + 1
bestVote$counts3[E3]  <- bestVote$counts3[E3] + 1
bestVote$counts3[D3]  <- bestVote$counts3[D3] + 1
bestVote$counts3[C3]  <- bestVote$counts3[C3] + 1
bestVote$counts3[B3]  <- bestVote$counts3[B3] + 1
bestVote$counts3[A3]  <- bestVote$counts3[A3] + 1

bestVote$counts4[L4]  <- bestVote$counts4[L4] + 1
bestVote$counts4[K4]  <- bestVote$counts4[K4] + 1
bestVote$counts4[J4]  <- bestVote$counts4[J4] + 1
bestVote$counts4[I4]  <- bestVote$counts4[I4] + 1
bestVote$counts4[H4]  <- bestVote$counts4[H4] + 1
bestVote$counts4[G4]  <- bestVote$counts4[G4] + 1
bestVote$counts4[F4]  <- bestVote$counts4[F4] + 1
bestVote$counts4[E4]  <- bestVote$counts4[E4] + 1
bestVote$counts4[D4]  <- bestVote$counts4[D4] + 1
bestVote$counts4[C4]  <- bestVote$counts4[C4] + 1
bestVote$counts4[B4]  <- bestVote$counts4[B4] + 1
bestVote$counts4[A4]  <- bestVote$counts4[A4] + 1

bestVote$counts5[L5]  <- bestVote$counts5[L5] + 1
bestVote$counts5[K5]  <- bestVote$counts5[K5] + 1
bestVote$counts5[J5]  <- bestVote$counts5[J5] + 1
bestVote$counts5[I5]  <- bestVote$counts5[I5] + 1
bestVote$counts5[H5]  <- bestVote$counts5[H5] + 1
bestVote$counts5[G5]  <- bestVote$counts5[G5] + 1
bestVote$counts5[F5]  <- bestVote$counts5[F5] + 1
bestVote$counts5[E5]  <- bestVote$counts5[E5] + 1
bestVote$counts5[D5]  <- bestVote$counts5[D5] + 1
bestVote$counts5[C5]  <- bestVote$counts5[C5] + 1
bestVote$counts5[B5]  <- bestVote$counts5[B5] + 1
bestVote$counts5[A5]  <- bestVote$counts5[A5] + 1

!@#$%

bestVote$maxVote <- apply(bestVote[25:29],1,max)

mv <- bestVote$maxVote
ct1 <- bestVote$counts1
ct2 <- bestVote$counts2
ct3 <- bestVote$counts3
ct4 <- bestVote$counts4
ct5 <- bestVote$counts5


bestVote$votedRating <- ifelse(mv==ct1, 1, 
                        ifelse(mv==ct2, 2,
                        ifelse(mv==ct3, 3,
                        ifelse(mv==ct4, 4, 5))))

bestVote$Rating <- ifelse(mv==ct1 & (mv==ct2|mv==ct3|mv==ct4|mv==ct5),'tie',
                     ifelse(mv==ct1,1, 
                           ifelse(mv==ct2 & (mv==ct3|mv==ct4|mv==ct5),'tie',
                     ifelse(mv==ct2, 2,
                           ifelse(mv==ct3 &(mv==ct4|mv==ct5),'tie', 
                           ifelse(mv==ct3, 3,
                           ifelse(mv==ct4 & mv==ct5, 'tie',
                           ifelse(mv==ct4, 4,5
                           )))))))
                          )
bestVote$finalPrediction <- ifelse(bestVote$Rating=='tie', 
                     ifelse(ceiling(mean(c(ct1,ct2,ct3,ct4,ct5)*c(1,2,3,4,5))/5) > 5,
                     5, ceiling(mean(c(ct1,ct2,ct3,ct4,ct5)*c(1,2,3,4,5))/5)), 
                     bestVote$votedRating )

Now that we have our final prediction with this algorithm. Lets attach these two tables together and rearrange the columns.

bestVote$CorrectlyPredicted <- ifelse(MLr$userRatingValue==bestVote$finalPrediction,1,0)

MLr2 <- cbind(MLr, bestVote)
MLr3 <- MLr2[,c(2:347,1)]
MLr3$CorrectPrediction <- ifelse(MLr3$finalPrediction==MLr3$userRatingValue,
                                 1,0)
MLr3$finalPrediction <- as.factor(paste(MLr3$finalPrediction))
MLr3$userRatingValue <- paste('rating ', MLr3$userRatingValue,sep='')
Accuracy <- sum(MLr3$CorrectPrediction)/length(MLr3$CorrectPrediction)
Accuracy
## [1] 0.1416938

This model is much worse than our previous model that scored 56% on the use of stopwords only. We should investigate why all the votes for the 12 keywords are mostly 1s. The only keyword of ours that scored other than a 3 is the ‘year’ keyword.


We will look at a the diff columns and the vote column from the wide data table of MLr.

yr <- MLr[,c(grep('year_diff',colnames(MLr)),grep('yearMin',colnames(MLr)),
             grep('yearvote',colnames(MLr)))]
yr
##     year_diff1 year_diff2 year_diff3 year_diff4 year_diff5  yearMin yearvote
## 1     -0.00519   -0.00441   -0.00613   -0.00486   -0.00240 -0.00613        3
## 2           NA         NA         NA         NA         NA      Inf       NA
## 3           NA         NA         NA         NA         NA      Inf       NA
## 4           NA         NA         NA         NA         NA      Inf       NA
## 5           NA         NA         NA         NA         NA      Inf       NA
## 6           NA         NA         NA         NA         NA      Inf       NA
## 7           NA         NA         NA         NA         NA      Inf       NA
## 8           NA         NA         NA         NA         NA      Inf       NA
## 9           NA         NA         NA         NA         NA      Inf       NA
## 10          NA         NA         NA         NA         NA      Inf       NA
## 11    -0.00302   -0.00224   -0.00396   -0.00269   -0.00023 -0.00396        3
## 12          NA         NA         NA         NA         NA      Inf       NA
## 13          NA         NA         NA         NA         NA      Inf       NA
## 14          NA         NA         NA         NA         NA      Inf       NA
## 15          NA         NA         NA         NA         NA      Inf       NA
## 16    -0.02345   -0.02267   -0.02439   -0.02312   -0.02066 -0.02439        3
## 17          NA         NA         NA         NA         NA      Inf       NA
## 18          NA         NA         NA         NA         NA      Inf       NA
## 19    -0.00761   -0.00683   -0.00855   -0.00728   -0.00482 -0.00855        3
## 20          NA         NA         NA         NA         NA      Inf       NA
## 21          NA         NA         NA         NA         NA      Inf       NA
## 22          NA         NA         NA         NA         NA      Inf       NA
## 23          NA         NA         NA         NA         NA      Inf       NA
## 24          NA         NA         NA         NA         NA      Inf       NA
## 25          NA         NA         NA         NA         NA      Inf       NA
## 26          NA         NA         NA         NA         NA      Inf       NA
## 27          NA         NA         NA         NA         NA      Inf       NA
## 28          NA         NA         NA         NA         NA      Inf       NA
## 29          NA         NA         NA         NA         NA      Inf       NA
## 30          NA         NA         NA         NA         NA      Inf       NA
## 31          NA         NA         NA         NA         NA      Inf       NA
## 32          NA         NA         NA         NA         NA      Inf       NA
## 33          NA         NA         NA         NA         NA      Inf       NA
## 34          NA         NA         NA         NA         NA      Inf       NA
## 35          NA         NA         NA         NA         NA      Inf       NA
## 36          NA         NA         NA         NA         NA      Inf       NA
## 37          NA         NA         NA         NA         NA      Inf       NA
## 38          NA         NA         NA         NA         NA      Inf       NA
## 39    -0.01505   -0.01427   -0.01599   -0.01472   -0.01226 -0.01599        3
## 40          NA         NA         NA         NA         NA      Inf       NA
## 41          NA         NA         NA         NA         NA      Inf       NA
## 42          NA         NA         NA         NA         NA      Inf       NA
## 43          NA         NA         NA         NA         NA      Inf       NA
## 44          NA         NA         NA         NA         NA      Inf       NA
## 45          NA         NA         NA         NA         NA      Inf       NA
## 46          NA         NA         NA         NA         NA      Inf       NA
## 47          NA         NA         NA         NA         NA      Inf       NA
## 48          NA         NA         NA         NA         NA      Inf       NA
## 49          NA         NA         NA         NA         NA      Inf       NA
## 50    -0.01274   -0.01196   -0.01368   -0.01241   -0.00995 -0.01368        3
## 51          NA         NA         NA         NA         NA      Inf       NA
## 52          NA         NA         NA         NA         NA      Inf       NA
## 53          NA         NA         NA         NA         NA      Inf       NA
## 54          NA         NA         NA         NA         NA      Inf       NA
## 55          NA         NA         NA         NA         NA      Inf       NA
## 56          NA         NA         NA         NA         NA      Inf       NA
## 57          NA         NA         NA         NA         NA      Inf       NA
## 58          NA         NA         NA         NA         NA      Inf       NA
## 59          NA         NA         NA         NA         NA      Inf       NA
## 60          NA         NA         NA         NA         NA      Inf       NA
## 61          NA         NA         NA         NA         NA      Inf       NA
## 62          NA         NA         NA         NA         NA      Inf       NA
## 63          NA         NA         NA         NA         NA      Inf       NA
## 64          NA         NA         NA         NA         NA      Inf       NA
## 65          NA         NA         NA         NA         NA      Inf       NA
## 66          NA         NA         NA         NA         NA      Inf       NA
## 67          NA         NA         NA         NA         NA      Inf       NA
## 68          NA         NA         NA         NA         NA      Inf       NA
## 69          NA         NA         NA         NA         NA      Inf       NA
## 70          NA         NA         NA         NA         NA      Inf       NA
## 71          NA         NA         NA         NA         NA      Inf       NA
## 72          NA         NA         NA         NA         NA      Inf       NA
## 73          NA         NA         NA         NA         NA      Inf       NA
## 74          NA         NA         NA         NA         NA      Inf       NA
## 75          NA         NA         NA         NA         NA      Inf       NA
## 76          NA         NA         NA         NA         NA      Inf       NA
## 77          NA         NA         NA         NA         NA      Inf       NA
## 78          NA         NA         NA         NA         NA      Inf       NA
## 79          NA         NA         NA         NA         NA      Inf       NA
## 80          NA         NA         NA         NA         NA      Inf       NA
## 81          NA         NA         NA         NA         NA      Inf       NA
## 82          NA         NA         NA         NA         NA      Inf       NA
## 83          NA         NA         NA         NA         NA      Inf       NA
## 84          NA         NA         NA         NA         NA      Inf       NA
## 85          NA         NA         NA         NA         NA      Inf       NA
## 86          NA         NA         NA         NA         NA      Inf       NA
## 87          NA         NA         NA         NA         NA      Inf       NA
## 88          NA         NA         NA         NA         NA      Inf       NA
## 89          NA         NA         NA         NA         NA      Inf       NA
## 90          NA         NA         NA         NA         NA      Inf       NA
## 91          NA         NA         NA         NA         NA      Inf       NA
## 92          NA         NA         NA         NA         NA      Inf       NA
## 93          NA         NA         NA         NA         NA      Inf       NA
## 94          NA         NA         NA         NA         NA      Inf       NA
## 95          NA         NA         NA         NA         NA      Inf       NA
## 96          NA         NA         NA         NA         NA      Inf       NA
## 97          NA         NA         NA         NA         NA      Inf       NA
## 98          NA         NA         NA         NA         NA      Inf       NA
## 99          NA         NA         NA         NA         NA      Inf       NA
## 100         NA         NA         NA         NA         NA      Inf       NA
## 101         NA         NA         NA         NA         NA      Inf       NA
## 102         NA         NA         NA         NA         NA      Inf       NA
## 103         NA         NA         NA         NA         NA      Inf       NA
## 104         NA         NA         NA         NA         NA      Inf       NA
## 105         NA         NA         NA         NA         NA      Inf       NA
## 106         NA         NA         NA         NA         NA      Inf       NA
## 107         NA         NA         NA         NA         NA      Inf       NA
## 108         NA         NA         NA         NA         NA      Inf       NA
## 109         NA         NA         NA         NA         NA      Inf       NA
## 110         NA         NA         NA         NA         NA      Inf       NA
## 111         NA         NA         NA         NA         NA      Inf       NA
## 112         NA         NA         NA         NA         NA      Inf       NA
## 113         NA         NA         NA         NA         NA      Inf       NA
## 114         NA         NA         NA         NA         NA      Inf       NA
## 115         NA         NA         NA         NA         NA      Inf       NA
## 116         NA         NA         NA         NA         NA      Inf       NA
## 117         NA         NA         NA         NA         NA      Inf       NA
## 118         NA         NA         NA         NA         NA      Inf       NA
## 119         NA         NA         NA         NA         NA      Inf       NA
## 120         NA         NA         NA         NA         NA      Inf       NA
## 121         NA         NA         NA         NA         NA      Inf       NA
## 122         NA         NA         NA         NA         NA      Inf       NA
## 123         NA         NA         NA         NA         NA      Inf       NA
## 124   -0.00324   -0.00246   -0.00418   -0.00291   -0.00045 -0.00418        3
## 125         NA         NA         NA         NA         NA      Inf       NA
## 126         NA         NA         NA         NA         NA      Inf       NA
## 127         NA         NA         NA         NA         NA      Inf       NA
## 128         NA         NA         NA         NA         NA      Inf       NA
## 129         NA         NA         NA         NA         NA      Inf       NA
## 130         NA         NA         NA         NA         NA      Inf       NA
## 131         NA         NA         NA         NA         NA      Inf       NA
## 132         NA         NA         NA         NA         NA      Inf       NA
## 133         NA         NA         NA         NA         NA      Inf       NA
## 134         NA         NA         NA         NA         NA      Inf       NA
## 135         NA         NA         NA         NA         NA      Inf       NA
## 136         NA         NA         NA         NA         NA      Inf       NA
## 137         NA         NA         NA         NA         NA      Inf       NA
## 138         NA         NA         NA         NA         NA      Inf       NA
## 139         NA         NA         NA         NA         NA      Inf       NA
## 140         NA         NA         NA         NA         NA      Inf       NA
## 141         NA         NA         NA         NA         NA      Inf       NA
## 142         NA         NA         NA         NA         NA      Inf       NA
## 143         NA         NA         NA         NA         NA      Inf       NA
## 144         NA         NA         NA         NA         NA      Inf       NA
## 145         NA         NA         NA         NA         NA      Inf       NA
## 146         NA         NA         NA         NA         NA      Inf       NA
## 147   -0.00471   -0.00393   -0.00565   -0.00438   -0.00192 -0.00565        3
## 148         NA         NA         NA         NA         NA      Inf       NA
## 149         NA         NA         NA         NA         NA      Inf       NA
## 150         NA         NA         NA         NA         NA      Inf       NA
## 151         NA         NA         NA         NA         NA      Inf       NA
## 152   -0.00880   -0.00802   -0.00974   -0.00847   -0.00601 -0.00974        3
## 153         NA         NA         NA         NA         NA      Inf       NA
## 154   -0.00639   -0.00561   -0.00733   -0.00606   -0.00360 -0.00733        3
## 155         NA         NA         NA         NA         NA      Inf       NA
## 156         NA         NA         NA         NA         NA      Inf       NA
## 157         NA         NA         NA         NA         NA      Inf       NA
## 158         NA         NA         NA         NA         NA      Inf       NA
## 159         NA         NA         NA         NA         NA      Inf       NA
## 160         NA         NA         NA         NA         NA      Inf       NA
## 161         NA         NA         NA         NA         NA      Inf       NA
## 162         NA         NA         NA         NA         NA      Inf       NA
## 163         NA         NA         NA         NA         NA      Inf       NA
## 164         NA         NA         NA         NA         NA      Inf       NA
## 165         NA         NA         NA         NA         NA      Inf       NA
## 166         NA         NA         NA         NA         NA      Inf       NA
## 167         NA         NA         NA         NA         NA      Inf       NA
## 168         NA         NA         NA         NA         NA      Inf       NA
## 169         NA         NA         NA         NA         NA      Inf       NA
## 170         NA         NA         NA         NA         NA      Inf       NA
## 171         NA         NA         NA         NA         NA      Inf       NA
## 172         NA         NA         NA         NA         NA      Inf       NA
## 173         NA         NA         NA         NA         NA      Inf       NA
## 174         NA         NA         NA         NA         NA      Inf       NA
## 175         NA         NA         NA         NA         NA      Inf       NA
## 176         NA         NA         NA         NA         NA      Inf       NA
## 177         NA         NA         NA         NA         NA      Inf       NA
## 178         NA         NA         NA         NA         NA      Inf       NA
## 179         NA         NA         NA         NA         NA      Inf       NA
## 180         NA         NA         NA         NA         NA      Inf       NA
## 181         NA         NA         NA         NA         NA      Inf       NA
## 182         NA         NA         NA         NA         NA      Inf       NA
## 183         NA         NA         NA         NA         NA      Inf       NA
## 184         NA         NA         NA         NA         NA      Inf       NA
## 185         NA         NA         NA         NA         NA      Inf       NA
## 186         NA         NA         NA         NA         NA      Inf       NA
## 187         NA         NA         NA         NA         NA      Inf       NA
## 188         NA         NA         NA         NA         NA      Inf       NA
## 189         NA         NA         NA         NA         NA      Inf       NA
## 190         NA         NA         NA         NA         NA      Inf       NA
## 191         NA         NA         NA         NA         NA      Inf       NA
## 192         NA         NA         NA         NA         NA      Inf       NA
## 193         NA         NA         NA         NA         NA      Inf       NA
## 194         NA         NA         NA         NA         NA      Inf       NA
## 195         NA         NA         NA         NA         NA      Inf       NA
## 196         NA         NA         NA         NA         NA      Inf       NA
## 197         NA         NA         NA         NA         NA      Inf       NA
## 198         NA         NA         NA         NA         NA      Inf       NA
## 199         NA         NA         NA         NA         NA      Inf       NA
## 200         NA         NA         NA         NA         NA      Inf       NA
## 201         NA         NA         NA         NA         NA      Inf       NA
## 202         NA         NA         NA         NA         NA      Inf       NA
## 203         NA         NA         NA         NA         NA      Inf       NA
## 204   -0.00724   -0.00646   -0.00818   -0.00691   -0.00445 -0.00818        3
## 205         NA         NA         NA         NA         NA      Inf       NA
## 206         NA         NA         NA         NA         NA      Inf       NA
## 207         NA         NA         NA         NA         NA      Inf       NA
## 208         NA         NA         NA         NA         NA      Inf       NA
## 209         NA         NA         NA         NA         NA      Inf       NA
## 210         NA         NA         NA         NA         NA      Inf       NA
## 211         NA         NA         NA         NA         NA      Inf       NA
## 212         NA         NA         NA         NA         NA      Inf       NA
## 213   -0.03114   -0.03036   -0.03208   -0.03081   -0.02835 -0.03208        3
## 214         NA         NA         NA         NA         NA      Inf       NA
## 215         NA         NA         NA         NA         NA      Inf       NA
## 216         NA         NA         NA         NA         NA      Inf       NA
## 217         NA         NA         NA         NA         NA      Inf       NA
## 218         NA         NA         NA         NA         NA      Inf       NA
## 219         NA         NA         NA         NA         NA      Inf       NA
## 220         NA         NA         NA         NA         NA      Inf       NA
## 221         NA         NA         NA         NA         NA      Inf       NA
## 222         NA         NA         NA         NA         NA      Inf       NA
## 223         NA         NA         NA         NA         NA      Inf       NA
## 224         NA         NA         NA         NA         NA      Inf       NA
## 225         NA         NA         NA         NA         NA      Inf       NA
## 226         NA         NA         NA         NA         NA      Inf       NA
## 227         NA         NA         NA         NA         NA      Inf       NA
## 228         NA         NA         NA         NA         NA      Inf       NA
## 229         NA         NA         NA         NA         NA      Inf       NA
## 230         NA         NA         NA         NA         NA      Inf       NA
## 231         NA         NA         NA         NA         NA      Inf       NA
## 232         NA         NA         NA         NA         NA      Inf       NA
## 233         NA         NA         NA         NA         NA      Inf       NA
## 234         NA         NA         NA         NA         NA      Inf       NA
## 235         NA         NA         NA         NA         NA      Inf       NA
## 236   -0.00128   -0.00050   -0.00222   -0.00095    0.00151 -0.00222        3
## 237         NA         NA         NA         NA         NA      Inf       NA
## 238         NA         NA         NA         NA         NA      Inf       NA
## 239         NA         NA         NA         NA         NA      Inf       NA
## 240         NA         NA         NA         NA         NA      Inf       NA
## 241   -0.00120   -0.00042   -0.00214   -0.00087    0.00159 -0.00214        3
## 242         NA         NA         NA         NA         NA      Inf       NA
## 243         NA         NA         NA         NA         NA      Inf       NA
## 244         NA         NA         NA         NA         NA      Inf       NA
## 245         NA         NA         NA         NA         NA      Inf       NA
## 246         NA         NA         NA         NA         NA      Inf       NA
## 247         NA         NA         NA         NA         NA      Inf       NA
## 248   -0.00443   -0.00365   -0.00537   -0.00410   -0.00164 -0.00537        3
## 249         NA         NA         NA         NA         NA      Inf       NA
## 250         NA         NA         NA         NA         NA      Inf       NA
## 251         NA         NA         NA         NA         NA      Inf       NA
## 252         NA         NA         NA         NA         NA      Inf       NA
## 253         NA         NA         NA         NA         NA      Inf       NA
## 254         NA         NA         NA         NA         NA      Inf       NA
## 255         NA         NA         NA         NA         NA      Inf       NA
## 256         NA         NA         NA         NA         NA      Inf       NA
## 257         NA         NA         NA         NA         NA      Inf       NA
## 258         NA         NA         NA         NA         NA      Inf       NA
## 259         NA         NA         NA         NA         NA      Inf       NA
## 260         NA         NA         NA         NA         NA      Inf       NA
## 261         NA         NA         NA         NA         NA      Inf       NA
## 262         NA         NA         NA         NA         NA      Inf       NA
## 263         NA         NA         NA         NA         NA      Inf       NA
## 264         NA         NA         NA         NA         NA      Inf       NA
## 265         NA         NA         NA         NA         NA      Inf       NA
## 266         NA         NA         NA         NA         NA      Inf       NA
## 267         NA         NA         NA         NA         NA      Inf       NA
## 268         NA         NA         NA         NA         NA      Inf       NA
## 269         NA         NA         NA         NA         NA      Inf       NA
## 270         NA         NA         NA         NA         NA      Inf       NA
## 271         NA         NA         NA         NA         NA      Inf       NA
## 272         NA         NA         NA         NA         NA      Inf       NA
## 273         NA         NA         NA         NA         NA      Inf       NA
## 274         NA         NA         NA         NA         NA      Inf       NA
## 275         NA         NA         NA         NA         NA      Inf       NA
## 276         NA         NA         NA         NA         NA      Inf       NA
## 277         NA         NA         NA         NA         NA      Inf       NA
## 278         NA         NA         NA         NA         NA      Inf       NA
## 279   -0.00156   -0.00078   -0.00250   -0.00123    0.00123 -0.00250        3
## 280         NA         NA         NA         NA         NA      Inf       NA
## 281         NA         NA         NA         NA         NA      Inf       NA
## 282         NA         NA         NA         NA         NA      Inf       NA
## 283         NA         NA         NA         NA         NA      Inf       NA
## 284   -0.03229   -0.03151   -0.03323   -0.03196   -0.02950 -0.03323        3
## 285         NA         NA         NA         NA         NA      Inf       NA
## 286         NA         NA         NA         NA         NA      Inf       NA
## 287         NA         NA         NA         NA         NA      Inf       NA
## 288         NA         NA         NA         NA         NA      Inf       NA
## 289         NA         NA         NA         NA         NA      Inf       NA
## 290         NA         NA         NA         NA         NA      Inf       NA
## 291         NA         NA         NA         NA         NA      Inf       NA
## 292   -0.00373   -0.00295   -0.00467   -0.00340   -0.00094 -0.00467        3
## 293         NA         NA         NA         NA         NA      Inf       NA
## 294         NA         NA         NA         NA         NA      Inf       NA
## 295         NA         NA         NA         NA         NA      Inf       NA
## 296         NA         NA         NA         NA         NA      Inf       NA
## 297         NA         NA         NA         NA         NA      Inf       NA
## 298         NA         NA         NA         NA         NA      Inf       NA
## 299         NA         NA         NA         NA         NA      Inf       NA
## 300         NA         NA         NA         NA         NA      Inf       NA
## 301         NA         NA         NA         NA         NA      Inf       NA
## 302         NA         NA         NA         NA         NA      Inf       NA
## 303         NA         NA         NA         NA         NA      Inf       NA
## 304   -0.00539   -0.00461   -0.00633   -0.00506   -0.00260 -0.00633        3
## 305         NA         NA         NA         NA         NA      Inf       NA
## 306         NA         NA         NA         NA         NA      Inf       NA
## 307         NA         NA         NA         NA         NA      Inf       NA
## 308         NA         NA         NA         NA         NA      Inf       NA
## 309         NA         NA         NA         NA         NA      Inf       NA
## 310         NA         NA         NA         NA         NA      Inf       NA
## 311         NA         NA         NA         NA         NA      Inf       NA
## 312         NA         NA         NA         NA         NA      Inf       NA
## 313         NA         NA         NA         NA         NA      Inf       NA
## 314         NA         NA         NA         NA         NA      Inf       NA
## 315         NA         NA         NA         NA         NA      Inf       NA
## 316         NA         NA         NA         NA         NA      Inf       NA
## 317         NA         NA         NA         NA         NA      Inf       NA
## 318         NA         NA         NA         NA         NA      Inf       NA
## 319         NA         NA         NA         NA         NA      Inf       NA
## 320         NA         NA         NA         NA         NA      Inf       NA
## 321         NA         NA         NA         NA         NA      Inf       NA
## 322         NA         NA         NA         NA         NA      Inf       NA
## 323         NA         NA         NA         NA         NA      Inf       NA
## 324         NA         NA         NA         NA         NA      Inf       NA
## 325         NA         NA         NA         NA         NA      Inf       NA
## 326         NA         NA         NA         NA         NA      Inf       NA
## 327         NA         NA         NA         NA         NA      Inf       NA
## 328         NA         NA         NA         NA         NA      Inf       NA
## 329   -0.01822   -0.01744   -0.01916   -0.01789   -0.01543 -0.01916        3
## 330         NA         NA         NA         NA         NA      Inf       NA
## 331         NA         NA         NA         NA         NA      Inf       NA
## 332   -0.00356   -0.00278   -0.00450   -0.00323   -0.00077 -0.00450        3
## 333         NA         NA         NA         NA         NA      Inf       NA
## 334         NA         NA         NA         NA         NA      Inf       NA
## 335         NA         NA         NA         NA         NA      Inf       NA
## 336         NA         NA         NA         NA         NA      Inf       NA
## 337         NA         NA         NA         NA         NA      Inf       NA
## 338         NA         NA         NA         NA         NA      Inf       NA
## 339         NA         NA         NA         NA         NA      Inf       NA
## 340         NA         NA         NA         NA         NA      Inf       NA
## 341         NA         NA         NA         NA         NA      Inf       NA
## 342         NA         NA         NA         NA         NA      Inf       NA
## 343         NA         NA         NA         NA         NA      Inf       NA
## 344         NA         NA         NA         NA         NA      Inf       NA
## 345         NA         NA         NA         NA         NA      Inf       NA
## 346         NA         NA         NA         NA         NA      Inf       NA
## 347         NA         NA         NA         NA         NA      Inf       NA
## 348         NA         NA         NA         NA         NA      Inf       NA
## 349         NA         NA         NA         NA         NA      Inf       NA
## 350         NA         NA         NA         NA         NA      Inf       NA
## 351         NA         NA         NA         NA         NA      Inf       NA
## 352         NA         NA         NA         NA         NA      Inf       NA
## 353         NA         NA         NA         NA         NA      Inf       NA
## 354         NA         NA         NA         NA         NA      Inf       NA
## 355         NA         NA         NA         NA         NA      Inf       NA
## 356         NA         NA         NA         NA         NA      Inf       NA
## 357         NA         NA         NA         NA         NA      Inf       NA
## 358         NA         NA         NA         NA         NA      Inf       NA
## 359         NA         NA         NA         NA         NA      Inf       NA
## 360         NA         NA         NA         NA         NA      Inf       NA
## 361         NA         NA         NA         NA         NA      Inf       NA
## 362         NA         NA         NA         NA         NA      Inf       NA
## 363         NA         NA         NA         NA         NA      Inf       NA
## 364         NA         NA         NA         NA         NA      Inf       NA
## 365         NA         NA         NA         NA         NA      Inf       NA
## 366         NA         NA         NA         NA         NA      Inf       NA
## 367         NA         NA         NA         NA         NA      Inf       NA
## 368         NA         NA         NA         NA         NA      Inf       NA
## 369         NA         NA         NA         NA         NA      Inf       NA
## 370    0.00030    0.00108   -0.00064    0.00063    0.00309 -0.00064        3
## 371         NA         NA         NA         NA         NA      Inf       NA
## 372         NA         NA         NA         NA         NA      Inf       NA
## 373         NA         NA         NA         NA         NA      Inf       NA
## 374         NA         NA         NA         NA         NA      Inf       NA
## 375         NA         NA         NA         NA         NA      Inf       NA
## 376         NA         NA         NA         NA         NA      Inf       NA
## 377         NA         NA         NA         NA         NA      Inf       NA
## 378         NA         NA         NA         NA         NA      Inf       NA
## 379         NA         NA         NA         NA         NA      Inf       NA
## 380         NA         NA         NA         NA         NA      Inf       NA
## 381         NA         NA         NA         NA         NA      Inf       NA
## 382         NA         NA         NA         NA         NA      Inf       NA
## 383         NA         NA         NA         NA         NA      Inf       NA
## 384         NA         NA         NA         NA         NA      Inf       NA
## 385         NA         NA         NA         NA         NA      Inf       NA
## 386         NA         NA         NA         NA         NA      Inf       NA
## 387         NA         NA         NA         NA         NA      Inf       NA
## 388         NA         NA         NA         NA         NA      Inf       NA
## 389   -0.02054   -0.01976   -0.02148   -0.02021   -0.01775 -0.02148        3
## 390         NA         NA         NA         NA         NA      Inf       NA
## 391         NA         NA         NA         NA         NA      Inf       NA
## 392         NA         NA         NA         NA         NA      Inf       NA
## 393         NA         NA         NA         NA         NA      Inf       NA
## 394         NA         NA         NA         NA         NA      Inf       NA
## 395         NA         NA         NA         NA         NA      Inf       NA
## 396         NA         NA         NA         NA         NA      Inf       NA
## 397         NA         NA         NA         NA         NA      Inf       NA
## 398         NA         NA         NA         NA         NA      Inf       NA
## 399         NA         NA         NA         NA         NA      Inf       NA
## 400         NA         NA         NA         NA         NA      Inf       NA
## 401         NA         NA         NA         NA         NA      Inf       NA
## 402         NA         NA         NA         NA         NA      Inf       NA
## 403         NA         NA         NA         NA         NA      Inf       NA
## 404         NA         NA         NA         NA         NA      Inf       NA
## 405         NA         NA         NA         NA         NA      Inf       NA
## 406         NA         NA         NA         NA         NA      Inf       NA
## 407         NA         NA         NA         NA         NA      Inf       NA
## 408         NA         NA         NA         NA         NA      Inf       NA
## 409         NA         NA         NA         NA         NA      Inf       NA
## 410         NA         NA         NA         NA         NA      Inf       NA
## 411         NA         NA         NA         NA         NA      Inf       NA
## 412         NA         NA         NA         NA         NA      Inf       NA
## 413         NA         NA         NA         NA         NA      Inf       NA
## 414         NA         NA         NA         NA         NA      Inf       NA
## 415         NA         NA         NA         NA         NA      Inf       NA
## 416         NA         NA         NA         NA         NA      Inf       NA
## 417         NA         NA         NA         NA         NA      Inf       NA
## 418         NA         NA         NA         NA         NA      Inf       NA
## 419         NA         NA         NA         NA         NA      Inf       NA
## 420         NA         NA         NA         NA         NA      Inf       NA
## 421   -0.00568   -0.00490   -0.00662   -0.00535   -0.00289 -0.00662        3
## 422         NA         NA         NA         NA         NA      Inf       NA
## 423         NA         NA         NA         NA         NA      Inf       NA
## 424         NA         NA         NA         NA         NA      Inf       NA
## 425   -0.00324   -0.00246   -0.00418   -0.00291   -0.00045 -0.00418        3
## 426         NA         NA         NA         NA         NA      Inf       NA
## 427         NA         NA         NA         NA         NA      Inf       NA
## 428         NA         NA         NA         NA         NA      Inf       NA
## 429         NA         NA         NA         NA         NA      Inf       NA
## 430         NA         NA         NA         NA         NA      Inf       NA
## 431         NA         NA         NA         NA         NA      Inf       NA
## 432         NA         NA         NA         NA         NA      Inf       NA
## 433         NA         NA         NA         NA         NA      Inf       NA
## 434         NA         NA         NA         NA         NA      Inf       NA
## 435   -0.00203   -0.00125   -0.00297   -0.00170    0.00076 -0.00297        3
## 436         NA         NA         NA         NA         NA      Inf       NA
## 437         NA         NA         NA         NA         NA      Inf       NA
## 438         NA         NA         NA         NA         NA      Inf       NA
## 439         NA         NA         NA         NA         NA      Inf       NA
## 440         NA         NA         NA         NA         NA      Inf       NA
## 441         NA         NA         NA         NA         NA      Inf       NA
## 442         NA         NA         NA         NA         NA      Inf       NA
## 443         NA         NA         NA         NA         NA      Inf       NA
## 444         NA         NA         NA         NA         NA      Inf       NA
## 445         NA         NA         NA         NA         NA      Inf       NA
## 446         NA         NA         NA         NA         NA      Inf       NA
## 447         NA         NA         NA         NA         NA      Inf       NA
## 448         NA         NA         NA         NA         NA      Inf       NA
## 449         NA         NA         NA         NA         NA      Inf       NA
## 450         NA         NA         NA         NA         NA      Inf       NA
## 451         NA         NA         NA         NA         NA      Inf       NA
## 452         NA         NA         NA         NA         NA      Inf       NA
## 453         NA         NA         NA         NA         NA      Inf       NA
## 454         NA         NA         NA         NA         NA      Inf       NA
## 455         NA         NA         NA         NA         NA      Inf       NA
## 456         NA         NA         NA         NA         NA      Inf       NA
## 457         NA         NA         NA         NA         NA      Inf       NA
## 458   -0.00880   -0.00802   -0.00974   -0.00847   -0.00601 -0.00974        3
## 459         NA         NA         NA         NA         NA      Inf       NA
## 460         NA         NA         NA         NA         NA      Inf       NA
## 461         NA         NA         NA         NA         NA      Inf       NA
## 462         NA         NA         NA         NA         NA      Inf       NA
## 463         NA         NA         NA         NA         NA      Inf       NA
## 464   -0.03114   -0.03036   -0.03208   -0.03081   -0.02835 -0.03208        3
## 465         NA         NA         NA         NA         NA      Inf       NA
## 466         NA         NA         NA         NA         NA      Inf       NA
## 467         NA         NA         NA         NA         NA      Inf       NA
## 468         NA         NA         NA         NA         NA      Inf       NA
## 469         NA         NA         NA         NA         NA      Inf       NA
## 470         NA         NA         NA         NA         NA      Inf       NA
## 471         NA         NA         NA         NA         NA      Inf       NA
## 472         NA         NA         NA         NA         NA      Inf       NA
## 473         NA         NA         NA         NA         NA      Inf       NA
## 474         NA         NA         NA         NA         NA      Inf       NA
## 475         NA         NA         NA         NA         NA      Inf       NA
## 476         NA         NA         NA         NA         NA      Inf       NA
## 477         NA         NA         NA         NA         NA      Inf       NA
## 478         NA         NA         NA         NA         NA      Inf       NA
## 479         NA         NA         NA         NA         NA      Inf       NA
## 480   -0.00568   -0.00490   -0.00662   -0.00535   -0.00289 -0.00662        3
## 481         NA         NA         NA         NA         NA      Inf       NA
## 482   -0.00324   -0.00246   -0.00418   -0.00291   -0.00045 -0.00418        3
## 483         NA         NA         NA         NA         NA      Inf       NA
## 484         NA         NA         NA         NA         NA      Inf       NA
## 485         NA         NA         NA         NA         NA      Inf       NA
## 486         NA         NA         NA         NA         NA      Inf       NA
## 487         NA         NA         NA         NA         NA      Inf       NA
## 488         NA         NA         NA         NA         NA      Inf       NA
## 489         NA         NA         NA         NA         NA      Inf       NA
## 490         NA         NA         NA         NA         NA      Inf       NA
## 491         NA         NA         NA         NA         NA      Inf       NA
## 492         NA         NA         NA         NA         NA      Inf       NA
## 493         NA         NA         NA         NA         NA      Inf       NA
## 494         NA         NA         NA         NA         NA      Inf       NA
## 495         NA         NA         NA         NA         NA      Inf       NA
## 496         NA         NA         NA         NA         NA      Inf       NA
## 497         NA         NA         NA         NA         NA      Inf       NA
## 498         NA         NA         NA         NA         NA      Inf       NA
## 499         NA         NA         NA         NA         NA      Inf       NA
## 500         NA         NA         NA         NA         NA      Inf       NA
## 501   -0.02003   -0.01925   -0.02097   -0.01970   -0.01724 -0.02097        3
## 502         NA         NA         NA         NA         NA      Inf       NA
## 503         NA         NA         NA         NA         NA      Inf       NA
## 504         NA         NA         NA         NA         NA      Inf       NA
## 505         NA         NA         NA         NA         NA      Inf       NA
## 506         NA         NA         NA         NA         NA      Inf       NA
## 507         NA         NA         NA         NA         NA      Inf       NA
## 508         NA         NA         NA         NA         NA      Inf       NA
## 509   -0.00597   -0.00519   -0.00691   -0.00564   -0.00318 -0.00691        3
## 510         NA         NA         NA         NA         NA      Inf       NA
## 511         NA         NA         NA         NA         NA      Inf       NA
## 512         NA         NA         NA         NA         NA      Inf       NA
## 513         NA         NA         NA         NA         NA      Inf       NA
## 514         NA         NA         NA         NA         NA      Inf       NA
## 515         NA         NA         NA         NA         NA      Inf       NA
## 516         NA         NA         NA         NA         NA      Inf       NA
## 517         NA         NA         NA         NA         NA      Inf       NA
## 518         NA         NA         NA         NA         NA      Inf       NA
## 519         NA         NA         NA         NA         NA      Inf       NA
## 520         NA         NA         NA         NA         NA      Inf       NA
## 521         NA         NA         NA         NA         NA      Inf       NA
## 522         NA         NA         NA         NA         NA      Inf       NA
## 523         NA         NA         NA         NA         NA      Inf       NA
## 524         NA         NA         NA         NA         NA      Inf       NA
## 525         NA         NA         NA         NA         NA      Inf       NA
## 526         NA         NA         NA         NA         NA      Inf       NA
## 527         NA         NA         NA         NA         NA      Inf       NA
## 528         NA         NA         NA         NA         NA      Inf       NA
## 529         NA         NA         NA         NA         NA      Inf       NA
## 530         NA         NA         NA         NA         NA      Inf       NA
## 531         NA         NA         NA         NA         NA      Inf       NA
## 532         NA         NA         NA         NA         NA      Inf       NA
## 533         NA         NA         NA         NA         NA      Inf       NA
## 534         NA         NA         NA         NA         NA      Inf       NA
## 535         NA         NA         NA         NA         NA      Inf       NA
## 536         NA         NA         NA         NA         NA      Inf       NA
## 537         NA         NA         NA         NA         NA      Inf       NA
## 538         NA         NA         NA         NA         NA      Inf       NA
## 539         NA         NA         NA         NA         NA      Inf       NA
## 540         NA         NA         NA         NA         NA      Inf       NA
## 541         NA         NA         NA         NA         NA      Inf       NA
## 542         NA         NA         NA         NA         NA      Inf       NA
## 543         NA         NA         NA         NA         NA      Inf       NA
## 544         NA         NA         NA         NA         NA      Inf       NA
## 545         NA         NA         NA         NA         NA      Inf       NA
## 546         NA         NA         NA         NA         NA      Inf       NA
## 547         NA         NA         NA         NA         NA      Inf       NA
## 548         NA         NA         NA         NA         NA      Inf       NA
## 549         NA         NA         NA         NA         NA      Inf       NA
## 550   -0.01274   -0.01196   -0.01368   -0.01241   -0.00995 -0.01368        3
## 551         NA         NA         NA         NA         NA      Inf       NA
## 552         NA         NA         NA         NA         NA      Inf       NA
## 553         NA         NA         NA         NA         NA      Inf       NA
## 554         NA         NA         NA         NA         NA      Inf       NA
## 555         NA         NA         NA         NA         NA      Inf       NA
## 556         NA         NA         NA         NA         NA      Inf       NA
## 557         NA         NA         NA         NA         NA      Inf       NA
## 558         NA         NA         NA         NA         NA      Inf       NA
## 559         NA         NA         NA         NA         NA      Inf       NA
## 560         NA         NA         NA         NA         NA      Inf       NA
## 561         NA         NA         NA         NA         NA      Inf       NA
## 562         NA         NA         NA         NA         NA      Inf       NA
## 563         NA         NA         NA         NA         NA      Inf       NA
## 564   -0.01909   -0.01831   -0.02003   -0.01876   -0.01630 -0.02003        3
## 565         NA         NA         NA         NA         NA      Inf       NA
## 566         NA         NA         NA         NA         NA      Inf       NA
## 567         NA         NA         NA         NA         NA      Inf       NA
## 568         NA         NA         NA         NA         NA      Inf       NA
## 569         NA         NA         NA         NA         NA      Inf       NA
## 570         NA         NA         NA         NA         NA      Inf       NA
## 571         NA         NA         NA         NA         NA      Inf       NA
## 572         NA         NA         NA         NA         NA      Inf       NA
## 573         NA         NA         NA         NA         NA      Inf       NA
## 574         NA         NA         NA         NA         NA      Inf       NA
## 575         NA         NA         NA         NA         NA      Inf       NA
## 576         NA         NA         NA         NA         NA      Inf       NA
## 577         NA         NA         NA         NA         NA      Inf       NA
## 578         NA         NA         NA         NA         NA      Inf       NA
## 579         NA         NA         NA         NA         NA      Inf       NA
## 580         NA         NA         NA         NA         NA      Inf       NA
## 581         NA         NA         NA         NA         NA      Inf       NA
## 582         NA         NA         NA         NA         NA      Inf       NA
## 583         NA         NA         NA         NA         NA      Inf       NA
## 584         NA         NA         NA         NA         NA      Inf       NA
## 585         NA         NA         NA         NA         NA      Inf       NA
## 586         NA         NA         NA         NA         NA      Inf       NA
## 587         NA         NA         NA         NA         NA      Inf       NA
## 588         NA         NA         NA         NA         NA      Inf       NA
## 589         NA         NA         NA         NA         NA      Inf       NA
## 590         NA         NA         NA         NA         NA      Inf       NA
## 591         NA         NA         NA         NA         NA      Inf       NA
## 592   -0.00519   -0.00441   -0.00613   -0.00486   -0.00240 -0.00613        3
## 593         NA         NA         NA         NA         NA      Inf       NA
## 594         NA         NA         NA         NA         NA      Inf       NA
## 595         NA         NA         NA         NA         NA      Inf       NA
## 596         NA         NA         NA         NA         NA      Inf       NA
## 597         NA         NA         NA         NA         NA      Inf       NA
## 598         NA         NA         NA         NA         NA      Inf       NA
## 599         NA         NA         NA         NA         NA      Inf       NA
## 600         NA         NA         NA         NA         NA      Inf       NA
## 601         NA         NA         NA         NA         NA      Inf       NA
## 602         NA         NA         NA         NA         NA      Inf       NA
## 603         NA         NA         NA         NA         NA      Inf       NA
## 604         NA         NA         NA         NA         NA      Inf       NA
## 605         NA         NA         NA         NA         NA      Inf       NA
## 606         NA         NA         NA         NA         NA      Inf       NA
## 607         NA         NA         NA         NA         NA      Inf       NA
## 608         NA         NA         NA         NA         NA      Inf       NA
## 609         NA         NA         NA         NA         NA      Inf       NA
## 610   -0.00461   -0.00383   -0.00555   -0.00428   -0.00182 -0.00555        3
## 611         NA         NA         NA         NA         NA      Inf       NA
## 612         NA         NA         NA         NA         NA      Inf       NA
## 613         NA         NA         NA         NA         NA      Inf       NA
## 614         NA         NA         NA         NA         NA      Inf       NA

It looks like the year keyword is all 3 for the minimum and that the vote for the rating whose difference is closer to the minimum is correct in choosing rating 3.

Lets look at a random keyword whose rating was 1.

bsy <- MLr[,c(grep('busy_diff',colnames(MLr)),grep('busyMin',colnames(MLr)),
             grep('busyvote',colnames(MLr)))]
bsy
##     busy_diff1 busy_diff2 busy_diff3 busy_diff4 busy_diff5  busyMin busyvote
## 1           NA         NA         NA         NA         NA      Inf       NA
## 2           NA         NA         NA         NA         NA      Inf       NA
## 3           NA         NA         NA         NA         NA      Inf       NA
## 4           NA         NA         NA         NA         NA      Inf       NA
## 5           NA         NA         NA         NA         NA      Inf       NA
## 6           NA         NA         NA         NA         NA      Inf       NA
## 7           NA         NA         NA         NA         NA      Inf       NA
## 8           NA         NA         NA         NA         NA      Inf       NA
## 9           NA         NA         NA         NA         NA      Inf       NA
## 10          NA         NA         NA         NA         NA      Inf       NA
## 11          NA         NA         NA         NA         NA      Inf       NA
## 12          NA         NA         NA         NA         NA      Inf       NA
## 13          NA         NA         NA         NA         NA      Inf       NA
## 14          NA         NA         NA         NA         NA      Inf       NA
## 15          NA         NA         NA         NA         NA      Inf       NA
## 16          NA         NA         NA         NA         NA      Inf       NA
## 17          NA         NA         NA         NA         NA      Inf       NA
## 18          NA         NA         NA         NA         NA      Inf       NA
## 19          NA         NA         NA         NA         NA      Inf       NA
## 20          NA         NA         NA         NA         NA      Inf       NA
## 21          NA         NA         NA         NA         NA      Inf       NA
## 22          NA         NA         NA         NA         NA      Inf       NA
## 23          NA         NA         NA         NA         NA      Inf       NA
## 24          NA         NA         NA         NA         NA      Inf       NA
## 25          NA         NA         NA         NA         NA      Inf       NA
## 26          NA         NA         NA         NA         NA      Inf       NA
## 27          NA         NA         NA         NA         NA      Inf       NA
## 28          NA         NA         NA         NA         NA      Inf       NA
## 29          NA         NA         NA         NA         NA      Inf       NA
## 30          NA         NA         NA         NA         NA      Inf       NA
## 31          NA         NA         NA         NA         NA      Inf       NA
## 32          NA         NA         NA         NA         NA      Inf       NA
## 33          NA         NA         NA         NA         NA      Inf       NA
## 34          NA         NA         NA         NA         NA      Inf       NA
## 35          NA         NA         NA         NA         NA      Inf       NA
## 36          NA         NA         NA         NA         NA      Inf       NA
## 37          NA         NA         NA         NA         NA      Inf       NA
## 38          NA         NA         NA         NA         NA      Inf       NA
## 39          NA         NA         NA         NA         NA      Inf       NA
## 40          NA         NA         NA         NA         NA      Inf       NA
## 41          NA         NA         NA         NA         NA      Inf       NA
## 42          NA         NA         NA         NA         NA      Inf       NA
## 43          NA         NA         NA         NA         NA      Inf       NA
## 44          NA         NA         NA         NA         NA      Inf       NA
## 45          NA         NA         NA         NA         NA      Inf       NA
## 46          NA         NA         NA         NA         NA      Inf       NA
## 47          NA         NA         NA         NA         NA      Inf       NA
## 48          NA         NA         NA         NA         NA      Inf       NA
## 49          NA         NA         NA         NA         NA      Inf       NA
## 50          NA         NA         NA         NA         NA      Inf       NA
## 51          NA         NA         NA         NA         NA      Inf       NA
## 52          NA         NA         NA         NA         NA      Inf       NA
## 53          NA         NA         NA         NA         NA      Inf       NA
## 54          NA         NA         NA         NA         NA      Inf       NA
## 55          NA         NA         NA         NA         NA      Inf       NA
## 56          NA         NA         NA         NA         NA      Inf       NA
## 57          NA         NA         NA         NA         NA      Inf       NA
## 58          NA         NA         NA         NA         NA      Inf       NA
## 59          NA         NA         NA         NA         NA      Inf       NA
## 60          NA         NA         NA         NA         NA      Inf       NA
## 61          NA         NA         NA         NA         NA      Inf       NA
## 62          NA         NA         NA         NA         NA      Inf       NA
## 63          NA         NA         NA         NA         NA      Inf       NA
## 64          NA         NA         NA         NA         NA      Inf       NA
## 65          NA         NA         NA         NA         NA      Inf       NA
## 66          NA         NA         NA         NA         NA      Inf       NA
## 67          NA         NA         NA         NA         NA      Inf       NA
## 68          NA         NA         NA         NA         NA      Inf       NA
## 69          NA         NA         NA         NA         NA      Inf       NA
## 70          NA         NA         NA         NA         NA      Inf       NA
## 71          NA         NA         NA         NA         NA      Inf       NA
## 72          NA         NA         NA         NA         NA      Inf       NA
## 73          NA         NA         NA         NA         NA      Inf       NA
## 74    -0.01354   -0.01251   -0.01182   -0.01258   -0.01278 -0.01354        1
## 75          NA         NA         NA         NA         NA      Inf       NA
## 76          NA         NA         NA         NA         NA      Inf       NA
## 77          NA         NA         NA         NA         NA      Inf       NA
## 78    -0.03688   -0.03585   -0.03516   -0.03592   -0.03612 -0.03688        1
## 79          NA         NA         NA         NA         NA      Inf       NA
## 80          NA         NA         NA         NA         NA      Inf       NA
## 81          NA         NA         NA         NA         NA      Inf       NA
## 82          NA         NA         NA         NA         NA      Inf       NA
## 83          NA         NA         NA         NA         NA      Inf       NA
## 84    -0.01037   -0.00934   -0.00865   -0.00941   -0.00961 -0.01037        1
## 85          NA         NA         NA         NA         NA      Inf       NA
## 86          NA         NA         NA         NA         NA      Inf       NA
## 87          NA         NA         NA         NA         NA      Inf       NA
## 88          NA         NA         NA         NA         NA      Inf       NA
## 89          NA         NA         NA         NA         NA      Inf       NA
## 90          NA         NA         NA         NA         NA      Inf       NA
## 91          NA         NA         NA         NA         NA      Inf       NA
## 92          NA         NA         NA         NA         NA      Inf       NA
## 93          NA         NA         NA         NA         NA      Inf       NA
## 94          NA         NA         NA         NA         NA      Inf       NA
## 95          NA         NA         NA         NA         NA      Inf       NA
## 96          NA         NA         NA         NA         NA      Inf       NA
## 97          NA         NA         NA         NA         NA      Inf       NA
## 98          NA         NA         NA         NA         NA      Inf       NA
## 99          NA         NA         NA         NA         NA      Inf       NA
## 100         NA         NA         NA         NA         NA      Inf       NA
## 101         NA         NA         NA         NA         NA      Inf       NA
## 102         NA         NA         NA         NA         NA      Inf       NA
## 103   -0.01679   -0.01576   -0.01507   -0.01583   -0.01603 -0.01679        1
## 104         NA         NA         NA         NA         NA      Inf       NA
## 105         NA         NA         NA         NA         NA      Inf       NA
## 106         NA         NA         NA         NA         NA      Inf       NA
## 107         NA         NA         NA         NA         NA      Inf       NA
## 108         NA         NA         NA         NA         NA      Inf       NA
## 109         NA         NA         NA         NA         NA      Inf       NA
## 110         NA         NA         NA         NA         NA      Inf       NA
## 111         NA         NA         NA         NA         NA      Inf       NA
## 112         NA         NA         NA         NA         NA      Inf       NA
## 113         NA         NA         NA         NA         NA      Inf       NA
## 114         NA         NA         NA         NA         NA      Inf       NA
## 115         NA         NA         NA         NA         NA      Inf       NA
## 116         NA         NA         NA         NA         NA      Inf       NA
## 117         NA         NA         NA         NA         NA      Inf       NA
## 118         NA         NA         NA         NA         NA      Inf       NA
## 119         NA         NA         NA         NA         NA      Inf       NA
## 120         NA         NA         NA         NA         NA      Inf       NA
## 121         NA         NA         NA         NA         NA      Inf       NA
## 122         NA         NA         NA         NA         NA      Inf       NA
## 123         NA         NA         NA         NA         NA      Inf       NA
## 124         NA         NA         NA         NA         NA      Inf       NA
## 125   -0.00790   -0.00687   -0.00618   -0.00694   -0.00714 -0.00790        1
## 126         NA         NA         NA         NA         NA      Inf       NA
## 127         NA         NA         NA         NA         NA      Inf       NA
## 128         NA         NA         NA         NA         NA      Inf       NA
## 129         NA         NA         NA         NA         NA      Inf       NA
## 130         NA         NA         NA         NA         NA      Inf       NA
## 131         NA         NA         NA         NA         NA      Inf       NA
## 132         NA         NA         NA         NA         NA      Inf       NA
## 133         NA         NA         NA         NA         NA      Inf       NA
## 134         NA         NA         NA         NA         NA      Inf       NA
## 135         NA         NA         NA         NA         NA      Inf       NA
## 136         NA         NA         NA         NA         NA      Inf       NA
## 137         NA         NA         NA         NA         NA      Inf       NA
## 138         NA         NA         NA         NA         NA      Inf       NA
## 139         NA         NA         NA         NA         NA      Inf       NA
## 140         NA         NA         NA         NA         NA      Inf       NA
## 141         NA         NA         NA         NA         NA      Inf       NA
## 142         NA         NA         NA         NA         NA      Inf       NA
## 143         NA         NA         NA         NA         NA      Inf       NA
## 144         NA         NA         NA         NA         NA      Inf       NA
## 145         NA         NA         NA         NA         NA      Inf       NA
## 146         NA         NA         NA         NA         NA      Inf       NA
## 147         NA         NA         NA         NA         NA      Inf       NA
## 148         NA         NA         NA         NA         NA      Inf       NA
## 149         NA         NA         NA         NA         NA      Inf       NA
## 150         NA         NA         NA         NA         NA      Inf       NA
## 151         NA         NA         NA         NA         NA      Inf       NA
## 152         NA         NA         NA         NA         NA      Inf       NA
## 153         NA         NA         NA         NA         NA      Inf       NA
## 154         NA         NA         NA         NA         NA      Inf       NA
## 155   -0.01477   -0.01374   -0.01305   -0.01381   -0.01401 -0.01477        1
## 156         NA         NA         NA         NA         NA      Inf       NA
## 157         NA         NA         NA         NA         NA      Inf       NA
## 158         NA         NA         NA         NA         NA      Inf       NA
## 159         NA         NA         NA         NA         NA      Inf       NA
## 160         NA         NA         NA         NA         NA      Inf       NA
## 161         NA         NA         NA         NA         NA      Inf       NA
## 162         NA         NA         NA         NA         NA      Inf       NA
## 163         NA         NA         NA         NA         NA      Inf       NA
## 164         NA         NA         NA         NA         NA      Inf       NA
## 165         NA         NA         NA         NA         NA      Inf       NA
## 166         NA         NA         NA         NA         NA      Inf       NA
## 167         NA         NA         NA         NA         NA      Inf       NA
## 168         NA         NA         NA         NA         NA      Inf       NA
## 169         NA         NA         NA         NA         NA      Inf       NA
## 170         NA         NA         NA         NA         NA      Inf       NA
## 171         NA         NA         NA         NA         NA      Inf       NA
## 172         NA         NA         NA         NA         NA      Inf       NA
## 173         NA         NA         NA         NA         NA      Inf       NA
## 174         NA         NA         NA         NA         NA      Inf       NA
## 175         NA         NA         NA         NA         NA      Inf       NA
## 176         NA         NA         NA         NA         NA      Inf       NA
## 177         NA         NA         NA         NA         NA      Inf       NA
## 178         NA         NA         NA         NA         NA      Inf       NA
## 179         NA         NA         NA         NA         NA      Inf       NA
## 180         NA         NA         NA         NA         NA      Inf       NA
## 181         NA         NA         NA         NA         NA      Inf       NA
## 182         NA         NA         NA         NA         NA      Inf       NA
## 183         NA         NA         NA         NA         NA      Inf       NA
## 184         NA         NA         NA         NA         NA      Inf       NA
## 185         NA         NA         NA         NA         NA      Inf       NA
## 186         NA         NA         NA         NA         NA      Inf       NA
## 187         NA         NA         NA         NA         NA      Inf       NA
## 188         NA         NA         NA         NA         NA      Inf       NA
## 189         NA         NA         NA         NA         NA      Inf       NA
## 190         NA         NA         NA         NA         NA      Inf       NA
## 191         NA         NA         NA         NA         NA      Inf       NA
## 192         NA         NA         NA         NA         NA      Inf       NA
## 193         NA         NA         NA         NA         NA      Inf       NA
## 194         NA         NA         NA         NA         NA      Inf       NA
## 195         NA         NA         NA         NA         NA      Inf       NA
## 196         NA         NA         NA         NA         NA      Inf       NA
## 197         NA         NA         NA         NA         NA      Inf       NA
## 198         NA         NA         NA         NA         NA      Inf       NA
## 199         NA         NA         NA         NA         NA      Inf       NA
## 200         NA         NA         NA         NA         NA      Inf       NA
## 201         NA         NA         NA         NA         NA      Inf       NA
## 202         NA         NA         NA         NA         NA      Inf       NA
## 203         NA         NA         NA         NA         NA      Inf       NA
## 204         NA         NA         NA         NA         NA      Inf       NA
## 205         NA         NA         NA         NA         NA      Inf       NA
## 206         NA         NA         NA         NA         NA      Inf       NA
## 207         NA         NA         NA         NA         NA      Inf       NA
## 208         NA         NA         NA         NA         NA      Inf       NA
## 209         NA         NA         NA         NA         NA      Inf       NA
## 210         NA         NA         NA         NA         NA      Inf       NA
## 211         NA         NA         NA         NA         NA      Inf       NA
## 212         NA         NA         NA         NA         NA      Inf       NA
## 213         NA         NA         NA         NA         NA      Inf       NA
## 214         NA         NA         NA         NA         NA      Inf       NA
## 215         NA         NA         NA         NA         NA      Inf       NA
## 216         NA         NA         NA         NA         NA      Inf       NA
## 217         NA         NA         NA         NA         NA      Inf       NA
## 218         NA         NA         NA         NA         NA      Inf       NA
## 219         NA         NA         NA         NA         NA      Inf       NA
## 220         NA         NA         NA         NA         NA      Inf       NA
## 221         NA         NA         NA         NA         NA      Inf       NA
## 222   -0.00348   -0.00245   -0.00176   -0.00252   -0.00272 -0.00348        1
## 223         NA         NA         NA         NA         NA      Inf       NA
## 224         NA         NA         NA         NA         NA      Inf       NA
## 225         NA         NA         NA         NA         NA      Inf       NA
## 226         NA         NA         NA         NA         NA      Inf       NA
## 227         NA         NA         NA         NA         NA      Inf       NA
## 228         NA         NA         NA         NA         NA      Inf       NA
## 229         NA         NA         NA         NA         NA      Inf       NA
## 230         NA         NA         NA         NA         NA      Inf       NA
## 231   -0.00340   -0.00237   -0.00168   -0.00244   -0.00264 -0.00340        1
## 232         NA         NA         NA         NA         NA      Inf       NA
## 233         NA         NA         NA         NA         NA      Inf       NA
## 234         NA         NA         NA         NA         NA      Inf       NA
## 235         NA         NA         NA         NA         NA      Inf       NA
## 236         NA         NA         NA         NA         NA      Inf       NA
## 237         NA         NA         NA         NA         NA      Inf       NA
## 238         NA         NA         NA         NA         NA      Inf       NA
## 239         NA         NA         NA         NA         NA      Inf       NA
## 240   -0.00533   -0.00430   -0.00361   -0.00437   -0.00457 -0.00533        1
## 241         NA         NA         NA         NA         NA      Inf       NA
## 242         NA         NA         NA         NA         NA      Inf       NA
## 243         NA         NA         NA         NA         NA      Inf       NA
## 244         NA         NA         NA         NA         NA      Inf       NA
## 245         NA         NA         NA         NA         NA      Inf       NA
## 246         NA         NA         NA         NA         NA      Inf       NA
## 247         NA         NA         NA         NA         NA      Inf       NA
## 248         NA         NA         NA         NA         NA      Inf       NA
## 249         NA         NA         NA         NA         NA      Inf       NA
## 250         NA         NA         NA         NA         NA      Inf       NA
## 251         NA         NA         NA         NA         NA      Inf       NA
## 252         NA         NA         NA         NA         NA      Inf       NA
## 253         NA         NA         NA         NA         NA      Inf       NA
## 254         NA         NA         NA         NA         NA      Inf       NA
## 255         NA         NA         NA         NA         NA      Inf       NA
## 256         NA         NA         NA         NA         NA      Inf       NA
## 257         NA         NA         NA         NA         NA      Inf       NA
## 258         NA         NA         NA         NA         NA      Inf       NA
## 259         NA         NA         NA         NA         NA      Inf       NA
## 260         NA         NA         NA         NA         NA      Inf       NA
## 261   -0.00625   -0.00522   -0.00453   -0.00529   -0.00549 -0.00625        1
## 262         NA         NA         NA         NA         NA      Inf       NA
## 263         NA         NA         NA         NA         NA      Inf       NA
## 264         NA         NA         NA         NA         NA      Inf       NA
## 265         NA         NA         NA         NA         NA      Inf       NA
## 266         NA         NA         NA         NA         NA      Inf       NA
## 267         NA         NA         NA         NA         NA      Inf       NA
## 268         NA         NA         NA         NA         NA      Inf       NA
## 269         NA         NA         NA         NA         NA      Inf       NA
## 270         NA         NA         NA         NA         NA      Inf       NA
## 271         NA         NA         NA         NA         NA      Inf       NA
## 272         NA         NA         NA         NA         NA      Inf       NA
## 273         NA         NA         NA         NA         NA      Inf       NA
## 274         NA         NA         NA         NA         NA      Inf       NA
## 275         NA         NA         NA         NA         NA      Inf       NA
## 276         NA         NA         NA         NA         NA      Inf       NA
## 277         NA         NA         NA         NA         NA      Inf       NA
## 278         NA         NA         NA         NA         NA      Inf       NA
## 279         NA         NA         NA         NA         NA      Inf       NA
## 280         NA         NA         NA         NA         NA      Inf       NA
## 281         NA         NA         NA         NA         NA      Inf       NA
## 282         NA         NA         NA         NA         NA      Inf       NA
## 283         NA         NA         NA         NA         NA      Inf       NA
## 284         NA         NA         NA         NA         NA      Inf       NA
## 285         NA         NA         NA         NA         NA      Inf       NA
## 286         NA         NA         NA         NA         NA      Inf       NA
## 287         NA         NA         NA         NA         NA      Inf       NA
## 288         NA         NA         NA         NA         NA      Inf       NA
## 289         NA         NA         NA         NA         NA      Inf       NA
## 290         NA         NA         NA         NA         NA      Inf       NA
## 291         NA         NA         NA         NA         NA      Inf       NA
## 292         NA         NA         NA         NA         NA      Inf       NA
## 293         NA         NA         NA         NA         NA      Inf       NA
## 294         NA         NA         NA         NA         NA      Inf       NA
## 295   -0.00955   -0.00852   -0.00783   -0.00859   -0.00879 -0.00955        1
## 296         NA         NA         NA         NA         NA      Inf       NA
## 297         NA         NA         NA         NA         NA      Inf       NA
## 298   -0.00415   -0.00312   -0.00243   -0.00319   -0.00339 -0.00415        1
## 299         NA         NA         NA         NA         NA      Inf       NA
## 300         NA         NA         NA         NA         NA      Inf       NA
## 301         NA         NA         NA         NA         NA      Inf       NA
## 302         NA         NA         NA         NA         NA      Inf       NA
## 303         NA         NA         NA         NA         NA      Inf       NA
## 304         NA         NA         NA         NA         NA      Inf       NA
## 305         NA         NA         NA         NA         NA      Inf       NA
## 306         NA         NA         NA         NA         NA      Inf       NA
## 307         NA         NA         NA         NA         NA      Inf       NA
## 308         NA         NA         NA         NA         NA      Inf       NA
## 309         NA         NA         NA         NA         NA      Inf       NA
## 310         NA         NA         NA         NA         NA      Inf       NA
## 311         NA         NA         NA         NA         NA      Inf       NA
## 312         NA         NA         NA         NA         NA      Inf       NA
## 313         NA         NA         NA         NA         NA      Inf       NA
## 314         NA         NA         NA         NA         NA      Inf       NA
## 315         NA         NA         NA         NA         NA      Inf       NA
## 316         NA         NA         NA         NA         NA      Inf       NA
## 317         NA         NA         NA         NA         NA      Inf       NA
## 318         NA         NA         NA         NA         NA      Inf       NA
## 319         NA         NA         NA         NA         NA      Inf       NA
## 320   -0.00379   -0.00276   -0.00207   -0.00283   -0.00303 -0.00379        1
## 321         NA         NA         NA         NA         NA      Inf       NA
## 322         NA         NA         NA         NA         NA      Inf       NA
## 323         NA         NA         NA         NA         NA      Inf       NA
## 324         NA         NA         NA         NA         NA      Inf       NA
## 325         NA         NA         NA         NA         NA      Inf       NA
## 326         NA         NA         NA         NA         NA      Inf       NA
## 327   -0.00387   -0.00284   -0.00215   -0.00291   -0.00311 -0.00387        1
## 328   -0.00605   -0.00502   -0.00433   -0.00509   -0.00529 -0.00605        1
## 329         NA         NA         NA         NA         NA      Inf       NA
## 330         NA         NA         NA         NA         NA      Inf       NA
## 331         NA         NA         NA         NA         NA      Inf       NA
## 332         NA         NA         NA         NA         NA      Inf       NA
## 333         NA         NA         NA         NA         NA      Inf       NA
## 334         NA         NA         NA         NA         NA      Inf       NA
## 335         NA         NA         NA         NA         NA      Inf       NA
## 336         NA         NA         NA         NA         NA      Inf       NA
## 337         NA         NA         NA         NA         NA      Inf       NA
## 338         NA         NA         NA         NA         NA      Inf       NA
## 339         NA         NA         NA         NA         NA      Inf       NA
## 340         NA         NA         NA         NA         NA      Inf       NA
## 341         NA         NA         NA         NA         NA      Inf       NA
## 342         NA         NA         NA         NA         NA      Inf       NA
## 343         NA         NA         NA         NA         NA      Inf       NA
## 344         NA         NA         NA         NA         NA      Inf       NA
## 345         NA         NA         NA         NA         NA      Inf       NA
## 346         NA         NA         NA         NA         NA      Inf       NA
## 347         NA         NA         NA         NA         NA      Inf       NA
## 348   -0.00397   -0.00294   -0.00225   -0.00301   -0.00321 -0.00397        1
## 349   -0.01571   -0.01468   -0.01399   -0.01475   -0.01495 -0.01571        1
## 350         NA         NA         NA         NA         NA      Inf       NA
## 351         NA         NA         NA         NA         NA      Inf       NA
## 352         NA         NA         NA         NA         NA      Inf       NA
## 353         NA         NA         NA         NA         NA      Inf       NA
## 354         NA         NA         NA         NA         NA      Inf       NA
## 355         NA         NA         NA         NA         NA      Inf       NA
## 356         NA         NA         NA         NA         NA      Inf       NA
## 357         NA         NA         NA         NA         NA      Inf       NA
## 358         NA         NA         NA         NA         NA      Inf       NA
## 359         NA         NA         NA         NA         NA      Inf       NA
## 360         NA         NA         NA         NA         NA      Inf       NA
## 361         NA         NA         NA         NA         NA      Inf       NA
## 362         NA         NA         NA         NA         NA      Inf       NA
## 363         NA         NA         NA         NA         NA      Inf       NA
## 364         NA         NA         NA         NA         NA      Inf       NA
## 365         NA         NA         NA         NA         NA      Inf       NA
## 366         NA         NA         NA         NA         NA      Inf       NA
## 367   -0.00955   -0.00852   -0.00783   -0.00859   -0.00879 -0.00955        1
## 368         NA         NA         NA         NA         NA      Inf       NA
## 369         NA         NA         NA         NA         NA      Inf       NA
## 370         NA         NA         NA         NA         NA      Inf       NA
## 371   -0.00230   -0.00127   -0.00058   -0.00134   -0.00154 -0.00230        1
## 372         NA         NA         NA         NA         NA      Inf       NA
## 373         NA         NA         NA         NA         NA      Inf       NA
## 374         NA         NA         NA         NA         NA      Inf       NA
## 375         NA         NA         NA         NA         NA      Inf       NA
## 376         NA         NA         NA         NA         NA      Inf       NA
## 377         NA         NA         NA         NA         NA      Inf       NA
## 378   -0.00523   -0.00420   -0.00351   -0.00427   -0.00447 -0.00523        1
## 379         NA         NA         NA         NA         NA      Inf       NA
## 380         NA         NA         NA         NA         NA      Inf       NA
## 381         NA         NA         NA         NA         NA      Inf       NA
## 382   -0.00893   -0.00790   -0.00721   -0.00797   -0.00817 -0.00893        1
## 383         NA         NA         NA         NA         NA      Inf       NA
## 384         NA         NA         NA         NA         NA      Inf       NA
## 385         NA         NA         NA         NA         NA      Inf       NA
## 386         NA         NA         NA         NA         NA      Inf       NA
## 387         NA         NA         NA         NA         NA      Inf       NA
## 388         NA         NA         NA         NA         NA      Inf       NA
## 389         NA         NA         NA         NA         NA      Inf       NA
## 390         NA         NA         NA         NA         NA      Inf       NA
## 391         NA         NA         NA         NA         NA      Inf       NA
## 392         NA         NA         NA         NA         NA      Inf       NA
## 393         NA         NA         NA         NA         NA      Inf       NA
## 394         NA         NA         NA         NA         NA      Inf       NA
## 395         NA         NA         NA         NA         NA      Inf       NA
## 396         NA         NA         NA         NA         NA      Inf       NA
## 397   -0.01242   -0.01139   -0.01070   -0.01146   -0.01166 -0.01242        1
## 398         NA         NA         NA         NA         NA      Inf       NA
## 399         NA         NA         NA         NA         NA      Inf       NA
## 400         NA         NA         NA         NA         NA      Inf       NA
## 401   -0.00290   -0.00187   -0.00118   -0.00194   -0.00214 -0.00290        1
## 402         NA         NA         NA         NA         NA      Inf       NA
## 403         NA         NA         NA         NA         NA      Inf       NA
## 404         NA         NA         NA         NA         NA      Inf       NA
## 405         NA         NA         NA         NA         NA      Inf       NA
## 406         NA         NA         NA         NA         NA      Inf       NA
## 407         NA         NA         NA         NA         NA      Inf       NA
## 408         NA         NA         NA         NA         NA      Inf       NA
## 409         NA         NA         NA         NA         NA      Inf       NA
## 410         NA         NA         NA         NA         NA      Inf       NA
## 411         NA         NA         NA         NA         NA      Inf       NA
## 412         NA         NA         NA         NA         NA      Inf       NA
## 413         NA         NA         NA         NA         NA      Inf       NA
## 414         NA         NA         NA         NA         NA      Inf       NA
## 415         NA         NA         NA         NA         NA      Inf       NA
## 416         NA         NA         NA         NA         NA      Inf       NA
## 417         NA         NA         NA         NA         NA      Inf       NA
## 418         NA         NA         NA         NA         NA      Inf       NA
## 419         NA         NA         NA         NA         NA      Inf       NA
## 420         NA         NA         NA         NA         NA      Inf       NA
## 421         NA         NA         NA         NA         NA      Inf       NA
## 422         NA         NA         NA         NA         NA      Inf       NA
## 423         NA         NA         NA         NA         NA      Inf       NA
## 424         NA         NA         NA         NA         NA      Inf       NA
## 425         NA         NA         NA         NA         NA      Inf       NA
## 426         NA         NA         NA         NA         NA      Inf       NA
## 427         NA         NA         NA         NA         NA      Inf       NA
## 428         NA         NA         NA         NA         NA      Inf       NA
## 429         NA         NA         NA         NA         NA      Inf       NA
## 430         NA         NA         NA         NA         NA      Inf       NA
## 431         NA         NA         NA         NA         NA      Inf       NA
## 432         NA         NA         NA         NA         NA      Inf       NA
## 433         NA         NA         NA         NA         NA      Inf       NA
## 434         NA         NA         NA         NA         NA      Inf       NA
## 435         NA         NA         NA         NA         NA      Inf       NA
## 436         NA         NA         NA         NA         NA      Inf       NA
## 437         NA         NA         NA         NA         NA      Inf       NA
## 438         NA         NA         NA         NA         NA      Inf       NA
## 439         NA         NA         NA         NA         NA      Inf       NA
## 440         NA         NA         NA         NA         NA      Inf       NA
## 441         NA         NA         NA         NA         NA      Inf       NA
## 442         NA         NA         NA         NA         NA      Inf       NA
## 443         NA         NA         NA         NA         NA      Inf       NA
## 444         NA         NA         NA         NA         NA      Inf       NA
## 445         NA         NA         NA         NA         NA      Inf       NA
## 446         NA         NA         NA         NA         NA      Inf       NA
## 447         NA         NA         NA         NA         NA      Inf       NA
## 448         NA         NA         NA         NA         NA      Inf       NA
## 449         NA         NA         NA         NA         NA      Inf       NA
## 450         NA         NA         NA         NA         NA      Inf       NA
## 451         NA         NA         NA         NA         NA      Inf       NA
## 452         NA         NA         NA         NA         NA      Inf       NA
## 453         NA         NA         NA         NA         NA      Inf       NA
## 454         NA         NA         NA         NA         NA      Inf       NA
## 455         NA         NA         NA         NA         NA      Inf       NA
## 456         NA         NA         NA         NA         NA      Inf       NA
## 457         NA         NA         NA         NA         NA      Inf       NA
## 458         NA         NA         NA         NA         NA      Inf       NA
## 459         NA         NA         NA         NA         NA      Inf       NA
## 460         NA         NA         NA         NA         NA      Inf       NA
## 461         NA         NA         NA         NA         NA      Inf       NA
## 462         NA         NA         NA         NA         NA      Inf       NA
## 463         NA         NA         NA         NA         NA      Inf       NA
## 464         NA         NA         NA         NA         NA      Inf       NA
## 465         NA         NA         NA         NA         NA      Inf       NA
## 466         NA         NA         NA         NA         NA      Inf       NA
## 467         NA         NA         NA         NA         NA      Inf       NA
## 468         NA         NA         NA         NA         NA      Inf       NA
## 469         NA         NA         NA         NA         NA      Inf       NA
## 470         NA         NA         NA         NA         NA      Inf       NA
## 471         NA         NA         NA         NA         NA      Inf       NA
## 472         NA         NA         NA         NA         NA      Inf       NA
## 473         NA         NA         NA         NA         NA      Inf       NA
## 474         NA         NA         NA         NA         NA      Inf       NA
## 475         NA         NA         NA         NA         NA      Inf       NA
## 476         NA         NA         NA         NA         NA      Inf       NA
## 477         NA         NA         NA         NA         NA      Inf       NA
## 478         NA         NA         NA         NA         NA      Inf       NA
## 479         NA         NA         NA         NA         NA      Inf       NA
## 480         NA         NA         NA         NA         NA      Inf       NA
## 481         NA         NA         NA         NA         NA      Inf       NA
## 482         NA         NA         NA         NA         NA      Inf       NA
## 483         NA         NA         NA         NA         NA      Inf       NA
## 484         NA         NA         NA         NA         NA      Inf       NA
## 485         NA         NA         NA         NA         NA      Inf       NA
## 486         NA         NA         NA         NA         NA      Inf       NA
## 487         NA         NA         NA         NA         NA      Inf       NA
## 488         NA         NA         NA         NA         NA      Inf       NA
## 489         NA         NA         NA         NA         NA      Inf       NA
## 490         NA         NA         NA         NA         NA      Inf       NA
## 491         NA         NA         NA         NA         NA      Inf       NA
## 492         NA         NA         NA         NA         NA      Inf       NA
## 493         NA         NA         NA         NA         NA      Inf       NA
## 494         NA         NA         NA         NA         NA      Inf       NA
## 495         NA         NA         NA         NA         NA      Inf       NA
## 496         NA         NA         NA         NA         NA      Inf       NA
## 497         NA         NA         NA         NA         NA      Inf       NA
## 498         NA         NA         NA         NA         NA      Inf       NA
## 499         NA         NA         NA         NA         NA      Inf       NA
## 500         NA         NA         NA         NA         NA      Inf       NA
## 501         NA         NA         NA         NA         NA      Inf       NA
## 502         NA         NA         NA         NA         NA      Inf       NA
## 503         NA         NA         NA         NA         NA      Inf       NA
## 504         NA         NA         NA         NA         NA      Inf       NA
## 505         NA         NA         NA         NA         NA      Inf       NA
## 506         NA         NA         NA         NA         NA      Inf       NA
## 507         NA         NA         NA         NA         NA      Inf       NA
## 508         NA         NA         NA         NA         NA      Inf       NA
## 509         NA         NA         NA         NA         NA      Inf       NA
## 510         NA         NA         NA         NA         NA      Inf       NA
## 511         NA         NA         NA         NA         NA      Inf       NA
## 512         NA         NA         NA         NA         NA      Inf       NA
## 513         NA         NA         NA         NA         NA      Inf       NA
## 514         NA         NA         NA         NA         NA      Inf       NA
## 515         NA         NA         NA         NA         NA      Inf       NA
## 516         NA         NA         NA         NA         NA      Inf       NA
## 517         NA         NA         NA         NA         NA      Inf       NA
## 518         NA         NA         NA         NA         NA      Inf       NA
## 519         NA         NA         NA         NA         NA      Inf       NA
## 520         NA         NA         NA         NA         NA      Inf       NA
## 521         NA         NA         NA         NA         NA      Inf       NA
## 522         NA         NA         NA         NA         NA      Inf       NA
## 523         NA         NA         NA         NA         NA      Inf       NA
## 524         NA         NA         NA         NA         NA      Inf       NA
## 525         NA         NA         NA         NA         NA      Inf       NA
## 526         NA         NA         NA         NA         NA      Inf       NA
## 527         NA         NA         NA         NA         NA      Inf       NA
## 528         NA         NA         NA         NA         NA      Inf       NA
## 529         NA         NA         NA         NA         NA      Inf       NA
## 530         NA         NA         NA         NA         NA      Inf       NA
## 531         NA         NA         NA         NA         NA      Inf       NA
## 532         NA         NA         NA         NA         NA      Inf       NA
## 533         NA         NA         NA         NA         NA      Inf       NA
## 534         NA         NA         NA         NA         NA      Inf       NA
## 535         NA         NA         NA         NA         NA      Inf       NA
## 536         NA         NA         NA         NA         NA      Inf       NA
## 537   -0.00730   -0.00627   -0.00558   -0.00634   -0.00654 -0.00730        1
## 538         NA         NA         NA         NA         NA      Inf       NA
## 539         NA         NA         NA         NA         NA      Inf       NA
## 540         NA         NA         NA         NA         NA      Inf       NA
## 541         NA         NA         NA         NA         NA      Inf       NA
## 542         NA         NA         NA         NA         NA      Inf       NA
## 543         NA         NA         NA         NA         NA      Inf       NA
## 544         NA         NA         NA         NA         NA      Inf       NA
## 545         NA         NA         NA         NA         NA      Inf       NA
## 546         NA         NA         NA         NA         NA      Inf       NA
## 547         NA         NA         NA         NA         NA      Inf       NA
## 548         NA         NA         NA         NA         NA      Inf       NA
## 549   -0.00272   -0.00169   -0.00100   -0.00176   -0.00196 -0.00272        1
## 550         NA         NA         NA         NA         NA      Inf       NA
## 551         NA         NA         NA         NA         NA      Inf       NA
## 552         NA         NA         NA         NA         NA      Inf       NA
## 553         NA         NA         NA         NA         NA      Inf       NA
## 554         NA         NA         NA         NA         NA      Inf       NA
## 555         NA         NA         NA         NA         NA      Inf       NA
## 556         NA         NA         NA         NA         NA      Inf       NA
## 557         NA         NA         NA         NA         NA      Inf       NA
## 558         NA         NA         NA         NA         NA      Inf       NA
## 559   -0.01623   -0.01520   -0.01451   -0.01527   -0.01547 -0.01623        1
## 560         NA         NA         NA         NA         NA      Inf       NA
## 561         NA         NA         NA         NA         NA      Inf       NA
## 562         NA         NA         NA         NA         NA      Inf       NA
## 563         NA         NA         NA         NA         NA      Inf       NA
## 564         NA         NA         NA         NA         NA      Inf       NA
## 565         NA         NA         NA         NA         NA      Inf       NA
## 566         NA         NA         NA         NA         NA      Inf       NA
## 567         NA         NA         NA         NA         NA      Inf       NA
## 568         NA         NA         NA         NA         NA      Inf       NA
## 569         NA         NA         NA         NA         NA      Inf       NA
## 570         NA         NA         NA         NA         NA      Inf       NA
## 571         NA         NA         NA         NA         NA      Inf       NA
## 572         NA         NA         NA         NA         NA      Inf       NA
## 573         NA         NA         NA         NA         NA      Inf       NA
## 574         NA         NA         NA         NA         NA      Inf       NA
## 575         NA         NA         NA         NA         NA      Inf       NA
## 576         NA         NA         NA         NA         NA      Inf       NA
## 577         NA         NA         NA         NA         NA      Inf       NA
## 578         NA         NA         NA         NA         NA      Inf       NA
## 579         NA         NA         NA         NA         NA      Inf       NA
## 580         NA         NA         NA         NA         NA      Inf       NA
## 581         NA         NA         NA         NA         NA      Inf       NA
## 582         NA         NA         NA         NA         NA      Inf       NA
## 583         NA         NA         NA         NA         NA      Inf       NA
## 584         NA         NA         NA         NA         NA      Inf       NA
## 585         NA         NA         NA         NA         NA      Inf       NA
## 586         NA         NA         NA         NA         NA      Inf       NA
## 587         NA         NA         NA         NA         NA      Inf       NA
## 588         NA         NA         NA         NA         NA      Inf       NA
## 589         NA         NA         NA         NA         NA      Inf       NA
## 590         NA         NA         NA         NA         NA      Inf       NA
## 591         NA         NA         NA         NA         NA      Inf       NA
## 592         NA         NA         NA         NA         NA      Inf       NA
## 593         NA         NA         NA         NA         NA      Inf       NA
## 594         NA         NA         NA         NA         NA      Inf       NA
## 595         NA         NA         NA         NA         NA      Inf       NA
## 596         NA         NA         NA         NA         NA      Inf       NA
## 597         NA         NA         NA         NA         NA      Inf       NA
## 598         NA         NA         NA         NA         NA      Inf       NA
## 599         NA         NA         NA         NA         NA      Inf       NA
## 600         NA         NA         NA         NA         NA      Inf       NA
## 601         NA         NA         NA         NA         NA      Inf       NA
## 602         NA         NA         NA         NA         NA      Inf       NA
## 603         NA         NA         NA         NA         NA      Inf       NA
## 604         NA         NA         NA         NA         NA      Inf       NA
## 605         NA         NA         NA         NA         NA      Inf       NA
## 606         NA         NA         NA         NA         NA      Inf       NA
## 607         NA         NA         NA         NA         NA      Inf       NA
## 608         NA         NA         NA         NA         NA      Inf       NA
## 609         NA         NA         NA         NA         NA      Inf       NA
## 610         NA         NA         NA         NA         NA      Inf       NA
## 611         NA         NA         NA         NA         NA      Inf       NA
## 612   -0.01004   -0.00901   -0.00832   -0.00908   -0.00928 -0.01004        1
## 613         NA         NA         NA         NA         NA      Inf       NA
## 614         NA         NA         NA         NA         NA      Inf       NA

The values that could be found for busy also are correct in selecting rating 1 for the minimum value of the difference in document term/total terms to the ratio of ratings term/total terms. We can use the summary and see that there are only certain lone values other than NAs for our 24 keywords that include the 12 stopwords.

summary(bestVote)
##  areavote bigvote  busyvote definitelyvote feelvote lotvote  manyvote openvote
##  1 : 47   1 : 20   1 : 27   1 : 53         1 : 74   1 : 43   1 : 51   1 : 31  
##  NA:567   NA:594   NA:587   NA:561         NA:540   NA:571   NA:563   NA:583  
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  plusvote twovote  worthvote yearvote andvote  butvote  forvote  goodvote
##  1 :  9   1 : 41   1 : 49    3 : 36   2 :538   5 :252   2 :396   1 :136  
##  NA:605   NA:573   NA:565    NA:578   NA: 76   NA:362   NA:218   NA:478  
##                                                                          
##                                                                          
##                                                                          
##                                                                          
##  havevote notvote  thatvote thevote  theyvote thisvote withvote youvote 
##  1 :274   5 :185   5 :260   5 :533   3 :260   4 :278   1 :278   1 :273  
##  NA:340   NA:429   NA:354   NA: 81   NA:354   NA:336   NA:336   NA:341  
##                                                                         
##                                                                         
##                                                                         
##                                                                         
##     counts1        counts2         counts3          counts4      
##  Min.   :0.00   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.00   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :2.00   Median :2.000   Median :0.0000   Median :0.0000  
##  Mean   :2.29   Mean   :1.521   Mean   :0.4821   Mean   :0.4528  
##  3rd Qu.:3.00   3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :9.00   Max.   :2.000   Max.   :2.0000   Max.   :1.0000  
##     counts5         maxVote       votedRating       Rating         
##  Min.   :0.000   Min.   :0.000   Min.   :1.000   Length:614        
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:1.000   Class :character  
##  Median :2.000   Median :2.000   Median :1.000   Mode  :character  
##  Mean   :2.003   Mean   :2.829   Mean   :2.034                     
##  3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:2.000                     
##  Max.   :4.000   Max.   :9.000   Max.   :5.000                     
##  finalPrediction CorrectlyPredicted
##  Min.   :1.000   Min.   :0.0000    
##  1st Qu.:1.000   1st Qu.:0.0000    
##  Median :1.000   Median :0.0000    
##  Mean   :1.959   Mean   :0.1417    
##  3rd Qu.:2.000   3rd Qu.:0.0000    
##  Max.   :5.000   Max.   :1.0000

This could be a major difference that penalized more for making the missing values for each word not being in a review an NA instead of a zero as done before. We will have to test that by backtracking to that part of the process and re-running everything as before, or gsub in a zero for every NA in the ML_rating_data and w2w tables, but calling another name like adding 3 to the name.

ML_r_Zeros <- ML_rating_data
w2w_Zeros <- w2w

colnames(ML_r_Zeros)
##  [1] "userRatingValue"   "area_ratios"       "big_ratios"       
##  [4] "busy_ratios"       "definitely_ratios" "feel_ratios"      
##  [7] "lot_ratios"        "many_ratios"       "open_ratios"      
## [10] "plus_ratios"       "two_ratios"        "worth_ratios"     
## [13] "year_ratios"       "the_ratios"        "and_ratios"       
## [16] "for_ratios"        "have_ratios"       "that_ratios"      
## [19] "they_ratios"       "this_ratios"       "you_ratios"       
## [22] "not_ratios"        "but_ratios"        "good_ratios"      
## [25] "with_ratios"
str(ML_r_Zeros)
## 'data.frame':    614 obs. of  25 variables:
##  $ userRatingValue  : int  5 5 5 1 5 5 5 5 5 5 ...
##  $ area_ratios      : num  0.00369 NA NA NA NA 0.0241 NA NA NA NA ...
##  $ big_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ busy_ratios      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ definitely_ratios: num  NA NA NA NA NA NA NA NA NA NA ...
##  $ feel_ratios      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ lot_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ many_ratios      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ open_ratios      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ plus_ratios      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ two_ratios       : num  NA NA NA NA NA ...
##  $ worth_ratios     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ year_ratios      : num  0.00738 NA NA NA NA NA NA NA NA NA ...
##  $ the_ratios       : num  0.0554 NA 0.069 0.0318 0.08 ...
##  $ and_ratios       : num  0.0185 0.0275 0.0345 0.0273 0.06 ...
##  $ for_ratios       : num  0.01107 0.00917 NA 0.00909 NA ...
##  $ have_ratios      : num  0.01476 0.00917 NA NA NA ...
##  $ that_ratios      : num  0.0148 NA NA NA NA ...
##  $ they_ratios      : num  0.0111 NA NA NA NA ...
##  $ this_ratios      : num  0.00369 0.00917 NA 0.00909 NA NA NA NA NA NA ...
##  $ you_ratios       : num  0.00738 NA NA NA NA ...
##  $ not_ratios       : num  0.00369 NA NA 0.01364 NA ...
##  $ but_ratios       : num  0.00369 NA NA 0.00455 NA ...
##  $ good_ratios      : num  0.00738 NA NA NA NA NA NA NA NA NA ...
##  $ with_ratios      : num  NA NA NA 0.00455 NA NA NA NA NA NA ...

The w2w table doesn’t have any NAs to begin with because these words are in every rating corpus of documents. Lets gsub the NAs for zeros in the ML_r_Zeros table.

ML_r_0s <- as.matrix(ML_r_Zeros)
head(ML_r_0s)
##      userRatingValue area_ratios big_ratios busy_ratios definitely_ratios
## [1,]               5     0.00369         NA          NA                NA
## [2,]               5          NA         NA          NA                NA
## [3,]               5          NA         NA          NA                NA
## [4,]               1          NA         NA          NA                NA
## [5,]               5          NA         NA          NA                NA
## [6,]               5     0.02410         NA          NA                NA
##      feel_ratios lot_ratios many_ratios open_ratios plus_ratios two_ratios
## [1,]          NA         NA          NA          NA          NA         NA
## [2,]          NA         NA          NA          NA          NA         NA
## [3,]          NA         NA          NA          NA          NA         NA
## [4,]          NA         NA          NA          NA          NA         NA
## [5,]          NA         NA          NA          NA          NA         NA
## [6,]          NA         NA          NA          NA          NA    0.01205
##      worth_ratios year_ratios the_ratios and_ratios for_ratios have_ratios
## [1,]           NA     0.00738    0.05535    0.01845    0.01107     0.01476
## [2,]           NA          NA         NA    0.02752    0.00917     0.00917
## [3,]           NA          NA    0.06897    0.03448         NA          NA
## [4,]           NA          NA    0.03182    0.02727    0.00909          NA
## [5,]           NA          NA    0.08000    0.06000         NA          NA
## [6,]           NA          NA    0.03614    0.03614    0.02410          NA
##      that_ratios they_ratios this_ratios you_ratios not_ratios but_ratios
## [1,]     0.01476     0.01107     0.00369    0.00738    0.00369    0.00369
## [2,]          NA          NA     0.00917         NA         NA         NA
## [3,]          NA          NA          NA         NA         NA         NA
## [4,]          NA          NA     0.00909         NA    0.01364    0.00455
## [5,]          NA          NA          NA         NA         NA         NA
## [6,]          NA     0.02410          NA    0.01205         NA         NA
##      good_ratios with_ratios
## [1,]     0.00738          NA
## [2,]          NA          NA
## [3,]          NA          NA
## [4,]          NA     0.00455
## [5,]          NA          NA
## [6,]          NA          NA
ML_r_0s2 <- as.factor(paste(ML_r_0s))
ML_r_0s2 <- gsub('NA','0',ML_r_0s2)
ML_r_0s2 <- as.numeric(paste(ML_r_0s2))
length(ML_r_0s2)
## [1] 15350
head(ML_r_0s2)
## [1] 5 5 5 1 5 5
tail(ML_r_0s2)
## [1] 0.00870 0.00000 0.00000 0.02041 0.00000 0.01242
MLr0s3 <- matrix(ML_r_0s2,nrow=614,ncol=25,byrow=FALSE)
MLr_0s_4 <- as.data.frame(MLr0s3)
colnames(MLr_0s_4) <- colnames(ML_r_Zeros)
head(MLr_0s_4)
##   userRatingValue area_ratios big_ratios busy_ratios definitely_ratios
## 1               5     0.00369          0           0                 0
## 2               5     0.00000          0           0                 0
## 3               5     0.00000          0           0                 0
## 4               1     0.00000          0           0                 0
## 5               5     0.00000          0           0                 0
## 6               5     0.02410          0           0                 0
##   feel_ratios lot_ratios many_ratios open_ratios plus_ratios two_ratios
## 1           0          0           0           0           0    0.00000
## 2           0          0           0           0           0    0.00000
## 3           0          0           0           0           0    0.00000
## 4           0          0           0           0           0    0.00000
## 5           0          0           0           0           0    0.00000
## 6           0          0           0           0           0    0.01205
##   worth_ratios year_ratios the_ratios and_ratios for_ratios have_ratios
## 1            0     0.00738    0.05535    0.01845    0.01107     0.01476
## 2            0     0.00000    0.00000    0.02752    0.00917     0.00917
## 3            0     0.00000    0.06897    0.03448    0.00000     0.00000
## 4            0     0.00000    0.03182    0.02727    0.00909     0.00000
## 5            0     0.00000    0.08000    0.06000    0.00000     0.00000
## 6            0     0.00000    0.03614    0.03614    0.02410     0.00000
##   that_ratios they_ratios this_ratios you_ratios not_ratios but_ratios
## 1     0.01476     0.01107     0.00369    0.00738    0.00369    0.00369
## 2     0.00000     0.00000     0.00917    0.00000    0.00000    0.00000
## 3     0.00000     0.00000     0.00000    0.00000    0.00000    0.00000
## 4     0.00000     0.00000     0.00909    0.00000    0.01364    0.00455
## 5     0.00000     0.00000     0.00000    0.00000    0.00000    0.00000
## 6     0.00000     0.02410     0.00000    0.01205    0.00000    0.00000
##   good_ratios with_ratios
## 1     0.00738     0.00000
## 2     0.00000     0.00000
## 3     0.00000     0.00000
## 4     0.00000     0.00455
## 5     0.00000     0.00000
## 6     0.00000     0.00000

The order is preserved for observation. The data frame has to be converted to factors to use the gsub function that works and characters, then the values have to be turned back into numeric values. When turning into a matrix the data frame turns into a row*col long column of 1 dimension, so has to be turned back into a matrix after replacing the NAs with zeros, and then into a dataframe where the original column names are added to replace the generic V1-V25.

str(MLr_0s_4)
## 'data.frame':    614 obs. of  25 variables:
##  $ userRatingValue  : num  5 5 5 1 5 5 5 5 5 5 ...
##  $ area_ratios      : num  0.00369 0 0 0 0 0.0241 0 0 0 0 ...
##  $ big_ratios       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ busy_ratios      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ definitely_ratios: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ feel_ratios      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ lot_ratios       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ many_ratios      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ open_ratios      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ plus_ratios      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ two_ratios       : num  0 0 0 0 0 ...
##  $ worth_ratios     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ year_ratios      : num  0.00738 0 0 0 0 0 0 0 0 0 ...
##  $ the_ratios       : num  0.0554 0 0.069 0.0318 0.08 ...
##  $ and_ratios       : num  0.0185 0.0275 0.0345 0.0273 0.06 ...
##  $ for_ratios       : num  0.01107 0.00917 0 0.00909 0 ...
##  $ have_ratios      : num  0.01476 0.00917 0 0 0 ...
##  $ that_ratios      : num  0.0148 0 0 0 0 ...
##  $ they_ratios      : num  0.0111 0 0 0 0 ...
##  $ this_ratios      : num  0.00369 0.00917 0 0.00909 0 0 0 0 0 0 ...
##  $ you_ratios       : num  0.00738 0 0 0 0 ...
##  $ not_ratios       : num  0.00369 0 0 0.01364 0 ...
##  $ but_ratios       : num  0.00369 0 0 0.00455 0 ...
##  $ good_ratios      : num  0.00738 0 0 0 0 0 0 0 0 0 ...
##  $ with_ratios      : num  0 0 0 0.00455 0 0 0 0 0 0 ...

Now that we have our matrix of zeros lets write this out to csv.

write.csv(MLr_0s_4,'mLr_zeros.csv',row.names=FALSE)

And lets begin the program to get the predictions and compare accuracy results. We will just use the given names that will replace our other data. Since this is an Rmarkdown file, the other results are preceding these results and can be reviewed to compare by scrolling up this document.

MLr <- MLr_0s_4
MLr$R1_area <- rep(w2w[1,1],length(MLr$userRatingValue))
MLr$R2_area <- rep(w2w[2,1],length(MLr$userRatingValue))
MLr$R3_area <- rep(w2w[3,1],length(MLr$userRatingValue))
MLr$R4_area <- rep(w2w[4,1],length(MLr$userRatingValue))
MLr$R5_area <- rep(w2w[5,1],length(MLr$userRatingValue))

MLr$R1_big <- rep(w2w[1,2],length(MLr$userRatingValue))
MLr$R2_big <- rep(w2w[2,2],length(MLr$userRatingValue))
MLr$R3_big <- rep(w2w[3,2],length(MLr$userRatingValue))
MLr$R4_big <- rep(w2w[4,2],length(MLr$userRatingValue))
MLr$R5_big <- rep(w2w[5,2],length(MLr$userRatingValue))

MLr$R1_busy <- rep(w2w[1,3],length(MLr$userRatingValue))
MLr$R2_busy <- rep(w2w[2,3],length(MLr$userRatingValue))
MLr$R3_busy <- rep(w2w[3,3],length(MLr$userRatingValue))
MLr$R4_busy <- rep(w2w[4,3],length(MLr$userRatingValue))
MLr$R5_busy <- rep(w2w[5,3],length(MLr$userRatingValue))

MLr$R1_definitely <- rep(w2w[1,4],length(MLr$userRatingValue))
MLr$R2_definitely <- rep(w2w[2,4],length(MLr$userRatingValue))
MLr$R3_definitely <- rep(w2w[3,4],length(MLr$userRatingValue))
MLr$R4_definitely <- rep(w2w[4,4],length(MLr$userRatingValue))
MLr$R5_definitely <- rep(w2w[5,4],length(MLr$userRatingValue))

MLr$R1_feel <- rep(w2w[1,5],length(MLr$userRatingValue))
MLr$R2_feel <- rep(w2w[2,5],length(MLr$userRatingValue))
MLr$R3_feel <- rep(w2w[3,5],length(MLr$userRatingValue))
MLr$R4_feel <- rep(w2w[4,5],length(MLr$userRatingValue))
MLr$R5_feel <- rep(w2w[5,5],length(MLr$userRatingValue))

MLr$R1_lot <- rep(w2w[1,6],length(MLr$userRatingValue))
MLr$R2_lot <- rep(w2w[2,6],length(MLr$userRatingValue))
MLr$R3_lot <- rep(w2w[3,6],length(MLr$userRatingValue))
MLr$R4_lot <- rep(w2w[4,6],length(MLr$userRatingValue))
MLr$R5_lot <- rep(w2w[5,6],length(MLr$userRatingValue))

MLr$R1_many <- rep(w2w[1,7],length(MLr$userRatingValue))
MLr$R2_many <- rep(w2w[2,7],length(MLr$userRatingValue))
MLr$R3_many <- rep(w2w[3,7],length(MLr$userRatingValue))
MLr$R4_many <- rep(w2w[4,7],length(MLr$userRatingValue))
MLr$R5_many <- rep(w2w[5,7],length(MLr$userRatingValue))

MLr$R1_open <- rep(w2w[1,8],length(MLr$userRatingValue))
MLr$R2_open <- rep(w2w[2,8],length(MLr$userRatingValue))
MLr$R3_open <- rep(w2w[3,8],length(MLr$userRatingValue))
MLr$R4_open <- rep(w2w[4,8],length(MLr$userRatingValue))
MLr$R5_open <- rep(w2w[5,8],length(MLr$userRatingValue))

MLr$R1_plus <- rep(w2w[1,9],length(MLr$userRatingValue))
MLr$R2_plus <- rep(w2w[2,9],length(MLr$userRatingValue))
MLr$R3_plus <- rep(w2w[3,9],length(MLr$userRatingValue))
MLr$R4_plus <- rep(w2w[4,9],length(MLr$userRatingValue))
MLr$R5_plus <- rep(w2w[5,9],length(MLr$userRatingValue))

MLr$R1_two <- rep(w2w[1,10],length(MLr$userRatingValue))
MLr$R2_two <- rep(w2w[2,10],length(MLr$userRatingValue))
MLr$R3_two <- rep(w2w[3,10],length(MLr$userRatingValue))
MLr$R4_two <- rep(w2w[4,10],length(MLr$userRatingValue))
MLr$R5_two <- rep(w2w[5,10],length(MLr$userRatingValue))

MLr$R1_worth <- rep(w2w[1,11],length(MLr$userRatingValue))
MLr$R2_worth <- rep(w2w[2,11],length(MLr$userRatingValue))
MLr$R3_worth <- rep(w2w[3,11],length(MLr$userRatingValue))
MLr$R4_worth <- rep(w2w[4,11],length(MLr$userRatingValue))
MLr$R5_worth <- rep(w2w[5,11],length(MLr$userRatingValue))

MLr$R1_year <- rep(w2w[1,12],length(MLr$userRatingValue))
MLr$R2_year <- rep(w2w[2,12],length(MLr$userRatingValue))
MLr$R3_year <- rep(w2w[3,12],length(MLr$userRatingValue))
MLr$R4_year <- rep(w2w[4,12],length(MLr$userRatingValue))
MLr$R5_year <- rep(w2w[5,12],length(MLr$userRatingValue))

MLr$R1_and <- rep(w2w[1,13],length(MLr$userRatingValue))
MLr$R2_and <- rep(w2w[2,13],length(MLr$userRatingValue))
MLr$R3_and <- rep(w2w[3,13],length(MLr$userRatingValue))
MLr$R4_and <- rep(w2w[4,13],length(MLr$userRatingValue))
MLr$R5_and <- rep(w2w[5,13],length(MLr$userRatingValue))

MLr$R1_but <- rep(w2w[1,14],length(MLr$userRatingValue))
MLr$R2_but <- rep(w2w[2,14],length(MLr$userRatingValue))
MLr$R3_but <- rep(w2w[3,14],length(MLr$userRatingValue))
MLr$R4_but <- rep(w2w[4,14],length(MLr$userRatingValue))
MLr$R5_but <- rep(w2w[5,14],length(MLr$userRatingValue))

MLr$R1_for <- rep(w2w[1,15],length(MLr$userRatingValue))
MLr$R2_for <- rep(w2w[2,15],length(MLr$userRatingValue))
MLr$R3_for <- rep(w2w[3,15],length(MLr$userRatingValue))
MLr$R4_for <- rep(w2w[4,15],length(MLr$userRatingValue))
MLr$R5_for <- rep(w2w[5,15],length(MLr$userRatingValue))

MLr$R1_good <- rep(w2w[1,16],length(MLr$userRatingValue))
MLr$R2_good <- rep(w2w[2,16],length(MLr$userRatingValue))
MLr$R3_good <- rep(w2w[3,16],length(MLr$userRatingValue))
MLr$R4_good <- rep(w2w[4,16],length(MLr$userRatingValue))
MLr$R5_good <- rep(w2w[5,16],length(MLr$userRatingValue))

MLr$R1_have <- rep(w2w[1,17],length(MLr$userRatingValue))
MLr$R2_have <- rep(w2w[2,17],length(MLr$userRatingValue))
MLr$R3_have <- rep(w2w[3,17],length(MLr$userRatingValue))
MLr$R4_have <- rep(w2w[4,17],length(MLr$userRatingValue))
MLr$R5_have <- rep(w2w[5,17],length(MLr$userRatingValue))

MLr$R1_not <- rep(w2w[1,18],length(MLr$userRatingValue))
MLr$R2_not <- rep(w2w[2,18],length(MLr$userRatingValue))
MLr$R3_not <- rep(w2w[3,18],length(MLr$userRatingValue))
MLr$R4_not <- rep(w2w[4,18],length(MLr$userRatingValue))
MLr$R5_not <- rep(w2w[5,18],length(MLr$userRatingValue))

MLr$R1_that <- rep(w2w[1,19],length(MLr$userRatingValue))
MLr$R2_that <- rep(w2w[2,19],length(MLr$userRatingValue))
MLr$R3_that <- rep(w2w[3,19],length(MLr$userRatingValue))
MLr$R4_that <- rep(w2w[4,19],length(MLr$userRatingValue))
MLr$R5_that <- rep(w2w[5,19],length(MLr$userRatingValue))

MLr$R1_the <- rep(w2w[1,20],length(MLr$userRatingValue))
MLr$R2_the <- rep(w2w[2,20],length(MLr$userRatingValue))
MLr$R3_the <- rep(w2w[3,20],length(MLr$userRatingValue))
MLr$R4_the <- rep(w2w[4,20],length(MLr$userRatingValue))
MLr$R5_the <- rep(w2w[5,20],length(MLr$userRatingValue))

MLr$R1_they <- rep(w2w[1,21],length(MLr$userRatingValue))
MLr$R2_they <- rep(w2w[2,21],length(MLr$userRatingValue))
MLr$R3_they <- rep(w2w[3,21],length(MLr$userRatingValue))
MLr$R4_they <- rep(w2w[4,21],length(MLr$userRatingValue))
MLr$R5_they <- rep(w2w[5,21],length(MLr$userRatingValue))

MLr$R1_this <- rep(w2w[1,22],length(MLr$userRatingValue))
MLr$R2_this <- rep(w2w[2,22],length(MLr$userRatingValue))
MLr$R3_this <- rep(w2w[3,22],length(MLr$userRatingValue))
MLr$R4_this <- rep(w2w[4,22],length(MLr$userRatingValue))
MLr$R5_this <- rep(w2w[5,22],length(MLr$userRatingValue))

MLr$R1_with <- rep(w2w[1,23],length(MLr$userRatingValue))
MLr$R2_with <- rep(w2w[2,23],length(MLr$userRatingValue))
MLr$R3_with <- rep(w2w[3,23],length(MLr$userRatingValue))
MLr$R4_with <- rep(w2w[4,23],length(MLr$userRatingValue))
MLr$R5_with <- rep(w2w[5,23],length(MLr$userRatingValue))

MLr$R1_you <- rep(w2w[1,24],length(MLr$userRatingValue))
MLr$R2_you <- rep(w2w[2,24],length(MLr$userRatingValue))
MLr$R3_you <- rep(w2w[3,24],length(MLr$userRatingValue))
MLr$R4_you <- rep(w2w[4,24],length(MLr$userRatingValue))
MLr$R5_you <- rep(w2w[5,24],length(MLr$userRatingValue))

At this point we would/could get the absolute value of each difference then get the minimum result to vote on.

MLr$area_diff1 <- MLr$R1_area-MLr$area_ratios
MLr$area_diff2 <- MLr$R2_area-MLr$area_ratios
MLr$area_diff3 <- MLr$R3_area-MLr$area_ratios
MLr$area_diff4 <- MLr$R4_area-MLr$area_ratios
MLr$area_diff5 <- MLr$R5_area-MLr$area_ratios

MLr$big_diff1 <- MLr$R1_big-MLr$big_ratios
MLr$big_diff2 <- MLr$R2_big-MLr$big_ratios
MLr$big_diff3 <- MLr$R3_big-MLr$big_ratios
MLr$big_diff4 <- MLr$R4_big-MLr$big_ratios
MLr$big_diff5 <- MLr$R5_big-MLr$big_ratios

MLr$busy_diff1 <- MLr$R1_busy-MLr$busy_ratios 
MLr$busy_diff2 <- MLr$R2_busy-MLr$busy_ratios 
MLr$busy_diff3 <- MLr$R3_busy-MLr$busy_ratios 
MLr$busy_diff4 <- MLr$R4_busy-MLr$busy_ratios 
MLr$busy_diff5 <- MLr$R5_busy-MLr$busy_ratios 

MLr$definitely_diff1 <- MLr$R1_definitely-MLr$definitely_ratios
MLr$definitely_diff2 <- MLr$R2_definitely-MLr$definitely_ratios
MLr$definitely_diff3 <- MLr$R3_definitely-MLr$definitely_ratios
MLr$definitely_diff4 <- MLr$R4_definitely-MLr$definitely_ratios
MLr$definitely_diff5 <- MLr$R5_definitely-MLr$definitely_ratios

MLr$feel_diff1 <- MLr$R1_feel-MLr$feel_ratios
MLr$feel_diff2 <- MLr$R2_feel-MLr$feel_ratios
MLr$feel_diff3 <- MLr$R3_feel-MLr$feel_ratios
MLr$feel_diff4 <- MLr$R4_feel-MLr$feel_ratios
MLr$feel_diff5 <- MLr$R5_feel-MLr$feel_ratios

MLr$lot_diff1 <- MLr$R1_lot-MLr$lot_ratios
MLr$lot_diff2 <- MLr$R2_lot-MLr$lot_ratios
MLr$lot_diff3 <- MLr$R3_lot-MLr$lot_ratios
MLr$lot_diff4 <- MLr$R4_lot-MLr$lot_ratios
MLr$lot_diff5 <- MLr$R5_lot-MLr$lot_ratios

MLr$many_diff1 <- MLr$R1_many-MLr$many_ratios
MLr$many_diff2 <- MLr$R2_many-MLr$many_ratios
MLr$many_diff3 <- MLr$R3_many-MLr$many_ratios
MLr$many_diff4 <- MLr$R4_many-MLr$many_ratios
MLr$many_diff5 <- MLr$R5_many-MLr$many_ratios

MLr$open_diff1 <- MLr$R1_open-MLr$open_ratios
MLr$open_diff2 <- MLr$R2_open-MLr$open_ratios
MLr$open_diff3 <- MLr$R3_open-MLr$open_ratios
MLr$open_diff4 <- MLr$R4_open-MLr$open_ratios
MLr$open_diff5 <- MLr$R5_open-MLr$open_ratios

MLr$plus_diff1 <- MLr$R1_plus-MLr$plus_ratios
MLr$plus_diff2 <- MLr$R2_plus-MLr$plus_ratios
MLr$plus_diff3 <- MLr$R3_plus-MLr$plus_ratios
MLr$plus_diff4 <- MLr$R4_plus-MLr$plus_ratios
MLr$plus_diff5 <- MLr$R5_plus-MLr$plus_ratios

MLr$two_diff1 <- MLr$R1_two-MLr$two_ratios
MLr$two_diff2 <- MLr$R2_two-MLr$two_ratios
MLr$two_diff3 <- MLr$R3_two-MLr$two_ratios
MLr$two_diff4 <- MLr$R4_two-MLr$two_ratios
MLr$two_diff5 <- MLr$R5_two-MLr$two_ratios

MLr$worth_diff1 <- MLr$R1_worth-MLr$worth_ratios
MLr$worth_diff2 <- MLr$R2_worth-MLr$worth_ratios
MLr$worth_diff3 <- MLr$R3_worth-MLr$worth_ratios
MLr$worth_diff4 <- MLr$R4_worth-MLr$worth_ratios
MLr$worth_diff5 <- MLr$R5_worth-MLr$worth_ratios

MLr$year_diff1 <- MLr$R1_year-MLr$year_ratios
MLr$year_diff2 <- MLr$R2_year-MLr$year_ratios
MLr$year_diff3 <- MLr$R3_year-MLr$year_ratios
MLr$year_diff4 <- MLr$R4_year-MLr$year_ratios
MLr$year_diff5 <- MLr$R5_year-MLr$year_ratios




MLr$and_diff1 <- MLr$R1_and-MLr$and_ratios
MLr$and_diff2 <- MLr$R2_and-MLr$and_ratios
MLr$and_diff3 <- MLr$R3_and-MLr$and_ratios
MLr$and_diff4 <- MLr$R4_and-MLr$and_ratios
MLr$and_diff5 <- MLr$R5_and-MLr$and_ratios

MLr$but_diff1 <- MLr$R1_but-MLr$but_ratios
MLr$but_diff2 <- MLr$R2_but-MLr$but_ratios
MLr$but_diff3 <- MLr$R3_but-MLr$but_ratios
MLr$but_diff4 <- MLr$R4_but-MLr$but_ratios
MLr$but_diff5 <- MLr$R5_but-MLr$but_ratios

MLr$for_diff1 <- MLr$R1_for-MLr$for_ratios 
MLr$for_diff2 <- MLr$R2_for-MLr$for_ratios 
MLr$for_diff3 <- MLr$R3_for-MLr$for_ratios 
MLr$for_diff4 <- MLr$R4_for-MLr$for_ratios 
MLr$for_diff5 <- MLr$R5_for-MLr$for_ratios 

MLr$good_diff1 <- MLr$R1_good-MLr$good_ratios
MLr$good_diff2 <- MLr$R2_good-MLr$good_ratios
MLr$good_diff3 <- MLr$R3_good-MLr$good_ratios
MLr$good_diff4 <- MLr$R4_good-MLr$good_ratios
MLr$good_diff5 <- MLr$R5_good-MLr$good_ratios

MLr$have_diff1 <- MLr$R1_have-MLr$have_ratios
MLr$have_diff2 <- MLr$R2_have-MLr$have_ratios
MLr$have_diff3 <- MLr$R3_have-MLr$have_ratios
MLr$have_diff4 <- MLr$R4_have-MLr$have_ratios
MLr$have_diff5 <- MLr$R5_have-MLr$have_ratios

MLr$not_diff1 <- MLr$R1_not-MLr$not_ratios
MLr$not_diff2 <- MLr$R2_not-MLr$not_ratios
MLr$not_diff3 <- MLr$R3_not-MLr$not_ratios
MLr$not_diff4 <- MLr$R4_not-MLr$not_ratios
MLr$not_diff5 <- MLr$R5_not-MLr$not_ratios

MLr$that_diff1 <- MLr$R1_that-MLr$that_ratios
MLr$that_diff2 <- MLr$R2_that-MLr$that_ratios
MLr$that_diff3 <- MLr$R3_that-MLr$that_ratios
MLr$that_diff4 <- MLr$R4_that-MLr$that_ratios
MLr$that_diff5 <- MLr$R5_that-MLr$that_ratios

MLr$the_diff1 <- MLr$R1_the-MLr$the_ratios
MLr$the_diff2 <- MLr$R2_the-MLr$the_ratios
MLr$the_diff3 <- MLr$R3_the-MLr$the_ratios
MLr$the_diff4 <- MLr$R4_the-MLr$the_ratios
MLr$the_diff5 <- MLr$R5_the-MLr$the_ratios

MLr$they_diff1 <- MLr$R1_they-MLr$they_ratios
MLr$they_diff2 <- MLr$R2_they-MLr$they_ratios
MLr$they_diff3 <- MLr$R3_they-MLr$they_ratios
MLr$they_diff4 <- MLr$R4_they-MLr$they_ratios
MLr$they_diff5 <- MLr$R5_they-MLr$they_ratios

MLr$this_diff1 <- MLr$R1_this-MLr$this_ratios
MLr$this_diff2 <- MLr$R2_this-MLr$this_ratios
MLr$this_diff3 <- MLr$R3_this-MLr$this_ratios
MLr$this_diff4 <- MLr$R4_this-MLr$this_ratios
MLr$this_diff5 <- MLr$R5_this-MLr$this_ratios

MLr$with_diff1 <- MLr$R1_with-MLr$with_ratios
MLr$with_diff2 <- MLr$R2_with-MLr$with_ratios
MLr$with_diff3 <- MLr$R3_with-MLr$with_ratios
MLr$with_diff4 <- MLr$R4_with-MLr$with_ratios
MLr$with_diff5 <- MLr$R5_with-MLr$with_ratios

MLr$you_diff1 <- MLr$R1_you-MLr$you_ratios
MLr$you_diff2 <- MLr$R2_you-MLr$you_ratios
MLr$you_diff3 <- MLr$R3_you-MLr$you_ratios
MLr$you_diff4 <- MLr$R4_you-MLr$you_ratios
MLr$you_diff5 <- MLr$R5_you-MLr$you_ratios

Get the minimum value of the term/total terms per document difference from the ratings term/total terms per rating values.

MLr$areaMin <- apply(MLr[146:150],1, min,na.rm=TRUE)
MLr$areavote <- ifelse(MLr$area_diff1==MLr$areaMin,
                    1, 
                    ifelse(MLr$area_diff2==MLr$areaMin,
                           2,
                           ifelse(MLr$area_diff3==MLr$areaMin,
                                  3,
                                  ifelse(MLr$area_diff4==MLr$areaMin,
                                         4,
                                         ifelse(MLr$area_diff5==MLr$areaMin,
                                              5, NA )
                                         )
                                  )
                           )
                    )

MLr$bigMin <- apply(MLr[151:155],1, min,na.rm=TRUE)
MLr$bigvote <- ifelse(MLr$big_diff1==MLr$bigMin,
                    1, 
                    ifelse(MLr$big_diff2==MLr$bigMin,
                           2,
                           ifelse(MLr$big_diff3==MLr$bigMin,
                                  3,
                                  ifelse(MLr$big_diff4==MLr$bigMin,
                                         4,
                                         ifelse(MLr$big_diff5==MLr$bigMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$busyMin <- apply(MLr[156:160],1, min,na.rm=TRUE)
MLr$busyvote <- ifelse(MLr$busy_diff1==MLr$busyMin,
                    1, 
                    ifelse(MLr$busy_diff2==MLr$busyMin,
                           2,
                           ifelse(MLr$busy_diff3==MLr$busyMin,
                                  3,
                                  ifelse(MLr$busy_diff4==MLr$busyMin,
                                         4,
                                         ifelse(MLr$busy_diff5==MLr$busyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$definitelyMin <- apply(MLr[161:165],1, min, na.rm=TRUE)
MLr$definitelyvote <- ifelse(MLr$definitely_diff1==MLr$definitelyMin,
                    1, 
                    ifelse(MLr$definitely_diff2==MLr$definitelyMin,
                           2,
                           ifelse(MLr$definitely_diff3==MLr$definitelyMin,
                                  3,
                                  ifelse(MLr$definitely_diff4==MLr$definitelyMin,
                                         4,
                                         ifelse(MLr$definitely_diff5==MLr$definitelyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$feelMin <- apply(MLr[166:170],1, min, na.rm=TRUE)
MLr$feelvote <- ifelse(MLr$feel_diff1==MLr$feelMin,
                    1, 
                    ifelse(MLr$feel_diff2==MLr$feelMin,
                           2,
                           ifelse(MLr$feel_diff3==MLr$feelMin,
                                  3,
                                  ifelse(MLr$feel_diff4==MLr$feelMin,
                                         4,
                                         ifelse(MLr$feel_diff5==MLr$feelMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$lotMin <- apply(MLr[171:175],1, min, na.rm=TRUE)
MLr$lotvote <- ifelse(MLr$lot_diff1==MLr$lotMin,
                    1, 
                    ifelse(MLr$lot_diff2==MLr$lotMin,
                           2,
                           ifelse(MLr$lot_diff3==MLr$lotMin,
                                  3,
                                  ifelse(MLr$lot_diff4==MLr$lotMin,
                                         4,
                                         ifelse(MLr$lot_diff5==MLr$lotMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$manyMin <- apply(MLr[176:180],1, min, na.rm=TRUE)
MLr$manyvote <- ifelse(MLr$many_diff1==MLr$manyMin,
                    1, 
                    ifelse(MLr$many_diff2==MLr$manyMin,
                           2,
                           ifelse(MLr$many_diff3==MLr$manyMin,
                                  3,
                                  ifelse(MLr$many_diff4==MLr$manyMin,
                                         4,
                                         ifelse(MLr$many_diff5==MLr$manyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$openMin <- apply(MLr[181:185],1, min, na.rm=TRUE)
MLr$openvote <- ifelse(MLr$open_diff1==MLr$openMin,
                    1, 
                    ifelse(MLr$open_diff2==MLr$openMin,
                           2,
                           ifelse(MLr$open_diff3==MLr$openMin,
                                  3,
                                  ifelse(MLr$open_diff4==MLr$openMin,
                                         4,
                                         ifelse(MLr$open_diff5==MLr$openMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$plusMin <- apply(MLr[186:190],1, min, na.rm=TRUE)
MLr$plusvote <- ifelse(MLr$plus_diff1==MLr$plusMin,
                    1, 
                    ifelse(MLr$plus_diff2==MLr$plusMin,
                           2,
                           ifelse(MLr$plus_diff3==MLr$plusMin,
                                  3,
                                  ifelse(MLr$plus_diff4==MLr$plusMin,
                                         4,
                                         ifelse(MLr$plus_diff5==MLr$plusMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$twoMin <- apply(MLr[191:195],1, min, na.rm=TRUE)
MLr$twovote <- ifelse(MLr$two_diff1==MLr$twoMin,
                    1, 
                    ifelse(MLr$two_diff2==MLr$twoMin,
                           2,
                           ifelse(MLr$two_diff3==MLr$twoMin,
                                  3,
                                  ifelse(MLr$two_diff4==MLr$twoMin,
                                         4,
                                         ifelse(MLr$two_diff5==MLr$twoMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$worthMin <- apply(MLr[196:200],1, min, na.rm=TRUE)
MLr$worthvote <- ifelse(MLr$worth_diff1==MLr$worthMin,
                    1, 
                    ifelse(MLr$worth_diff2==MLr$worthMin,
                           2,
                           ifelse(MLr$worth_diff3==MLr$worthMin,
                                  3,
                                  ifelse(MLr$worth_diff4==MLr$worthMin,
                                         4,
                                         ifelse(MLr$worth_diff5==MLr$worthMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$yearMin <- apply(MLr[201:205],1, min, na.rm=TRUE)
MLr$yearvote <- ifelse(MLr$year_diff1==MLr$yearMin,
                    1, 
                    ifelse(MLr$year_diff2==MLr$yearMin,
                           2,
                           ifelse(MLr$year_diff3==MLr$yearMin,
                                  3,
                                  ifelse(MLr$year_diff4==MLr$yearMin,
                                         4,
                                         ifelse(MLr$year_diff5==MLr$yearMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )





MLr$andMin <- apply(MLr[206:210],1, min,na.rm=TRUE)
MLr$andvote <- ifelse(MLr$and_diff1==MLr$andMin,
                    1, 
                    ifelse(MLr$and_diff2==MLr$andMin,
                           2,
                           ifelse(MLr$and_diff3==MLr$andMin,
                                  3,
                                  ifelse(MLr$and_diff4==MLr$andMin,
                                         4,
                                         ifelse(MLr$and_diff5==MLr$andMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$butMin <- apply(MLr[211:215],1, min, na.rm=TRUE)
MLr$butvote <- ifelse(MLr$but_diff1==MLr$butMin,
                    1, 
                    ifelse(MLr$but_diff2==MLr$butMin,
                           2,
                           ifelse(MLr$but_diff3==MLr$butMin,
                                  3,
                                  ifelse(MLr$but_diff4==MLr$butMin,
                                         4,
                                         ifelse(MLr$but_diff5==MLr$butMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$forMin <- apply(MLr[216:220],1, min, na.rm=TRUE)
MLr$forvote <- ifelse(MLr$for_diff1==MLr$forMin,
                    1, 
                    ifelse(MLr$for_diff2==MLr$forMin,
                           2,
                           ifelse(MLr$for_diff3==MLr$forMin,
                                  3,
                                  ifelse(MLr$for_diff4==MLr$forMin,
                                         4,
                                         ifelse(MLr$for_diff5==MLr$forMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$goodMin <- apply(MLr[221:225],1, min, na.rm=TRUE)
MLr$goodvote <- ifelse(MLr$good_diff1==MLr$goodMin,
                    1, 
                    ifelse(MLr$good_diff2==MLr$goodMin,
                           2,
                           ifelse(MLr$good_diff3==MLr$goodMin,
                                  3,
                                  ifelse(MLr$good_diff4==MLr$goodMin,
                                         4,
                                         ifelse(MLr$good_diff5==MLr$goodMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$haveMin <- apply(MLr[226:230],1, min, na.rm=TRUE)
MLr$havevote <- ifelse(MLr$have_diff1==MLr$haveMin,
                    1, 
                    ifelse(MLr$have_diff2==MLr$haveMin,
                           2,
                           ifelse(MLr$have_diff3==MLr$haveMin,
                                  3,
                                  ifelse(MLr$have_diff4==MLr$haveMin,
                                         4,
                                         ifelse(MLr$have_diff5==MLr$haveMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$notMin <- apply(MLr[231:235],1, min, na.rm=TRUE)
MLr$notvote <- ifelse(MLr$not_diff1==MLr$notMin,
                    1, 
                    ifelse(MLr$not_diff2==MLr$notMin,
                           2,
                           ifelse(MLr$not_diff3==MLr$notMin,
                                  3,
                                  ifelse(MLr$not_diff4==MLr$notMin,
                                         4,
                                         ifelse(MLr$not_diff5==MLr$notMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$thatMin <- apply(MLr[236:240],1, min, na.rm=TRUE)
MLr$thatvote <- ifelse(MLr$that_diff1==MLr$thatMin,
                    1, 
                    ifelse(MLr$that_diff2==MLr$thatMin,
                           2,
                           ifelse(MLr$that_diff3==MLr$thatMin,
                                  3,
                                  ifelse(MLr$that_diff4==MLr$thatMin,
                                         4,
                                         ifelse(MLr$that_diff5==MLr$thatMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$theMin <- apply(MLr[241:245],1, min, na.rm=TRUE)
MLr$thevote <- ifelse(MLr$the_diff1==MLr$theMin,
                    1, 
                    ifelse(MLr$the_diff2==MLr$theMin,
                           2,
                           ifelse(MLr$the_diff3==MLr$theMin,
                                  3,
                                  ifelse(MLr$the_diff4==MLr$theMin,
                                         4,
                                         ifelse(MLr$the_diff5==MLr$theMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$theyMin <- apply(MLr[246:250],1, min, na.rm=TRUE)
MLr$theyvote <- ifelse(MLr$they_diff1==MLr$theyMin,
                    1, 
                    ifelse(MLr$they_diff2==MLr$theyMin,
                           2,
                           ifelse(MLr$they_diff3==MLr$theyMin,
                                  3,
                                  ifelse(MLr$they_diff4==MLr$theyMin,
                                         4,
                                         ifelse(MLr$they_diff5==MLr$theyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$thisMin <- apply(MLr[251:255],1, min, na.rm=TRUE)
MLr$thisvote <- ifelse(MLr$this_diff1==MLr$thisMin,
                    1, 
                    ifelse(MLr$this_diff2==MLr$thisMin,
                           2,
                           ifelse(MLr$this_diff3==MLr$thisMin,
                                  3,
                                  ifelse(MLr$this_diff4==MLr$thisMin,
                                         4,
                                         ifelse(MLr$this_diff5==MLr$thisMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$withMin <- apply(MLr[256:260],1, min, na.rm=TRUE)
MLr$withvote <- ifelse(MLr$with_diff1==MLr$withMin,
                    1, 
                    ifelse(MLr$with_diff2==MLr$withMin,
                           2,
                           ifelse(MLr$with_diff3==MLr$withMin,
                                  3,
                                  ifelse(MLr$with_diff4==MLr$withMin,
                                         4,
                                         ifelse(MLr$with_diff5==MLr$withMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$youMin <- apply(MLr[261:265],1, min, na.rm=TRUE)
MLr$youvote <- ifelse(MLr$you_diff1==MLr$youMin,
                    1, 
                    ifelse(MLr$you_diff2==MLr$youMin,
                           2,
                           ifelse(MLr$you_diff3==MLr$youMin,
                                  3,
                                  ifelse(MLr$you_diff4==MLr$youMin,
                                         4,
                                         ifelse(MLr$you_diff5==MLr$youMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )
bestVote <- MLr %>% select(areavote, bigvote , busyvote, definitelyvote, 
                           feelvote, lotvote, manyvote, openvote, plusvote, 
                           twovote, worthvote, yearvote, andvote, butvote, forvote,      
                           goodvote, havevote, notvote, thatvote, thevote,       
                           theyvote, thisvote, withvote, youvote )
summary(bestVote)
##     areavote    bigvote     busyvote definitelyvote    feelvote    lotvote 
##  Min.   :1   Min.   :1   Min.   :1   Min.   :1      Min.   :1   Min.   :1  
##  1st Qu.:1   1st Qu.:1   1st Qu.:1   1st Qu.:1      1st Qu.:1   1st Qu.:1  
##  Median :1   Median :1   Median :1   Median :1      Median :1   Median :1  
##  Mean   :1   Mean   :1   Mean   :1   Mean   :1      Mean   :1   Mean   :1  
##  3rd Qu.:1   3rd Qu.:1   3rd Qu.:1   3rd Qu.:1      3rd Qu.:1   3rd Qu.:1  
##  Max.   :1   Max.   :1   Max.   :1   Max.   :1      Max.   :1   Max.   :1  
##     manyvote    openvote    plusvote    twovote    worthvote    yearvote
##  Min.   :1   Min.   :1   Min.   :1   Min.   :1   Min.   :1   Min.   :3  
##  1st Qu.:1   1st Qu.:1   1st Qu.:1   1st Qu.:1   1st Qu.:1   1st Qu.:3  
##  Median :1   Median :1   Median :1   Median :1   Median :1   Median :3  
##  Mean   :1   Mean   :1   Mean   :1   Mean   :1   Mean   :1   Mean   :3  
##  3rd Qu.:1   3rd Qu.:1   3rd Qu.:1   3rd Qu.:1   3rd Qu.:1   3rd Qu.:3  
##  Max.   :1   Max.   :1   Max.   :1   Max.   :1   Max.   :1   Max.   :3  
##     andvote     butvote     forvote     goodvote    havevote    notvote 
##  Min.   :2   Min.   :5   Min.   :2   Min.   :1   Min.   :1   Min.   :5  
##  1st Qu.:2   1st Qu.:5   1st Qu.:2   1st Qu.:1   1st Qu.:1   1st Qu.:5  
##  Median :2   Median :5   Median :2   Median :1   Median :1   Median :5  
##  Mean   :2   Mean   :5   Mean   :2   Mean   :1   Mean   :1   Mean   :5  
##  3rd Qu.:2   3rd Qu.:5   3rd Qu.:2   3rd Qu.:1   3rd Qu.:1   3rd Qu.:5  
##  Max.   :2   Max.   :5   Max.   :2   Max.   :1   Max.   :1   Max.   :5  
##     thatvote    thevote     theyvote    thisvote    withvote    youvote 
##  Min.   :5   Min.   :5   Min.   :3   Min.   :4   Min.   :1   Min.   :1  
##  1st Qu.:5   1st Qu.:5   1st Qu.:3   1st Qu.:4   1st Qu.:1   1st Qu.:1  
##  Median :5   Median :5   Median :3   Median :4   Median :1   Median :1  
##  Mean   :5   Mean   :5   Mean   :3   Mean   :4   Mean   :1   Mean   :1  
##  3rd Qu.:5   3rd Qu.:5   3rd Qu.:3   3rd Qu.:4   3rd Qu.:1   3rd Qu.:1  
##  Max.   :5   Max.   :5   Max.   :3   Max.   :4   Max.   :1   Max.   :1
bestVote$areavote <- as.factor(paste(bestVote$areavote)) 
bestVote$bigvote <- as.factor(paste(bestVote$bigvote)) 
bestVote$busyvote <- as.factor(paste(bestVote$busyvote)) 
bestVote$definitelyvote <- as.factor(paste(bestVote$definitelyvote)) 
bestVote$feelvote <- as.factor(paste(bestVote$feelvote))
bestVote$lotvote <- as.factor(paste(bestVote$lotvote))  
bestVote$manyvote <- as.factor(paste(bestVote$manyvote))                                  
bestVote$openvote <- as.factor(paste(bestVote$openvote))
bestVote$plusvote <- as.factor(paste(bestVote$plusvote))
bestVote$twovote <- as.factor(paste(bestVote$twovote))
bestVote$worthvote <- as.factor(paste(bestVote$worthvote))
bestVote$yearvote <- as.factor(paste(bestVote$yearvote))
bestVote$andvote <- as.factor(paste(bestVote$andvote)) 
bestVote$butvote <- as.factor(paste(bestVote$butvote)) 
bestVote$forvote <- as.factor(paste(bestVote$forvote)) 
bestVote$goodvote <- as.factor(paste(bestVote$goodvote)) 
bestVote$havevote <- as.factor(paste(bestVote$havevote))
bestVote$notvote <- as.factor(paste(bestVote$notvote))  
bestVote$thatvote <- as.factor(paste(bestVote$thatvote))                                  
bestVote$thevote <- as.factor(paste(bestVote$thevote))
bestVote$theyvote <- as.factor(paste(bestVote$theyvote))
bestVote$thisvote <- as.factor(paste(bestVote$thisvote))
bestVote$withvote <- as.factor(paste(bestVote$withvote))
bestVote$youvote <- as.factor(paste(bestVote$youvote))

bestVote$counts1 <- 0
bestVote$counts2 <- 0
bestVote$counts3 <- 0
bestVote$counts4 <- 0
bestVote$counts5 <- 0

a5 <- grep('5',bestVote$andvote)
a4 <- grep('4', bestVote$andvote)
a3 <- grep('3',bestVote$andvote)
a2 <- grep('2',bestVote$andvote)
a1 <- grep('1',bestVote$andvote)

b5 <- grep('5',bestVote$butvote)
b4 <- grep('4', bestVote$butvote)
b3 <- grep('3',bestVote$butvote)
b2 <- grep('2',bestVote$butvote)
b1 <- grep('1',bestVote$butvote)

c5 <- grep('5',bestVote$forvote)
c4 <- grep('4', bestVote$forvote)
c3 <- grep('3',bestVote$forvote)
c2 <- grep('2',bestVote$forvote)
c1 <- grep('1',bestVote$forvote)

d5 <- grep('5',bestVote$goodvote)
d4 <- grep('4', bestVote$goodvote)
d3 <- grep('3',bestVote$goodvote)
d2 <- grep('2',bestVote$goodvote)
d1 <- grep('1',bestVote$goodvote)

e5 <- grep('5',bestVote$havevote)
e4 <- grep('4', bestVote$havevote)
e3 <- grep('3',bestVote$havevote)
e2 <- grep('2',bestVote$havevote)
e1 <- grep('1',bestVote$havevote)

f5 <- grep('5',bestVote$notvote)
f4 <- grep('4', bestVote$notvote)
f3 <- grep('3',bestVote$notvote)
f2 <- grep('2',bestVote$notvote)
f1 <- grep('1',bestVote$notvote)

g5 <- grep('5',bestVote$thatvote)
g4 <- grep('4', bestVote$thatvote)
g3 <- grep('3',bestVote$thatvote)
g2 <- grep('2',bestVote$thatvote)
g1 <- grep('1',bestVote$thatvote)

h5 <- grep('5',bestVote$thevote)
h4 <- grep('4', bestVote$thevote)
h3 <- grep('3',bestVote$thevote)
h2 <- grep('2',bestVote$thevote)
h1 <- grep('1',bestVote$thevote)

i5 <- grep('5',bestVote$theyvote)
i4 <- grep('4', bestVote$theyvote)
i3 <- grep('3',bestVote$theyvote)
i2 <- grep('2',bestVote$theyvote)
i1 <- grep('1',bestVote$theyvote)

j5 <- grep('5',bestVote$thisvote)
j4 <- grep('4', bestVote$thisvote)
j3 <- grep('3',bestVote$thisvote)
j2 <- grep('2',bestVote$thisvote)
j1 <- grep('1',bestVote$thisvote)

k5 <- grep('5',bestVote$withvote)
k4 <- grep('4', bestVote$withvote)
k3 <- grep('3',bestVote$withvote)
k2 <- grep('2',bestVote$withvote)
k1 <- grep('1',bestVote$withvote)

l5 <- grep('5',bestVote$youvote)
l4 <- grep('4', bestVote$youvote)
l3 <- grep('3',bestVote$youvote)
l2 <- grep('2',bestVote$youvote)
l1 <- grep('1',bestVote$youvote)

A5 <- grep('5',bestVote$areavote)
A4 <- grep('4', bestVote$areavote)
A3 <- grep('3',bestVote$areavote)
A2 <- grep('2',bestVote$areavote)
A1 <- grep('1',bestVote$areavote)

B5 <- grep('5',bestVote$bigvote)
B4 <- grep('4', bestVote$bigvote)
B3 <- grep('3',bestVote$bigvote)
B2 <- grep('2',bestVote$bigvote)
B1 <- grep('1',bestVote$bigvote)

C5 <- grep('5',bestVote$busyvote)
C4 <- grep('4', bestVote$busyvote)
C3 <- grep('3',bestVote$busyvote)
C2 <- grep('2',bestVote$busyvote)
C1 <- grep('1',bestVote$busyvote)

D5 <- grep('5',bestVote$definitelyvote)
D4 <- grep('4', bestVote$definitelyvote)
D3 <- grep('3',bestVote$definitelyvote)
D2 <- grep('2',bestVote$definitelyvote)
D1 <- grep('1',bestVote$definitelyvote)

E5 <- grep('5',bestVote$feelvote)
E4 <- grep('4', bestVote$feelvote)
E3 <- grep('3',bestVote$feelvote)
E2 <- grep('2',bestVote$feelvote)
E1 <- grep('1',bestVote$feelvote)

F5 <- grep('5',bestVote$lotvote)
F4 <- grep('4', bestVote$lotvote)
F3 <- grep('3',bestVote$lotvote)
F2 <- grep('2',bestVote$lotvote)
F1 <- grep('1',bestVote$lotvote)

G5 <- grep('5',bestVote$manyvote)
G4 <- grep('4', bestVote$manyvote)
G3 <- grep('3',bestVote$manyvote)
G2 <- grep('2',bestVote$manyvote)
G1 <- grep('1',bestVote$manyvote)

H5 <- grep('5',bestVote$openvote)
H4 <- grep('4', bestVote$openvote)
H3 <- grep('3',bestVote$openvote)
H2 <- grep('2',bestVote$openvote)
H1 <- grep('1',bestVote$openvote)

I5 <- grep('5',bestVote$plusvote)
I4 <- grep('4', bestVote$plusvote)
I3 <- grep('3',bestVote$plusvote)
I2 <- grep('2',bestVote$plusvote)
I1 <- grep('1',bestVote$plusvote)

J5 <- grep('5',bestVote$twovote)
J4 <- grep('4', bestVote$twovote)
J3 <- grep('3',bestVote$twovote)
J2 <- grep('2',bestVote$twovote)
J1 <- grep('1',bestVote$twovote)

K5 <- grep('5',bestVote$worthvote)
K4 <- grep('4', bestVote$worthvote)
K3 <- grep('3',bestVote$worthvote)
K2 <- grep('2',bestVote$worthvote)
K1 <- grep('1',bestVote$worthvote)

L5 <- grep('5',bestVote$yearvote)
L4 <- grep('4', bestVote$yearvote)
L3 <- grep('3',bestVote$yearvote)
L2 <- grep('2',bestVote$yearvote)
L1 <- grep('1',bestVote$yearvote)

bestVote$counts1[l1] <- bestVote$counts1[l1]+ 1
bestVote$counts1[k1] <- bestVote$counts1[k1]+ 1
bestVote$counts1[j1] <- bestVote$counts1[j1]+ 1
bestVote$counts1[i1] <- bestVote$counts1[i1]+ 1
bestVote$counts1[h1] <- bestVote$counts1[h1]+ 1
bestVote$counts1[g1] <- bestVote$counts1[g1]+ 1
bestVote$counts1[f1] <- bestVote$counts1[f1]+ 1
bestVote$counts1[e1] <- bestVote$counts1[e1]+ 1
bestVote$counts1[d1] <- bestVote$counts1[d1]+ 1
bestVote$counts1[c1] <- bestVote$counts1[c1]+ 1
bestVote$counts1[b1] <- bestVote$counts1[b1]+ 1
bestVote$counts1[a1] <- bestVote$counts1[a1]+ 1

bestVote$counts2[l2]  <- bestVote$counts2[l2] + 1
bestVote$counts2[k2]  <- bestVote$counts2[k2] + 1
bestVote$counts2[j2]  <- bestVote$counts2[j2] + 1
bestVote$counts2[i2]  <- bestVote$counts2[i2] + 1
bestVote$counts2[h2]  <- bestVote$counts2[h2] + 1
bestVote$counts2[g2]  <- bestVote$counts2[g2] + 1
bestVote$counts2[f2]  <- bestVote$counts2[f2] + 1
bestVote$counts2[e2]  <- bestVote$counts2[e2] + 1
bestVote$counts2[d2]  <- bestVote$counts2[d2] + 1
bestVote$counts2[c2]  <- bestVote$counts2[c2] + 1
bestVote$counts2[b2]  <- bestVote$counts2[b2] + 1
bestVote$counts2[a2]  <- bestVote$counts2[a2] + 1

bestVote$counts3[l3]  <- bestVote$counts3[l3] + 1
bestVote$counts3[k3]  <- bestVote$counts3[k3] + 1
bestVote$counts3[j3]  <- bestVote$counts3[j3] + 1
bestVote$counts3[i3]  <- bestVote$counts3[i3] + 1
bestVote$counts3[h3]  <- bestVote$counts3[h3] + 1
bestVote$counts3[g3]  <- bestVote$counts3[g3] + 1
bestVote$counts3[f3]  <- bestVote$counts3[f3] + 1
bestVote$counts3[e3]  <- bestVote$counts3[e3] + 1
bestVote$counts3[d3]  <- bestVote$counts3[d3] + 1
bestVote$counts3[c3]  <- bestVote$counts3[c3] + 1
bestVote$counts3[b3]  <- bestVote$counts3[b3] + 1
bestVote$counts3[a3]  <- bestVote$counts3[a3] + 1

bestVote$counts4[l4]  <- bestVote$counts4[l4] + 1
bestVote$counts4[k4]  <- bestVote$counts4[k4] + 1
bestVote$counts4[j4]  <- bestVote$counts4[j4] + 1
bestVote$counts4[i4]  <- bestVote$counts4[i4] + 1
bestVote$counts4[h4]  <- bestVote$counts4[h4] + 1
bestVote$counts4[g4]  <- bestVote$counts4[g4] + 1
bestVote$counts4[f4]  <- bestVote$counts4[f4] + 1
bestVote$counts4[e4]  <- bestVote$counts4[e4] + 1
bestVote$counts4[d4]  <- bestVote$counts4[d4] + 1
bestVote$counts4[c4]  <- bestVote$counts4[c4] + 1
bestVote$counts4[b4]  <- bestVote$counts4[b4] + 1
bestVote$counts4[a4]  <- bestVote$counts4[a4] + 1

bestVote$counts5[l5]  <- bestVote$counts5[l5] + 1
bestVote$counts5[k5]  <- bestVote$counts5[k5] + 1
bestVote$counts5[j5]  <- bestVote$counts5[j5] + 1
bestVote$counts5[i5]  <- bestVote$counts5[i5] + 1
bestVote$counts5[h5]  <- bestVote$counts5[h5] + 1
bestVote$counts5[g5]  <- bestVote$counts5[g5] + 1
bestVote$counts5[f5]  <- bestVote$counts5[f5] + 1
bestVote$counts5[e5]  <- bestVote$counts5[e5] + 1
bestVote$counts5[d5]  <- bestVote$counts5[d5] + 1
bestVote$counts5[c5]  <- bestVote$counts5[c5] + 1
bestVote$counts5[b5]  <- bestVote$counts5[b5] + 1
bestVote$counts5[a5]  <- bestVote$counts5[a5] + 1



bestVote$counts1[L1] <- bestVote$counts1[L1]+ 1
bestVote$counts1[K1] <- bestVote$counts1[K1]+ 1
bestVote$counts1[J1] <- bestVote$counts1[J1]+ 1
bestVote$counts1[I1] <- bestVote$counts1[I1]+ 1
bestVote$counts1[H1] <- bestVote$counts1[H1]+ 1
bestVote$counts1[G1] <- bestVote$counts1[G1]+ 1
bestVote$counts1[F1] <- bestVote$counts1[F1]+ 1
bestVote$counts1[E1] <- bestVote$counts1[E1]+ 1
bestVote$counts1[D1] <- bestVote$counts1[D1]+ 1
bestVote$counts1[C1] <- bestVote$counts1[C1]+ 1
bestVote$counts1[B1] <- bestVote$counts1[B1]+ 1
bestVote$counts1[A1] <- bestVote$counts1[A1]+ 1

bestVote$counts2[L2]  <- bestVote$counts2[L2] + 1
bestVote$counts2[K2]  <- bestVote$counts2[K2] + 1
bestVote$counts2[J2]  <- bestVote$counts2[J2] + 1
bestVote$counts2[I2]  <- bestVote$counts2[I2] + 1
bestVote$counts2[H2]  <- bestVote$counts2[H2] + 1
bestVote$counts2[G2]  <- bestVote$counts2[G2] + 1
bestVote$counts2[F2]  <- bestVote$counts2[F2] + 1
bestVote$counts2[E2]  <- bestVote$counts2[E2] + 1
bestVote$counts2[D2]  <- bestVote$counts2[D2] + 1
bestVote$counts2[C2]  <- bestVote$counts2[C2] + 1
bestVote$counts2[B2]  <- bestVote$counts2[B2] + 1
bestVote$counts2[A2]  <- bestVote$counts2[A2] + 1

bestVote$counts3[L3]  <- bestVote$counts3[L3] + 1
bestVote$counts3[K3]  <- bestVote$counts3[K3] + 1
bestVote$counts3[J3]  <- bestVote$counts3[J3] + 1
bestVote$counts3[I3]  <- bestVote$counts3[I3] + 1
bestVote$counts3[H3]  <- bestVote$counts3[H3] + 1
bestVote$counts3[G3]  <- bestVote$counts3[G3] + 1
bestVote$counts3[F3]  <- bestVote$counts3[F3] + 1
bestVote$counts3[E3]  <- bestVote$counts3[E3] + 1
bestVote$counts3[D3]  <- bestVote$counts3[D3] + 1
bestVote$counts3[C3]  <- bestVote$counts3[C3] + 1
bestVote$counts3[B3]  <- bestVote$counts3[B3] + 1
bestVote$counts3[A3]  <- bestVote$counts3[A3] + 1

bestVote$counts4[L4]  <- bestVote$counts4[L4] + 1
bestVote$counts4[K4]  <- bestVote$counts4[K4] + 1
bestVote$counts4[J4]  <- bestVote$counts4[J4] + 1
bestVote$counts4[I4]  <- bestVote$counts4[I4] + 1
bestVote$counts4[H4]  <- bestVote$counts4[H4] + 1
bestVote$counts4[G4]  <- bestVote$counts4[G4] + 1
bestVote$counts4[F4]  <- bestVote$counts4[F4] + 1
bestVote$counts4[E4]  <- bestVote$counts4[E4] + 1
bestVote$counts4[D4]  <- bestVote$counts4[D4] + 1
bestVote$counts4[C4]  <- bestVote$counts4[C4] + 1
bestVote$counts4[B4]  <- bestVote$counts4[B4] + 1
bestVote$counts4[A4]  <- bestVote$counts4[A4] + 1

bestVote$counts5[L5]  <- bestVote$counts5[L5] + 1
bestVote$counts5[K5]  <- bestVote$counts5[K5] + 1
bestVote$counts5[J5]  <- bestVote$counts5[J5] + 1
bestVote$counts5[I5]  <- bestVote$counts5[I5] + 1
bestVote$counts5[H5]  <- bestVote$counts5[H5] + 1
bestVote$counts5[G5]  <- bestVote$counts5[G5] + 1
bestVote$counts5[F5]  <- bestVote$counts5[F5] + 1
bestVote$counts5[E5]  <- bestVote$counts5[E5] + 1
bestVote$counts5[D5]  <- bestVote$counts5[D5] + 1
bestVote$counts5[C5]  <- bestVote$counts5[C5] + 1
bestVote$counts5[B5]  <- bestVote$counts5[B5] + 1
bestVote$counts5[A5]  <- bestVote$counts5[A5] + 1

!@#$%

bestVote$maxVote <- apply(bestVote[25:29],1,max)

mv <- bestVote$maxVote
ct1 <- bestVote$counts1
ct2 <- bestVote$counts2
ct3 <- bestVote$counts3
ct4 <- bestVote$counts4
ct5 <- bestVote$counts5


bestVote$votedRating <- ifelse(mv==ct1, 1, 
                        ifelse(mv==ct2, 2,
                        ifelse(mv==ct3, 3,
                        ifelse(mv==ct4, 4, 5))))

bestVote$Rating <- ifelse(mv==ct1 & (mv==ct2|mv==ct3|mv==ct4|mv==ct5),'tie',
                     ifelse(mv==ct1,1, 
                           ifelse(mv==ct2 & (mv==ct3|mv==ct4|mv==ct5),'tie',
                     ifelse(mv==ct2, 2,
                           ifelse(mv==ct3 &(mv==ct4|mv==ct5),'tie', 
                           ifelse(mv==ct3, 3,
                           ifelse(mv==ct4 & mv==ct5, 'tie',
                           ifelse(mv==ct4, 4,5
                           )))))))
                          )
bestVote$finalPrediction <- ifelse(bestVote$Rating=='tie', 
                     ifelse(ceiling(mean(c(ct1,ct2,ct3,ct4,ct5)*c(1,2,3,4,5))/5) > 5,
                     5, ceiling(mean(c(ct1,ct2,ct3,ct4,ct5)*c(1,2,3,4,5))/5)), 
                     bestVote$votedRating )

Now that we have our final prediction with this algorithm. Lets attach these two tables together and rearrange the columns.

bestVote$CorrectlyPredicted <- ifelse(MLr$userRatingValue==bestVote$finalPrediction,1,0)

MLr2 <- cbind(MLr, bestVote)
MLr3 <- MLr2[,c(2:347,1)]
MLr3$CorrectPrediction <- ifelse(MLr3$finalPrediction==MLr3$userRatingValue,
                                 1,0)
MLr3$finalPrediction <- as.factor(paste(MLr3$finalPrediction))
MLr3$userRatingValue <- paste('rating ', MLr3$userRatingValue,sep='')
Accuracy <- sum(MLr3$CorrectPrediction)/length(MLr3$CorrectPrediction)
Accuracy
## [1] 0.1433225

Ok, so we see the results are the same if we leave the NAs in place or revert back to counting them as zeros. This makes sense since our algorithm selects the minimum value and previously when there were NAs just skipped them, but the minimum values in our data were all less than zero. Hence, the same results.

Now, lets change the data to having the difference between ratios be the absolute value instead of the lowest negative value because this will actually take the shortest distance or closest to zero as being the correct rating in ratios of document to all documents per rating of the ratios of term/total terms. However, in this case, since we aren’t using NAs and are instead using zeros, it will select the zeros as the shortest distance and thus closest rating for each term that is missing. To fix this lets revert back to the datatables with NAs. This will be simple because it is just our ML_rating_data. We don’t have to do the type conversion and matrix to data frame steps. We will be modifying the difference or diff columns to take the absolute value function of the difference. But everything else is the same.

MLr <- ML_rating_data
MLr$R1_area <- rep(w2w[1,1],length(MLr$userRatingValue))
MLr$R2_area <- rep(w2w[2,1],length(MLr$userRatingValue))
MLr$R3_area <- rep(w2w[3,1],length(MLr$userRatingValue))
MLr$R4_area <- rep(w2w[4,1],length(MLr$userRatingValue))
MLr$R5_area <- rep(w2w[5,1],length(MLr$userRatingValue))

MLr$R1_big <- rep(w2w[1,2],length(MLr$userRatingValue))
MLr$R2_big <- rep(w2w[2,2],length(MLr$userRatingValue))
MLr$R3_big <- rep(w2w[3,2],length(MLr$userRatingValue))
MLr$R4_big <- rep(w2w[4,2],length(MLr$userRatingValue))
MLr$R5_big <- rep(w2w[5,2],length(MLr$userRatingValue))

MLr$R1_busy <- rep(w2w[1,3],length(MLr$userRatingValue))
MLr$R2_busy <- rep(w2w[2,3],length(MLr$userRatingValue))
MLr$R3_busy <- rep(w2w[3,3],length(MLr$userRatingValue))
MLr$R4_busy <- rep(w2w[4,3],length(MLr$userRatingValue))
MLr$R5_busy <- rep(w2w[5,3],length(MLr$userRatingValue))

MLr$R1_definitely <- rep(w2w[1,4],length(MLr$userRatingValue))
MLr$R2_definitely <- rep(w2w[2,4],length(MLr$userRatingValue))
MLr$R3_definitely <- rep(w2w[3,4],length(MLr$userRatingValue))
MLr$R4_definitely <- rep(w2w[4,4],length(MLr$userRatingValue))
MLr$R5_definitely <- rep(w2w[5,4],length(MLr$userRatingValue))

MLr$R1_feel <- rep(w2w[1,5],length(MLr$userRatingValue))
MLr$R2_feel <- rep(w2w[2,5],length(MLr$userRatingValue))
MLr$R3_feel <- rep(w2w[3,5],length(MLr$userRatingValue))
MLr$R4_feel <- rep(w2w[4,5],length(MLr$userRatingValue))
MLr$R5_feel <- rep(w2w[5,5],length(MLr$userRatingValue))

MLr$R1_lot <- rep(w2w[1,6],length(MLr$userRatingValue))
MLr$R2_lot <- rep(w2w[2,6],length(MLr$userRatingValue))
MLr$R3_lot <- rep(w2w[3,6],length(MLr$userRatingValue))
MLr$R4_lot <- rep(w2w[4,6],length(MLr$userRatingValue))
MLr$R5_lot <- rep(w2w[5,6],length(MLr$userRatingValue))

MLr$R1_many <- rep(w2w[1,7],length(MLr$userRatingValue))
MLr$R2_many <- rep(w2w[2,7],length(MLr$userRatingValue))
MLr$R3_many <- rep(w2w[3,7],length(MLr$userRatingValue))
MLr$R4_many <- rep(w2w[4,7],length(MLr$userRatingValue))
MLr$R5_many <- rep(w2w[5,7],length(MLr$userRatingValue))

MLr$R1_open <- rep(w2w[1,8],length(MLr$userRatingValue))
MLr$R2_open <- rep(w2w[2,8],length(MLr$userRatingValue))
MLr$R3_open <- rep(w2w[3,8],length(MLr$userRatingValue))
MLr$R4_open <- rep(w2w[4,8],length(MLr$userRatingValue))
MLr$R5_open <- rep(w2w[5,8],length(MLr$userRatingValue))

MLr$R1_plus <- rep(w2w[1,9],length(MLr$userRatingValue))
MLr$R2_plus <- rep(w2w[2,9],length(MLr$userRatingValue))
MLr$R3_plus <- rep(w2w[3,9],length(MLr$userRatingValue))
MLr$R4_plus <- rep(w2w[4,9],length(MLr$userRatingValue))
MLr$R5_plus <- rep(w2w[5,9],length(MLr$userRatingValue))

MLr$R1_two <- rep(w2w[1,10],length(MLr$userRatingValue))
MLr$R2_two <- rep(w2w[2,10],length(MLr$userRatingValue))
MLr$R3_two <- rep(w2w[3,10],length(MLr$userRatingValue))
MLr$R4_two <- rep(w2w[4,10],length(MLr$userRatingValue))
MLr$R5_two <- rep(w2w[5,10],length(MLr$userRatingValue))

MLr$R1_worth <- rep(w2w[1,11],length(MLr$userRatingValue))
MLr$R2_worth <- rep(w2w[2,11],length(MLr$userRatingValue))
MLr$R3_worth <- rep(w2w[3,11],length(MLr$userRatingValue))
MLr$R4_worth <- rep(w2w[4,11],length(MLr$userRatingValue))
MLr$R5_worth <- rep(w2w[5,11],length(MLr$userRatingValue))

MLr$R1_year <- rep(w2w[1,12],length(MLr$userRatingValue))
MLr$R2_year <- rep(w2w[2,12],length(MLr$userRatingValue))
MLr$R3_year <- rep(w2w[3,12],length(MLr$userRatingValue))
MLr$R4_year <- rep(w2w[4,12],length(MLr$userRatingValue))
MLr$R5_year <- rep(w2w[5,12],length(MLr$userRatingValue))

MLr$R1_and <- rep(w2w[1,13],length(MLr$userRatingValue))
MLr$R2_and <- rep(w2w[2,13],length(MLr$userRatingValue))
MLr$R3_and <- rep(w2w[3,13],length(MLr$userRatingValue))
MLr$R4_and <- rep(w2w[4,13],length(MLr$userRatingValue))
MLr$R5_and <- rep(w2w[5,13],length(MLr$userRatingValue))

MLr$R1_but <- rep(w2w[1,14],length(MLr$userRatingValue))
MLr$R2_but <- rep(w2w[2,14],length(MLr$userRatingValue))
MLr$R3_but <- rep(w2w[3,14],length(MLr$userRatingValue))
MLr$R4_but <- rep(w2w[4,14],length(MLr$userRatingValue))
MLr$R5_but <- rep(w2w[5,14],length(MLr$userRatingValue))

MLr$R1_for <- rep(w2w[1,15],length(MLr$userRatingValue))
MLr$R2_for <- rep(w2w[2,15],length(MLr$userRatingValue))
MLr$R3_for <- rep(w2w[3,15],length(MLr$userRatingValue))
MLr$R4_for <- rep(w2w[4,15],length(MLr$userRatingValue))
MLr$R5_for <- rep(w2w[5,15],length(MLr$userRatingValue))

MLr$R1_good <- rep(w2w[1,16],length(MLr$userRatingValue))
MLr$R2_good <- rep(w2w[2,16],length(MLr$userRatingValue))
MLr$R3_good <- rep(w2w[3,16],length(MLr$userRatingValue))
MLr$R4_good <- rep(w2w[4,16],length(MLr$userRatingValue))
MLr$R5_good <- rep(w2w[5,16],length(MLr$userRatingValue))

MLr$R1_have <- rep(w2w[1,17],length(MLr$userRatingValue))
MLr$R2_have <- rep(w2w[2,17],length(MLr$userRatingValue))
MLr$R3_have <- rep(w2w[3,17],length(MLr$userRatingValue))
MLr$R4_have <- rep(w2w[4,17],length(MLr$userRatingValue))
MLr$R5_have <- rep(w2w[5,17],length(MLr$userRatingValue))

MLr$R1_not <- rep(w2w[1,18],length(MLr$userRatingValue))
MLr$R2_not <- rep(w2w[2,18],length(MLr$userRatingValue))
MLr$R3_not <- rep(w2w[3,18],length(MLr$userRatingValue))
MLr$R4_not <- rep(w2w[4,18],length(MLr$userRatingValue))
MLr$R5_not <- rep(w2w[5,18],length(MLr$userRatingValue))

MLr$R1_that <- rep(w2w[1,19],length(MLr$userRatingValue))
MLr$R2_that <- rep(w2w[2,19],length(MLr$userRatingValue))
MLr$R3_that <- rep(w2w[3,19],length(MLr$userRatingValue))
MLr$R4_that <- rep(w2w[4,19],length(MLr$userRatingValue))
MLr$R5_that <- rep(w2w[5,19],length(MLr$userRatingValue))

MLr$R1_the <- rep(w2w[1,20],length(MLr$userRatingValue))
MLr$R2_the <- rep(w2w[2,20],length(MLr$userRatingValue))
MLr$R3_the <- rep(w2w[3,20],length(MLr$userRatingValue))
MLr$R4_the <- rep(w2w[4,20],length(MLr$userRatingValue))
MLr$R5_the <- rep(w2w[5,20],length(MLr$userRatingValue))

MLr$R1_they <- rep(w2w[1,21],length(MLr$userRatingValue))
MLr$R2_they <- rep(w2w[2,21],length(MLr$userRatingValue))
MLr$R3_they <- rep(w2w[3,21],length(MLr$userRatingValue))
MLr$R4_they <- rep(w2w[4,21],length(MLr$userRatingValue))
MLr$R5_they <- rep(w2w[5,21],length(MLr$userRatingValue))

MLr$R1_this <- rep(w2w[1,22],length(MLr$userRatingValue))
MLr$R2_this <- rep(w2w[2,22],length(MLr$userRatingValue))
MLr$R3_this <- rep(w2w[3,22],length(MLr$userRatingValue))
MLr$R4_this <- rep(w2w[4,22],length(MLr$userRatingValue))
MLr$R5_this <- rep(w2w[5,22],length(MLr$userRatingValue))

MLr$R1_with <- rep(w2w[1,23],length(MLr$userRatingValue))
MLr$R2_with <- rep(w2w[2,23],length(MLr$userRatingValue))
MLr$R3_with <- rep(w2w[3,23],length(MLr$userRatingValue))
MLr$R4_with <- rep(w2w[4,23],length(MLr$userRatingValue))
MLr$R5_with <- rep(w2w[5,23],length(MLr$userRatingValue))

MLr$R1_you <- rep(w2w[1,24],length(MLr$userRatingValue))
MLr$R2_you <- rep(w2w[2,24],length(MLr$userRatingValue))
MLr$R3_you <- rep(w2w[3,24],length(MLr$userRatingValue))
MLr$R4_you <- rep(w2w[4,24],length(MLr$userRatingValue))
MLr$R5_you <- rep(w2w[5,24],length(MLr$userRatingValue))

At this point we would/could get the absolute value of each difference then get the minimum result to vote on.You can do this easily by find and replace within RStudio and replacing MLr\(R with abs(MLr\)R), then replacing ratios with ratios) making sure to select the ‘in selection’ box before selecting replace all. If you get more than 120, make sure you saved the last point and close then reopen, because you made a mess you don’t want to save.

MLr$area_diff1 <- abs(MLr$R1_area-MLr$area_ratios)
MLr$area_diff2 <- abs(MLr$R2_area-MLr$area_ratios)
MLr$area_diff3 <- abs(MLr$R3_area-MLr$area_ratios)
MLr$area_diff4 <- abs(MLr$R4_area-MLr$area_ratios)
MLr$area_diff5 <- abs(MLr$R5_area-MLr$area_ratios)

MLr$big_diff1 <- abs(MLr$R1_big-MLr$big_ratios)
MLr$big_diff2 <- abs(MLr$R2_big-MLr$big_ratios)
MLr$big_diff3 <- abs(MLr$R3_big-MLr$big_ratios)
MLr$big_diff4 <- abs(MLr$R4_big-MLr$big_ratios)
MLr$big_diff5 <- abs(MLr$R5_big-MLr$big_ratios)

MLr$busy_diff1 <- abs(MLr$R1_busy-MLr$busy_ratios) 
MLr$busy_diff2 <- abs(MLr$R2_busy-MLr$busy_ratios) 
MLr$busy_diff3 <- abs(MLr$R3_busy-MLr$busy_ratios) 
MLr$busy_diff4 <- abs(MLr$R4_busy-MLr$busy_ratios) 
MLr$busy_diff5 <- abs(MLr$R5_busy-MLr$busy_ratios) 

MLr$definitely_diff1 <- abs(MLr$R1_definitely-MLr$definitely_ratios)
MLr$definitely_diff2 <- abs(MLr$R2_definitely-MLr$definitely_ratios)
MLr$definitely_diff3 <- abs(MLr$R3_definitely-MLr$definitely_ratios)
MLr$definitely_diff4 <- abs(MLr$R4_definitely-MLr$definitely_ratios)
MLr$definitely_diff5 <- abs(MLr$R5_definitely-MLr$definitely_ratios)

MLr$feel_diff1 <- abs(MLr$R1_feel-MLr$feel_ratios)
MLr$feel_diff2 <- abs(MLr$R2_feel-MLr$feel_ratios)
MLr$feel_diff3 <- abs(MLr$R3_feel-MLr$feel_ratios)
MLr$feel_diff4 <- abs(MLr$R4_feel-MLr$feel_ratios)
MLr$feel_diff5 <- abs(MLr$R5_feel-MLr$feel_ratios)

MLr$lot_diff1 <- abs(MLr$R1_lot-MLr$lot_ratios)
MLr$lot_diff2 <- abs(MLr$R2_lot-MLr$lot_ratios)
MLr$lot_diff3 <- abs(MLr$R3_lot-MLr$lot_ratios)
MLr$lot_diff4 <- abs(MLr$R4_lot-MLr$lot_ratios)
MLr$lot_diff5 <- abs(MLr$R5_lot-MLr$lot_ratios)

MLr$many_diff1 <- abs(MLr$R1_many-MLr$many_ratios)
MLr$many_diff2 <- abs(MLr$R2_many-MLr$many_ratios)
MLr$many_diff3 <- abs(MLr$R3_many-MLr$many_ratios)
MLr$many_diff4 <- abs(MLr$R4_many-MLr$many_ratios)
MLr$many_diff5 <- abs(MLr$R5_many-MLr$many_ratios)

MLr$open_diff1 <- abs(MLr$R1_open-MLr$open_ratios)
MLr$open_diff2 <- abs(MLr$R2_open-MLr$open_ratios)
MLr$open_diff3 <- abs(MLr$R3_open-MLr$open_ratios)
MLr$open_diff4 <- abs(MLr$R4_open-MLr$open_ratios)
MLr$open_diff5 <- abs(MLr$R5_open-MLr$open_ratios)

MLr$plus_diff1 <- abs(MLr$R1_plus-MLr$plus_ratios)
MLr$plus_diff2 <- abs(MLr$R2_plus-MLr$plus_ratios)
MLr$plus_diff3 <- abs(MLr$R3_plus-MLr$plus_ratios)
MLr$plus_diff4 <- abs(MLr$R4_plus-MLr$plus_ratios)
MLr$plus_diff5 <- abs(MLr$R5_plus-MLr$plus_ratios)

MLr$two_diff1 <- abs(MLr$R1_two-MLr$two_ratios)
MLr$two_diff2 <- abs(MLr$R2_two-MLr$two_ratios)
MLr$two_diff3 <- abs(MLr$R3_two-MLr$two_ratios)
MLr$two_diff4 <- abs(MLr$R4_two-MLr$two_ratios)
MLr$two_diff5 <- abs(MLr$R5_two-MLr$two_ratios)

MLr$worth_diff1 <- abs(MLr$R1_worth-MLr$worth_ratios)
MLr$worth_diff2 <- abs(MLr$R2_worth-MLr$worth_ratios)
MLr$worth_diff3 <- abs(MLr$R3_worth-MLr$worth_ratios)
MLr$worth_diff4 <- abs(MLr$R4_worth-MLr$worth_ratios)
MLr$worth_diff5 <- abs(MLr$R5_worth-MLr$worth_ratios)

MLr$year_diff1 <- abs(MLr$R1_year-MLr$year_ratios)
MLr$year_diff2 <- abs(MLr$R2_year-MLr$year_ratios)
MLr$year_diff3 <- abs(MLr$R3_year-MLr$year_ratios)
MLr$year_diff4 <- abs(MLr$R4_year-MLr$year_ratios)
MLr$year_diff5 <- abs(MLr$R5_year-MLr$year_ratios)




MLr$and_diff1 <- abs(MLr$R1_and-MLr$and_ratios)
MLr$and_diff2 <- abs(MLr$R2_and-MLr$and_ratios)
MLr$and_diff3 <- abs(MLr$R3_and-MLr$and_ratios)
MLr$and_diff4 <- abs(MLr$R4_and-MLr$and_ratios)
MLr$and_diff5 <- abs(MLr$R5_and-MLr$and_ratios)

MLr$but_diff1 <- abs(MLr$R1_but-MLr$but_ratios)
MLr$but_diff2 <- abs(MLr$R2_but-MLr$but_ratios)
MLr$but_diff3 <- abs(MLr$R3_but-MLr$but_ratios)
MLr$but_diff4 <- abs(MLr$R4_but-MLr$but_ratios)
MLr$but_diff5 <- abs(MLr$R5_but-MLr$but_ratios)

MLr$for_diff1 <- abs(MLr$R1_for-MLr$for_ratios) 
MLr$for_diff2 <- abs(MLr$R2_for-MLr$for_ratios) 
MLr$for_diff3 <- abs(MLr$R3_for-MLr$for_ratios) 
MLr$for_diff4 <- abs(MLr$R4_for-MLr$for_ratios) 
MLr$for_diff5 <- abs(MLr$R5_for-MLr$for_ratios) 

MLr$good_diff1 <- abs(MLr$R1_good-MLr$good_ratios)
MLr$good_diff2 <- abs(MLr$R2_good-MLr$good_ratios)
MLr$good_diff3 <- abs(MLr$R3_good-MLr$good_ratios)
MLr$good_diff4 <- abs(MLr$R4_good-MLr$good_ratios)
MLr$good_diff5 <- abs(MLr$R5_good-MLr$good_ratios)

MLr$have_diff1 <- abs(MLr$R1_have-MLr$have_ratios)
MLr$have_diff2 <- abs(MLr$R2_have-MLr$have_ratios)
MLr$have_diff3 <- abs(MLr$R3_have-MLr$have_ratios)
MLr$have_diff4 <- abs(MLr$R4_have-MLr$have_ratios)
MLr$have_diff5 <- abs(MLr$R5_have-MLr$have_ratios)

MLr$not_diff1 <- abs(MLr$R1_not-MLr$not_ratios)
MLr$not_diff2 <- abs(MLr$R2_not-MLr$not_ratios)
MLr$not_diff3 <- abs(MLr$R3_not-MLr$not_ratios)
MLr$not_diff4 <- abs(MLr$R4_not-MLr$not_ratios)
MLr$not_diff5 <- abs(MLr$R5_not-MLr$not_ratios)

MLr$that_diff1 <- abs(MLr$R1_that-MLr$that_ratios)
MLr$that_diff2 <- abs(MLr$R2_that-MLr$that_ratios)
MLr$that_diff3 <- abs(MLr$R3_that-MLr$that_ratios)
MLr$that_diff4 <- abs(MLr$R4_that-MLr$that_ratios)
MLr$that_diff5 <- abs(MLr$R5_that-MLr$that_ratios)

MLr$the_diff1 <- abs(MLr$R1_the-MLr$the_ratios)
MLr$the_diff2 <- abs(MLr$R2_the-MLr$the_ratios)
MLr$the_diff3 <- abs(MLr$R3_the-MLr$the_ratios)
MLr$the_diff4 <- abs(MLr$R4_the-MLr$the_ratios)
MLr$the_diff5 <- abs(MLr$R5_the-MLr$the_ratios)

MLr$they_diff1 <- abs(MLr$R1_they-MLr$they_ratios)
MLr$they_diff2 <- abs(MLr$R2_they-MLr$they_ratios)
MLr$they_diff3 <- abs(MLr$R3_they-MLr$they_ratios)
MLr$they_diff4 <- abs(MLr$R4_they-MLr$they_ratios)
MLr$they_diff5 <- abs(MLr$R5_they-MLr$they_ratios)

MLr$this_diff1 <- abs(MLr$R1_this-MLr$this_ratios)
MLr$this_diff2 <- abs(MLr$R2_this-MLr$this_ratios)
MLr$this_diff3 <- abs(MLr$R3_this-MLr$this_ratios)
MLr$this_diff4 <- abs(MLr$R4_this-MLr$this_ratios)
MLr$this_diff5 <- abs(MLr$R5_this-MLr$this_ratios)

MLr$with_diff1 <- abs(MLr$R1_with-MLr$with_ratios)
MLr$with_diff2 <- abs(MLr$R2_with-MLr$with_ratios)
MLr$with_diff3 <- abs(MLr$R3_with-MLr$with_ratios)
MLr$with_diff4 <- abs(MLr$R4_with-MLr$with_ratios)
MLr$with_diff5 <- abs(MLr$R5_with-MLr$with_ratios)

MLr$you_diff1 <- abs(MLr$R1_you-MLr$you_ratios)
MLr$you_diff2 <- abs(MLr$R2_you-MLr$you_ratios)
MLr$you_diff3 <- abs(MLr$R3_you-MLr$you_ratios)
MLr$you_diff4 <- abs(MLr$R4_you-MLr$you_ratios)
MLr$you_diff5 <- abs(MLr$R5_you-MLr$you_ratios)

Get the minimum value of the term/total terms per document difference from the ratings term/total terms per rating values.

MLr$areaMin <- apply(MLr[146:150],1, min,na.rm=TRUE)
MLr$areavote <- ifelse(MLr$area_diff1==MLr$areaMin,
                    1, 
                    ifelse(MLr$area_diff2==MLr$areaMin,
                           2,
                           ifelse(MLr$area_diff3==MLr$areaMin,
                                  3,
                                  ifelse(MLr$area_diff4==MLr$areaMin,
                                         4,
                                         ifelse(MLr$area_diff5==MLr$areaMin,
                                              5, NA )
                                         )
                                  )
                           )
                    )

MLr$bigMin <- apply(MLr[151:155],1, min,na.rm=TRUE)
MLr$bigvote <- ifelse(MLr$big_diff1==MLr$bigMin,
                    1, 
                    ifelse(MLr$big_diff2==MLr$bigMin,
                           2,
                           ifelse(MLr$big_diff3==MLr$bigMin,
                                  3,
                                  ifelse(MLr$big_diff4==MLr$bigMin,
                                         4,
                                         ifelse(MLr$big_diff5==MLr$bigMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$busyMin <- apply(MLr[156:160],1, min,na.rm=TRUE)
MLr$busyvote <- ifelse(MLr$busy_diff1==MLr$busyMin,
                    1, 
                    ifelse(MLr$busy_diff2==MLr$busyMin,
                           2,
                           ifelse(MLr$busy_diff3==MLr$busyMin,
                                  3,
                                  ifelse(MLr$busy_diff4==MLr$busyMin,
                                         4,
                                         ifelse(MLr$busy_diff5==MLr$busyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$definitelyMin <- apply(MLr[161:165],1, min, na.rm=TRUE)
MLr$definitelyvote <- ifelse(MLr$definitely_diff1==MLr$definitelyMin,
                    1, 
                    ifelse(MLr$definitely_diff2==MLr$definitelyMin,
                           2,
                           ifelse(MLr$definitely_diff3==MLr$definitelyMin,
                                  3,
                                  ifelse(MLr$definitely_diff4==MLr$definitelyMin,
                                         4,
                                         ifelse(MLr$definitely_diff5==MLr$definitelyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$feelMin <- apply(MLr[166:170],1, min, na.rm=TRUE)
MLr$feelvote <- ifelse(MLr$feel_diff1==MLr$feelMin,
                    1, 
                    ifelse(MLr$feel_diff2==MLr$feelMin,
                           2,
                           ifelse(MLr$feel_diff3==MLr$feelMin,
                                  3,
                                  ifelse(MLr$feel_diff4==MLr$feelMin,
                                         4,
                                         ifelse(MLr$feel_diff5==MLr$feelMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$lotMin <- apply(MLr[171:175],1, min, na.rm=TRUE)
MLr$lotvote <- ifelse(MLr$lot_diff1==MLr$lotMin,
                    1, 
                    ifelse(MLr$lot_diff2==MLr$lotMin,
                           2,
                           ifelse(MLr$lot_diff3==MLr$lotMin,
                                  3,
                                  ifelse(MLr$lot_diff4==MLr$lotMin,
                                         4,
                                         ifelse(MLr$lot_diff5==MLr$lotMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$manyMin <- apply(MLr[176:180],1, min, na.rm=TRUE)
MLr$manyvote <- ifelse(MLr$many_diff1==MLr$manyMin,
                    1, 
                    ifelse(MLr$many_diff2==MLr$manyMin,
                           2,
                           ifelse(MLr$many_diff3==MLr$manyMin,
                                  3,
                                  ifelse(MLr$many_diff4==MLr$manyMin,
                                         4,
                                         ifelse(MLr$many_diff5==MLr$manyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$openMin <- apply(MLr[181:185],1, min, na.rm=TRUE)
MLr$openvote <- ifelse(MLr$open_diff1==MLr$openMin,
                    1, 
                    ifelse(MLr$open_diff2==MLr$openMin,
                           2,
                           ifelse(MLr$open_diff3==MLr$openMin,
                                  3,
                                  ifelse(MLr$open_diff4==MLr$openMin,
                                         4,
                                         ifelse(MLr$open_diff5==MLr$openMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$plusMin <- apply(MLr[186:190],1, min, na.rm=TRUE)
MLr$plusvote <- ifelse(MLr$plus_diff1==MLr$plusMin,
                    1, 
                    ifelse(MLr$plus_diff2==MLr$plusMin,
                           2,
                           ifelse(MLr$plus_diff3==MLr$plusMin,
                                  3,
                                  ifelse(MLr$plus_diff4==MLr$plusMin,
                                         4,
                                         ifelse(MLr$plus_diff5==MLr$plusMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$twoMin <- apply(MLr[191:195],1, min, na.rm=TRUE)
MLr$twovote <- ifelse(MLr$two_diff1==MLr$twoMin,
                    1, 
                    ifelse(MLr$two_diff2==MLr$twoMin,
                           2,
                           ifelse(MLr$two_diff3==MLr$twoMin,
                                  3,
                                  ifelse(MLr$two_diff4==MLr$twoMin,
                                         4,
                                         ifelse(MLr$two_diff5==MLr$twoMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$worthMin <- apply(MLr[196:200],1, min, na.rm=TRUE)
MLr$worthvote <- ifelse(MLr$worth_diff1==MLr$worthMin,
                    1, 
                    ifelse(MLr$worth_diff2==MLr$worthMin,
                           2,
                           ifelse(MLr$worth_diff3==MLr$worthMin,
                                  3,
                                  ifelse(MLr$worth_diff4==MLr$worthMin,
                                         4,
                                         ifelse(MLr$worth_diff5==MLr$worthMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$yearMin <- apply(MLr[201:205],1, min, na.rm=TRUE)
MLr$yearvote <- ifelse(MLr$year_diff1==MLr$yearMin,
                    1, 
                    ifelse(MLr$year_diff2==MLr$yearMin,
                           2,
                           ifelse(MLr$year_diff3==MLr$yearMin,
                                  3,
                                  ifelse(MLr$year_diff4==MLr$yearMin,
                                         4,
                                         ifelse(MLr$year_diff5==MLr$yearMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )





MLr$andMin <- apply(MLr[206:210],1, min,na.rm=TRUE)
MLr$andvote <- ifelse(MLr$and_diff1==MLr$andMin,
                    1, 
                    ifelse(MLr$and_diff2==MLr$andMin,
                           2,
                           ifelse(MLr$and_diff3==MLr$andMin,
                                  3,
                                  ifelse(MLr$and_diff4==MLr$andMin,
                                         4,
                                         ifelse(MLr$and_diff5==MLr$andMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$butMin <- apply(MLr[211:215],1, min, na.rm=TRUE)
MLr$butvote <- ifelse(MLr$but_diff1==MLr$butMin,
                    1, 
                    ifelse(MLr$but_diff2==MLr$butMin,
                           2,
                           ifelse(MLr$but_diff3==MLr$butMin,
                                  3,
                                  ifelse(MLr$but_diff4==MLr$butMin,
                                         4,
                                         ifelse(MLr$but_diff5==MLr$butMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$forMin <- apply(MLr[216:220],1, min, na.rm=TRUE)
MLr$forvote <- ifelse(MLr$for_diff1==MLr$forMin,
                    1, 
                    ifelse(MLr$for_diff2==MLr$forMin,
                           2,
                           ifelse(MLr$for_diff3==MLr$forMin,
                                  3,
                                  ifelse(MLr$for_diff4==MLr$forMin,
                                         4,
                                         ifelse(MLr$for_diff5==MLr$forMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$goodMin <- apply(MLr[221:225],1, min, na.rm=TRUE)
MLr$goodvote <- ifelse(MLr$good_diff1==MLr$goodMin,
                    1, 
                    ifelse(MLr$good_diff2==MLr$goodMin,
                           2,
                           ifelse(MLr$good_diff3==MLr$goodMin,
                                  3,
                                  ifelse(MLr$good_diff4==MLr$goodMin,
                                         4,
                                         ifelse(MLr$good_diff5==MLr$goodMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$haveMin <- apply(MLr[226:230],1, min, na.rm=TRUE)
MLr$havevote <- ifelse(MLr$have_diff1==MLr$haveMin,
                    1, 
                    ifelse(MLr$have_diff2==MLr$haveMin,
                           2,
                           ifelse(MLr$have_diff3==MLr$haveMin,
                                  3,
                                  ifelse(MLr$have_diff4==MLr$haveMin,
                                         4,
                                         ifelse(MLr$have_diff5==MLr$haveMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$notMin <- apply(MLr[231:235],1, min, na.rm=TRUE)
MLr$notvote <- ifelse(MLr$not_diff1==MLr$notMin,
                    1, 
                    ifelse(MLr$not_diff2==MLr$notMin,
                           2,
                           ifelse(MLr$not_diff3==MLr$notMin,
                                  3,
                                  ifelse(MLr$not_diff4==MLr$notMin,
                                         4,
                                         ifelse(MLr$not_diff5==MLr$notMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$thatMin <- apply(MLr[236:240],1, min, na.rm=TRUE)
MLr$thatvote <- ifelse(MLr$that_diff1==MLr$thatMin,
                    1, 
                    ifelse(MLr$that_diff2==MLr$thatMin,
                           2,
                           ifelse(MLr$that_diff3==MLr$thatMin,
                                  3,
                                  ifelse(MLr$that_diff4==MLr$thatMin,
                                         4,
                                         ifelse(MLr$that_diff5==MLr$thatMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$theMin <- apply(MLr[241:245],1, min, na.rm=TRUE)
MLr$thevote <- ifelse(MLr$the_diff1==MLr$theMin,
                    1, 
                    ifelse(MLr$the_diff2==MLr$theMin,
                           2,
                           ifelse(MLr$the_diff3==MLr$theMin,
                                  3,
                                  ifelse(MLr$the_diff4==MLr$theMin,
                                         4,
                                         ifelse(MLr$the_diff5==MLr$theMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$theyMin <- apply(MLr[246:250],1, min, na.rm=TRUE)
MLr$theyvote <- ifelse(MLr$they_diff1==MLr$theyMin,
                    1, 
                    ifelse(MLr$they_diff2==MLr$theyMin,
                           2,
                           ifelse(MLr$they_diff3==MLr$theyMin,
                                  3,
                                  ifelse(MLr$they_diff4==MLr$theyMin,
                                         4,
                                         ifelse(MLr$they_diff5==MLr$theyMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$thisMin <- apply(MLr[251:255],1, min, na.rm=TRUE)
MLr$thisvote <- ifelse(MLr$this_diff1==MLr$thisMin,
                    1, 
                    ifelse(MLr$this_diff2==MLr$thisMin,
                           2,
                           ifelse(MLr$this_diff3==MLr$thisMin,
                                  3,
                                  ifelse(MLr$this_diff4==MLr$thisMin,
                                         4,
                                         ifelse(MLr$this_diff5==MLr$thisMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$withMin <- apply(MLr[256:260],1, min, na.rm=TRUE)
MLr$withvote <- ifelse(MLr$with_diff1==MLr$withMin,
                    1, 
                    ifelse(MLr$with_diff2==MLr$withMin,
                           2,
                           ifelse(MLr$with_diff3==MLr$withMin,
                                  3,
                                  ifelse(MLr$with_diff4==MLr$withMin,
                                         4,
                                         ifelse(MLr$with_diff5==MLr$withMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )

MLr$youMin <- apply(MLr[261:265],1, min, na.rm=TRUE)
MLr$youvote <- ifelse(MLr$you_diff1==MLr$youMin,
                    1, 
                    ifelse(MLr$you_diff2==MLr$youMin,
                           2,
                           ifelse(MLr$you_diff3==MLr$youMin,
                                  3,
                                  ifelse(MLr$you_diff4==MLr$youMin,
                                         4,
                                         ifelse(MLr$you_diff5==MLr$youMin,
                                         5, NA)
                                         )
                                  )
                           )
                    )
bestVote <- MLr %>% select(areavote, bigvote , busyvote, definitelyvote, 
                           feelvote, lotvote, manyvote, openvote, plusvote, 
                           twovote, worthvote, yearvote, andvote, butvote, forvote,      
                           goodvote, havevote, notvote, thatvote, thevote,       
                           theyvote, thisvote, withvote, youvote )
summary(bestVote)
##     areavote        bigvote        busyvote   definitelyvote     feelvote    
##  Min.   :2.000   Min.   :4.00   Min.   :3     Min.   :3.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.00   1st Qu.:3     1st Qu.:5.000   1st Qu.:2.000  
##  Median :4.000   Median :4.00   Median :3     Median :5.000   Median :3.000  
##  Mean   :3.894   Mean   :4.05   Mean   :3     Mean   :4.887   Mean   :2.932  
##  3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:3     3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.00   Max.   :3     Max.   :5.000   Max.   :5.000  
##  NA's   :567     NA's   :594    NA's   :587   NA's   :561     NA's   :540    
##     lotvote         manyvote        openvote        plusvote      twovote     
##  Min.   :2.000   Min.   :2.000   Min.   :3.000   Min.   :3     Min.   :2.000  
##  1st Qu.:5.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3     1st Qu.:3.000  
##  Median :5.000   Median :4.000   Median :3.000   Median :3     Median :3.000  
##  Mean   :4.698   Mean   :3.922   Mean   :3.161   Mean   :3     Mean   :3.171  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3     3rd Qu.:3.000  
##  Max.   :5.000   Max.   :4.000   Max.   :5.000   Max.   :3     Max.   :5.000  
##  NA's   :571     NA's   :563     NA's   :583     NA's   :605   NA's   :573    
##    worthvote        yearvote        andvote         butvote     
##  Min.   :3.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:5.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :5.000   Median :2.000   Median :2.000  
##  Mean   :3.122   Mean   :4.639   Mean   :2.595   Mean   :3.087  
##  3rd Qu.:3.000   3rd Qu.:5.000   3rd Qu.:3.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :565     NA's   :578     NA's   :76      NA's   :362    
##     forvote         goodvote        havevote        notvote     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :4.000   Median :1.000   Median :3.000  
##  Mean   :2.407   Mean   :3.022   Mean   :1.854   Mean   :2.789  
##  3rd Qu.:3.000   3rd Qu.:5.000   3rd Qu.:3.000   3rd Qu.:4.000  
##  Max.   :4.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :218     NA's   :478     NA's   :340     NA's   :429    
##     thatvote        thevote         theyvote        thisvote       withvote    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:5.000   1st Qu.:1.000   1st Qu.:1.00   1st Qu.:1.000  
##  Median :3.000   Median :5.000   Median :1.000   Median :2.00   Median :5.000  
##  Mean   :3.192   Mean   :4.512   Mean   :1.923   Mean   :2.36   Mean   :3.252  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:3.000   3rd Qu.:4.00   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :4.000   Max.   :4.00   Max.   :5.000  
##  NA's   :354     NA's   :81      NA's   :354     NA's   :336    NA's   :336    
##     youvote     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :2.055  
##  3rd Qu.:2.000  
##  Max.   :5.000  
##  NA's   :341

We can see from the summary we already have a lot more variation within each keyword rating vote.

bestVote$areavote <- as.factor(paste(bestVote$areavote)) 
bestVote$bigvote <- as.factor(paste(bestVote$bigvote)) 
bestVote$busyvote <- as.factor(paste(bestVote$busyvote)) 
bestVote$definitelyvote <- as.factor(paste(bestVote$definitelyvote)) 
bestVote$feelvote <- as.factor(paste(bestVote$feelvote))
bestVote$lotvote <- as.factor(paste(bestVote$lotvote))  
bestVote$manyvote <- as.factor(paste(bestVote$manyvote))                                  
bestVote$openvote <- as.factor(paste(bestVote$openvote))
bestVote$plusvote <- as.factor(paste(bestVote$plusvote))
bestVote$twovote <- as.factor(paste(bestVote$twovote))
bestVote$worthvote <- as.factor(paste(bestVote$worthvote))
bestVote$yearvote <- as.factor(paste(bestVote$yearvote))
bestVote$andvote <- as.factor(paste(bestVote$andvote)) 
bestVote$butvote <- as.factor(paste(bestVote$butvote)) 
bestVote$forvote <- as.factor(paste(bestVote$forvote)) 
bestVote$goodvote <- as.factor(paste(bestVote$goodvote)) 
bestVote$havevote <- as.factor(paste(bestVote$havevote))
bestVote$notvote <- as.factor(paste(bestVote$notvote))  
bestVote$thatvote <- as.factor(paste(bestVote$thatvote))                                  
bestVote$thevote <- as.factor(paste(bestVote$thevote))
bestVote$theyvote <- as.factor(paste(bestVote$theyvote))
bestVote$thisvote <- as.factor(paste(bestVote$thisvote))
bestVote$withvote <- as.factor(paste(bestVote$withvote))
bestVote$youvote <- as.factor(paste(bestVote$youvote))

bestVote$counts1 <- 0
bestVote$counts2 <- 0
bestVote$counts3 <- 0
bestVote$counts4 <- 0
bestVote$counts5 <- 0

a5 <- grep('5',bestVote$andvote)
a4 <- grep('4', bestVote$andvote)
a3 <- grep('3',bestVote$andvote)
a2 <- grep('2',bestVote$andvote)
a1 <- grep('1',bestVote$andvote)

b5 <- grep('5',bestVote$butvote)
b4 <- grep('4', bestVote$butvote)
b3 <- grep('3',bestVote$butvote)
b2 <- grep('2',bestVote$butvote)
b1 <- grep('1',bestVote$butvote)

c5 <- grep('5',bestVote$forvote)
c4 <- grep('4', bestVote$forvote)
c3 <- grep('3',bestVote$forvote)
c2 <- grep('2',bestVote$forvote)
c1 <- grep('1',bestVote$forvote)

d5 <- grep('5',bestVote$goodvote)
d4 <- grep('4', bestVote$goodvote)
d3 <- grep('3',bestVote$goodvote)
d2 <- grep('2',bestVote$goodvote)
d1 <- grep('1',bestVote$goodvote)

e5 <- grep('5',bestVote$havevote)
e4 <- grep('4', bestVote$havevote)
e3 <- grep('3',bestVote$havevote)
e2 <- grep('2',bestVote$havevote)
e1 <- grep('1',bestVote$havevote)

f5 <- grep('5',bestVote$notvote)
f4 <- grep('4', bestVote$notvote)
f3 <- grep('3',bestVote$notvote)
f2 <- grep('2',bestVote$notvote)
f1 <- grep('1',bestVote$notvote)

g5 <- grep('5',bestVote$thatvote)
g4 <- grep('4', bestVote$thatvote)
g3 <- grep('3',bestVote$thatvote)
g2 <- grep('2',bestVote$thatvote)
g1 <- grep('1',bestVote$thatvote)

h5 <- grep('5',bestVote$thevote)
h4 <- grep('4', bestVote$thevote)
h3 <- grep('3',bestVote$thevote)
h2 <- grep('2',bestVote$thevote)
h1 <- grep('1',bestVote$thevote)

i5 <- grep('5',bestVote$theyvote)
i4 <- grep('4', bestVote$theyvote)
i3 <- grep('3',bestVote$theyvote)
i2 <- grep('2',bestVote$theyvote)
i1 <- grep('1',bestVote$theyvote)

j5 <- grep('5',bestVote$thisvote)
j4 <- grep('4', bestVote$thisvote)
j3 <- grep('3',bestVote$thisvote)
j2 <- grep('2',bestVote$thisvote)
j1 <- grep('1',bestVote$thisvote)

k5 <- grep('5',bestVote$withvote)
k4 <- grep('4', bestVote$withvote)
k3 <- grep('3',bestVote$withvote)
k2 <- grep('2',bestVote$withvote)
k1 <- grep('1',bestVote$withvote)

l5 <- grep('5',bestVote$youvote)
l4 <- grep('4', bestVote$youvote)
l3 <- grep('3',bestVote$youvote)
l2 <- grep('2',bestVote$youvote)
l1 <- grep('1',bestVote$youvote)

A5 <- grep('5',bestVote$areavote)
A4 <- grep('4', bestVote$areavote)
A3 <- grep('3',bestVote$areavote)
A2 <- grep('2',bestVote$areavote)
A1 <- grep('1',bestVote$areavote)

B5 <- grep('5',bestVote$bigvote)
B4 <- grep('4', bestVote$bigvote)
B3 <- grep('3',bestVote$bigvote)
B2 <- grep('2',bestVote$bigvote)
B1 <- grep('1',bestVote$bigvote)

C5 <- grep('5',bestVote$busyvote)
C4 <- grep('4', bestVote$busyvote)
C3 <- grep('3',bestVote$busyvote)
C2 <- grep('2',bestVote$busyvote)
C1 <- grep('1',bestVote$busyvote)

D5 <- grep('5',bestVote$definitelyvote)
D4 <- grep('4', bestVote$definitelyvote)
D3 <- grep('3',bestVote$definitelyvote)
D2 <- grep('2',bestVote$definitelyvote)
D1 <- grep('1',bestVote$definitelyvote)

E5 <- grep('5',bestVote$feelvote)
E4 <- grep('4', bestVote$feelvote)
E3 <- grep('3',bestVote$feelvote)
E2 <- grep('2',bestVote$feelvote)
E1 <- grep('1',bestVote$feelvote)

F5 <- grep('5',bestVote$lotvote)
F4 <- grep('4', bestVote$lotvote)
F3 <- grep('3',bestVote$lotvote)
F2 <- grep('2',bestVote$lotvote)
F1 <- grep('1',bestVote$lotvote)

G5 <- grep('5',bestVote$manyvote)
G4 <- grep('4', bestVote$manyvote)
G3 <- grep('3',bestVote$manyvote)
G2 <- grep('2',bestVote$manyvote)
G1 <- grep('1',bestVote$manyvote)

H5 <- grep('5',bestVote$openvote)
H4 <- grep('4', bestVote$openvote)
H3 <- grep('3',bestVote$openvote)
H2 <- grep('2',bestVote$openvote)
H1 <- grep('1',bestVote$openvote)

I5 <- grep('5',bestVote$plusvote)
I4 <- grep('4', bestVote$plusvote)
I3 <- grep('3',bestVote$plusvote)
I2 <- grep('2',bestVote$plusvote)
I1 <- grep('1',bestVote$plusvote)

J5 <- grep('5',bestVote$twovote)
J4 <- grep('4', bestVote$twovote)
J3 <- grep('3',bestVote$twovote)
J2 <- grep('2',bestVote$twovote)
J1 <- grep('1',bestVote$twovote)

K5 <- grep('5',bestVote$worthvote)
K4 <- grep('4', bestVote$worthvote)
K3 <- grep('3',bestVote$worthvote)
K2 <- grep('2',bestVote$worthvote)
K1 <- grep('1',bestVote$worthvote)

L5 <- grep('5',bestVote$yearvote)
L4 <- grep('4', bestVote$yearvote)
L3 <- grep('3',bestVote$yearvote)
L2 <- grep('2',bestVote$yearvote)
L1 <- grep('1',bestVote$yearvote)

bestVote$counts1[l1] <- bestVote$counts1[l1]+ 1
bestVote$counts1[k1] <- bestVote$counts1[k1]+ 1
bestVote$counts1[j1] <- bestVote$counts1[j1]+ 1
bestVote$counts1[i1] <- bestVote$counts1[i1]+ 1
bestVote$counts1[h1] <- bestVote$counts1[h1]+ 1
bestVote$counts1[g1] <- bestVote$counts1[g1]+ 1
bestVote$counts1[f1] <- bestVote$counts1[f1]+ 1
bestVote$counts1[e1] <- bestVote$counts1[e1]+ 1
bestVote$counts1[d1] <- bestVote$counts1[d1]+ 1
bestVote$counts1[c1] <- bestVote$counts1[c1]+ 1
bestVote$counts1[b1] <- bestVote$counts1[b1]+ 1
bestVote$counts1[a1] <- bestVote$counts1[a1]+ 1

bestVote$counts2[l2]  <- bestVote$counts2[l2] + 1
bestVote$counts2[k2]  <- bestVote$counts2[k2] + 1
bestVote$counts2[j2]  <- bestVote$counts2[j2] + 1
bestVote$counts2[i2]  <- bestVote$counts2[i2] + 1
bestVote$counts2[h2]  <- bestVote$counts2[h2] + 1
bestVote$counts2[g2]  <- bestVote$counts2[g2] + 1
bestVote$counts2[f2]  <- bestVote$counts2[f2] + 1
bestVote$counts2[e2]  <- bestVote$counts2[e2] + 1
bestVote$counts2[d2]  <- bestVote$counts2[d2] + 1
bestVote$counts2[c2]  <- bestVote$counts2[c2] + 1
bestVote$counts2[b2]  <- bestVote$counts2[b2] + 1
bestVote$counts2[a2]  <- bestVote$counts2[a2] + 1

bestVote$counts3[l3]  <- bestVote$counts3[l3] + 1
bestVote$counts3[k3]  <- bestVote$counts3[k3] + 1
bestVote$counts3[j3]  <- bestVote$counts3[j3] + 1
bestVote$counts3[i3]  <- bestVote$counts3[i3] + 1
bestVote$counts3[h3]  <- bestVote$counts3[h3] + 1
bestVote$counts3[g3]  <- bestVote$counts3[g3] + 1
bestVote$counts3[f3]  <- bestVote$counts3[f3] + 1
bestVote$counts3[e3]  <- bestVote$counts3[e3] + 1
bestVote$counts3[d3]  <- bestVote$counts3[d3] + 1
bestVote$counts3[c3]  <- bestVote$counts3[c3] + 1
bestVote$counts3[b3]  <- bestVote$counts3[b3] + 1
bestVote$counts3[a3]  <- bestVote$counts3[a3] + 1

bestVote$counts4[l4]  <- bestVote$counts4[l4] + 1
bestVote$counts4[k4]  <- bestVote$counts4[k4] + 1
bestVote$counts4[j4]  <- bestVote$counts4[j4] + 1
bestVote$counts4[i4]  <- bestVote$counts4[i4] + 1
bestVote$counts4[h4]  <- bestVote$counts4[h4] + 1
bestVote$counts4[g4]  <- bestVote$counts4[g4] + 1
bestVote$counts4[f4]  <- bestVote$counts4[f4] + 1
bestVote$counts4[e4]  <- bestVote$counts4[e4] + 1
bestVote$counts4[d4]  <- bestVote$counts4[d4] + 1
bestVote$counts4[c4]  <- bestVote$counts4[c4] + 1
bestVote$counts4[b4]  <- bestVote$counts4[b4] + 1
bestVote$counts4[a4]  <- bestVote$counts4[a4] + 1

bestVote$counts5[l5]  <- bestVote$counts5[l5] + 1
bestVote$counts5[k5]  <- bestVote$counts5[k5] + 1
bestVote$counts5[j5]  <- bestVote$counts5[j5] + 1
bestVote$counts5[i5]  <- bestVote$counts5[i5] + 1
bestVote$counts5[h5]  <- bestVote$counts5[h5] + 1
bestVote$counts5[g5]  <- bestVote$counts5[g5] + 1
bestVote$counts5[f5]  <- bestVote$counts5[f5] + 1
bestVote$counts5[e5]  <- bestVote$counts5[e5] + 1
bestVote$counts5[d5]  <- bestVote$counts5[d5] + 1
bestVote$counts5[c5]  <- bestVote$counts5[c5] + 1
bestVote$counts5[b5]  <- bestVote$counts5[b5] + 1
bestVote$counts5[a5]  <- bestVote$counts5[a5] + 1



bestVote$counts1[L1] <- bestVote$counts1[L1]+ 1
bestVote$counts1[K1] <- bestVote$counts1[K1]+ 1
bestVote$counts1[J1] <- bestVote$counts1[J1]+ 1
bestVote$counts1[I1] <- bestVote$counts1[I1]+ 1
bestVote$counts1[H1] <- bestVote$counts1[H1]+ 1
bestVote$counts1[G1] <- bestVote$counts1[G1]+ 1
bestVote$counts1[F1] <- bestVote$counts1[F1]+ 1
bestVote$counts1[E1] <- bestVote$counts1[E1]+ 1
bestVote$counts1[D1] <- bestVote$counts1[D1]+ 1
bestVote$counts1[C1] <- bestVote$counts1[C1]+ 1
bestVote$counts1[B1] <- bestVote$counts1[B1]+ 1
bestVote$counts1[A1] <- bestVote$counts1[A1]+ 1

bestVote$counts2[L2]  <- bestVote$counts2[L2] + 1
bestVote$counts2[K2]  <- bestVote$counts2[K2] + 1
bestVote$counts2[J2]  <- bestVote$counts2[J2] + 1
bestVote$counts2[I2]  <- bestVote$counts2[I2] + 1
bestVote$counts2[H2]  <- bestVote$counts2[H2] + 1
bestVote$counts2[G2]  <- bestVote$counts2[G2] + 1
bestVote$counts2[F2]  <- bestVote$counts2[F2] + 1
bestVote$counts2[E2]  <- bestVote$counts2[E2] + 1
bestVote$counts2[D2]  <- bestVote$counts2[D2] + 1
bestVote$counts2[C2]  <- bestVote$counts2[C2] + 1
bestVote$counts2[B2]  <- bestVote$counts2[B2] + 1
bestVote$counts2[A2]  <- bestVote$counts2[A2] + 1

bestVote$counts3[L3]  <- bestVote$counts3[L3] + 1
bestVote$counts3[K3]  <- bestVote$counts3[K3] + 1
bestVote$counts3[J3]  <- bestVote$counts3[J3] + 1
bestVote$counts3[I3]  <- bestVote$counts3[I3] + 1
bestVote$counts3[H3]  <- bestVote$counts3[H3] + 1
bestVote$counts3[G3]  <- bestVote$counts3[G3] + 1
bestVote$counts3[F3]  <- bestVote$counts3[F3] + 1
bestVote$counts3[E3]  <- bestVote$counts3[E3] + 1
bestVote$counts3[D3]  <- bestVote$counts3[D3] + 1
bestVote$counts3[C3]  <- bestVote$counts3[C3] + 1
bestVote$counts3[B3]  <- bestVote$counts3[B3] + 1
bestVote$counts3[A3]  <- bestVote$counts3[A3] + 1

bestVote$counts4[L4]  <- bestVote$counts4[L4] + 1
bestVote$counts4[K4]  <- bestVote$counts4[K4] + 1
bestVote$counts4[J4]  <- bestVote$counts4[J4] + 1
bestVote$counts4[I4]  <- bestVote$counts4[I4] + 1
bestVote$counts4[H4]  <- bestVote$counts4[H4] + 1
bestVote$counts4[G4]  <- bestVote$counts4[G4] + 1
bestVote$counts4[F4]  <- bestVote$counts4[F4] + 1
bestVote$counts4[E4]  <- bestVote$counts4[E4] + 1
bestVote$counts4[D4]  <- bestVote$counts4[D4] + 1
bestVote$counts4[C4]  <- bestVote$counts4[C4] + 1
bestVote$counts4[B4]  <- bestVote$counts4[B4] + 1
bestVote$counts4[A4]  <- bestVote$counts4[A4] + 1

bestVote$counts5[L5]  <- bestVote$counts5[L5] + 1
bestVote$counts5[K5]  <- bestVote$counts5[K5] + 1
bestVote$counts5[J5]  <- bestVote$counts5[J5] + 1
bestVote$counts5[I5]  <- bestVote$counts5[I5] + 1
bestVote$counts5[H5]  <- bestVote$counts5[H5] + 1
bestVote$counts5[G5]  <- bestVote$counts5[G5] + 1
bestVote$counts5[F5]  <- bestVote$counts5[F5] + 1
bestVote$counts5[E5]  <- bestVote$counts5[E5] + 1
bestVote$counts5[D5]  <- bestVote$counts5[D5] + 1
bestVote$counts5[C5]  <- bestVote$counts5[C5] + 1
bestVote$counts5[B5]  <- bestVote$counts5[B5] + 1
bestVote$counts5[A5]  <- bestVote$counts5[A5] + 1

!@#$%

bestVote$maxVote <- apply(bestVote[25:29],1,max)

mv <- bestVote$maxVote
ct1 <- bestVote$counts1
ct2 <- bestVote$counts2
ct3 <- bestVote$counts3
ct4 <- bestVote$counts4
ct5 <- bestVote$counts5


bestVote$votedRating <- ifelse(mv==ct1, 1, 
                        ifelse(mv==ct2, 2,
                        ifelse(mv==ct3, 3,
                        ifelse(mv==ct4, 4, 5))))

bestVote$Rating <- ifelse(mv==ct1 & (mv==ct2|mv==ct3|mv==ct4|mv==ct5),'tie',
                     ifelse(mv==ct1,1, 
                           ifelse(mv==ct2 & (mv==ct3|mv==ct4|mv==ct5),'tie',
                     ifelse(mv==ct2, 2,
                           ifelse(mv==ct3 &(mv==ct4|mv==ct5),'tie', 
                           ifelse(mv==ct3, 3,
                           ifelse(mv==ct4 & mv==ct5, 'tie',
                           ifelse(mv==ct4, 4,5
                           )))))))
                          )
bestVote$finalPrediction <- ifelse(bestVote$Rating=='tie', 
                     ifelse(ceiling(mean(c(ct1,ct2,ct3,ct4,ct5)*c(1,2,3,4,5))/5) > 5,
                     5, ceiling(mean(c(ct1,ct2,ct3,ct4,ct5)*c(1,2,3,4,5))/5)), 
                     bestVote$votedRating )

Now that we have our final prediction with this algorithm. Lets attach these two tables together and rearrange the columns.

bestVote$CorrectlyPredicted <- ifelse(MLr$userRatingValue==bestVote$finalPrediction,1,0)

MLr2 <- cbind(MLr, bestVote)
MLr3 <- MLr2[,c(2:347,1)]
MLr3$CorrectPrediction <- ifelse(MLr3$finalPrediction==MLr3$userRatingValue,
                                 1,0)
MLr3$finalPrediction <- as.factor(paste(MLr3$finalPrediction))
MLr3$userRatingValue <- paste('rating ', MLr3$userRatingValue,sep='')
Accuracy <- sum(MLr3$CorrectPrediction)/length(MLr3$CorrectPrediction)
Accuracy
## [1] 0.3208469

From the above results the accuracy was much better than using all 24 keywords with 14%, this time by using the absolute value and thus getting the ratios that are truly closer to the ratings ratios when selecting the minimum difference, the accuracy more than doubled to 32% accuracy. However, because these 12 keywords that were added to our original stopwords that scored a 54% accuracy on the first version and run of this program without the NAs (we realized above that keeping NAs as NAs or as zeros doesn’t change the results) don’t improve the results this would suggest they don’t add any value as the results confirm, and actually lower the accuracy because they aren’t seen in every review. We would have to have 1,000 times more unique reviews from various business types, and taking out words relevant to each business type and specific business type. then proceeding with our methods above. We have 614 reviews that are unique, and if we had 614,000 reviews the process would take longer to add up results for each row, but the accuracy would be improved. The size of the IMDB data base of movie reviews that many data scientists and data enthusiasts use is 1 Million observations of unique reviews, and the accuracy for that data in most cases is in the high 95% accuracy or better.




This was a good approach to building a model from the ground up and developing algorithms that seem like they could be good models to make predictions with. This was a straight algorithm model as in a function you put something in and get an answer out. The caret package has other more heavily used and industry related models tht are used frequently and can be tune. We will look at those later.

Lets write this table out to csv.

write.csv(MLr3, 'ML_Reviews614_AbsValueresultsTable.csv', row.names=FALSE)

Lets look at those values that the correct prediction was false.

FalsePredictions <- subset(MLr3, MLr3$CorrectPrediction==0)
head(FalsePredictions[,342:348],30)
##    maxVote votedRating Rating finalPrediction CorrectlyPredicted
## 2        3           2      2               2                  0
## 3        1           2    tie               1                  0
## 4        3           2      2               2                  0
## 5        1           2    tie               1                  0
## 6        2           3    tie               1                  0
## 8        4           1      1               1                  0
## 9        4           2      2               2                  0
## 10       1           3      3               3                  0
## 15       2           1    tie               1                  0
## 16       2           5      5               5                  0
## 17       3           2      2               2                  0
## 20       1           2    tie               1                  0
## 25       3           1      1               1                  0
## 29       2           1    tie               1                  0
## 30       2           1    tie               1                  0
## 33       3           1      1               1                  0
## 38       2           1      1               1                  0
## 39       3           5      5               5                  0
## 40       2           1    tie               1                  0
## 44       3           1      1               1                  0
## 46       4           4      4               4                  0
## 47       4           1      1               1                  0
## 49       1           1    tie               1                  0
## 52       0           1    tie               1                  0
## 53       2           1    tie               1                  0
## 54       3           3    tie               1                  0
## 57       2           2    tie               1                  0
## 58       3           1      1               1                  0
## 60       1           1    tie               1                  0
## 62       2           2    tie               1                  0
##    userRatingValue CorrectPrediction
## 2         rating 5                 0
## 3         rating 5                 0
## 4         rating 1                 0
## 5         rating 5                 0
## 6         rating 5                 0
## 8         rating 5                 0
## 9         rating 5                 0
## 10        rating 5                 0
## 15        rating 4                 0
## 16        rating 1                 0
## 17        rating 1                 0
## 20        rating 5                 0
## 25        rating 4                 0
## 29        rating 4                 0
## 30        rating 5                 0
## 33        rating 5                 0
## 38        rating 5                 0
## 39        rating 4                 0
## 40        rating 5                 0
## 44        rating 5                 0
## 46        rating 5                 0
## 47        rating 5                 0
## 49        rating 5                 0
## 52        rating 5                 0
## 53        rating 4                 0
## 54        rating 5                 0
## 57        rating 4                 0
## 58        rating 2                 0
## 60        rating 5                 0
## 62        rating 5                 0

Many times the voted rating was not the rating even if it wasn’t a tie. The 2-4 ratings were most of the incorrect predictions and the rating as being either a 5 or a 1 were more 50/50 probably because their ratios of term to total terms were very close. Some tuning that could be done would be to select different keywords, see if there is a difference between type of business or cost of service or goods. We left in these words of which most are included in stopwords like by,my,has,have,etc.that are personal pronouns or of the text mining tm package.

#library(tm)
stop <- stopwords()
stop
##   [1] "i"          "me"         "my"         "myself"     "we"        
##   [6] "our"        "ours"       "ourselves"  "you"        "your"      
##  [11] "yours"      "yourself"   "yourselves" "he"         "him"       
##  [16] "his"        "himself"    "she"        "her"        "hers"      
##  [21] "herself"    "it"         "its"        "itself"     "they"      
##  [26] "them"       "their"      "theirs"     "themselves" "what"      
##  [31] "which"      "who"        "whom"       "this"       "that"      
##  [36] "these"      "those"      "am"         "is"         "are"       
##  [41] "was"        "were"       "be"         "been"       "being"     
##  [46] "have"       "has"        "had"        "having"     "do"        
##  [51] "does"       "did"        "doing"      "would"      "should"    
##  [56] "could"      "ought"      "i'm"        "you're"     "he's"      
##  [61] "she's"      "it's"       "we're"      "they're"    "i've"      
##  [66] "you've"     "we've"      "they've"    "i'd"        "you'd"     
##  [71] "he'd"       "she'd"      "we'd"       "they'd"     "i'll"      
##  [76] "you'll"     "he'll"      "she'll"     "we'll"      "they'll"   
##  [81] "isn't"      "aren't"     "wasn't"     "weren't"    "hasn't"    
##  [86] "haven't"    "hadn't"     "doesn't"    "don't"      "didn't"    
##  [91] "won't"      "wouldn't"   "shan't"     "shouldn't"  "can't"     
##  [96] "cannot"     "couldn't"   "mustn't"    "let's"      "that's"    
## [101] "who's"      "what's"     "here's"     "there's"    "when's"    
## [106] "where's"    "why's"      "how's"      "a"          "an"        
## [111] "the"        "and"        "but"        "if"         "or"        
## [116] "because"    "as"         "until"      "while"      "of"        
## [121] "at"         "by"         "for"        "with"       "about"     
## [126] "against"    "between"    "into"       "through"    "during"    
## [131] "before"     "after"      "above"      "below"      "to"        
## [136] "from"       "up"         "down"       "in"         "out"       
## [141] "on"         "off"        "over"       "under"      "again"     
## [146] "further"    "then"       "once"       "here"       "there"     
## [151] "when"       "where"      "why"        "how"        "all"       
## [156] "any"        "both"       "each"       "few"        "more"      
## [161] "most"       "other"      "some"       "such"       "no"        
## [166] "nor"        "not"        "only"       "own"        "same"      
## [171] "so"         "than"       "too"        "very"

The above are the stopwords that are eliminated within text cleaning and preprocessing before running or retrieving a document term matrix for an observation such as a review. Now lets look at are keywords.

keywordsUsed <- colnames(wordToAllWords)
keywordsUsed
##  [1] "area"       "big"        "busy"       "definitely" "feel"      
##  [6] "lot"        "many"       "open"       "plus"       "two"       
## [11] "worth"      "year"

The above shows our keywords, and note that for is for_ because it errors in R as it is a programming keyword so it was altered in the column name with an appended underscore character, but the search for it as a character or factor is ‘for’ not ‘for_’. We actually see that all 12 of our stopwords are keywords. We briefly explained that this is because in grammar and composition to write a persuasive stories many connections have to be made with the use of pronouns and actions and states of being and descriptors. These were used as features by count to see if they added any value to predicting a review. We do see that these stop words are used a lot for extreme ends of the rating scale as a 1 for the lowest and 5 for the highest review rating.

Lets get a count of each rating by incorrect classification.

userRatings <- FalsePredictions %>% group_by(userRatingValue) %>% count(finalPrediction)
userRatings
## # A tibble: 16 x 3
## # Groups:   userRatingValue [5]
##    userRatingValue finalPrediction     n
##    <chr>           <fct>           <int>
##  1 rating 1        2                  18
##  2 rating 1        3                   2
##  3 rating 1        5                   7
##  4 rating 2        1                  29
##  5 rating 2        5                   4
##  6 rating 3        1                  37
##  7 rating 3        2                   8
##  8 rating 3        5                   6
##  9 rating 4        1                  56
## 10 rating 4        2                  16
## 11 rating 4        3                  10
## 12 rating 4        5                  19
## 13 rating 5        1                 163
## 14 rating 5        2                  21
## 15 rating 5        3                  17
## 16 rating 5        4                   4

We can see from the userRatingValue and the final prediction, that there were 85 instances where this model couldn’t distinguish between a 1 or 5 rating based on the keywords (mostly stopwords). But also those ratings that were 4s were actually classified the most incorrectly as a 5 because some people don’t readily give 5s as others. Also the actual 2s that were classified incorrectly were scaled up to 5s in the error, the same with the 3s. The gray areas were in user ratings of 2-4, where few were classified as a value in a 2-4 that was incorrect. If we instead said to classify any 2-4 as in the range of 2-4 without penalizing the exact value, then the prediction accuracy would be better. But people have their own reasons for giving 2-4s in ratings. Like they had better or there was an absolute worst experience the company still doesn’t meet because he or she knows it could be worse and it could be better. Companies are supposed to use this to improve or adjust needs of consumers. But at the same time some users are just upset with the cost or time wasted or spent when other options they know of were or are better.

Lets look at those predictions with a tie.

ties <- subset(MLr3, MLr3$Rating=='tie')
ties[,342:348]
##     maxVote votedRating Rating finalPrediction CorrectlyPredicted
## 3         1           2    tie               1                  0
## 5         1           2    tie               1                  0
## 6         2           3    tie               1                  0
## 15        2           1    tie               1                  0
## 20        1           2    tie               1                  0
## 29        2           1    tie               1                  0
## 30        2           1    tie               1                  0
## 40        2           1    tie               1                  0
## 41        1           1    tie               1                  1
## 49        1           1    tie               1                  0
## 52        0           1    tie               1                  0
## 53        2           1    tie               1                  0
## 54        3           3    tie               1                  0
## 57        2           2    tie               1                  0
## 60        1           1    tie               1                  0
## 62        2           2    tie               1                  0
## 63        3           1    tie               1                  0
## 64        2           1    tie               1                  0
## 65        3           1    tie               1                  1
## 68        1           1    tie               1                  1
## 70        3           1    tie               1                  1
## 72        2           1    tie               1                  1
## 74        2           2    tie               1                  0
## 78        1           2    tie               1                  0
## 80        2           2    tie               1                  1
## 81        2           4    tie               1                  0
## 83        1           2    tie               1                  0
## 85        2           1    tie               1                  1
## 86        2           2    tie               1                  0
## 88        1           1    tie               1                  1
## 92        1           1    tie               1                  0
## 93        1           1    tie               1                  0
## 94        2           1    tie               1                  0
## 100       1           1    tie               1                  0
## 102       3           4    tie               1                  0
## 103       2           1    tie               1                  0
## 104       2           3    tie               1                  0
## 111       2           1    tie               1                  0
## 112       4           2    tie               1                  0
## 113       1           3    tie               1                  0
## 115       1           1    tie               1                  0
## 116       2           1    tie               1                  1
## 118       2           2    tie               1                  0
## 119       0           1    tie               1                  0
## 121       3           1    tie               1                  0
## 123       2           1    tie               1                  0
## 130       4           1    tie               1                  1
## 136       2           1    tie               1                  0
## 142       2           1    tie               1                  1
## 145       1           2    tie               1                  0
## 146       3           1    tie               1                  1
## 149       1           1    tie               1                  0
## 151       2           2    tie               1                  1
## 155       2           2    tie               1                  0
## 159       1           3    tie               1                  0
## 163       1           1    tie               1                  0
## 164       2           1    tie               1                  0
## 165       3           3    tie               1                  0
## 167       3           2    tie               1                  0
## 171       2           1    tie               1                  1
## 174       3           1    tie               1                  0
## 178       2           2    tie               1                  0
## 180       2           3    tie               1                  0
## 182       1           1    tie               1                  0
## 187       2           1    tie               1                  0
## 188       2           1    tie               1                  0
## 192       3           1    tie               1                  0
## 195       1           2    tie               1                  0
## 201       2           1    tie               1                  0
## 203       3           2    tie               1                  0
## 207       1           1    tie               1                  0
## 208       2           1    tie               1                  0
## 209       1           1    tie               1                  0
## 211       1           2    tie               1                  0
## 212       2           2    tie               1                  0
## 214       2           2    tie               1                  0
## 219       2           1    tie               1                  0
## 226       2           2    tie               1                  0
## 229       1           1    tie               1                  0
## 235       3           2    tie               1                  0
## 237       2           1    tie               1                  0
## 239       2           2    tie               1                  0
## 241       3           1    tie               1                  0
## 243       3           1    tie               1                  0
## 246       2           1    tie               1                  0
## 251       2           2    tie               1                  0
## 255       3           2    tie               1                  0
## 260       3           2    tie               1                  0
## 264       3           1    tie               1                  0
## 269       1           1    tie               1                  0
## 272       3           1    tie               1                  0
## 274       3           1    tie               1                  0
## 277       2           1    tie               1                  1
## 279       3           1    tie               1                  0
## 286       3           3    tie               1                  0
## 290       0           1    tie               1                  0
## 291       1           2    tie               1                  0
## 296       4           1    tie               1                  0
## 297       3           1    tie               1                  0
## 298       4           2    tie               1                  0
## 299       2           1    tie               1                  0
## 300       3           2    tie               1                  0
## 304       3           1    tie               1                  0
## 305       4           1    tie               1                  0
## 307       3           3    tie               1                  0
## 310       2           1    tie               1                  0
## 314       2           3    tie               1                  0
## 316       4           1    tie               1                  0
## 317       2           2    tie               1                  0
## 319       4           1    tie               1                  0
## 320       4           3    tie               1                  0
## 322       1           1    tie               1                  0
## 324       3           2    tie               1                  0
## 329       3           1    tie               1                  0
## 333       1           1    tie               1                  0
## 334       2           1    tie               1                  0
## 335       1           1    tie               1                  0
## 338       3           1    tie               1                  0
## 339       2           3    tie               1                  1
## 351       2           2    tie               1                  0
## 360       1           1    tie               1                  0
## 365       2           1    tie               1                  0
## 367       3           2    tie               1                  0
## 369       2           1    tie               1                  0
## 372       2           2    tie               1                  0
## 374       3           1    tie               1                  0
## 377       1           2    tie               1                  0
## 380       3           1    tie               1                  0
## 385       2           1    tie               1                  0
## 387       2           1    tie               1                  0
## 393       3           1    tie               1                  0
## 394       3           2    tie               1                  1
## 395       2           1    tie               1                  0
## 402       3           1    tie               1                  1
## 405       3           2    tie               1                  1
## 408       2           1    tie               1                  0
## 413       4           1    tie               1                  0
## 418       3           1    tie               1                  1
## 420       3           2    tie               1                  0
## 424       2           2    tie               1                  0
## 428       4           1    tie               1                  0
## 429       1           1    tie               1                  0
## 436       2           2    tie               1                  0
## 438       2           1    tie               1                  0
## 441       2           1    tie               1                  0
## 442       2           2    tie               1                  0
## 443       2           2    tie               1                  0
## 444       2           1    tie               1                  0
## 445       2           2    tie               1                  0
## 447       1           1    tie               1                  1
## 449       2           1    tie               1                  0
## 450       3           1    tie               1                  1
## 453       3           4    tie               1                  0
## 454       1           1    tie               1                  0
## 459       2           1    tie               1                  0
## 460       1           1    tie               1                  0
## 462       2           1    tie               1                  0
## 465       2           2    tie               1                  0
## 468       1           1    tie               1                  0
## 476       3           1    tie               1                  1
## 478       3           2    tie               1                  0
## 481       2           2    tie               1                  0
## 486       4           1    tie               1                  0
## 487       1           1    tie               1                  0
## 490       1           1    tie               1                  0
## 493       2           2    tie               1                  0
## 495       2           1    tie               1                  0
## 499       2           1    tie               1                  0
## 500       2           2    tie               1                  0
## 502       2           2    tie               1                  0
## 503       2           1    tie               1                  1
## 504       1           1    tie               1                  1
## 505       2           1    tie               1                  1
## 513       2           1    tie               1                  1
## 514       2           2    tie               1                  1
## 515       2           2    tie               1                  1
## 516       2           1    tie               1                  0
## 519       2           2    tie               1                  0
## 520       2           2    tie               1                  0
## 522       2           1    tie               1                  0
## 523       2           3    tie               1                  1
## 526       2           2    tie               1                  0
## 527       2           2    tie               1                  0
## 528       3           3    tie               1                  0
## 534       2           3    tie               1                  0
## 541       2           1    tie               1                  0
## 543       3           2    tie               1                  0
## 545       1           1    tie               1                  0
## 546       1           1    tie               1                  0
## 551       2           1    tie               1                  0
## 553       1           1    tie               1                  0
## 558       2           1    tie               1                  0
## 559       2           1    tie               1                  0
## 567       2           3    tie               1                  1
## 570       2           2    tie               1                  0
## 572       1           3    tie               1                  0
## 573       2           2    tie               1                  0
## 574       1           1    tie               1                  0
## 575       3           2    tie               1                  0
## 576       1           1    tie               1                  0
## 577       1           2    tie               1                  0
## 578       2           2    tie               1                  0
## 579       1           1    tie               1                  0
## 581       2           2    tie               1                  0
## 582       1           1    tie               1                  0
## 587       2           1    tie               1                  0
## 593       1           1    tie               1                  0
## 594       2           1    tie               1                  0
## 595       1           1    tie               1                  0
## 599       2           1    tie               1                  0
## 601       3           1    tie               1                  0
## 604       2           1    tie               1                  0
## 605       2           3    tie               1                  1
## 606       2           1    tie               1                  0
## 608       2           1    tie               1                  0
## 609       2           1    tie               1                  0
## 610       2           3    tie               1                  0
##     userRatingValue CorrectPrediction
## 3          rating 5                 0
## 5          rating 5                 0
## 6          rating 5                 0
## 15         rating 4                 0
## 20         rating 5                 0
## 29         rating 4                 0
## 30         rating 5                 0
## 40         rating 5                 0
## 41         rating 1                 1
## 49         rating 5                 0
## 52         rating 5                 0
## 53         rating 4                 0
## 54         rating 5                 0
## 57         rating 4                 0
## 60         rating 5                 0
## 62         rating 5                 0
## 63         rating 5                 0
## 64         rating 5                 0
## 65         rating 1                 1
## 68         rating 1                 1
## 70         rating 1                 1
## 72         rating 1                 1
## 74         rating 4                 0
## 78         rating 5                 0
## 80         rating 1                 1
## 81         rating 5                 0
## 83         rating 4                 0
## 85         rating 1                 1
## 86         rating 5                 0
## 88         rating 1                 1
## 92         rating 5                 0
## 93         rating 5                 0
## 94         rating 5                 0
## 100        rating 4                 0
## 102        rating 2                 0
## 103        rating 2                 0
## 104        rating 5                 0
## 111        rating 5                 0
## 112        rating 4                 0
## 113        rating 5                 0
## 115        rating 5                 0
## 116        rating 1                 1
## 118        rating 4                 0
## 119        rating 4                 0
## 121        rating 4                 0
## 123        rating 5                 0
## 130        rating 1                 1
## 136        rating 5                 0
## 142        rating 1                 1
## 145        rating 5                 0
## 146        rating 1                 1
## 149        rating 5                 0
## 151        rating 1                 1
## 155        rating 4                 0
## 159        rating 5                 0
## 163        rating 5                 0
## 164        rating 2                 0
## 165        rating 3                 0
## 167        rating 4                 0
## 171        rating 1                 1
## 174        rating 4                 0
## 178        rating 4                 0
## 180        rating 3                 0
## 182        rating 5                 0
## 187        rating 4                 0
## 188        rating 5                 0
## 192        rating 3                 0
## 195        rating 5                 0
## 201        rating 5                 0
## 203        rating 3                 0
## 207        rating 4                 0
## 208        rating 5                 0
## 209        rating 4                 0
## 211        rating 5                 0
## 212        rating 5                 0
## 214        rating 5                 0
## 219        rating 3                 0
## 226        rating 5                 0
## 229        rating 4                 0
## 235        rating 5                 0
## 237        rating 4                 0
## 239        rating 3                 0
## 241        rating 3                 0
## 243        rating 2                 0
## 246        rating 5                 0
## 251        rating 5                 0
## 255        rating 4                 0
## 260        rating 5                 0
## 264        rating 4                 0
## 269        rating 4                 0
## 272        rating 2                 0
## 274        rating 4                 0
## 277        rating 1                 1
## 279        rating 3                 0
## 286        rating 2                 0
## 290        rating 5                 0
## 291        rating 5                 0
## 296        rating 3                 0
## 297        rating 2                 0
## 298        rating 5                 0
## 299        rating 5                 0
## 300        rating 4                 0
## 304        rating 2                 0
## 305        rating 5                 0
## 307        rating 3                 0
## 310        rating 5                 0
## 314        rating 5                 0
## 316        rating 4                 0
## 317        rating 5                 0
## 319        rating 4                 0
## 320        rating 2                 0
## 322        rating 5                 0
## 324        rating 5                 0
## 329        rating 5                 0
## 333        rating 5                 0
## 334        rating 5                 0
## 335        rating 5                 0
## 338        rating 3                 0
## 339        rating 1                 1
## 351        rating 4                 0
## 360        rating 5                 0
## 365        rating 2                 0
## 367        rating 5                 0
## 369        rating 5                 0
## 372        rating 5                 0
## 374        rating 2                 0
## 377        rating 5                 0
## 380        rating 4                 0
## 385        rating 5                 0
## 387        rating 5                 0
## 393        rating 2                 0
## 394        rating 1                 1
## 395        rating 2                 0
## 402        rating 1                 1
## 405        rating 1                 1
## 408        rating 2                 0
## 413        rating 3                 0
## 418        rating 1                 1
## 420        rating 2                 0
## 424        rating 5                 0
## 428        rating 5                 0
## 429        rating 5                 0
## 436        rating 5                 0
## 438        rating 5                 0
## 441        rating 4                 0
## 442        rating 4                 0
## 443        rating 4                 0
## 444        rating 4                 0
## 445        rating 5                 0
## 447        rating 1                 1
## 449        rating 3                 0
## 450        rating 1                 1
## 453        rating 2                 0
## 454        rating 2                 0
## 459        rating 4                 0
## 460        rating 3                 0
## 462        rating 5                 0
## 465        rating 5                 0
## 468        rating 5                 0
## 476        rating 1                 1
## 478        rating 2                 0
## 481        rating 3                 0
## 486        rating 4                 0
## 487        rating 5                 0
## 490        rating 5                 0
## 493        rating 5                 0
## 495        rating 5                 0
## 499        rating 3                 0
## 500        rating 4                 0
## 502        rating 4                 0
## 503        rating 1                 1
## 504        rating 1                 1
## 505        rating 1                 1
## 513        rating 1                 1
## 514        rating 1                 1
## 515        rating 1                 1
## 516        rating 3                 0
## 519        rating 3                 0
## 520        rating 3                 0
## 522        rating 3                 0
## 523        rating 1                 1
## 526        rating 3                 0
## 527        rating 3                 0
## 528        rating 5                 0
## 534        rating 5                 0
## 541        rating 5                 0
## 543        rating 5                 0
## 545        rating 4                 0
## 546        rating 5                 0
## 551        rating 5                 0
## 553        rating 5                 0
## 558        rating 5                 0
## 559        rating 5                 0
## 567        rating 1                 1
## 570        rating 5                 0
## 572        rating 5                 0
## 573        rating 5                 0
## 574        rating 5                 0
## 575        rating 4                 0
## 576        rating 5                 0
## 577        rating 5                 0
## 578        rating 5                 0
## 579        rating 5                 0
## 581        rating 5                 0
## 582        rating 5                 0
## 587        rating 5                 0
## 593        rating 5                 0
## 594        rating 5                 0
## 595        rating 5                 0
## 599        rating 5                 0
## 601        rating 5                 0
## 604        rating 5                 0
## 605        rating 1                 1
## 606        rating 5                 0
## 608        rating 5                 0
## 609        rating 5                 0
## 610        rating 5                 0

There weren’t a lot of ties on votes for the minimum difference of review to all reviews by ratios of term to total terms.

tieGroups <- ties %>% group_by(userRatingValue) %>% count(finalPrediction)
tieGroups
## # A tibble: 5 x 3
## # Groups:   userRatingValue [5]
##   userRatingValue finalPrediction     n
##   <chr>           <fct>           <int>
## 1 rating 1        1                  32
## 2 rating 2        1                  18
## 3 rating 3        1                  22
## 4 rating 4        1                  39
## 5 rating 5        1                 106

Note that these tie ratings are both correct and incorrect. From the above grouped information of counts of user ratings by final predictions all the 5s were misclassified or predicted to be in the gray area of 2-4 and more of the 1s were classified correctly except for one review in the middle gray area. None of the 2s are in our list of ties but many of the gray area 2-4s were classified into the gray area of incorrect 2-4s such as the 4s and 3s.

We could use a link analysis to see how these results compared with the final predicted value and actual rating value as groups. With the nodes as the user rating, and edges as the final prediction. We should also add in one of either the business type or the cost. First lets combine the Reviews15 table with the MLr3 table of only the results.

MLr4 <- MLr3 %>% select(maxVote:CorrectPrediction)
MLr4$actualRatingValue <- MLr4$userRatingValue
MLr5 <- MLr4 %>% select(-userRatingValue)
Reviews15_results <- cbind(Reviews15, MLr5)
colnames(Reviews15_results)
##  [1] "id"                    "userReviewSeries"      "userReviewOnlyContent"
##  [4] "userRatingSeries"      "userRatingValue"       "businessReplied"      
##  [7] "businessReplyContent"  "userReviewContent"     "LowAvgHighCost"       
## [10] "businessType"          "cityState"             "friends"              
## [13] "reviews"               "photos"                "eliteStatus"          
## [16] "userName"              "Date"                  "userBusinessPhotos"   
## [19] "userCheckIns"          "weekday"               "area"                 
## [22] "big"                   "busy"                  "definitely"           
## [25] "feel"                  "lot"                   "many"                 
## [28] "open"                  "plus"                  "two"                  
## [31] "worth"                 "year"                  "the"                  
## [34] "and"                   "for."                  "have"                 
## [37] "that"                  "they"                  "this"                 
## [40] "you"                   "not"                   "but"                  
## [43] "good"                  "with"                  "area_ratios"          
## [46] "big_ratios"            "busy_ratios"           "definitely_ratios"    
## [49] "feel_ratios"           "lot_ratios"            "many_ratios"          
## [52] "open_ratios"           "plus_ratios"           "two_ratios"           
## [55] "worth_ratios"          "year_ratios"           "the_ratios"           
## [58] "and_ratios"            "for_ratios"            "have_ratios"          
## [61] "that_ratios"           "they_ratios"           "this_ratios"          
## [64] "you_ratios"            "not_ratios"            "but_ratios"           
## [67] "good_ratios"           "with_ratios"           "maxVote"              
## [70] "votedRating"           "Rating"                "finalPrediction"      
## [73] "CorrectlyPredicted"    "CorrectPrediction"     "actualRatingValue"

Lets keep the ratios because this table minus results (and the review content columns) just added will be useful when running the caret algorithms. For now, lets write this out to csv to easily read in later instead of running whatever chunks preceded this table to get it.

write.csv(Reviews15_results, 'Reviews15_AbsMinresults.csv', row.names=FALSE)

Now lets use visNetwork to group by CorrectPrediction and map the actualRatingValue to the predicted values as well as add a hovering feature as the title column in our nodes table of the businessType. We have to pick a width for the weighted arrows, or else there won’t be any edges. Lets pick the not_ratios.

network <- Reviews15_results %>% select(businessType,
                                        finalPrediction:actualRatingValue, not,
                                        not_ratios)

network$finalPrediction <- paste('predicted',network$finalPrediction,sep=' ')
network$CorrectPrediction <- gsub(1,'TRUE', network$CorrectPrediction)
network$CorrectPrediction <- gsub(0,'FALSE', network$CorrectPrediction)
head(network,20)
##                businessType finalPrediction CorrectlyPredicted
## 1  high end massage retreat     predicted 5                  1
## 2              chiropractic     predicted 2                  0
## 3              chiropractic     predicted 1                  0
## 4  high end massage retreat     predicted 2                  0
## 5              chiropractic     predicted 1                  0
## 6              chiropractic     predicted 1                  0
## 7              chiropractic     predicted 5                  1
## 8              chiropractic     predicted 1                  0
## 9              chiropractic     predicted 2                  0
## 10             chiropractic     predicted 3                  0
## 11             chiropractic     predicted 5                  1
## 12             chiropractic     predicted 5                  1
## 13             chiropractic     predicted 5                  1
## 14             chiropractic     predicted 5                  1
## 15             chiropractic     predicted 1                  0
## 16             chiropractic     predicted 5                  0
## 17 high end massage retreat     predicted 2                  0
## 18             chiropractic     predicted 5                  1
## 19             chiropractic     predicted 5                  1
## 20             chiropractic     predicted 1                  0
##    CorrectPrediction actualRatingValue not not_ratios
## 1               TRUE          rating 5   1    0.00369
## 2              FALSE          rating 5  NA         NA
## 3              FALSE          rating 5  NA         NA
## 4              FALSE          rating 1   3    0.01364
## 5              FALSE          rating 5  NA         NA
## 6              FALSE          rating 5  NA         NA
## 7               TRUE          rating 5   1    0.01266
## 8              FALSE          rating 5  NA         NA
## 9              FALSE          rating 5  NA         NA
## 10             FALSE          rating 5  NA         NA
## 11              TRUE          rating 5  NA         NA
## 12              TRUE          rating 5  NA         NA
## 13              TRUE          rating 5  NA         NA
## 14              TRUE          rating 5  NA         NA
## 15             FALSE          rating 4   1    0.00645
## 16             FALSE          rating 1  NA         NA
## 17             FALSE          rating 1   3    0.01364
## 18              TRUE          rating 5   1    0.00901
## 19              TRUE          rating 5  NA         NA
## 20             FALSE          rating 5  NA         NA

The nodes table will include all of the above except the not_ratios.

nodes <- network
nodes$id <- row.names(nodes)
nodes$title <- nodes$businessType
nodes$label <- nodes$actualRatingValue
nodes$group <- nodes$CorrectPrediction
nodes1 <- nodes %>% select(id, label, title,group,finalPrediction)
head(nodes1,10)
##    id    label                    title group finalPrediction
## 1   1 rating 5 high end massage retreat  TRUE     predicted 5
## 2   2 rating 5             chiropractic FALSE     predicted 2
## 3   3 rating 5             chiropractic FALSE     predicted 1
## 4   4 rating 1 high end massage retreat FALSE     predicted 2
## 5   5 rating 5             chiropractic FALSE     predicted 1
## 6   6 rating 5             chiropractic FALSE     predicted 1
## 7   7 rating 5             chiropractic  TRUE     predicted 5
## 8   8 rating 5             chiropractic FALSE     predicted 1
## 9   9 rating 5             chiropractic FALSE     predicted 2
## 10 10 rating 5             chiropractic FALSE     predicted 3

The edges will have the finalPrediction and actualRatingValue columns.

edges <- network %>% select(finalPrediction,actualRatingValue,not,not_ratios)
edges$label <- edges$finalPrediction
edges$weight <- edges$not_ratios
edges$width <- edges$not
edges1 <- edges %>% mutate(from = plyr::mapvalues(edges$actualRatingValue,
                                                  from = nodes$label, 
                                                  to = nodes$id)
                           )
edges2 <- edges1 %>% mutate(to = plyr::mapvalues(edges$finalPrediction,
                                                   from = nodes$finalPrediction,
                                                   to = nodes$id)
                            )
edges3 <- edges2 %>% select(from,to,label,width,weight)
head(edges3,10)
##    from to       label width  weight
## 1     1  1 predicted 5     1 0.00369
## 2     1  2 predicted 2    NA      NA
## 3     1  3 predicted 1    NA      NA
## 4     4  2 predicted 2     3 0.01364
## 5     1  3 predicted 1    NA      NA
## 6     1  3 predicted 1    NA      NA
## 7     1  1 predicted 5     1 0.01266
## 8     1  3 predicted 1    NA      NA
## 9     1  2 predicted 2    NA      NA
## 10    1 10 predicted 3    NA      NA

Lets see the link analysis visualization.

visNetwork(nodes=nodes1, edges=edges3, main='Grouped Predictions of True or False Ratings') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout() %>%
  visLegend

The above shows a visual network that looks mostly False in comparison to those True predicted rating values.None of the edges show except for that tiny cluster above, that shows the predicted ratings.

Lets group by business type now and map the actual to correctly predicted

nodes <- network
nodes$id <- row.names(nodes)
nodes$group <- nodes$businessType
nodes$label <- nodes$actualRatingValue
nodes$title <- nodes$CorrectPrediction
nodes1 <- nodes %>% select(id, label, title,group,finalPrediction)
head(nodes1,10)
##    id    label title                    group finalPrediction
## 1   1 rating 5  TRUE high end massage retreat     predicted 5
## 2   2 rating 5 FALSE             chiropractic     predicted 2
## 3   3 rating 5 FALSE             chiropractic     predicted 1
## 4   4 rating 1 FALSE high end massage retreat     predicted 2
## 5   5 rating 5 FALSE             chiropractic     predicted 1
## 6   6 rating 5 FALSE             chiropractic     predicted 1
## 7   7 rating 5  TRUE             chiropractic     predicted 5
## 8   8 rating 5 FALSE             chiropractic     predicted 1
## 9   9 rating 5 FALSE             chiropractic     predicted 2
## 10 10 rating 5 FALSE             chiropractic     predicted 3

The edges will have the finalPrediction and actualRatingValue columns.

edges <- network %>% select(finalPrediction,actualRatingValue,not,not_ratios)
edges$label <- edges$finalPrediction
edges$weight <- edges$not_ratios
edges$width <- edges$not
edges1 <- edges %>% mutate(from = plyr::mapvalues(edges$actualRatingValue,
                                                  from = nodes$label, 
                                                  to = nodes$id)
                           )
edges2 <- edges1 %>% mutate(to = plyr::mapvalues(edges$finalPrediction,
                                                   from = nodes$finalPrediction,
                                                   to = nodes$id)
                            )
edges3 <- edges2 %>% select(from,to,label,width, weight)
head(edges3,10)
##    from to       label width  weight
## 1     1  1 predicted 5     1 0.00369
## 2     1  2 predicted 2    NA      NA
## 3     1  3 predicted 1    NA      NA
## 4     4  2 predicted 2     3 0.01364
## 5     1  3 predicted 1    NA      NA
## 6     1  3 predicted 1    NA      NA
## 7     1  1 predicted 5     1 0.01266
## 8     1  3 predicted 1    NA      NA
## 9     1  2 predicted 2    NA      NA
## 10    1 10 predicted 3    NA      NA

Lets see the link analysis visualization.

visNetwork(nodes=nodes1, edges=edges3, main='Grouped Predictions of Business Type Ratings with True or False and Actual Rating') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout() %>%
  visLegend

Lets group by business type now and map the business type to the prediction.

nodes <- network
nodes$id <- row.names(nodes)
nodes$group <- nodes$businessType
nodes$label <- nodes$businessType
nodes$title <- nodes$CorrectPrediction
nodes1 <- nodes %>% select(id, label,group,finalPrediction, title)
head(nodes1,10)
##    id                    label                    group finalPrediction title
## 1   1 high end massage retreat high end massage retreat     predicted 5  TRUE
## 2   2             chiropractic             chiropractic     predicted 2 FALSE
## 3   3             chiropractic             chiropractic     predicted 1 FALSE
## 4   4 high end massage retreat high end massage retreat     predicted 2 FALSE
## 5   5             chiropractic             chiropractic     predicted 1 FALSE
## 6   6             chiropractic             chiropractic     predicted 1 FALSE
## 7   7             chiropractic             chiropractic     predicted 5  TRUE
## 8   8             chiropractic             chiropractic     predicted 1 FALSE
## 9   9             chiropractic             chiropractic     predicted 2 FALSE
## 10 10             chiropractic             chiropractic     predicted 3 FALSE
edges <- network %>% select(CorrectPrediction,actualRatingValue,not,businessType,
                            finalPrediction)
edges$label <- edges$finalPrediction
#edges$weight <- edges$not_ratios
edges$width <- edges$not
edges1 <- edges %>% mutate(from = plyr::mapvalues(edges$businessType,
                                                  from = nodes$label, 
                                                  to = nodes$id)
                           )
edges2 <- edges1 %>% mutate(to = plyr::mapvalues(edges$CorrectPrediction,
                                                   from = nodes$title,
                                                   to = nodes$id)
                            )
edges3 <- edges2 %>% select(from,to,label,width)
head(edges3,10)
##    from to       label width
## 1     1  1 predicted 5     1
## 2     2  2 predicted 2    NA
## 3     2  2 predicted 1    NA
## 4     1  2 predicted 2     3
## 5     2  2 predicted 1    NA
## 6     2  2 predicted 1    NA
## 7     2  1 predicted 5     1
## 8     2  2 predicted 1    NA
## 9     2  2 predicted 2    NA
## 10    2  2 predicted 3    NA

Lets see the link analysis visualization with the star layout.

visNetwork(nodes=nodes1, edges=edges3, main='Grouped Predictions by Business Type') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout(layout='layout.star') %>%
  visLegend

The above is a hula hoop because there are not any links for the most part, and only a handfule of the true or false predictions are mapping from business type to other business types by other business types predicted true or false. you can click on a node drag it off the disk and see no links, but click on the background to stop dragging. Then do the same with the center nodes that do have links to the disk and see the edges stay attached with the predicted value. Not many business types had the same predicted value as a true or false prediction of the same actual to predicted by business type.

Lets see this design in a grid layout. The sphere is the default and you can see it doesn’t really describe much visually without grouping when there are no links between the nodes.

visNetwork(nodes=nodes1, edges=edges3, main='Grouped Predictions by Business Type') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout(layout='layout_on_grid') %>%
  visLegend

The above is a grid layout that looks like tetris or pac man ping pong machine type layout with the groups.

Lets look out the layout.graphopt layout next.

visNetwork(nodes=nodes1, edges=edges3, main='Grouped Predictions by Business Type') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout(layout='layout.graphopt') %>%
  visLegend

Looks a lot like the default layout for this data of features. This is the spherical layout that follows.

visNetwork(nodes=nodes1, edges=edges3, main='Grouped Predictions by Business Type') %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout(layout='layout_on_sphere') %>%
  visLegend

It looks similar to the hula hoop star layout for this data with minimal links between nodes.




That was interesting to look at the different layouts in igraph with visNetwork, and to also see ways to improve our model design just as the businesses use reviews to improve or make changes as needed by analyzing the correctly and falsely predicted ratings. The next section will use machine learning algorithms in the caret packageto test out results of various models and defaults as well as test out the attributes within each model for tuning and validating for better generalization.

Lets use the Reviews15_results table, you can read it in if you closed your RStudio session and emptied your environment. The file we saved it as is the ML_Reviews614_resultsTable.csv file.

colnames(Reviews15_results)
##  [1] "id"                    "userReviewSeries"      "userReviewOnlyContent"
##  [4] "userRatingSeries"      "userRatingValue"       "businessReplied"      
##  [7] "businessReplyContent"  "userReviewContent"     "LowAvgHighCost"       
## [10] "businessType"          "cityState"             "friends"              
## [13] "reviews"               "photos"                "eliteStatus"          
## [16] "userName"              "Date"                  "userBusinessPhotos"   
## [19] "userCheckIns"          "weekday"               "area"                 
## [22] "big"                   "busy"                  "definitely"           
## [25] "feel"                  "lot"                   "many"                 
## [28] "open"                  "plus"                  "two"                  
## [31] "worth"                 "year"                  "the"                  
## [34] "and"                   "for."                  "have"                 
## [37] "that"                  "they"                  "this"                 
## [40] "you"                   "not"                   "but"                  
## [43] "good"                  "with"                  "area_ratios"          
## [46] "big_ratios"            "busy_ratios"           "definitely_ratios"    
## [49] "feel_ratios"           "lot_ratios"            "many_ratios"          
## [52] "open_ratios"           "plus_ratios"           "two_ratios"           
## [55] "worth_ratios"          "year_ratios"           "the_ratios"           
## [58] "and_ratios"            "for_ratios"            "have_ratios"          
## [61] "that_ratios"           "they_ratios"           "this_ratios"          
## [64] "you_ratios"            "not_ratios"            "but_ratios"           
## [67] "good_ratios"           "with_ratios"           "maxVote"              
## [70] "votedRating"           "Rating"                "finalPrediction"      
## [73] "CorrectlyPredicted"    "CorrectPrediction"     "actualRatingValue"

The column features to start with in predicting ratings will be the userRatingValue, businessReplied as a yes or no, LowAvgHighCost, businessType, number of friends, number of reviews, number of photos, number of userBusinessPhotos, weekday, number of userCheckIns, if the user is an eliteStatus, and the stopword ratios.Make sure your libraries are loaded, we will use the caret package to run some analysis on this table of features.

businessRatings <- Reviews15_results[,c(5,6,9:10,12:15,18:20,45:68)]
businessRatings$userRatingValue <- as.factor(paste(businessRatings$userRatingValue))
head(businessRatings)
##   userRatingValue businessReplied LowAvgHighCost             businessType
## 1               5             yes           High high end massage retreat
## 2               5              no            Avg             chiropractic
## 3               5              no            Avg             chiropractic
## 4               1             yes           High high end massage retreat
## 5               5              no            Avg             chiropractic
## 6               5              no            Avg             chiropractic
##   friends reviews photos eliteStatus userBusinessPhotos userCheckIns weekday
## 1      26      33     21        <NA>                  2           NA     Sun
## 2       0       7     NA        <NA>                 NA           NA     Sun
## 3     943       7      2        <NA>                 NA            2     Fri
## 4      12      12      4        <NA>                 NA           NA     Sat
## 5      11      24     11        <NA>                 NA            1     Mon
## 6       4      NA     NA        <NA>                 NA           27     Thu
##   area_ratios big_ratios busy_ratios definitely_ratios feel_ratios lot_ratios
## 1     0.00369         NA          NA                NA          NA         NA
## 2          NA         NA          NA                NA          NA         NA
## 3          NA         NA          NA                NA          NA         NA
## 4          NA         NA          NA                NA          NA         NA
## 5          NA         NA          NA                NA          NA         NA
## 6     0.02410         NA          NA                NA          NA         NA
##   many_ratios open_ratios plus_ratios two_ratios worth_ratios year_ratios
## 1          NA          NA          NA         NA           NA     0.00738
## 2          NA          NA          NA         NA           NA          NA
## 3          NA          NA          NA         NA           NA          NA
## 4          NA          NA          NA         NA           NA          NA
## 5          NA          NA          NA         NA           NA          NA
## 6          NA          NA          NA    0.01205           NA          NA
##   the_ratios and_ratios for_ratios have_ratios that_ratios they_ratios
## 1    0.05535    0.01845    0.01107     0.01476     0.01476     0.01107
## 2         NA    0.02752    0.00917     0.00917          NA          NA
## 3    0.06897    0.03448         NA          NA          NA          NA
## 4    0.03182    0.02727    0.00909          NA          NA          NA
## 5    0.08000    0.06000         NA          NA          NA          NA
## 6    0.03614    0.03614    0.02410          NA          NA     0.02410
##   this_ratios you_ratios not_ratios but_ratios good_ratios with_ratios
## 1     0.00369    0.00738    0.00369    0.00369     0.00738          NA
## 2     0.00917         NA         NA         NA          NA          NA
## 3          NA         NA         NA         NA          NA          NA
## 4     0.00909         NA    0.01364    0.00455          NA     0.00455
## 5          NA         NA         NA         NA          NA          NA
## 6          NA    0.01205         NA         NA          NA          NA

Lets use the numeric fields to predict the target of the ratings.

# numRegressions <- businessRatings %>% select(userRatingValue,
#                      friends:photos, userBusinessPhotos,userCheckIns,
#                      area_ratios:with_ratios)
numRegressions <- businessRatings[,c(1,5:7,9:10,12:35)]
numRegressions$userRatingValue <- as.numeric(paste(numRegressions$userRatingValue))
str(numRegressions)
## 'data.frame':    614 obs. of  30 variables:
##  $ userRatingValue   : num  5 5 5 1 5 5 5 5 5 5 ...
##  $ friends           : int  26 0 943 12 11 4 244 10 14 149 ...
##  $ reviews           : int  33 7 7 12 24 NA 5 52 35 66 ...
##  $ photos            : int  21 NA 2 4 11 NA NA 38 5 112 ...
##  $ userBusinessPhotos: int  2 NA NA NA NA NA NA NA NA NA ...
##  $ userCheckIns      : int  NA NA 2 NA 1 27 NA 1 1 NA ...
##  $ area_ratios       : num  0.00369 NA NA NA NA 0.0241 NA NA NA NA ...
##  $ big_ratios        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ busy_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ definitely_ratios : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ feel_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ lot_ratios        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ many_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ open_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ plus_ratios       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ two_ratios        : num  NA NA NA NA NA ...
##  $ worth_ratios      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ year_ratios       : num  0.00738 NA NA NA NA NA NA NA NA NA ...
##  $ the_ratios        : num  0.0554 NA 0.069 0.0318 0.08 ...
##  $ and_ratios        : num  0.0185 0.0275 0.0345 0.0273 0.06 ...
##  $ for_ratios        : num  0.01107 0.00917 NA 0.00909 NA ...
##  $ have_ratios       : num  0.01476 0.00917 NA NA NA ...
##  $ that_ratios       : num  0.0148 NA NA NA NA ...
##  $ they_ratios       : num  0.0111 NA NA NA NA ...
##  $ this_ratios       : num  0.00369 0.00917 NA 0.00909 NA NA NA NA NA NA ...
##  $ you_ratios        : num  0.00738 NA NA NA NA ...
##  $ not_ratios        : num  0.00369 NA NA 0.01364 NA ...
##  $ but_ratios        : num  0.00369 NA NA 0.00455 NA ...
##  $ good_ratios       : num  0.00738 NA NA NA NA NA NA NA NA NA ...
##  $ with_ratios       : num  NA NA NA 0.00455 NA NA NA NA NA NA ...

Now lets select our training set and our testing set to build the caret models and test the models on. We will sample randomly with the sample function on our indices of the training set and use those indices not in the training set for our testing set.

set.seed(56789)
train <- sample(floor(.7*length(numRegressions$userRatingValue)),replace=FALSE)

trainingSet <- numRegressions[train,]
testingSet <- numRegressions[-train,]

dim(trainingSet);dim(testingSet);dim(trainingSet)[1]+dim(testingSet)[1];dim(numRegressions)
## [1] 429  30
## [1] 185  30
## [1] 614
## [1] 614  30
library(e1071)
library(caret)
library(randomForest)
library(MASS)
library(gbm)

Optionally you could use this method

inTrain <- createDataPartition(y=numRegressions$userRatingValue, p=0.7, list=FALSE)

trainingSet2 <- numRegressions[inTrain,]
testingSet2 <- numRegressions[-inTrain,]

Our training set to build the model is 429 reviews, and our testing set is 185 reviews. There are more 5s in the data overall. Lets look at those numbers.

statsTrain <- trainingSet %>% group_by(userRatingValue) %>% count()
statsTrain$percent <- statsTrain$n/sum(statsTrain$n)
statsTrain
## # A tibble: 5 x 3
## # Groups:   userRatingValue [5]
##   userRatingValue     n percent
##             <dbl> <int>   <dbl>
## 1               1    64  0.149 
## 2               2    30  0.0699
## 3               3    36  0.0839
## 4               4    82  0.191 
## 5               5   217  0.506
statsTest <- testingSet %>% group_by(userRatingValue) %>% count()
statsTest$percent <- statsTest$n/sum(statsTest$n)
statsTest
## # A tibble: 5 x 3
## # Groups:   userRatingValue [5]
##   userRatingValue     n percent
##             <dbl> <int>   <dbl>
## 1               1    24  0.130 
## 2               2     4  0.0216
## 3               3    18  0.0973
## 4               4    21  0.114 
## 5               5   118  0.638

Lets see what the percent of sampling is with the createDataPartition function in the second sampled set.

statsTrain2 <- trainingSet2 %>% group_by(userRatingValue) %>% count()
statsTrain2$percent <- statsTrain2$n/sum(statsTrain2$n)
statsTrain2
## # A tibble: 5 x 3
## # Groups:   userRatingValue [5]
##   userRatingValue     n percent
##             <dbl> <int>   <dbl>
## 1               1    62  0.144 
## 2               2    22  0.0510
## 3               3    40  0.0928
## 4               4    71  0.165 
## 5               5   236  0.548
statsTest2 <- testingSet2 %>% group_by(userRatingValue) %>% count()
statsTest2$percent <- statsTest2$n/sum(statsTest2$n)
statsTest2
## # A tibble: 5 x 3
## # Groups:   userRatingValue [5]
##   userRatingValue     n percent
##             <dbl> <int>   <dbl>
## 1               1    26  0.142 
## 2               2    12  0.0656
## 3               3    14  0.0765
## 4               4    32  0.175 
## 5               5    99  0.541

The number of percents are better with the createDataPartitions function, so we will use that sampling set.

library(RANN) #this pkg supplements caret for out of bag validation, and interferes with the select function of tidyverse and dplyr
rfMod0 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet2),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='oob'), number=5)

The following originally produced an error and also does for this case. On the other data set that was used because of the imputing of missing data, when running the next line the predRF0 originally only had 15 rows, and the testingSet2 had 183, it only predicted by the features that had all observations as available. And since we used the meta fields of phots, check-ins, etc, there were many missing values.

predRF0 <- predict(rfMod0, testingSet2)

predDF0 <- data.frame(predRF0, roundPred=round(predRF0,0),
                      ceilPred=ceiling(predRF0),
                      floorPred=floor(predRF0),
                      type=testingSet2$userRatingValue)
predDF0

Lets just use the data set without the meta data as many values are missing. We need a new data table. We will just remove the features we don’t need from our testingSet2 and trainingSet2 tables. Some of the supplemental packages to caret when tuning the random forest trees interferes with tidyverse packages, so we’ll use slicing.

trainingSet3 <- trainingSet2[,c(1,7:30)]
trainingSet3$userRatingValue <- as.factor(paste(trainingSet3$userRatingValue))

colnames(trainingSet3)
##  [1] "userRatingValue"   "area_ratios"       "big_ratios"       
##  [4] "busy_ratios"       "definitely_ratios" "feel_ratios"      
##  [7] "lot_ratios"        "many_ratios"       "open_ratios"      
## [10] "plus_ratios"       "two_ratios"        "worth_ratios"     
## [13] "year_ratios"       "the_ratios"        "and_ratios"       
## [16] "for_ratios"        "have_ratios"       "that_ratios"      
## [19] "they_ratios"       "this_ratios"       "you_ratios"       
## [22] "not_ratios"        "but_ratios"        "good_ratios"      
## [25] "with_ratios"
testingSet3 <- testingSet2[,c(1,7:30)]
testingSet3$userRatingValue <- as.factor(paste(testingSet3$userRatingValue))
colnames(testingSet3)
##  [1] "userRatingValue"   "area_ratios"       "big_ratios"       
##  [4] "busy_ratios"       "definitely_ratios" "feel_ratios"      
##  [7] "lot_ratios"        "many_ratios"       "open_ratios"      
## [10] "plus_ratios"       "two_ratios"        "worth_ratios"     
## [13] "year_ratios"       "the_ratios"        "and_ratios"       
## [16] "for_ratios"        "have_ratios"       "that_ratios"      
## [19] "they_ratios"       "this_ratios"       "you_ratios"       
## [22] "not_ratios"        "but_ratios"        "good_ratios"      
## [25] "with_ratios"
dim(testingSet3);dim(trainingSet3)
## [1] 183  25
## [1] 431  25

Lets see if it works for the caret rf model this time.


It won’t with our table of 24 predictors using knnImpute for handling NAs even with the meta fields excluded. It will say there are more points than nearest neighbors. This could mean there are more features than data that isn’t NA in each feature.We will set the eval to FALSE for the knnImpute.

# requires the RANN package
trainingSet3$userRatingValue <- as.numeric(paste(trainingSet3$userRatingValue))
rfMod1 <- train(userRatingValue~., method='rf',
               na.action=na.pass,
               data=(trainingSet3),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='oob'), number=5)
predRF1 <- predict(rfMod1, testingSet3)

predDF1 <- data.frame(predRF1, type=testingSet3$userRatingValue)
predDF1

sum1 <- sum(predRF1==testingSet3$userRatingValue)
length1 <- length(testingSet3$userRatingValue)
accuracy_rfMod1 <- (sum1/length1)
accuracy_rfMod1

We see that the above is regressing with the random forest, lets change the target to a factor to classify into 1-5 classes of ratings.

trainingSet3$userRatingValue <- as.factor(paste(trainingSet3$userRatingValue))
testingSet3$userRatingValue <- as.factor(paste(testingSet3$userRatingValue))

Lets re-run the above two chunks of the model and predictions to see the results.

# requires the RANN package

rfMod1 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet3),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='oob'), number=5)
predRF1 <- predict(rfMod1, testingSet3)

predDF1 <- data.frame(predRF1, type=testingSet3$userRatingValue)
predDF1

sum1 <- sum(predRF1==testingSet3$userRatingValue) 
length1 <- length(testingSet3$userRatingValue)
accuracy_rfMod1 <- (sum1/length1) 
head(accuracy_rfMod1,30)

The above couldn’t be ran due to the limited number of nearest neighbors for predictors. ***

This won’t work unless the NAs are imputed with 0s in the predictors.

rfMod2 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet3),  preProc = c("center", "scale","bagImpute"),
               trControl=trainControl(method='oob'), number=5)

We will impute the NAs with 0s and try again using out of bag and bagImpute.

ts3 <- as.matrix(testingSet3)
ts4 <- as.factor(paste(ts3))
ts5 <- gsub('NA','0',ts4)
ts5b <- as.numeric(paste(ts5))#to make numeric 2nd run
ts6 <- matrix(ts5b,nrow=183,ncol=25,byrow=FALSE)
ts7 <- as.data.frame(ts6)
colnames(ts7) <- colnames(testingSet3)

tn3 <- as.matrix(trainingSet3)
tn4 <- as.factor(paste(tn3))
tn5 <- gsub('NA','0',tn4)
tn5b <- as.numeric(paste(tn5)) #to make numeric 2nd run
tn6 <- matrix(tn5b,nrow=431,ncol=25,byrow=FALSE)
tn7 <- as.data.frame(tn6)
colnames(tn7) <- colnames(trainingSet3)

trainingSet4 <- tn7
testingSet4 <- ts7

We will now try to use the out of bag validation oob and the bagImpute preprocessing of the NA imputed data with 0 and see if it will work, and get the accuracy if it does also work in predicting on our testing set also with 0 imputed NAs in the predictors. All the target values are filled in.

set.seed(123123)
rfMod2 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","bagImpute"),
               trControl=trainControl(method='oob'), number=5)
predRF2 <- predict(rfMod2, testingSet4)

predDF2 <- data.frame(predRF2, ceilingPredRF2=ceiling(predRF2),floorPredRF2=floor(predRF2),
                      roundPredRF2=round(predRF2),type=testingSet4$userRatingValue)
length2 <- length(predDF2$type)

sum2c <- sum(predDF2$ceilingPredRF2==predDF2$type) 
sum2r <- sum(predDF2$roundPredRF2==predDF2$type)
sum2f <- sum(predDF2$floorPredRF2==predDF2$type)

accuracy_rfMod2c <- (sum2c/length2)
accuracy_rfMod2r <- (sum2r/length2)
accuracy_rfMod2f <- (sum2f/length2)

accuracy_rfMod2c
## [1] 0.4808743
accuracy_rfMod2r
## [1] 0.295082
accuracy_rfMod2f
## [1] 0.1092896
head(predDF2,30)
##     predRF2 ceilingPredRF2 floorPredRF2 roundPredRF2 type
## 1  4.269264              5            4            4    5
## 2  4.165961              5            4            4    5
## 3  4.737336              5            4            5    1
## 4  1.861052              2            1            2    1
## 5  4.350855              5            4            4    5
## 6  2.983380              3            2            3    4
## 7  4.303279              5            4            4    5
## 8  4.485642              5            4            4    5
## 9  4.695544              5            4            5    5
## 10 2.757676              3            2            3    4
## 11 4.261337              5            4            4    5
## 12 4.817759              5            4            5    5
## 13 4.069768              5            4            4    4
## 14 2.482975              3            2            2    1
## 15 3.738583              4            3            4    5
## 16 4.093727              5            4            4    4
## 17 4.251959              5            4            4    5
## 18 3.620452              4            3            4    4
## 19 3.492247              4            3            3    5
## 20 4.410155              5            4            4    5
## 21 3.765283              4            3            4    5
## 22 3.572286              4            3            4    1
## 23 3.349175              4            3            3    1
## 24 4.530611              5            4            5    5
## 25 3.853103              4            3            4    3
## 26 4.626453              5            4            5    5
## 27 4.803438              5            4            5    5
## 28 4.468764              5            4            4    1
## 29 4.561371              5            4            5    5
## 30 3.222326              4            3            3    1

The above takes too long, and was stopped when using all predictors and target as factors for classification. Re-ran with all numeric for the 2nd run including the target for REGRESSION and taking the ceiling of the results gave 44-47% accuracy, the floor was 10-11% and rounded was 27-33%, depending on whether you included setting a seed value to give back the same calculated results from an initial random state.

The 3rd run changed the target to a factor and kept the numeric predictors to CLASSIFY.

#3rd run with predictors as numeric and the target as a factor for classification
trainingSet4$userRatingValue <- as.factor(paste(trainingSet4$userRatingValue))
testingSet4$userRatingValue <- as.factor(paste(testingSet4$userRatingValue))

rfMod2 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","bagImpute"),
               trControl=trainControl(method='oob'), number=5)
predRF2 <- predict(rfMod2, testingSet4)

predDF2 <- data.frame(predRF2, type=testingSet4$userRatingValue)

length2 <- length(predDF2$type)

sum3 <- sum(predDF2$predRF2==predDF2$type)

accuracy_rfMod2 <- (sum3/length2)

accuracy_rfMod2
## [1] 0.5901639
head(predDF2,30)
##    predRF2 type
## 1        5    5
## 2        5    5
## 3        5    1
## 4        1    1
## 5        5    5
## 6        1    4
## 7        5    5
## 8        5    5
## 9        5    5
## 10       1    4
## 11       5    5
## 12       5    5
## 13       4    4
## 14       1    1
## 15       5    5
## 16       5    4
## 17       5    5
## 18       5    4
## 19       5    5
## 20       5    5
## 21       5    5
## 22       5    1
## 23       5    1
## 24       5    5
## 25       5    3
## 26       5    5
## 27       5    5
## 28       5    1
## 29       5    5
## 30       5    1

Above when classifying, the results were 57-59%, better than all models so far, even the 1st version using 12 stopwords only.


Lets re-run the first RFMod0 for knnImpute on the numeric data with 0 imputed NAs and see if it works. The targets are already factors.

# requires the RANN package

rfMod1 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='oob'), number=5)
predRF1 <- predict(rfMod1, testingSet4)

predDF1 <- data.frame(predRF1, type=testingSet4$userRatingValue)
predDF1
##     predRF1 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         5    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        1    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        1    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        4    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        1    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       5    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       1    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       1    4
## 115       5    2
## 116       1    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       1    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       5    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum1 <- sum(predRF1==predDF1$type) 
length1 <- length(predDF1$type)
accuracy_rfMod1 <- (sum1/length1) 
head(accuracy_rfMod1,30)
## [1] 0.6010929

We used the trainingSet4 and testingSet4 with 0 imputed NAs on the knnImpute random forest algorithm with out of bag validation and it worked. The results were 60% accuracy, the new best model in classifying the review as a 1-5 rating.


We can turn the targets back to numeric or keep as factors for classification. If we keep as numbers than we have to round,floor, or take the ceiling of the results to get the accuracy in predicting the rating.

# trainingSet4$userRatingValue <- as.numeric(paste(trainingSet4$userRatingValue))
# testingSet4$userRatingValue <- as.numeric(paste(testingSet4$userRatingValue))

Lets keep the values as factors for the targets and keep the NAs as 0s. So we will continue to use the testingSet4 and trainingSet4 data tables to CLASSIFY.

rfMod3 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='boot'), number=5)
predRF3 <- predict(rfMod3, testingSet4)

predDF3 <- data.frame(predRF3, type=testingSet4$userRatingValue)
predDF3
##     predRF3 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         1    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        1    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        1    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        4    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        2    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       5    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       1    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       1    4
## 115       5    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       5    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       1    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum3 <- sum(predRF3==testingSet4$userRatingValue) 
length3 <- length(testingSet4$userRatingValue)
accuracy_rfMod3 <- (sum3/length3) 
head(accuracy_rfMod3,30)
## [1] 0.579235

The accuracy in using the above model to classify with the medianImpute of NAs and the bootstrap method scored 57-59% accuracy in our modified random forest model.


Now we’ll use bootstrap with knnImpute in our random forest classifier.

rfMod4 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)
predRF4 <- predict(rfMod4, testingSet4)

predDF4 <- data.frame(predRF4, type=testingSet4$userRatingValue)
predDF4
##     predRF4 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         5    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        1    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        5    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        4    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        5    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       5    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       4    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       5    4
## 115       5    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       1    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       5    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum4 <- sum(predRF4==testingSet4$userRatingValue) 
length4 <- length(testingSet4$userRatingValue)
accuracy_rfMod4 <- (sum4/length4) 
head(accuracy_rfMod4,30)
## [1] 0.5901639

The above scored 59% using random forest bootstrap type validating and knnImputing of NAs. ***

This next model is the random forest but with adaptive_cv validation and bagImpute of NAs. It does take a while.

rfMod5 <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","bagImpute"),
               trControl=trainControl(method='adaptive_cv'), number=5)
predRF5 <- predict(rfMod5, testingSet4)

predDF5 <- data.frame(predRF5, type=testingSet4$userRatingValue)
predDF5
##     predRF5 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         5    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        5    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        1    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        4    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        1    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       1    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       4    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       1    4
## 115       4    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       5    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       1    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum5 <- sum(predRF5==testingSet4$userRatingValue) 
length5 <- length(testingSet4$userRatingValue)
accuracy_rfMod5 <- (sum5/length5) 
head(accuracy_rfMod5,30)
## [1] 0.5901639

rfMod6 <- train(userRatingValue ~., method='rf', 
               na.action=na.pass,
               data=(trainingSet4),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='adaptive_boot'), number=5)
predRF6 <- predict(rfMod6, testingSet4)

predDF6 <- data.frame(predRF6, type=testingSet4$userRatingValue)
predDF6
##     predRF6 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         1    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        1    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        1    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        5    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        2    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       5    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       1    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       1    4
## 115       1    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       1    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       5    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum6 <- sum(predRF6==testingSet4$userRatingValue) 
length6 <- length(testingSet4$userRatingValue)
accuracy_rfMod6 <- (sum6/length6) 
head(accuracy_rfMod6,30)
## [1] 0.5901639

rfMod7 <- train(userRatingValue ~., method='rf', 
               na.action=na.pass, search="random",
               data=(trainingSet4),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='adaptive_cv'), number=5)
predRF7 <- predict(rfMod7, testingSet4)

predDF7 <- data.frame(predRF7, type=testingSet4$userRatingValue)
predDF7
##     predRF7 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         1    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        5    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        5    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        4    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        1    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       5    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       4    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       5    4
## 115       1    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       5    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       5    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum7 <- sum(predRF7==testingSet4$userRatingValue) 
length7 <- length(testingSet4$userRatingValue)
accuracy_rfMod7 <- (sum7/length7) 
head(accuracy_rfMod7,30)
## [1] 0.5901639

rfMod8 <- train(userRatingValue ~., method='rf', 
               na.action=na.pass, search="grid",
               data=(trainingSet4),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='adaptive_cv'), number=5)
predRF8 <- predict(rfMod8, testingSet4)

predDF8 <- data.frame(predRF8, type=testingSet4$userRatingValue)
predDF8
##     predRF8 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         4    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        1    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        1    4
## 19        3    5
## 20        5    5
## 21        1    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        4    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        1    1
## 40        2    5
## 41        5    2
## 42        4    4
## 43        3    5
## 44        4    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        1    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        4    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        1    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        4    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        1    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        1    4
## 80        5    2
## 81        5    5
## 82        4    2
## 83        5    3
## 84        4    2
## 85        5    3
## 86        4    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        2    1
## 91        5    5
## 92        5    4
## 93        1    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       1    4
## 101       5    5
## 102       4    5
## 103       1    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       4    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       1    4
## 115       4    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       3    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       1    1
## 131       4    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       4    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       3    1
## 148       4    1
## 149       4    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       1    1
## 154       4    3
## 155       5    5
## 156       1    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       2    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       1    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       3    1
## 181       5    5
## 182       5    5
## 183       5    5
sum8 <- sum(predRF8==testingSet4$userRatingValue) 
length8 <- length(testingSet4$userRatingValue)
accuracy_rfMod8 <- (sum8/length8) 
head(accuracy_rfMod8,30)
## [1] 0.568306

rfMod9 <- train(userRatingValue ~., method='rf', 
               na.action=na.pass, search="grid",
               data=(trainingSet4),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='adaptive_cv'), number=10)
predRF9 <- predict(rfMod9, testingSet4)

predDF9 <- data.frame(predRF9, type=testingSet4$userRatingValue)
predDF9
##     predRF9 type
## 1         5    5
## 2         5    5
## 3         5    1
## 4         1    1
## 5         5    5
## 6         1    4
## 7         5    5
## 8         5    5
## 9         5    5
## 10        5    4
## 11        5    5
## 12        5    5
## 13        4    4
## 14        1    1
## 15        5    5
## 16        5    4
## 17        5    5
## 18        5    4
## 19        5    5
## 20        5    5
## 21        5    5
## 22        5    1
## 23        5    1
## 24        5    5
## 25        5    3
## 26        5    5
## 27        5    5
## 28        5    1
## 29        5    5
## 30        5    1
## 31        5    5
## 32        5    5
## 33        5    4
## 34        2    2
## 35        5    2
## 36        5    5
## 37        5    4
## 38        5    5
## 39        5    1
## 40        5    5
## 41        5    2
## 42        1    4
## 43        5    5
## 44        5    5
## 45        5    1
## 46        5    4
## 47        5    5
## 48        5    5
## 49        5    5
## 50        5    1
## 51        4    4
## 52        5    1
## 53        5    5
## 54        5    5
## 55        5    4
## 56        5    5
## 57        5    2
## 58        5    5
## 59        5    5
## 60        1    1
## 61        5    4
## 62        5    4
## 63        5    4
## 64        5    4
## 65        5    4
## 66        5    4
## 67        5    4
## 68        5    5
## 69        5    5
## 70        5    5
## 71        4    3
## 72        5    5
## 73        5    5
## 74        5    5
## 75        5    5
## 76        5    1
## 77        5    5
## 78        5    5
## 79        5    4
## 80        5    2
## 81        5    5
## 82        5    2
## 83        5    3
## 84        5    2
## 85        5    3
## 86        5    4
## 87        5    5
## 88        5    4
## 89        5    1
## 90        2    1
## 91        5    5
## 92        5    4
## 93        5    2
## 94        3    2
## 95        5    5
## 96        5    5
## 97        5    5
## 98        5    5
## 99        5    3
## 100       5    4
## 101       5    5
## 102       4    5
## 103       5    4
## 104       5    5
## 105       5    5
## 106       5    5
## 107       5    5
## 108       1    4
## 109       5    5
## 110       5    5
## 111       5    5
## 112       5    5
## 113       5    3
## 114       5    4
## 115       5    2
## 116       5    1
## 117       4    4
## 118       5    3
## 119       5    4
## 120       5    5
## 121       5    5
## 122       5    5
## 123       4    2
## 124       5    5
## 125       5    5
## 126       5    5
## 127       3    4
## 128       5    5
## 129       5    3
## 130       1    1
## 131       5    1
## 132       5    3
## 133       5    5
## 134       5    5
## 135       5    5
## 136       5    5
## 137       5    5
## 138       5    3
## 139       5    2
## 140       5    3
## 141       5    4
## 142       5    5
## 143       5    5
## 144       3    4
## 145       4    1
## 146       5    1
## 147       5    1
## 148       5    1
## 149       5    1
## 150       3    1
## 151       4    3
## 152       3    3
## 153       5    1
## 154       5    3
## 155       5    5
## 156       5    5
## 157       5    5
## 158       5    5
## 159       5    5
## 160       5    5
## 161       5    5
## 162       5    5
## 163       5    5
## 164       5    5
## 165       5    5
## 166       5    5
## 167       5    5
## 168       5    5
## 169       5    5
## 170       5    5
## 171       5    5
## 172       5    5
## 173       5    5
## 174       5    5
## 175       5    5
## 176       5    4
## 177       5    5
## 178       5    5
## 179       5    5
## 180       5    1
## 181       5    5
## 182       5    5
## 183       5    5
sum9 <- sum(predRF9==testingSet4$userRatingValue) 
length9 <- length(testingSet4$userRatingValue)
accuracy_rfMod9 <- (sum9/length9) 
head(accuracy_rfMod9,30)
## [1] 0.5846995

rfMod10 <- train(userRatingValue ~., method='rf', 
               na.action=na.pass, search="random",
               data=(trainingSet4),  preProc = c("center", "scale","medianImpute"),
               trControl=trainControl(method='adaptive_cv'), number=10)
predRF10 <- predict(rfMod10, testingSet4)

predDF10 <- data.frame(predRF10, type=testingSet4$userRatingValue)
predDF10
##     predRF10 type
## 1          5    5
## 2          4    5
## 3          5    1
## 4          1    1
## 5          5    5
## 6          4    4
## 7          5    5
## 8          5    5
## 9          5    5
## 10         1    4
## 11         5    5
## 12         5    5
## 13         4    4
## 14         1    1
## 15         5    5
## 16         5    4
## 17         5    5
## 18         1    4
## 19         3    5
## 20         5    5
## 21         1    5
## 22         5    1
## 23         5    1
## 24         5    5
## 25         5    3
## 26         5    5
## 27         5    5
## 28         5    1
## 29         5    5
## 30         4    1
## 31         5    5
## 32         5    5
## 33         5    4
## 34         2    2
## 35         5    2
## 36         5    5
## 37         5    4
## 38         5    5
## 39         1    1
## 40         2    5
## 41         5    2
## 42         1    4
## 43         3    5
## 44         4    5
## 45         5    1
## 46         5    4
## 47         5    5
## 48         5    5
## 49         5    5
## 50         1    1
## 51         4    4
## 52         5    1
## 53         5    5
## 54         5    5
## 55         2    4
## 56         5    5
## 57         4    2
## 58         5    5
## 59         5    5
## 60         3    1
## 61         5    4
## 62         5    4
## 63         5    4
## 64         5    4
## 65         1    4
## 66         5    4
## 67         5    4
## 68         5    5
## 69         5    5
## 70         4    5
## 71         4    3
## 72         5    5
## 73         5    5
## 74         5    5
## 75         1    5
## 76         5    1
## 77         5    5
## 78         5    5
## 79         1    4
## 80         5    2
## 81         5    5
## 82         4    2
## 83         5    3
## 84         4    2
## 85         5    3
## 86         5    4
## 87         5    5
## 88         5    4
## 89         5    1
## 90         2    1
## 91         5    5
## 92         5    4
## 93         1    2
## 94         3    2
## 95         4    5
## 96         5    5
## 97         5    5
## 98         5    5
## 99         4    3
## 100        1    4
## 101        5    5
## 102        4    5
## 103        1    4
## 104        5    5
## 105        5    5
## 106        5    5
## 107        5    5
## 108        4    4
## 109        5    5
## 110        5    5
## 111        5    5
## 112        2    5
## 113        5    3
## 114        1    4
## 115        1    2
## 116        3    1
## 117        4    4
## 118        5    3
## 119        3    4
## 120        5    5
## 121        5    5
## 122        5    5
## 123        4    2
## 124        5    5
## 125        5    5
## 126        5    5
## 127        3    4
## 128        5    5
## 129        5    3
## 130        1    1
## 131        4    1
## 132        5    3
## 133        5    5
## 134        5    5
## 135        5    5
## 136        5    5
## 137        5    5
## 138        4    3
## 139        5    2
## 140        5    3
## 141        5    4
## 142        5    5
## 143        5    5
## 144        3    4
## 145        4    1
## 146        5    1
## 147        3    1
## 148        4    1
## 149        4    1
## 150        3    1
## 151        4    3
## 152        3    3
## 153        1    1
## 154        4    3
## 155        5    5
## 156        1    5
## 157        5    5
## 158        5    5
## 159        5    5
## 160        2    5
## 161        5    5
## 162        5    5
## 163        5    5
## 164        5    5
## 165        5    5
## 166        5    5
## 167        5    5
## 168        1    5
## 169        5    5
## 170        5    5
## 171        5    5
## 172        5    5
## 173        5    5
## 174        5    5
## 175        5    5
## 176        5    4
## 177        5    5
## 178        5    5
## 179        5    5
## 180        3    1
## 181        5    5
## 182        5    5
## 183        5    5
sum10 <- sum(predRF10==testingSet4$userRatingValue) 
length10 <- length(testingSet4$userRatingValue)
accuracy_rfMod10 <- (sum10/length10) 
head(accuracy_rfMod10,30)
## [1] 0.5355191

accuracy10RFModels <- as.data.frame(c(accuracy_rfMod1,
                        accuracy_rfMod2, accuracy_rfMod3,
                        accuracy_rfMod4, accuracy_rfMod5,
                        accuracy_rfMod6, accuracy_rfMod7,
                        accuracy_rfMod8, accuracy_rfMod9,
                        accuracy_rfMod10,Accuracy))
colnames(accuracy10RFModels) <- 'accuracyResults'
row.names(accuracy10RFModels) <- c('knnImpute_OOB_5', 
                                   'bagImpute_OOB_5','medianImpute_boot_5',
                                   'knnImpute_boot_5','bagImpute_adaptive_cv_5',
                                  'medianImpute_adaptive_boot_5',
                                  'medianImpute_randomSearch_adaptive_cv_5',
                                  'medianImpute_gridSearch_adaptive_cv_5',
                                  'medianImpute_gridSearch_adaptiv_cv_10',
                                  'medianImpute_randomSearch_adaptive_cv_10',
                                  'manualCeilgMeanAbsDiffRatios')

accuracy10RFModels
##                                          accuracyResults
## knnImpute_OOB_5                                0.6010929
## bagImpute_OOB_5                                0.5901639
## medianImpute_boot_5                            0.5792350
## knnImpute_boot_5                               0.5901639
## bagImpute_adaptive_cv_5                        0.5901639
## medianImpute_adaptive_boot_5                   0.5901639
## medianImpute_randomSearch_adaptive_cv_5        0.5901639
## medianImpute_gridSearch_adaptive_cv_5          0.5683060
## medianImpute_gridSearch_adaptiv_cv_10          0.5846995
## medianImpute_randomSearch_adaptive_cv_10       0.5355191
## manualCeilgMeanAbsDiffRatios                   0.3208469

Our keywords didn’t improve our manual predictions better than the 1st version of using only 12 stopwords. But we can see that using those same stopwords, and keeping the NAs as 0 imputed as well as having the target a factor to classify ratings 1-5 improved about 5%. The highest score on 1st version was 57% and with this version of the added 12 keywords the highes value is 60% with the lowest 54% accuracy the same as the 1st version.


Lets now tryy using other algortithms on our same 0 imputed NA data set where the target is factor data type.

knnMod0 <- train(userRatingValue ~ .,
                method='knn', preProcess=c('center','scale'),
                tuneLength=10, trControl=trainControl(method='adaptive_cv'),
                data=trainingSet4)
predKNN0 <- predict(knnMod0, testingSet4)
dfKNN0 <- data.frame(predKNN0, true=testingSet4$userRatingValue)
dfKNN0
##     predKNN0 true
## 1          5    5
## 2          1    5
## 3          5    1
## 4          1    1
## 5          5    5
## 6          1    4
## 7          5    5
## 8          5    5
## 9          5    5
## 10         1    4
## 11         5    5
## 12         5    5
## 13         4    4
## 14         5    1
## 15         5    5
## 16         5    4
## 17         5    5
## 18         5    4
## 19         5    5
## 20         5    5
## 21         1    5
## 22         1    1
## 23         5    1
## 24         1    5
## 25         5    3
## 26         5    5
## 27         5    5
## 28         5    1
## 29         5    5
## 30         5    1
## 31         1    5
## 32         5    5
## 33         4    4
## 34         1    2
## 35         5    2
## 36         5    5
## 37         5    4
## 38         5    5
## 39         1    1
## 40         5    5
## 41         5    2
## 42         2    4
## 43         4    5
## 44         1    5
## 45         5    1
## 46         5    4
## 47         5    5
## 48         5    5
## 49         5    5
## 50         1    1
## 51         1    4
## 52         1    1
## 53         5    5
## 54         5    5
## 55         5    4
## 56         1    5
## 57         5    2
## 58         5    5
## 59         5    5
## 60         5    1
## 61         5    4
## 62         5    4
## 63         5    4
## 64         5    4
## 65         5    4
## 66         5    4
## 67         5    4
## 68         5    5
## 69         5    5
## 70         5    5
## 71         1    3
## 72         5    5
## 73         5    5
## 74         1    5
## 75         5    5
## 76         5    1
## 77         5    5
## 78         5    5
## 79         1    4
## 80         5    2
## 81         5    5
## 82         1    2
## 83         5    3
## 84         5    2
## 85         5    3
## 86         5    4
## 87         5    5
## 88         1    4
## 89         1    1
## 90         1    1
## 91         5    5
## 92         5    4
## 93         5    2
## 94         1    2
## 95         5    5
## 96         5    5
## 97         5    5
## 98         5    5
## 99         5    3
## 100        5    4
## 101        5    5
## 102        4    5
## 103        5    4
## 104        5    5
## 105        5    5
## 106        5    5
## 107        5    5
## 108        1    4
## 109        5    5
## 110        5    5
## 111        5    5
## 112        1    5
## 113        5    3
## 114        1    4
## 115        1    2
## 116        1    1
## 117        4    4
## 118        5    3
## 119        5    4
## 120        1    5
## 121        5    5
## 122        5    5
## 123        5    2
## 124        5    5
## 125        5    5
## 126        5    5
## 127        4    4
## 128        5    5
## 129        5    3
## 130        5    1
## 131        5    1
## 132        5    3
## 133        5    5
## 134        5    5
## 135        5    5
## 136        5    5
## 137        5    5
## 138        5    3
## 139        1    2
## 140        5    3
## 141        1    4
## 142        5    5
## 143        5    5
## 144        4    4
## 145        5    1
## 146        5    1
## 147        5    1
## 148        5    1
## 149        5    1
## 150        4    1
## 151        5    3
## 152        4    3
## 153        5    1
## 154        5    3
## 155        5    5
## 156        1    5
## 157        5    5
## 158        5    5
## 159        5    5
## 160        1    5
## 161        5    5
## 162        5    5
## 163        5    5
## 164        5    5
## 165        5    5
## 166        5    5
## 167        5    5
## 168        1    5
## 169        5    5
## 170        5    5
## 171        5    5
## 172        5    5
## 173        5    5
## 174        5    5
## 175        5    5
## 176        5    4
## 177        5    5
## 178        5    5
## 179        5    5
## 180        5    1
## 181        5    5
## 182        5    5
## 183        5    5
sumKNN0 <- sum(predKNN0==testingSet4$userRatingValue) 
lengthKNN0 <- length(testingSet4$userRatingValue)
accuracy_knnMod0 <- (sumKNN0/lengthKNN0) 
head(accuracy_knnMod0,30)
## [1] 0.5355191
rpartMod0 <- train(userRatingValue ~ ., method='rpart', tuneLength=7, data=trainingSet4) 
predRPART0 <- predict(rpartMod0, testingSet4)
dfRPART0 <- data.frame(predRPART0, true=testingSet4$userRatingValue)
dfRPART0
##     predRPART0 true
## 1            5    5
## 2            5    5
## 3            5    1
## 4            5    1
## 5            5    5
## 6            5    4
## 7            5    5
## 8            5    5
## 9            5    5
## 10           5    4
## 11           5    5
## 12           5    5
## 13           5    4
## 14           5    1
## 15           5    5
## 16           5    4
## 17           5    5
## 18           5    4
## 19           5    5
## 20           5    5
## 21           5    5
## 22           5    1
## 23           5    1
## 24           5    5
## 25           5    3
## 26           5    5
## 27           5    5
## 28           5    1
## 29           5    5
## 30           5    1
## 31           5    5
## 32           5    5
## 33           5    4
## 34           5    2
## 35           5    2
## 36           5    5
## 37           5    4
## 38           5    5
## 39           5    1
## 40           5    5
## 41           5    2
## 42           5    4
## 43           5    5
## 44           5    5
## 45           5    1
## 46           5    4
## 47           5    5
## 48           5    5
## 49           5    5
## 50           5    1
## 51           5    4
## 52           5    1
## 53           5    5
## 54           5    5
## 55           5    4
## 56           5    5
## 57           5    2
## 58           5    5
## 59           5    5
## 60           5    1
## 61           5    4
## 62           5    4
## 63           5    4
## 64           5    4
## 65           5    4
## 66           5    4
## 67           5    4
## 68           5    5
## 69           5    5
## 70           5    5
## 71           5    3
## 72           5    5
## 73           5    5
## 74           5    5
## 75           5    5
## 76           5    1
## 77           5    5
## 78           5    5
## 79           5    4
## 80           5    2
## 81           5    5
## 82           5    2
## 83           5    3
## 84           5    2
## 85           5    3
## 86           5    4
## 87           5    5
## 88           5    4
## 89           5    1
## 90           5    1
## 91           5    5
## 92           5    4
## 93           5    2
## 94           5    2
## 95           5    5
## 96           5    5
## 97           5    5
## 98           5    5
## 99           5    3
## 100          5    4
## 101          5    5
## 102          5    5
## 103          5    4
## 104          5    5
## 105          5    5
## 106          5    5
## 107          5    5
## 108          5    4
## 109          5    5
## 110          5    5
## 111          5    5
## 112          5    5
## 113          5    3
## 114          5    4
## 115          5    2
## 116          5    1
## 117          5    4
## 118          5    3
## 119          5    4
## 120          5    5
## 121          5    5
## 122          5    5
## 123          5    2
## 124          5    5
## 125          5    5
## 126          5    5
## 127          5    4
## 128          5    5
## 129          5    3
## 130          5    1
## 131          5    1
## 132          5    3
## 133          5    5
## 134          5    5
## 135          5    5
## 136          5    5
## 137          5    5
## 138          5    3
## 139          5    2
## 140          5    3
## 141          5    4
## 142          5    5
## 143          5    5
## 144          5    4
## 145          5    1
## 146          5    1
## 147          5    1
## 148          5    1
## 149          5    1
## 150          5    1
## 151          5    3
## 152          5    3
## 153          5    1
## 154          5    3
## 155          5    5
## 156          5    5
## 157          5    5
## 158          5    5
## 159          5    5
## 160          5    5
## 161          5    5
## 162          5    5
## 163          5    5
## 164          5    5
## 165          5    5
## 166          5    5
## 167          5    5
## 168          5    5
## 169          5    5
## 170          5    5
## 171          5    5
## 172          5    5
## 173          5    5
## 174          5    5
## 175          5    5
## 176          5    4
## 177          5    5
## 178          5    5
## 179          5    5
## 180          5    1
## 181          5    5
## 182          5    5
## 183          5    5
sumRPART0 <- sum(predRPART0==testingSet4$userRatingValue) 
lengthRPART0 <- length(testingSet4$userRatingValue)
accuracy_RPARTMod0 <- (sumRPART0/lengthRPART0) 
head(accuracy_RPARTMod0,30)
## [1] 0.5409836
RFtunes <- cbind(predDF1[1],predDF2[1],predDF3[1],
             predDF4[1],predDF5[1],predDF6[1],
             predDF7[1],predDF8[1],predDF9[1],
             predDF10[1])
ManualMean <- Reviews15_results$finalPrediction[-inTrain]

predDF11 <- data.frame(RFtunes,ManualMean,dfKNN0[1],dfRPART0[1], 
                      true=testingSet3$userRatingValue)
#the following column name assignment doesn't change the name as intended
colnames(predDF11[12:14]) <-c('predKNN','predRPART','trueValue')

results <- as.data.frame(c(round(accuracy_knnMod0,2), 
             round(accuracy_RPARTMod0,2),
             round(100,2)))
colnames(results) <- 'results'

results$results <- as.factor(paste(results$results))

results1 <- as.data.frame(t(results))
colnames(results1) <- colnames(predDF11[12:14])

acc11 <- as.data.frame(accuracy10RFModels)
colnames(acc11) <- 'results'
acc11$results <- round(acc11$results,2)
acc11$results <- as.factor(paste(acc11$results))
names1 <- colnames(predDF11)[1:10]
row.names(acc11) <- c(names1,'ManualMean')
acc11RFs <- as.data.frame(t(acc11))

resultsAll <- cbind(acc11RFs,results1)
Results <- rbind(predDF11, resultsAll) 
#the column names have to be changed here as well
colnames(Results)[12:13] <- c('predKNN','predRPART')
Results
##         predRF1 predRF2 predRF3 predRF4 predRF5 predRF6 predRF7 predRF8 predRF9
## 1             5       5       5       5       5       5       5       5       5
## 2             5       5       5       5       5       5       5       5       5
## 3             5       5       5       5       5       5       5       5       5
## 4             1       1       1       1       1       1       1       1       1
## 5             5       5       5       5       5       5       5       5       5
## 6             5       1       1       5       5       1       1       4       1
## 7             5       5       5       5       5       5       5       5       5
## 8             5       5       5       5       5       5       5       5       5
## 9             5       5       5       5       5       5       5       5       5
## 10            1       1       1       1       5       1       5       1       5
## 11            5       5       5       5       5       5       5       5       5
## 12            5       5       5       5       5       5       5       5       5
## 13            4       4       4       4       4       4       4       4       4
## 14            1       1       1       1       1       1       1       1       1
## 15            5       5       5       5       5       5       5       5       5
## 16            5       5       5       5       5       5       5       5       5
## 17            5       5       5       5       5       5       5       5       5
## 18            5       5       5       5       5       5       5       1       5
## 19            5       5       5       5       5       5       5       3       5
## 20            5       5       5       5       5       5       5       5       5
## 21            5       5       5       5       5       5       5       1       5
## 22            5       5       5       5       5       5       5       5       5
## 23            5       5       5       5       5       5       5       5       5
## 24            5       5       5       5       5       5       5       5       5
## 25            5       5       5       5       5       5       5       5       5
## 26            5       5       5       5       5       5       5       5       5
## 27            5       5       5       5       5       5       5       5       5
## 28            5       5       5       5       5       5       5       5       5
## 29            5       5       5       5       5       5       5       5       5
## 30            5       5       5       5       5       5       5       4       5
## 31            5       5       5       5       5       5       5       5       5
## 32            5       5       5       5       5       5       5       5       5
## 33            5       5       5       5       5       5       5       5       5
## 34            2       2       2       2       2       2       2       2       2
## 35            5       5       5       5       5       5       5       5       5
## 36            5       5       5       5       5       5       5       5       5
## 37            5       5       5       5       5       5       5       5       5
## 38            5       5       5       5       5       5       5       5       5
## 39            5       5       5       5       5       5       5       1       5
## 40            5       5       5       5       5       5       5       2       5
## 41            5       5       5       5       5       5       5       5       5
## 42            1       1       1       1       1       1       1       4       1
## 43            5       5       5       5       5       5       5       3       5
## 44            5       5       5       5       5       5       5       4       5
## 45            5       5       5       5       5       5       5       5       5
## 46            5       5       5       5       5       5       5       5       5
## 47            5       5       5       5       5       5       5       5       5
## 48            5       5       5       5       5       5       5       5       5
## 49            5       5       5       5       5       5       5       5       5
## 50            1       1       1       5       1       1       5       1       5
## 51            4       4       4       4       4       4       4       4       4
## 52            5       5       5       5       5       5       5       5       5
## 53            5       5       5       5       5       5       5       5       5
## 54            5       5       5       5       5       5       5       5       5
## 55            5       5       5       5       5       5       5       5       5
## 56            5       5       5       5       5       5       5       5       5
## 57            5       5       5       5       5       5       5       4       5
## 58            5       5       5       5       5       5       5       5       5
## 59            5       5       5       5       5       5       5       5       5
## 60            1       1       1       1       1       1       1       1       1
## 61            5       5       5       5       5       5       5       5       5
## 62            5       5       5       5       5       5       5       5       5
## 63            5       5       5       5       5       5       5       5       5
## 64            5       5       5       5       5       5       5       5       5
## 65            5       5       5       5       5       5       5       1       5
## 66            5       5       5       5       5       5       5       5       5
## 67            5       5       5       5       5       5       5       5       5
## 68            5       5       5       5       5       5       5       5       5
## 69            5       5       5       5       5       5       5       5       5
## 70            5       5       5       5       5       5       5       4       5
## 71            4       4       4       4       4       4       4       4       4
## 72            5       5       5       5       5       5       5       5       5
## 73            5       5       5       5       5       5       5       5       5
## 74            5       5       5       5       5       5       5       5       5
## 75            5       5       5       5       5       5       5       1       5
## 76            5       5       5       5       5       5       5       5       5
## 77            5       5       5       5       5       5       5       5       5
## 78            5       5       5       5       5       5       5       5       5
## 79            5       5       5       5       5       5       5       1       5
## 80            5       5       5       5       5       5       5       5       5
## 81            5       5       5       5       5       5       5       5       5
## 82            4       5       4       4       4       5       4       4       5
## 83            5       5       5       5       5       5       5       5       5
## 84            5       5       5       5       5       5       5       4       5
## 85            5       5       5       5       5       5       5       5       5
## 86            5       5       5       5       5       5       5       4       5
## 87            5       5       5       5       5       5       5       5       5
## 88            5       5       5       5       5       5       5       5       5
## 89            5       5       5       5       5       5       5       5       5
## 90            1       1       2       5       1       2       1       2       2
## 91            5       5       5       5       5       5       5       5       5
## 92            5       5       5       5       5       5       5       5       5
## 93            5       5       5       5       5       5       5       1       5
## 94            3       3       3       3       3       3       3       3       3
## 95            5       5       5       5       5       5       5       5       5
## 96            5       5       5       5       5       5       5       5       5
## 97            5       5       5       5       5       5       5       5       5
## 98            5       5       5       5       5       5       5       5       5
## 99            5       5       5       5       5       5       5       5       5
## 100           5       5       5       5       5       5       5       1       5
## 101           5       5       5       5       5       5       5       5       5
## 102           4       4       4       4       4       4       4       4       4
## 103           5       5       5       5       1       5       5       1       5
## 104           5       5       5       5       5       5       5       5       5
## 105           5       5       5       5       5       5       5       5       5
## 106           5       5       5       5       5       5       5       5       5
## 107           5       5       5       5       5       5       5       5       5
## 108           1       4       1       4       4       1       4       4       1
## 109           5       5       5       5       5       5       5       5       5
## 110           5       5       5       5       5       5       5       5       5
## 111           5       5       5       5       5       5       5       5       5
## 112           5       5       5       5       5       5       5       5       5
## 113           5       5       5       5       5       5       5       5       5
## 114           1       5       1       5       1       1       5       1       5
## 115           5       4       5       5       4       1       1       4       5
## 116           1       5       5       5       5       5       5       5       5
## 117           4       4       4       4       4       4       4       4       4
## 118           5       5       5       5       5       5       5       5       5
## 119           5       5       5       5       5       5       5       3       5
## 120           5       5       5       5       5       5       5       5       5
## 121           5       5       5       5       5       5       5       5       5
## 122           5       5       5       5       5       5       5       5       5
## 123           4       4       4       4       4       4       4       4       4
## 124           5       5       5       5       5       5       5       5       5
## 125           5       5       5       5       5       5       5       5       5
## 126           5       5       5       5       5       5       5       5       5
## 127           3       3       3       3       3       3       3       3       3
## 128           5       5       5       5       5       5       5       5       5
## 129           5       5       5       5       5       5       5       5       5
## 130           1       5       5       1       5       1       5       1       1
## 131           5       5       5       5       5       5       5       4       5
## 132           5       5       5       5       5       5       5       5       5
## 133           5       5       5       5       5       5       5       5       5
## 134           5       5       5       5       5       5       5       5       5
## 135           5       5       5       5       5       5       5       5       5
## 136           5       5       5       5       5       5       5       5       5
## 137           5       5       5       5       5       5       5       5       5
## 138           5       5       5       5       5       5       5       4       5
## 139           5       5       5       5       5       5       5       5       5
## 140           5       5       5       5       5       5       5       5       5
## 141           5       5       5       5       5       5       5       5       5
## 142           5       5       5       5       5       5       5       5       5
## 143           5       5       5       5       5       5       5       5       5
## 144           3       3       3       3       3       3       3       3       3
## 145           4       4       4       4       4       4       4       4       4
## 146           5       5       5       5       5       5       5       5       5
## 147           5       5       5       5       5       5       5       3       5
## 148           5       5       5       5       5       5       5       4       5
## 149           5       5       5       5       5       5       5       4       5
## 150           3       3       3       3       3       3       3       3       3
## 151           4       4       4       4       4       4       4       4       4
## 152           3       3       3       3       3       3       3       3       3
## 153           5       5       5       5       5       5       5       1       5
## 154           5       5       5       5       5       5       5       4       5
## 155           5       5       5       5       5       5       5       5       5
## 156           5       5       5       5       5       5       5       1       5
## 157           5       5       5       5       5       5       5       5       5
## 158           5       5       5       5       5       5       5       5       5
## 159           5       5       5       5       5       5       5       5       5
## 160           5       5       5       5       5       5       5       2       5
## 161           5       5       5       5       5       5       5       5       5
## 162           5       5       5       5       5       5       5       5       5
## 163           5       5       5       5       5       5       5       5       5
## 164           5       5       5       5       5       5       5       5       5
## 165           5       5       5       5       5       5       5       5       5
## 166           5       5       5       5       5       5       5       5       5
## 167           5       5       5       5       5       5       5       5       5
## 168           5       1       1       5       1       5       5       1       5
## 169           5       5       5       5       5       5       5       5       5
## 170           5       5       5       5       5       5       5       5       5
## 171           5       5       5       5       5       5       5       5       5
## 172           5       5       5       5       5       5       5       5       5
## 173           5       5       5       5       5       5       5       5       5
## 174           5       5       5       5       5       5       5       5       5
## 175           5       5       5       5       5       5       5       5       5
## 176           5       5       5       5       5       5       5       5       5
## 177           5       5       5       5       5       5       5       5       5
## 178           5       5       5       5       5       5       5       5       5
## 179           5       5       5       5       5       5       5       5       5
## 180           5       5       5       5       5       5       5       3       5
## 181           5       5       5       5       5       5       5       5       5
## 182           5       5       5       5       5       5       5       5       5
## 183           5       5       5       5       5       5       5       5       5
## results     0.6    0.59    0.58    0.59    0.59    0.59    0.59    0.57    0.58
##         predRF10 ManualMean predKNN predRPART true
## 1              5          1       5         5    5
## 2              4          2       1         5    5
## 3              5          5       5         5    1
## 4              1          2       1         5    1
## 5              5          5       5         5    5
## 6              4          1       1         5    4
## 7              5          5       5         5    5
## 8              5          1       5         5    5
## 9              5          5       5         5    5
## 10             1          4       1         5    4
## 11             5          5       5         5    5
## 12             5          5       5         5    5
## 13             4          5       4         5    4
## 14             1          1       5         5    1
## 15             5          1       5         5    5
## 16             5          1       5         5    4
## 17             5          5       5         5    5
## 18             1          1       5         5    4
## 19             3          1       5         5    5
## 20             5          1       5         5    5
## 21             1          1       1         5    5
## 22             5          1       1         5    1
## 23             5          1       5         5    1
## 24             5          1       1         5    5
## 25             5          2       5         5    3
## 26             5          5       5         5    5
## 27             5          5       5         5    5
## 28             5          1       5         5    1
## 29             5          5       5         5    5
## 30             4          2       5         5    1
## 31             5          2       1         5    5
## 32             5          5       5         5    5
## 33             5          1       4         5    4
## 34             2          1       1         5    2
## 35             5          1       5         5    2
## 36             5          3       5         5    5
## 37             5          1       5         5    4
## 38             5          1       5         5    5
## 39             1          1       1         5    1
## 40             2          1       5         5    5
## 41             5          1       5         5    2
## 42             1          1       2         5    4
## 43             3          3       4         5    5
## 44             4          2       1         5    5
## 45             5          1       5         5    1
## 46             5          5       5         5    4
## 47             5          5       5         5    5
## 48             5          1       5         5    5
## 49             5          5       5         5    5
## 50             1          1       1         5    1
## 51             4          1       1         5    4
## 52             5          1       1         5    1
## 53             5          5       5         5    5
## 54             5          2       5         5    5
## 55             2          3       5         5    4
## 56             5          1       1         5    5
## 57             4          1       5         5    2
## 58             5          1       5         5    5
## 59             5          1       5         5    5
## 60             3          1       5         5    1
## 61             5          3       5         5    4
## 62             5          1       5         5    4
## 63             5          5       5         5    4
## 64             5          1       5         5    4
## 65             1          1       5         5    4
## 66             5          4       5         5    4
## 67             5          5       5         5    4
## 68             5          1       5         5    5
## 69             5          3       5         5    5
## 70             4          2       5         5    5
## 71             4          2       1         5    3
## 72             5          5       5         5    5
## 73             5          5       5         5    5
## 74             5          1       1         5    5
## 75             1          5       5         5    5
## 76             5          2       5         5    1
## 77             5          1       5         5    5
## 78             5          5       5         5    5
## 79             1          1       1         5    4
## 80             5          1       5         5    2
## 81             5          5       5         5    5
## 82             4          5       1         5    2
## 83             5          1       5         5    3
## 84             4          1       5         5    2
## 85             5          1       5         5    3
## 86             5          5       5         5    4
## 87             5          1       5         5    5
## 88             5          1       1         5    4
## 89             5          1       1         5    1
## 90             2          1       1         5    1
## 91             5          1       5         5    5
## 92             5          1       5         5    4
## 93             1          1       5         5    2
## 94             3          1       1         5    2
## 95             4          5       5         5    5
## 96             5          5       5         5    5
## 97             5          4       5         5    5
## 98             5          5       5         5    5
## 99             4          5       5         5    3
## 100            1          2       5         5    4
## 101            5          1       5         5    5
## 102            4          1       4         5    5
## 103            1          2       5         5    4
## 104            5          1       5         5    5
## 105            5          5       5         5    5
## 106            5          5       5         5    5
## 107            5          1       5         5    5
## 108            4          1       1         5    4
## 109            5          3       5         5    5
## 110            5          1       5         5    5
## 111            5          5       5         5    5
## 112            2          5       1         5    5
## 113            5          2       5         5    3
## 114            1          5       1         5    4
## 115            1          1       1         5    2
## 116            3          1       1         5    1
## 117            4          2       4         5    4
## 118            5          1       5         5    3
## 119            3          3       5         5    4
## 120            5          2       1         5    5
## 121            5          5       5         5    5
## 122            5          5       5         5    5
## 123            4          1       5         5    2
## 124            5          5       5         5    5
## 125            5          1       5         5    5
## 126            5          1       5         5    5
## 127            3          1       4         5    4
## 128            5          5       5         5    5
## 129            5          1       5         5    3
## 130            1          1       5         5    1
## 131            4          2       5         5    1
## 132            5          1       5         5    3
## 133            5          1       5         5    5
## 134            5          5       5         5    5
## 135            5          1       5         5    5
## 136            5          1       5         5    5
## 137            5          3       5         5    5
## 138            4          5       5         5    3
## 139            5          2       1         5    2
## 140            5          1       5         5    3
## 141            5          1       1         5    4
## 142            5          1       5         5    5
## 143            5          5       5         5    5
## 144            3          1       4         5    4
## 145            4          1       5         5    1
## 146            5          1       5         5    1
## 147            3          3       5         5    1
## 148            4          5       5         5    1
## 149            4          2       5         5    1
## 150            3          1       4         5    1
## 151            4          1       5         5    3
## 152            3          1       4         5    3
## 153            1          1       5         5    1
## 154            4          2       5         5    3
## 155            5          5       5         5    5
## 156            1          5       1         5    5
## 157            5          1       5         5    5
## 158            5          1       5         5    5
## 159            5          1       5         5    5
## 160            2          2       1         5    5
## 161            5          1       5         5    5
## 162            5          1       5         5    5
## 163            5          1       5         5    5
## 164            5          5       5         5    5
## 165            5          1       5         5    5
## 166            5          5       5         5    5
## 167            5          5       5         5    5
## 168            1          1       1         5    5
## 169            5          2       5         5    5
## 170            5          1       5         5    5
## 171            5          1       5         5    5
## 172            5          5       5         5    5
## 173            5          5       5         5    5
## 174            5          5       5         5    5
## 175            5          1       5         5    5
## 176            5          1       5         5    4
## 177            5          1       5         5    5
## 178            5          1       5         5    5
## 179            5          1       5         5    5
## 180            3          2       5         5    1
## 181            5          1       5         5    5
## 182            5          1       5         5    5
## 183            5          1       5         5    5
## results     0.54       0.32    0.54      0.54  100

Our random forest variations of models scored better than the KNN and rpart or recursive partitioned trees in predicting the ratings.

Lets use random forest again, but from the randomForest package instead of the method inside the caret train function. We will also use the generalized boosted trees model and latent dirichlet allocation algorithm that is used for topic modeling and both are in the caret package.

# The Random Forest package
rfpkg <- randomForest(userRatingValue~., data=trainingSet4, method='class')
predRFpkg <- predict(rfpkg, testingSet4, type='class')
sumRFpkg <- sum(predRFpkg==testingSet4$userRatingValue)
lengthRFpkg <- length(testingSet4$userRatingValue)
accuracy_RFpkg <- sumRFpkg/lengthRFpkg 
# confusionMatrix(predRFpkg, testingSet3$userRatingValue)

# generalizedBoostedModel
gbmMod <- train(userRatingValue~., method='gbm', data=trainingSet4, verbose=FALSE )
predGbm <- predict(gbmMod, testingSet4)
sumGBM0 <- sum(predGbm==testingSet4$userRatingValue)
lengthGBM0 <- length(testingSet4$userRatingValue)
accuracy_gbmMod <- sumGBM0/lengthGBM0 


# linkage dirichlet allocation model
ldaMod <- train(userRatingValue~., method='lda', data=trainingSet4)
predlda <- predict(ldaMod, testingSet4)
sumLDA0 <- sum(predlda==testingSet4$userRatingValue)
lengthLDA0 <- length(testingSet4$userRatingValue)
accuracy_ldaMod <- sumLDA0/lengthLDA0 


CombinedGAM <- train(true~., method='gam', data=predDF11)
CombinedGAMPredictions <- predict(CombinedGAM, predDF11)

predDF12 <- data.frame(predDF11[1:13], predRFpkg, predGbm, predlda,
                       CombinedGAMPredictions,
                     true=testingSet4$userRatingValue)

sumCP <- sum(CombinedGAMPredictions==testingSet4$userRatingValue)
lengthCP <- length(testingSet4$userRatingValue)
accuracy_CP1 <- sumCP/lengthCP

results3 <- as.data.frame(c(accuracy_RFpkg, accuracy_gbmMod, 
                            accuracy_ldaMod, accuracy_CP1, round(100,2)))
colnames(results3) <- 'results'

results3$results <- round(results3$results,2)
results3$results <- as.factor(paste(results3$results))
results4 <- as.data.frame(t(results3))
colnames(results4) <- colnames(predDF12)[14:18]

results5 <- cbind(resultsAll[1:13],results4)
accuracyAllResults <- rbind(predDF12,results5)
write.csv(accuracyAllResults,'accuracyAllResults.csv',row.names=TRUE)
topbottom <- accuracyAllResults[c(1:10,175:184),]
topbottom
##         predRF1 predRF2 predRF3 predRF4 predRF5 predRF6 predRF7 predRF8 predRF9
## 1             5       5       5       5       5       5       5       5       5
## 2             5       5       5       5       5       5       5       5       5
## 3             5       5       5       5       5       5       5       5       5
## 4             1       1       1       1       1       1       1       1       1
## 5             5       5       5       5       5       5       5       5       5
## 6             5       1       1       5       5       1       1       4       1
## 7             5       5       5       5       5       5       5       5       5
## 8             5       5       5       5       5       5       5       5       5
## 9             5       5       5       5       5       5       5       5       5
## 10            1       1       1       1       5       1       5       1       5
## 175           5       5       5       5       5       5       5       5       5
## 176           5       5       5       5       5       5       5       5       5
## 177           5       5       5       5       5       5       5       5       5
## 178           5       5       5       5       5       5       5       5       5
## 179           5       5       5       5       5       5       5       5       5
## 180           5       5       5       5       5       5       5       3       5
## 181           5       5       5       5       5       5       5       5       5
## 182           5       5       5       5       5       5       5       5       5
## 183           5       5       5       5       5       5       5       5       5
## results     0.6    0.59    0.58    0.59    0.59    0.59    0.59    0.57    0.58
##         predRF10 ManualMean predKNN0 predRPART0 predRFpkg predGbm predlda
## 1              5          1        5          5         5       5       5
## 2              4          2        1          5         5       5       5
## 3              5          5        5          5         5       5       5
## 4              1          2        1          5         1       1       1
## 5              5          5        5          5         5       5       5
## 6              4          1        1          5         1       5       1
## 7              5          5        5          5         5       5       5
## 8              5          1        5          5         5       5       5
## 9              5          5        5          5         5       5       5
## 10             1          4        1          5         1       5       5
## 175            5          1        5          5         5       5       5
## 176            5          1        5          5         5       5       5
## 177            5          1        5          5         5       5       5
## 178            5          1        5          5         5       5       5
## 179            5          1        5          5         5       5       5
## 180            3          2        5          5         5       5       5
## 181            5          1        5          5         5       5       5
## 182            5          1        5          5         5       5       5
## 183            5          1        5          5         5       5       1
## results     0.54       0.32     0.54       0.54      0.58    0.52    0.48
##         CombinedGAMPredictions true
## 1                            2    5
## 2                            2    5
## 3                            2    1
## 4                            1    1
## 5                            2    5
## 6                            2    4
## 7                            2    5
## 8                            2    5
## 9                            2    5
## 10                           2    4
## 175                          2    5
## 176                          2    4
## 177                          2    5
## 178                          2    5
## 179                          2    5
## 180                          2    1
## 181                          2    5
## 182                          2    5
## 183                          2    5
## results                    0.1  100

Now we will use linear regreassion and other generalized linear models to REGRESS on our data, by first converting the targets to numeric.

trainingSet4$userRatingValue <- as.numeric(paste(trainingSet4$userRatingValue))
testingSet4$userRatingValue <- as.numeric(paste(testingSet4$userRatingValue))

glmMod0 <- train(userRatingValue ~ .,
                method='glm', data=trainingSet4)
predGLM0 <- predict(glmMod0, testingSet4) #a numeric vector data type


dfGLM0 <- data.frame(predGLM0, round=round(predGLM0),ceiling=ceiling(predGLM0),floor=floor(predGLM0),
                       type=testingSet4$userRatingValue)
dfGLM0$predGLM0 <- round(dfGLM0$predGLM0,0)
dfGLM0$predGLM0 <- ifelse(dfGLM0$predGLM0>5,5,dfGLM0$predGLM0)
dfGLM0$predGLM0 <- as.factor(paste(dfGLM0$predGLM0))
head(dfGLM0)
##   predGLM0 round ceiling floor type
## 1        5     5       5     4    5
## 2        4     4       4     3    5
## 3        5     5       5     4    1
## 4        3     3       4     3    1
## 5        4     4       5     4    5
## 6        3     3       3     2    4
sumGLM0 <- sum(dfGLM0$predGLM0==testingSet4$userRatingValue)
lengthGLM0 <- length(testingSet4$userRatingValue)
accuracy_GLMMod0 <- (sumGLM0/lengthGLM0)
accuracy_GLMMod0
## [1] 0.3060109
accCeiling <- sum(dfGLM0$ceiling==dfGLM0$type)
accFloor <- sum(dfGLM0$floor==dfGLM0$type)
accRound <- sum(dfGLM0$round==dfGLM0$type)

accCeiling
## [1] 63
accFloor
## [1] 32
accRound
## [1] 50

Our model using the absolute value scored better or as good as the generalized linear machines in regressing a predicition of a rating 1-5 based on our 24 keywords when using the round function. But the best model is taking the ceiling of the results of the GLM with 63% accuracy.

Lets turn the targets back into factors.

testingSet4$userRatingValue <- as.factor(paste(testingSet4$userRatingValue))
trainingSet4$userRatingValue <- as.factor(paste(trainingSet4$userRatingValue))



In the above we turned our targets back into factors for data ready for classifying. Some very interesting topics to continue with are to take our original cleaned data of user reviews and ratings and use the text mining and natural language processing libraries,nlp and tm, with the build in features to output an ngram document term matrix and then train a model that predicts the rating based on only the cleaned up review for all 614 reviews.

There is also another text mining R package I discovered when looking for the above documentation. The tidytext R package is found to have a lot of capabilities and that link above is an online tutorial/demo for tidytext and other supplemental packages for visual networks, plotting, word counts, n-grams, etc. Lets try out some of the books demo using this data set from our previously saved csv file, ReviewsCleanedWithStopsAndKeywordsAndRatios.csv.

# install.packages('nlp')
# install.packages('tidytext')

# library(nlp)
# library(tm)

library(tidytext)

Lets read in the csv file if you don’t have it stored as Reviews15_results.

Reviews15_results <- read.csv('ReviewsCleanedWithStopsAndKeywordsAndRatios.csv',
                              sep=',', header=TRUE, na.strings=c('',' ','NA'))
colnames(Reviews15_results)
##  [1] "id"                    "userReviewSeries"      "userReviewOnlyContent"
##  [4] "userRatingSeries"      "userRatingValue"       "businessReplied"      
##  [7] "businessReplyContent"  "userReviewContent"     "LowAvgHighCost"       
## [10] "businessType"          "cityState"             "friends"              
## [13] "reviews"               "photos"                "eliteStatus"          
## [16] "userName"              "Date"                  "userBusinessPhotos"   
## [19] "userCheckIns"          "weekday"               "area"                 
## [22] "big"                   "busy"                  "definitely"           
## [25] "feel"                  "lot"                   "many"                 
## [28] "open"                  "plus"                  "two"                  
## [31] "worth"                 "year"                  "the"                  
## [34] "and"                   "for."                  "have"                 
## [37] "that"                  "they"                  "this"                 
## [40] "you"                   "not"                   "but"                  
## [43] "good"                  "with"                  "area_ratios"          
## [46] "big_ratios"            "busy_ratios"           "definitely_ratios"    
## [49] "feel_ratios"           "lot_ratios"            "many_ratios"          
## [52] "open_ratios"           "plus_ratios"           "two_ratios"           
## [55] "worth_ratios"          "year_ratios"           "the_ratios"           
## [58] "and_ratios"            "for_ratios"            "have_ratios"          
## [61] "that_ratios"           "they_ratios"           "this_ratios"          
## [64] "you_ratios"            "not_ratios"            "but_ratios"           
## [67] "good_ratios"           "with_ratios"

Lets just use the userReviewOnlyContent and the userRatingValue columns.

Reviews_tidytext_demo <- Reviews15_results[,c(3,5)]
head(Reviews_tidytext_demo)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    userReviewOnlyContent
## 1  What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I'm so happy I found CHIROPRACTIC!\n\nBrenda was so sweet and attentive, from making my appointment to greeting me upon arrival.\n\nI saw Bertha for a prenatal massage, how I survived my first pregnancy without one, I'm clueless. Bertha listened to my needs and my bodies. She helped relieve tension in my neck and shoulders.\n\nI could have fell asleep, only complaint would be - why aren't massages longer than an hour lol\n\nI cannot wait to come back monthly through this pregnancy. I also am excited to try a prenatal adjustment
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Their staff is super nice. The doctor is also great and always gets the knots out of my back. I felt better right after my first appointment!
## 4                                                                                                                                                                                                                                                           It's too bad, I had such a great time here and some bathroom attendant ruined my whole experience!! Just the worst manners and let's just say customer service was not her specialty or even close.\nThis young girl had some nerve to correct a customer for accidentally missing the trash with some paper from a cinco de mayo mustache.. (jokes) she chases after me to tell me to throw it in the trash I explained half way down the hall I was sorry and had to\nLeAve, my friend was sick and need me to tend to her. She then chased me down again and started to harass me to tell her where my friend threw up. Really? Well, maybe she had a bad day.. but after explaining what happen to management and the front office,  Jose, the manager, didn't look too surprised.. I guess this is normal behavior for her.. needless to say I'm almost afraid to go back. I may not hold my tongue next time.. personal space was not In her vocabulary she tapped me on the shoulder, she's lucky i was in a great mood till then..\n
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Fabulous place to get adjusted. The office is calm and clean. The staff is friendly. Dr. Ramada is fantastic! He really understood the cause of my pain and was able to adjust me quickly. I love the availability and evening appointments. Highly recommend!
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      I was looking for a Chiropractor in my area and I stumbled upon CHIROPRACTIC. It is a really awesome place. The staff and facilities are very nice. And they are very reasonably priced, much better price then my last Chiropractor. Conveniently located off of the 15 freeway two exits south of the 91. What is really cool is they also offer massages also. If you are looking for a Chiropractor in Corona/Riverside area look no further.
##   userRatingValue
## 1               5
## 2               5
## 3               5
## 4               1
## 5               5
## 6               5

We are to make our data table into a dplyr tibble.

library(dplyr)

text_df <- tibble(line=1:614, text=Reviews_tidytext_demo$userReviewOnlyContent,
                  rating=Reviews_tidytext_demo$userRatingValue)
head(text_df)
## # A tibble: 6 x 3
##    line text                                                              rating
##   <int> <fct>                                                              <int>
## 1     1 " What a wonderful way to start the year! This was my second tim…      5
## 2     2 "I'm so happy I found CHIROPRACTIC!\n\nBrenda was so sweet and a…      5
## 3     3 " Their staff is super nice. The doctor is also great and always…      5
## 4     4 "It's too bad, I had such a great time here and some bathroom at…      1
## 5     5 " Fabulous place to get adjusted. The office is calm and clean. …      5
## 6     6 " I was looking for a Chiropractor in my area and I stumbled upo…      5

Now for the word counts by line or in our case by review which is line.This uses the tidytext package to unnest the words as tokens from each review. We will use the ngrams method of tokenizing to get the sequential groups of threes for words used in combination. This will be very useful to us in predicting our ratings accurately. As we have seen that using a word like ‘like’ or ‘good’ has very similar word counts in ratings of 1 and ratings of 5 but not so much in the 2-4 range. This is because some of those likes are in ngrams of 2-3 with word pairings such as ‘don’t like’, ‘not as good’, etc.

text_df$text <- as.character(paste(text_df$text))
text_df2 <- text_df %>% unnest_tokens(trigram,text, token='ngrams',n=3)
head(text_df2,30)
## # A tibble: 30 x 3
##     line rating trigram         
##    <int>  <int> <chr>           
##  1     1      5 what a wonderful
##  2     1      5 a wonderful way 
##  3     1      5 wonderful way to
##  4     1      5 way to start    
##  5     1      5 to start the    
##  6     1      5 start the year  
##  7     1      5 the year this   
##  8     1      5 year this was   
##  9     1      5 this was my     
## 10     1      5 was my second   
## # … with 20 more rows

We see from the above it basically goes along every string word and counts each white space to separate a character from a non-character and get each word, but it also does it for any three combinations, so that almost every word is part of the beginning of one trigram (as we set n to 3 for the number of ngrams, thus trigram), the middle of one trigram, or the end of a trigram. Look at ‘wonderful’ above and see what I am referring to.

text_df3 <- text_df2 %>% count(trigram, sort=TRUE)
head(text_df3,30)
## # A tibble: 30 x 2
##    trigram                n
##    <chr>              <int>
##  1 high end spa         151
##  2 low cost grocery      71
##  3 cost grocery store    66
##  4 i have been           46
##  5 this place is         39
##  6 the staff is          33
##  7 to high end           32
##  8 at high end           31
##  9 a lot of              25
## 10 i highly recommend    25
## # … with 20 more rows

In the above the first few words are the lowercase version of the filled in words that replaced the identity of each business explicitly. The massage retreat by name was replaced with a find and replace of each occurence of the name with ‘HIGH END SPA’ and the cheaply priced grocer was replaced by name as ‘LOW COST GROCERY STORE’, and both chiropractic businesses were replaced with ‘CHIROPRACTIC’ or ‘DOCTOR’ before cleaning up with regex. This could be useful to show that many users name the business to personalize it and assign it some type of adoration or rejection depending on the rating.Also, many reviewers give themselves street cred as a veteran of establishments by stating how involved they are by showing the amount of time they have spent with the business because they adore it so much and either continue to or are now ending ties with it because of some incident.

We are going to remove the stop words and separate by each of three word sequences of the trigram and get a count of each. But we need the tidyr package if you don’t have it.

#library(tidyr)
trigram_separate <- text_df3 %>% separate(trigram, c('word1','word2','word3'), sep=' ')

trigram_noStops <- trigram_separate %>% filter(!word1 %in% stop_words$word)%>%
  filter(!word2 %in% stop_words$word) %>% filter(!word3 %in% stop_words$word)

trigram_noStops_counts <- trigram_noStops %>% count(word1,word2,word3, sort=TRUE)
trigram_noStops_counts
## # A tibble: 1,682 x 4
##    word1 word2    word3       n
##    <chr> <chr>    <chr>   <int>
##  1 0     customer service     1
##  2 1     2        day         1
##  3 1     2        gallon      1
##  4 1     free     parking     1
##  5 1     yelp     review      1
##  6 10    pounds   lighter     1
##  7 100   friends  295         1
##  8 11    02       19          1
##  9 12    15       19          1
## 10 12    appts    wth         1
## # … with 1,672 more rows

All of the above, when stripped of the stop words and when using a trigram have a single occurrence, which doesn’t add any useful information. Lets try with a bigram instead (2 word tokens stripped of stop words)

bigram_df <- text_df %>% unnest_tokens(bigram, text, token='ngrams',n=2) 

bigram_separate <- bigram_df %>%
  separate(bigram, c('word1','word2'), sep=' ') 

bigram_noStops <- bigram_separate %>%
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word) 

bigram_counts <- bigram_noStops %>% count(word1,word2,sort=TRUE)
bigram_counts
## # A tibble: 4,845 x 3
##    word1    word2         n
##    <chr>    <chr>     <int>
##  1 grocery  store        85
##  2 cost     grocery      71
##  3 low      cost         71
##  4 customer service      53
##  5 highly   recommend    50
##  6 club     mud          39
##  7 front    desk         27
##  8 mineral  baths        18
##  9 mud      bath         18
## 10 hot      springs      16
## # … with 4,835 more rows

Now, we see some useful information, like ‘customer service’, ‘spa day’, ‘24 hours’, and so on. The counts for each occurrence are more than 10 instead of all 1s in trigram counts with stop words removed.

Lets get those likes and good words following any not or don’t.

bigrams_negLikes <- bigram_separate %>% filter(word1=='dont' | word1=='not') %>%
  count(word1,word2,sort=TRUE)
bigrams_negLikes
## # A tibble: 177 x 3
##    word1 word2     n
##    <chr> <chr> <int>
##  1 not   a        22
##  2 not   the      14
##  3 not   be       13
##  4 not   sure     13
##  5 not   only     11
##  6 not   to       11
##  7 not   even      8
##  8 not   going     8
##  9 not   have      8
## 10 not   too       8
## # … with 167 more rows

We can see from the above the bigram or two word combination ‘not recommend’ occurred 4 times, and ‘not informed’ occured 5 times. Other instances of not showed less frequently, like ‘not good’ appeared 3 times, and ‘not worth’ 4 times. This looks like a useful analysis tool to keep around.

Ok, and now lets see about the word experience as the 2nd word. Because we all want someone to leave with a great experience to build business or have someone with experience to learn from or not have to worry about the probability of not enjoying a service from a newby who needs or probably needs more training. Because an experienced person will make anybody feel like royalty, and feel like they got their money’s worth.

bigrams_exper2 <- bigram_separate %>% filter(word2=='experience') %>% 
  count(word1,word2, sort=TRUE)
bigrams_exper2
## # A tibble: 76 x 3
##    word1   word2          n
##    <chr>   <chr>      <int>
##  1 the     experience    20
##  2 grotto  experience    11
##  3 my      experience    11
##  4 whole   experience    10
##  5 great   experience     9
##  6 spa     experience     7
##  7 this    experience     7
##  8 amazing experience     6
##  9 better  experience     6
## 10 an      experience     5
## # … with 66 more rows

From the above we can see there are many indications experience is used, like ‘great experience’ is used 9 times in all 614 reviews, and ‘bad experience’ is used 5 times. There are other times that could mean in general this word is used mostly for good reviews or mixed ones. Like the words, relaxing, new, fun, first, wonderful, etc., but that worst experience did also show up 4 times, and horrible 2 times.

Next, there is a way to count up the negative and positive sentiment tokens or words from a package in the textdata library. Install it if you don’t have it and check out how the words are scored from a range of -5 to 5, with the lowest meaning negative and the highest meaning positive sentiments.

#install.packages('textdata')
library(textdata)
AFINN <- get_sentiments('afinn')#select 1 then enter to download
head(AFINN,20)
## # A tibble: 20 x 2
##    word       value
##    <chr>      <dbl>
##  1 abandon       -2
##  2 abandoned     -2
##  3 abandons      -2
##  4 abducted      -2
##  5 abduction     -2
##  6 abductions    -2
##  7 abhor         -3
##  8 abhorred      -3
##  9 abhorrent     -3
## 10 abhors        -3
## 11 abilities      2
## 12 ability        2
## 13 aboard         1
## 14 absentee      -1
## 15 absentees     -1
## 16 absolve        2
## 17 absolved       2
## 18 absolves       2
## 19 absolving      2
## 20 absorbed       1
range(AFINN$value)
## [1] -5  5

Now lets see what the scores would be for the word 2 experience from our bigrams by joining them to this data AFINN of word scores.

exper_words <- bigrams_exper2 %>%
  inner_join(AFINN, by = c(word1 = "word")) %>%
  count(word1, n,value, sort = TRUE)

exper_words
## # A tibble: 24 x 4
##    word1           n value    nn
##    <chr>       <int> <dbl> <int>
##  1 amazing         6     4     1
##  2 awesome         1     4     1
##  3 bad             5    -3     1
##  4 best            2     3     1
##  5 better          6     2     1
##  6 chaotic         1    -2     1
##  7 comfortable     1     2     1
##  8 cool            1     1     1
##  9 fantastic       1     4     1
## 10 fun             3     4     1
## # … with 14 more rows

The above shows the bigram words that preceded ‘experience’ and the value assigned each word. The double n, ‘nn’, column is the count from the word counts in AFINN, and the n column is the column of count occurrences in the bigrams of words preceding ‘experience’ in all 614 reveiews.

Lets now map this to see what is going on in the sentiments overall with top 20 words used.

library(ggplot2)

exper_words %>%
  mutate(contribution = n * value) %>%
  arrange(desc(abs(contribution))) %>%
  head(20) %>%
  mutate(word1 = reorder(word1, contribution)) %>%
  ggplot(aes(word1, n * value, fill = n * value > 0)) +
  geom_col(show.legend = FALSE) +
  xlab("Words preceeding \"experience\"") +
  ylab("Sentiment value * number of occurrences") +
  coord_flip()

Note the use of more positive words with experience than negative words and also weighted by occurrence or total counts in all reviews.

The next was also taken from the same helpful tutorial on tidytext, as actually every chunk so far has been a modified walk through of the tutorial. I have encountered some tutorials that are not useable to follow through to completion due to some package variation or other operating system, and so on, but this tutorial is actually a great workout to get you started on to doing this yourself and with your plans. If they had data science tutorial awards like they do the ESPYs or Oscars and so on, this would definitely get my vote. This following chunk reminds me of the functionality of SQL with the in statement and supplying a list. I have found many instances in the past I wanted to do this but had to merge instead by words I wanted as a data frame.

negation_words <- c("not", "no", "never", "dont")

negated_words <- bigram_separate %>%
  filter(word1 %in% negation_words) %>%
  inner_join(AFINN, by = c(word2 = "word")) %>%
  count(word1, word2, value, sort = TRUE)
negated_words
## # A tibble: 48 x 4
##    word1 word2      value     n
##    <chr> <chr>      <dbl> <int>
##  1 no    pain          -2     4
##  2 not   noisy         -1     4
##  3 not   recommend      2     4
##  4 not   worth          2     4
##  5 no    remorse       -2     3
##  6 not   good           3     3
##  7 not   want           1     3
##  8 not   worry         -3     3
##  9 never died          -3     2
## 10 never disappoint    -2     2
## # … with 38 more rows
negWords <- negated_words %>% 
  mutate(contribution=n*value) %>%
  arrange(desc(abs(contribution))) %>%
  mutate(word1 = reorder(word1,contribution)) %>%
  group_by(word1) %>% 
  head(20) %>%
  ungroup() %>%
  ggplot(aes(word2, n*value, fill=n*value>0))+
  geom_col(show.legend=FALSE) + 
  xlab("Words preceded by \"not,no,never,dont\"")+
  ylab('Sentiment value*number of occurrences')+
  facet_wrap(~word1)+
  coord_flip()
negWords

We can see by comparison that ‘never’ was used as a double negative with other negative words to make the overall sentiment positive, but not in value added points, and ‘dont’ was used with ‘miss’ which implies a bad sentiment, like ‘I don’t miss this place’ or similar. For ‘no’ it is in mixed sentiment types, like ‘no joke’ or ‘no matter’ which could be the reviewer taling about either a bad or serious matter. But ‘no’ is also used with no, which doesn’t make sense, but also with ‘no remorese’ and ‘no pain’, which the latter is a compliment if reviewing a chiropractor, but only if they came in with pain and left without pain, not the reverse. The word ‘not’ has many more positive valued words with it, like ‘not worth,’ ‘not want,’not recommend,’ ‘not impressed,’not good,’ and so on. Which sounds like there are quite a bit of negative sentiments about some businesses in our reviews. But there are a couple good sentiments like ‘not noisy’ and ‘not worry.’ It is no wonder that looking at the bigrams with the word ‘not’ that many positive words are giving the sentiment as a 5 when really they should be 1s when used in combination with ‘not.’ This is something that would be part of the algorithm to produce a better predictor, where whenever the number of nots are counted in a review, there should be a low weight for those bigrams that use a high value positive word with not, to mean less satisfied with business and reflected in the rating.

library(igraph)

# original counts
bigram_counts
## # A tibble: 4,845 x 3
##    word1    word2         n
##    <chr>    <chr>     <int>
##  1 grocery  store        85
##  2 cost     grocery      71
##  3 low      cost         71
##  4 customer service      53
##  5 highly   recommend    50
##  6 club     mud          39
##  7 front    desk         27
##  8 mineral  baths        18
##  9 mud      bath         18
## 10 hot      springs      16
## # … with 4,835 more rows
bigram_graph <- bigram_counts %>%
  filter(n > 5) %>%
  graph_from_data_frame()

bigram_graph
## IGRAPH afcba70 DN-- 98 71 -- 
## + attr: name (v/c), n (e/n)
## + edges from afcba70 (vertex names):
##  [1] grocery  ->store        cost     ->grocery      low      ->cost        
##  [4] customer ->service      highly   ->recommend    club     ->mud         
##  [7] front    ->desk         mineral  ->baths        mud      ->bath        
## [10] hot      ->springs      24       ->hours        5        ->stars       
## [13] entrance ->fee          office   ->staff        spa      ->day         
## [16] friendly ->staff        cold     ->pools        grotto   ->experience  
## [19] lounge   ->chair        favorite ->time         love     ->coming      
## [22] pool     ->float        recommend->chiropractic relaxing ->day         
## + ... omitted several edges
#install.packages('ggraph')
library(ggraph)
set.seed(2017)

ggraph(bigram_graph, layout = "fr") +
  geom_edge_link() +
  geom_node_point() +
  geom_node_text(aes(label = name), vjust = 1, hjust = 1)

The above shows the bigrams of words in combination with each other occurring more than 5 times out of 614 reviews. It is a link plont with nodes as the word1 or word2 linked by whether they interact or not. We can see there is a small network of words that relate to other bigrams as ‘deep tissue’ with ‘massage’ and with ‘massage therapists’ and ‘massage therapist.’ Also, there are a lot of bigrams to the left of the network that links ‘spa services’ with ‘chiropractic services’ and ‘chiropractic office’ with ‘office staff’ and ‘super friendly’ with ‘friendly staff.’ Some bigrams have no other connections to other bigrams, like ‘main reason’ and ‘car accident’ or ‘5 stars’ and ‘customer service’ to name a few.

This next link plot is a modified version of the above to make it more aesthetically pleasing and interpretable.

set.seed(2016)

a <- grid::arrow(type = "closed", length = unit(.15, "inches"))

ggraph(bigram_graph, layout = "fr") +
  geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,
                 arrow = a, end_cap = circle(.07, 'inches')) +
  geom_node_point(color = "lightblue", size = 5) +
  geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
  theme_void()

Looking at the above, we see the edges now have arrows pointing to the word2 in the bigram from word1, which is helpful. But the edges were made too light and were better darker.

set.seed(2016)

a <- grid::arrow(type = "closed", length = unit(.08, "inches"))

ggraph(bigram_graph, layout = "fr") +
  geom_edge_link(aes(edge_alpha = 1), show.legend = FALSE,
                 arrow = a, end_cap = circle(.03, 'inches')) +
  geom_node_point(color = "purple", size = 3) +
  geom_node_text(aes(label = name), vjust = -.75, hjust = .75) +
  theme_void()

In the above link plot between words in each bigram, it is more clear that the pairs of words used in combination greater than five times in our reviews are ‘low price’ or ‘low cost’ and other pairs like ‘highly recommend’ and ‘recommend doctor’ to name a few. Thanks to the added arrows for clarity.There is a cluster with ‘time’ in the center and the words ‘wrong,’ ‘favorite,’ and ‘entire’ pointing towards it.


That was a great way to analyze data with the tidytext library for natural language processing. Our next datatable to predict the ratings will definitely be using ngrams in two pairs with negatives and positives, to determine the rating. This package has a convenient and fast way of pulling those word pairs out of every observated review for us.

Lets now put this to the test and use some of those bigrams extracted from the reviews as features. We’ll have to join these to the text_df data of just the line number 1-614 for each unique review, the review, and the rating. If the bigram is there for the negatives, or double negatives, there will be a feature for doing simple multiplication for the score using the AFINN scored value of the word and the negative word, called bigramScore. We aren’t going to keep our other data set for this run but will use it later to re-run our bigram scored features. Where our features are the top bigrams appearing in the reviews.

So, lets get started. We just made the text_df dataframe. And we should make sure all of our libraries are loaded. We will use dplyr, tidytext, ggplot2, and later the classification machine learning models we used above in the caret package, such as the knn, random forest, rpart, and glm. Right now, our best classification prediction is taking the ceiling of the glm model with all 24 keywords as the only features or predictors and the rating as the target class of 1-5. It scored 63%, the other models scored 54-61% accuracy on the same data.

#a list of negative words
negation_words <- c("not", "no", "never", "dont")

bigram_df_neg_exp <- text_df %>% unnest_tokens(bigram, text, token='ngrams',n=2) %>%
  separate(bigram, c('word1','word2'), sep=' ') %>% filter(word2=='experience' | word1 %in% negation_words)

#the values of words by AFINN range: -5,+5
AFINN <- get_sentiments('afinn')
#there is a problem in AFINN not including the word 'experience', so it is ignored and
#so are any bigrams related to it, only the negation words are included when merging by word2
exp1 <- bigram_df_neg_exp %>% filter(word2=='experience')
exp2 <- merge(AFINN, exp1, by.x='word', by.y='word1')
colnames(exp2)[c(1:2,5)] <- c('word2a','word2a_Value','word2b')

# we will assign a value of 1 to experience since there is no AFINN value
exp2$word2b_Value <- 1
head(exp2)
##    word2a word2a_Value line rating     word2b word2b_Value
## 1 amazing            4  358      4 experience            1
## 2 amazing            4  292      4 experience            1
## 3 amazing            4  303      4 experience            1
## 4 amazing            4  267      5 experience            1
## 5 amazing            4  568      5 experience            1
## 6 amazing            4  322      5 experience            1
colnames(exp2)
## [1] "word2a"       "word2a_Value" "line"         "rating"       "word2b"      
## [6] "word2b_Value"

Lets rearrange exp2.

exp3 <- exp2[,c(3,4,1,2,5,6)]
head(exp3)
##   line rating  word2a word2a_Value     word2b word2b_Value
## 1  358      4 amazing            4 experience            1
## 2  292      4 amazing            4 experience            1
## 3  303      4 amazing            4 experience            1
## 4  267      5 amazing            4 experience            1
## 5  568      5 amazing            4 experience            1
## 6  322      5 amazing            4 experience            1
# for some reason the other negation words in AFINN aren't merging anything other than 'no'
neg2 <-  merge(AFINN, bigram_df_neg_exp, by.x='word', by.y='word2') 
colnames(neg2)[c(1:2,5)] <- c('word1b','wordb_Value','word1a')

#we will assing all negation words a -1 since some aren't in AFINN
neg2$word1a_Value <- -1
head(neg2)
##      word1b wordb_Value line rating word1a word1a_Value
## 1 advantage           2  222      3     no           -1
## 2  allergic          -2  270      1    not           -1
## 3     clean           2  408      2    not           -1
## 4      cool           1  186      1    not           -1
## 5     crazy          -2   95      4    not           -1
## 6       cut          -1  364      4    not           -1
colnames(neg2)
## [1] "word1b"       "wordb_Value"  "line"         "rating"       "word1a"      
## [6] "word1a_Value"

Lets rearrange the neg2 columns.

neg3 <- neg2[,c(3,4,1,2,5,6)]
head(neg3)
##   line rating    word1b wordb_Value word1a word1a_Value
## 1  222      3 advantage           2     no           -1
## 2  270      1  allergic          -2    not           -1
## 3  408      2     clean           2    not           -1
## 4  186      1      cool           1    not           -1
## 5   95      4     crazy          -2    not           -1
## 6  364      4       cut          -1    not           -1

Lets add in the columns that score each bigram.

neg3$scoreAFINN_neg <- neg3$wordb_Value*neg3$word1a_Value
neg3$scoreAFINN_neg
##  [1] -2  2 -2 -1  2  1 -1  3  3  2  2  2  2  1 -2 -2  1 -1 -3 -3 -3 -3 -3 -3 -3
## [26] -2 -2 -2 -3 -2 -2 -2  1 -2 -2  1 -1 -1  2  1  1  1  1  1  1  2  2  2  2  1
## [51] -1  2  2 -2 -2 -2 -2  2  2  2  2  2 -2  2 -2 -1 -1 -1 -1  1  3  3  3 -2 -2
## [76] -2 -2
exp3$scoreAFINN_exp <- exp3$word2a_Value*exp3$word2b_Value
exp3$scoreAFINN_exp
##  [1]  4  4  4  4  4  4  4 -3 -3 -3 -3 -3  3  3  2  2  2  2  2  2 -2  2  1  4  4
## [26]  4  4  2  3  3  3  3  3  3  3  3  3 -3 -3  2  3 -3  2  2 -2 -3  2 -2  4  4
## [51]  4  4 -3 -3 -3 -3
exp3$bigram <- paste(exp3$word2a,exp3$word2b)
neg3$bigram <- paste(neg3$word1a,neg3$word1b)

colnames(exp3);colnames(neg3)
## [1] "line"           "rating"         "word2a"         "word2a_Value"  
## [5] "word2b"         "word2b_Value"   "scoreAFINN_exp" "bigram"
## [1] "line"           "rating"         "word1b"         "wordb_Value"   
## [5] "word1a"         "word1a_Value"   "scoreAFINN_neg" "bigram"
neg4 <- neg3[,c(1,7,8)]
exp4 <- exp3[,c(1,7,8)]

both <- full_join(neg4,exp4)
both$score <- ifelse(!is.na(both$scoreAFINN_neg),both$scoreAFINN_neg,
                     both$scoreAFINN_exp)
colnames(both)
## [1] "line"           "scoreAFINN_neg" "bigram"         "scoreAFINN_exp"
## [5] "score"
bothScores <- both[,c(1,3,5)]
head(bothScores,30)
##    line             bigram score
## 1   222       no advantage    -2
## 2   270       not allergic     2
## 3   408          not clean    -2
## 4   186           not cool    -1
## 5    95          not crazy     2
## 6   364            not cut     1
## 7   327          no desire    -1
## 8   152         never died     3
## 9   458         never died     3
## 10  289     not disappoint     2
## 11  332   never disappoint     2
## 12  610   never disappoint     2
## 13  208 never disappointed     2
## 14  262           no doubt     1
## 15  395          not enjoy    -2
## 16   35          not enjoy    -2
## 17  315      not forgotten     1
## 18  202          not fresh    -1
## 19  130           not good    -3
## 20  326           not good    -3
## 21  280           not good    -3
## 22  378          not great    -3
## 23  378          not great    -3
## 24  391          not happy    -3
## 25  321          not happy    -3
## 26   18           not help    -2
## 27  125        not helpful    -2
## 28  146        not helping    -2
## 29  241      not impressed    -3
## 30  301            no joke    -2
bothTotal <- bothScores %>% group_by(line,score) %>% count(score)
head(bothTotal)
## # A tibble: 6 x 3
## # Groups:   line, score [6]
##    line score     n
##   <int> <dbl> <int>
## 1    18    -2     1
## 2    34     3     1
## 3    35    -2     1
## 4    35     2     1
## 5    56    -2     1
## 6    58    -2     1
bothTotal$totalScore <- bothTotal$score*bothTotal$n
head(bothTotal)
## # A tibble: 6 x 4
## # Groups:   line, score [6]
##    line score     n totalScore
##   <int> <dbl> <int>      <dbl>
## 1    18    -2     1         -2
## 2    34     3     1          3
## 3    35    -2     1         -2
## 4    35     2     1          2
## 5    56    -2     1         -2
## 6    58    -2     1         -2
bt <- bothTotal %>% group_by(line) %>% summarise_at(vars(totalScore),mean)
colnames(bt)[2] <- 'avgScore'
head(bt)
## # A tibble: 6 x 2
##    line avgScore
##   <int>    <dbl>
## 1    18       -2
## 2    34        3
## 3    35        0
## 4    56       -2
## 5    58       -2
## 6    62       -2
bothScores2 <- merge(bothScores,bt, by.x='line', by.y='line')
head(bothScores2,20)
##    line                 bigram score avgScore
## 1    18               not help    -2     -2.0
## 2    34       great experience     3      3.0
## 3    35              not enjoy    -2      0.0
## 4    35 comfortable experience     2      0.0
## 5    56       scary experience    -2     -2.0
## 6    58     chaotic experience    -2     -2.0
## 7    62                no joke    -2     -2.0
## 8    65              not noisy     1      1.0
## 9    70    terrible experience    -3     -3.0
## 10   95              not crazy     2      2.0
## 11  112               not want    -1      0.5
## 12  112    positive experience     2      0.5
## 13  120               no shame     2      2.0
## 14  125            not helpful    -2     -2.0
## 15  130               not good    -3     -3.0
## 16  139              not trust    -1     -1.0
## 17  140                  no no     1      1.0
## 18  146            not helping    -2     -3.5
## 19  146          not recommend    -2     -3.5
## 20  146    horrible experience    -3     -3.5
text_df2 <- merge(text_df,bt, by.x='line', by.y='line')
head(text_df2[order(text_df2$avgScore, decreasing=TRUE),],30)
##     line
## 39   267
## 43   285
## 45   289
## 46   292
## 49   303
## 51   305
## 52   307
## 54   310
## 56   316
## 58   322
## 65   343
## 69   360
## 71   368
## 89   446
## 106  568
## 32   232
## 2     34
## 17   152
## 18   153
## 23   204
## 29   224
## 47   298
## 62   331
## 64   333
## 73   372
## 81   406
## 92   458
## 103  555
## 104  565
## 68   358
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               text
## 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Such an amazing place! Went here for the first time yesterday with a group of my girlfriends and we had a great time and overall amazing experience. We decided to go during the week since it would be cheaper. My friend called in our reservation for the grotto. And we paid for our entrance at check in. It wasn't too packed. Free parking. Beautiful scenery as you walk up into the area. Friendly staff and great drinks!!\n\nThe grotto experience was well worth it. We went into the mud first then the grotto. Great way to relax during the week.\n\nHighly recommend.
## 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Sooooo relaxing. Enough said,  the staff, the facilities were awesome. Decided to celebrate my bday by celebrating at HIGH END SPA.  After a bit of research decided to use some gift cards to reserve some services.  If you have a party of more than 5, I highly recommend booking lounge chairs for you and your party.  30 bucks each but their yours all day.  We got our loungers above the  cafe. This includes service to your party.  I also recommend booking the grotto for a wonderful experience that leaves your skin soft and supple and only 25 bucks per person.\nIf you don't want to rent loungers, I recommend you get there early.  The early bird gets the good seating area.\n\nShout out to Xema (I think that's her name) for helping us out with our drinks and food and a suprise cupcake with candle.  She was so sweet and after several fail attempts to get waiters/waitress she kept coming back to see if we were good.\n\nWe tried out the yoga class. Totally worth it.  Feel asleep for Pros:\n- Mineral baths\n- Spring water mud pool\n- Massage services\n- Pools\n- Food\n- Drinks are reasonably priced\n- Water stations everywhere\n- Towel service stations\n- Friendly staff\n- Clean facilities\n- Shampoo and conditioner in shower are awesome\n- Plenty of parking\n- Must try yoga class,  we feel asleep\n- Starbucks but you can't use your app\n- lockers to keep your stuff in\n\nCons:\n- We had to hunt down our staff to get food and drinks\n- I cut my finger on a bathroom stall\n- People hog the mineral baths\n- Gift shop is overpriced\n
## 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          My friend and I came here for her birthday. We didnt get massages but we utilized all the different pools and saunas. If you can get past the rotten egg smell, the mineral spa was very relaxing(apparently it smells that way because of the minerals!) The mud bake was my favorite however I put too much on my face and I had an allergic reaction. It took about a week to clear up and all was good again! I dont think it has anything to do with the quality of the mud, or the facility. I think my skin just wasnt feelin it.\nWe got the loaded Bloody Mary's as a treat and they did not disappoint! Between the shrimp, bacon, and olives they garnished it with it was like a meal in itself! Good thing I didnt have breakfast...I wouldn't have been able to finish my drink! Haha\nWe shared a chicken ceaser salad for lunch and the size was perfect for each of us to have a good portion without left feeling hungry or wanting more. It was perfectly dressed and tasted great.\nThe grounds are beautiful and very relaxing. Everything was clean and I had no problems as far as any of that went.\nAll of the staff we encountered from the time we checked in to the time that we left was very accommodating and friendly with the exception of one. The bartender who made our epic Mary's. She was a little snooty and seemed like we were wasting her time.\nAll in all we had a great time and even though it was quite chilly when we went it actually made it nice because it wasn't crowded at all.
## 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             This was an amazing experience. I go to a few spas a year and this was up to par.\nWe rented a cabana and the experience was wonderful.\nMy suggestions for the facility is there were no side tables next to the lounge chairs. So we didn't have a spot to put our food and drinks.\nThe staff didn't check on us periodically to see if we wanted more refreshments or more food so that was a little bit of a bummer. It might be helpful to have some sort of speaker so that it might make ordering easier.\nI went with a group of I wasn't too impressed with the checkout process because we went to double check with the front desk if there was anything else we needed to do and it took about 20 minutes for us to finally check out. Not necessarily how i wanted to end the day but everything else was phenomenal.
## 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     So weekends might be a little crazy but overall this is a pretty amazing experience with very cool pools, yummy and healthy lunch options and free parking.
## 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Spent the whole day on a Monday here. It was raining lightly. I was so worried it was going to spoil our day and it didn't. We managed to do everything we wanted to do. It was I'm guessing less crowded than it normally was. The only thing is maybe it was a little cold when you got out of the pool onto something else.\nWe got there around 9.45 am. Short line- it went very quickly. Check in was a breeze. Got the total wellness package.\nWe went to the wine bar and got our wrist bracelets first. Once you get that there's no need for them to check ID every time you order a drink. Got a mimosa and then went to put our stuff away in the lockers which was right next door.\nNext stop mineral pools. We managed to snag an individual one that just fits two but why so few? It must be an awful wait for it during the weekends. The mineral water was lovely.\nI then had a nourishing facial at the salon. Hailey was wonderful!! My face felt amazing after we were done.  my boyfriend lounged in the bean bag type floats at the lounge pool. Next up was his massage. He got the aroma soul and really loved it too. I waited in the saline pool while he was done.\nWe then had lunch. While a little pricy, the food was good. Had a chopped salad with some tortilla soup and a glass of Chardonnay from the wiens winery. The line took forever initially because there was only one cashier. They really shouldn't do that during the lunch hour. We sat inside because it was cold. We then went to the hot and cold pools and the vista pool. We made our way to the lap pool for the aqua tone class. Never done a class with weights under water. What fun!! it's just half hour.\nWe then made it to club mud. There's 4 steps to it.  it!! We went straight into the pool - Not what we were supposed to do. Supposed to go towards the right. Slather yourself with mud and dry yourself in the sauna and then pool and then shower. Oh well.\nIt would have been nice if the guy in the front had told us that when we came in.\nFinally, we went to the grotto. Just loved the grotto!! What a wonderful experience. My skin felt so smooth after all the slathering of lotion.\nHad a wonderful day here. Would definitely come back.
## 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Had to make a spa trip while we were visiting California. I have been seeing pictures of my friends going here and just had me curious for a while, especially the mud bath! We added the Grotto service on to our admission. The Grotto mask was amazing! It was warm and so thick so made your skin feel great after, however it's a so hard to rinse off after. In all reality, I would say the extra you have to pay for the Grotto isn't really worth it. I would just suggest the regular "Taking on the Waters" admission. It's more bang for your buck. The reason I gave 3 instead of 5 stars, was because the locker rooms and bathrooms weren't as clean and they probably could have been. The pools were decent however they should have timers for people on certain ones cause you could spend so long waiting for space in a pool. The drinks were sooo high priced and you have to pay extra for robes which I thought was different since every spa I've gone to has given you ary robes. Little things that added up, however still a fun experience!
## 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    I had such a great time at HIGH END SPA today. We had a cabana and it was lovely. Jennifer and Jassen were our servers and they were excellent! The highlight of our day was a wonderful experience we had with the manager Robert. He was so kind and sweet. I usually don't write yelp reviews but after reading 3 yelp reviews from a day ago where 1 stars were given to the resort and call out Robert by name. I had to write a review and set the record straight.\n#1 Hopefully everyone reading those bad post about Robert can smell the bull shit right away.\n#2 It really sounded to me like he was doing his job and the people receiving the service  probably don't hear the word "No" very often and they didn't like it.\n#My guess is people having the power to publicly shame others, somehow makes them feel better about themselves. It's sad really.\n\nPEOPLE! Use Yelp responsively and humanly!\n
## 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Wow! My vacations are usually fast paced, but our friends invited us to HIGH END SPA after our Disney trip and it looked too good to pass up.\nWe started by grabbing drinks at the bar- all cocktails are wine based and $10.50. You can put a card on file and just use your phone number which is much easier than paying with a card! A few of the pools we hit were the mineral, sulfur (remember to remove all jewelry), hot/cold baths (my husband did those and loved it) and of course club mud! The mud was surprisingly relaxing and fun. Definitely wear a suit you don't mind getting dirty!\nThe Grotto was a fun experience as well! No drinks are allowed past the entry to reach the elevators. Basically you stand in a stall and an attendant paints you with hot green oils/lotion! After that you go into a room that is similar to a sauna and hang out to let the moisturizer soak in (you put it all over your hair and face as well for the full benefits). They didn't tell us, but they recommend staying in that room for 15 mins (we had to go ask). Unfortunately there were other people who were being loud, even though there were many signs, which made it hard to totally zen out. Once everything is washed off, you go into the cold room where they have tea options and yummy green apples!\nLunch was also fabulous! I had a chopped salad and carrot cake. So good! They offer many options, such as wraps, flatbreads and sandwiches.\nAn added bonus is the Starbucks they have right near the entrance! Perfect when you're on the way out!\nI can't wait to return to HIGH END SPA in the near future and hopefully book a massage or another added experience to our day!!!\n
## 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       An amazing experience this past September cannot wait to go back!! The drinks and food were so yummy! I adore the peace and respect of all others around!
## 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Spent the day here for a girlfriends birthday!\n\nI had a fun experience here. HIGH END SPA is huge. They offer many things to do when you pay for your package. I was able to go to the mud spa, sauna, heated pool, and many other mineral pools. They also offer other amenities such as a massage but it would cost extra. This is a nice getaway to relax. We were able to order food and drinks at our cabana.\n\nOne of our girlfriends ended up drinking way too much mimosa. She fell over the stairs and hit her head. She got immediate attention and the ambulance came. After that, we went to the nearest hospital to get her examined. She got a minor head injury. Thankfully she was ok and the day was already ending.\n
## 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Absolutely wonderful!!! Coming in January was ideal. Just the right amount of people. We loved the mud bath and purchased the grotto. 100% do the grotto!! My skin is like butter.\nAlso had a massage which was amazing! We spent 8 hours there and is was perfect amount of time. Able to do all the therapools Maybe allow another hour if you want to lay out. Staff is courteous and here is water everywhere. Bring an empty water bottle!\nFood was delish and healthy too!!!! Overall, just a wonderful experience!\nWe
## 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Love this place! I had never been to a chiropractor before and was definitely scared but I tried this place out because I had heard great things and it was even better than I anticipated. The whole staff is super efficient and organized. Dr. Brian Heller was super friendly and helped ease the neck pain I was having before.\n\nOn top of that, the first appointment which includes X-rays, a consultation and the first adjustment was only $40! Great price and an overall awesome experience. I plan to come here regularly now.
## 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DOCTOR and his staff are absolutely fabulous. You have a warm family feeling from the moment you walk through the door, until the moment you leave. They are very professional, friendly, and genuinely care about your well being, medical care, and me as a person. They can tell if I'm having a bad day, and go above and beyond to make me smile and make my day brighter. DOCTOR is truly amazing as well, not only has he given me a better quality of life, he has also fixed me so that I can now play with my kids, walk with no pain, sit with no pain, and even do the most minute things that everyone takes advantage of, such as washing my hair in the shower. DOCTOR and his staff treat you like family, and may I say; there's no place like home! Thank you DOCTOR and all of the staff!!!! If you want first class treatment from the time you walk in the door, until the time you leave there, then this would be the place for you! And P.S. the person that threw a fit about the $25 cancellation fee- there is one IF you don't give 24 hours notice, and it's located in the new patient paperwork. People!!! Read what you sign!!!! Lol
## 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Amazing experience with Dr. Ramzar and even better massage with Becky Thom, highly recommended! A professional and enjoyable experience!
## 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      This place was AMAZING. I booked a cabana and the celebration package over the phone a week in advance. It was a breeze. I got emails with my itinerary, waivers, and general info.\n\nUpon arrival you get reserved parking with the cabana. You make the line so they can check your bag and we told the bag checker that we had a cabana. We skipped the line to pay for entrance and went straight to check in. We had booked the celebration package which included a The massage was fantastic! The pedicure comes with a bourbon rub that was great. My wife loved her facial. The grotto was amazing! Staff even let us book our lunch ahead of time and had it ready for us when we got out of our massage. The place was not crowded at all. The pools are heated which is nice for winter time. The robes were super cozy!\n\nOverall a fantastic experience and will be coming back. We will continue shooting for off season though since it is less crowded. We each had three services and still plenty of time to use club mud and all the other spas.\n\nThanks to HIGH END SPA staff for making this a great experience!
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            So I came here based on a recommendation of a friend who swore by them and I have to say I know the hype is real. They have a special going on for $45 for an hour message and it's a great way to test them out for cheap. I came in and the entire experience was great. Staff were friendly and got everything handled rather quickly. Overall a great experience.
## 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               One year later and back for another birthday celebration today. Had a great time but was sad my favorite thing on menu was gone and any time I wanted a drink I had to wait in like for 20-30 mins, line never died down.. but other then that I loved it.. Favorite is the Hot and Cold Pools, Mud and pedicure  Thank you for another great birthday. helpful tip: CALL WAY IN ADVANCE to make reservation, calling can be almost impossible.\n
## 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Never been to LOW COST GROCERY STORE but I have heard of it. It   Is similiar to food for less but this place is cleaner. They have a bulk area where u can bag nuts and candy and its weighed. Grocery items are priced well some larger items like family packs are cheaper to buy than regular size. I did not buy meat but the dairy section had grated Tillamook cheese! Would definitely come back but not on a regular basis since I live in Mission Viejo so its a drive for me. But great experience
## 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    My family loves this place, we shop here all the time! The prices are amazing, and the staff is really nice. My two year old even knocked a glass jar of pickles of the shelf and they came and cleaned it up right away and said to not worry about it at all. We rarely wait in a long line to check out. Bagging our own groceries can be challenging with two little ones in two but it keeps the costs down for them I believe and it's no biggie. I also love knowing it's open 24hrs.
## 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Great experience!! It was my third time doing acupuncture here and it helped me a lot. I got knee, heel pain, and also joints pain and it was gone after doing acupuncture. So amazing!! The doctor's so nice and the staffs are so friendly. I'm regular now
## 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          How have I lived in the Inland Empire for so long and I have never been to HIGH END SPA?! This place is truly a magical oasis!\n\nWe started the day by getting to the hot springs right when they opened which was perfect! We were able to get first picks and enjoy the pools for a few hours before bigger crowds came. There are The day moves by so quickly as you are just lost in relaxation land! Before I knew it the day was over and I was so sad to leave. Honestly, though the place is pricey, its worth every penny as this is the best experience I have ever had.\n\nLast thing. The Hot Springs recommend that you disconnect to get the full experience and Must Do's? Everything! My top top favorites were:  lounging pool, the grotto, the saline pool and the vista pool!\n\nIf you do anything at all, I personally recommend just getting admission and the grotto (separate price from admission,$I cannot CANNOT wait to come back here again!\n\nThings to keep in mind:\n- Weekends are very busy! A few friends and I came on a Friday and the crowd level was just perfect. Busy but not too crowded. So I recommend a weekday if you can.\n-Come early! I would recommend at least 20-30 min before opening because there is a line! It went pretty quickly as they take "peeks" inside your bags.\n-There are free lockers inside of the bath house to keep your belongings. The bathhouse also has showers that have hairdryers, lotion, body wash and shampoo and conditioner and a bathing suit dryer! All free!\n- Free towels are all over the spa so no need to bring your own!\n- Bring a cover up if you have one! They also have robes you can rent that a lot of people rocked all day!\n- They have a cafe and kitchen there so you can order lunch and things!\n- At check in, they ask you to keep your card and cell phone number on file so they if you make purchases through the day, you don't need to hold onto that.\n-If you are interested in doing any of the services and couldn't book online, they have same day bookings as well! You can talk to the staff at check in about that!\n\nIf you know that you have been holding onto a lot of stress, you NEED this! Treat yourself please!
## 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Great experience! It was a treat for my wife's birthday and it was a very enjoyable time with her. There were several different pools to choose from and we experienced them all, but it's definitely a full days experience. I hear it can get really full on the weekends and I feel like that could change the experience a lot. However that wasn't the case for us! My wife every twisted my arm and got me to do yoga... Good times! My wife would go every weekend if she could.\n\nAs a heads up, the mixed drinks are wine based, but still quite good.
## 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         my FAVORITE place to relax and not worry about anything. Take advantage of everything! I always stay the entire time. My favorite would have to the be the hot and cold water pools and then next is the mud bath. When I leave here, I'm always feeling CHIROPRACTICd.
## 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            My birthday experience at HIGH END SPA was amazing from the start . I'm so happy I decided to have my 30th birthday the there. We got the bamboo Cabana , Jeff was so helpful when it came to set up everything for me . I felt like a Queen when Jeremy came to greet and show us to the Cabana we had . He had us feeling like the VIP we are . Kyna and Chelsea were quick when it came to making sure we were well taking care of .\nThe best experience ever !  We will definitely be back !!!!
## 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               This is NOT a Check in -\nWe rented Cabana Service -\nVery mediocre service.  No one is really interested in service with a smile and happy to help.  If someone is paying for a lovely experience, you would hope your staff is there to help with that.  Not here.\nIt was close to the Twilight menu which starts at 5pm.  We asked one of the cabana attendants if we could place an order and her response was, it's not 5 yet.  It was 4:50.  We asked can she come back then.  The correct response would be - Sure, I'll take your order now and put it in at 5.  Well, she didn't and she never returned.\nWe then sent a text to concierge asking if we can order.  They responded they will send someone over.  A cabana attendant arrived, who had helped us in the morning and was pleasant then.  Well come the evening hours she wasn't as pleasant.  We were clearly an inconvenience now and you can read it all over her face.  She took our order and   went back to inform the manager that I was sitting on a chair in front of another cabana.  Our cabanas were the only ones being occupied.  The remaining cabanas were zipped up and the chairs were stripped of their cushions.  My location of the chair I was sitting on was in the sun with no shade so I sat on one of the unused cabana chairs to get out of the sun.  Again,  the chair was not going to be used by anyone as the cabana was zipped up.  I didn't see this to be an issue, but it was.\nRobert let us know, I can not sit there even though the cabanas are not being used or we will charged for a third cabana.  He also let us know that they are understaffed and at capacity.  Which has nothing to do with sitting on an unused chair.  My brother asked him, so you are taking it out on us because you are understaffed.  His response was yes.  Very bizarre behavior from any employee, let alone management.  We asked if we can speak to someone else because he wasn't interested in dealing with us and made it very clear verbally.  He said there is no one else, he's the main person in charge.  After more complaints to the front desk about how rudely we have been treated, they finally sent over the food and beverage director Jason.  Jason was very professional, listened and even offered passes for our next visit.  We declined, but appreciated the nice gesture.  We weren't looking for compensation, just good old fashion customer service.  I don't think that's asking for much, especially for a service driven facility.
## 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               One year later and back for another birthday celebration today. Had a great time but was sad my favorite thing on menu was gone and any time I wanted a drink I had to wait in like for 20-30 mins, line never died down.. but other then that I loved it.. Favorite is the Hot and Cold Pools, Mud and pedicure  Thank you for another great birthday. helpful tip: CALL WAY IN ADVANCE to make reservation, calling can be almost impossible.\n
## 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          excellent, professional, courteous, I had a great experience when I went, I had some back issues it was difficult to walk. After a treatment from DOCTOR  I was walking pain free, in addition he showed me some neat stretches to make sure I didn't have a recurrence. Great place would recommend to all! Please stop by and visit them, you will be glad you did!
## 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A new acupuncturist joined recently and she's amazing! Kirsten has been treating me for the past few months and I've had such a great experience with her. She keeps great notes and always remembers what's going on with me. I've seen improvements in several areas we are focusing on and I definitely feel "off" if I go too long without seeing her.\nIf you've been looking for someone, she's your girl!!
## 68    I've been to HIGH END SPA three times. My review is for my most recent experience. I will say that the first couple times I have gone I'll admit it gets sooooo packed, and it's kind of gross, you literally can't see the bottom of the pool bc there are bodies everywhere cramping in every possible little corner. You can't put your towel on a chair... actually good luck in finding a chair, the lines for the food and drinks are ridiculous and of course overpriced. It ruins the experience bc you are seriously just waiting for space in any pool. BUT....\n\nToday I don't know if it's because it's December and people think it is cold, but it was not packed at all. My experience when it wasn't like sardine packed was amazing. My husband and I got to go to every pool more than once and got to fully experience the whole area with as much time as we wanted. I even discovered there was something called a secret garden, which I didn't even know existed the last couple times I went. It's a cute little area in like a grass section with two huge hammocks, which yes bc it wasn't so crowded me and my husband both got to chill on a hammock as long as we wanted, I fell asleep actually ahhaha. I was so relaxed.\n\nThe experience this time gets four stars because I really enjoyed the whole place and got to spend as little or as long of a time I wanted at ALL of the areas. My personal favorite pool is the mineral baths that smells like sulfur and the Epsom salts one. I really felt it cleansed my skin and helped relax my muscles. My husband loved the hot and cold pools, he felt it really helped with his blood circulation and his tense muscles (he plays a lot of basketball). The saunas are actually a cool experience too with different oaks burning, it was different. The mud area is definitely an experience, it really exfoliates your skin and leaves your skin super soft, and it makes for great photos!\n\nThe facilities itself is very clean and kept up. I did not meet one staff member who wasn't super friendly and welcoming...good job on the customer service skills!! The  kitchen which is the only area you can buy food, actually serves really good food, but again it costs like an arm and a leg. My favorite item was the ahi burger, a huge slice of seared ahi, and their aoli sauce/slaw was super flavorful on a toasted brioche bun.\n\nBesides the many different pools, the saunas, different areas to relax in and the mud area, HIGH END SPA offers extra services such as personal massages, pedicures or manicures, facials etc. My husband and I did a couples massage and we both wanted to shout out our therapists. Both were super professional, respectful and did a great job on our massages. If you want a good massage at HIGH END SPA I highly recommend Cheri and he recommends Samantha. Thanks girls!\n\nIn the end, I love that this is offered in this area. It was an amazing experience.... again when it is not packed. I do think it IS pricey, for the price we pay for all the services I think a ary robe should be included. We rented the robes for $Tip: if you book a massage you get a discount on the admission. Also if you are a nurse, you get a discount too, just show your badge!
##     rating avgScore
## 39       5      4.0
## 43       5      4.0
## 45       4      4.0
## 46       4      4.0
## 49       4      4.0
## 51       5      4.0
## 52       3      4.0
## 54       5      4.0
## 56       4      4.0
## 58       5      4.0
## 65       3      4.0
## 69       5      4.0
## 71       5      4.0
## 89       5      4.0
## 106      5      4.0
## 32       5      3.5
## 2        5      3.0
## 17       4      3.0
## 18       4      3.0
## 23       5      3.0
## 29       5      3.0
## 47       5      3.0
## 62       5      3.0
## 64       5      3.0
## 73       5      3.0
## 81       1      3.0
## 92       4      3.0
## 103      5      3.0
## 104      5      3.0
## 68       4      2.5
tail(text_df2[order(text_df2$avgScore, decreasing=TRUE),],30)
##     line
## 6     62
## 12   125
## 21   186
## 27   219
## 28   222
## 30   227
## 36   243
## 41   272
## 44   286
## 48   301
## 50   304
## 76   394
## 77   395
## 82   408
## 83   413
## 8     70
## 13   130
## 35   241
## 57   321
## 75   391
## 84   416
## 94   474
## 99   507
## 102  523
## 108  605
## 16   146
## 42   280
## 80   403
## 20   171
## 74   378
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 text
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 I went to visit DOCTOR after being diagnosed with Cervical Radiculopathy the pain was no joke. After my first visit I felt 100% better. I could actually move my neck and shoulder. The atmosphere is wonderful and service is great. I recommend CHIROPRACTIC to anyone you want be disappointed.
## 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 I'll give my experience 1/4 of a star if I could. Don't shop here at night or at all! The associates are miserable, they're not helpful and don't give a sh*t. Even if you try to file a complaint, they try to avoid you and act like they're busy working when there are hardly any customers. David, who is supposedly the lead man at night can't even give you his last name because he's scared to be reported for his lack of customer service and whoever the cashier was on Lane 16 at 11:30pm on July 19th is even worse because she didn't even want to give her name.
## 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             What a horrible experience. First off, whoever decided to take out Albertsons and replace it with LOW COST GROCERY STORE is an idiot. It's like walking into a third-world country. Some girl was publicly fighting with her baby daddy. Not cool. The employees are all young kids with extremely unhelpful attitudes. I asked where a particular product was and he replied, "over there", and walked away. Um, over where?! There are like The layout is terrible. Like, the bananas are by the dental floss.\n\nNever going back.
## 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          The prices are great! The meat is horrible though. Rib eyes are very tough and I just threw away 20 hamburger patties that tasted really bad. I dont think the meat is kept cold enough. The produce is not very good. Fruit is not sweet and I have had to throw out a lot because it got moldy immediately. Go to Stater Bros. For the meat and produce. Its worth it to save money to go to 2 stores.
## 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       This review is long overdue. Our very first visit was   On Upon arriving at our cabana, there was a fruit basket waiting for us. Overall, the cabana seemed clean, but it had a cushiony double-lounger that sadly looked very dingy, as if not properly cared for. Our individual services were okay. It was a very busy day, yet we felt like we could have done without the cabana. This visit was during their high season; therefore, the hours were longer so we got to enjoy more of the spa.\n\nWe returned on , for a couple's day. This time we reserved On After my facial was done, I noticed that the nail polish on all of my left toenails was chipping away. I asked about this in the salon and they assured me that the polish is suppose to last a few weeks. WEEKS, not hours. They reapplied nail polish, at no extra cost, but didn't reapply to all my toenails. On Overall, we enjoyed our visits; however, I don't believe the services we received were up to par with the price tag and the hype. Also, since March is part of their low season, the hours are shorter; therefore, everything feels rushed; consequently, did not feel very relaxing. Also, during this slow season, there truly is no advantage in reserving a cabana or lounger, as there were plenty of empty loungers all over the property.
## 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            My sweet boyfriend surprised me with a spa day. He bought the BETTER WITH FRIENDS package that includes: Taking the Waters admission, We had arrived before doors opened at That massage though! Heidi was absolutely lovely. Very skilled and I had the best massage. Thank you, Heidi!! PRO TIP: When you book your massage, request to be in the same village (building) as your friend/significant other. Not like it makes much of a difference since you'll be in different rooms, but I had to walk further to village #We spent the rest of the day in the hot/cold pools, spas, hot saunas, club mud, etc. Towels are abundant, so thank you HIGH END SPA. The two of us were able to relax and really enjoy our day because we intentionally focused on relaxation. You WILL NEED to be able to block out your surroundings (i.e. noise, laughter, convos, drunk people) in order to truly have a relaxing time here. It was fairly crowded, especially for such a cold, windy day. If you wanted to get away from the crowds, you would've had to enter the lap pool or cold pools (heated to TIPS:\n- Eat breakfast at home  \n- Bring your own robe from home\n- Wear sandals or flip flops\n- Don't lose your locker key\n- Bring CA$H to tip\n- Don't leave your patience or humor at home\n- HIGHLY recommend their therapeutic pools\n- Try the Grotto at least once in your lifetime
## 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      We used to love coming here. It used to be such a nice place to retreat. The past few times we've been it's been crazy over crowded with groups.\nLots of drunk birthday or bachelorette parties... if you are planning to go & relax I would not recommend!!! It was really disappointing to pay extra for The Grotto and have a group of drunk girls screaming and laughing the whole time. They seemed to be enjoying themselves but managed to ruin everyone else's time.\n\nThe spa itself is pretty nice and seems well maintained. Although I think the food has gone downhill over the years as well.\nIt was a great escape while it lasted, but I don't think I will be returning.
## 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a total rip off! Go to a nice spa in a hotel where you can get a nice massage and relax This place corrals women in and out; the grounds fee that we paid of $72 per person just to use the pools, hot tubs and mud bath was not worth it (this was over and above the service we signed up for). At the end of the day every female is in the locker room trying to shower... the line was so long and there was no space at the counter/mirror area. The gym is old and kinda gross too. They need to have a "max" number of people allowed in. I will never go back.
## 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        For the amount it charges, you would expect something upscale but as a first timer-- it is looking dated with dysfunctional shower switches.\n\nFrom what I experienced it looks like the rainfall shower heads are more of the norm and the side shower heads no longer work. If it doesn't exist in most people's household (ie most people would have removed the side tiles) then just remove it!  Saw this in the Grotto as well.\n\nI went into the salt pool near opening and there was already a dead mosquito in it.  Is someone really cleaning it or is just done the night before?Annoying!\n\nI like that most of the pools are shaded with the exception of a few in which you lounge around.  Mineral/ salt baths tend to be the most popular.\n\n(+) loved the Grotto experience- it is a moisturizing experience; you need to pay extra and reserve ahead of time. If you're tight on funds and don't want a service, do this instead. The receptionist recommended we go to the mineral baths first, then clay mud, and lastly the grotto (start the experience about one hour before your Grotto experience). Sign the waiver beforehand to avoid a longer wait.\n\n(+) there are about (+) liked that there was water + towels throughout the spa.\n\n(-) food is over priced and how is it delicious from some reviews ? I had a turkey avocado sandwich and the bread was stale/ hard. Not worth $(-) there is lotion by the soap dispenser but hardly any lotion. People were getting super upset and while you do see attendants, there is no one refilling.\n\nI booked a package which includes admission, a spa treatment up to $Overall, a bit disappointed by the visit as I was expecting it to be more upscale/ up to date. Upon closing time (near 5pm) when it closes at 6pm, it felt like chaos in the locker area just from the crowds.
## 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     I came in about a month ago dealing with a very sore, tight, and overused  back. I've been bodybuilding/exercise training for the past six years and have never received massage work until I came here. I met with Juliard and have stuck with him since. He has helped to relieve so much tension and alleviate the soreness from my back. His deep tissue is no joke and I only recommend to those who don't mind being sore the next day.
## 50   Service has diminished within the past year.  Last year, a group of my friends and I (total of 5) visited HIGH END SPA for a day of relaxation.   We rented a cabana, had massages, and experienced the grotto.   We had such a wonderful time, that we decided to make it an annual event.   Well this year when we visited HIGH END SPA, our experience made us rethink our decision.   The customer service was absolutely horrific.   We made our reservation in July, to ensure we would have the same experience we had last year.   Well upon our arrive at 8:45, our initial experience was a precursor to the remainder of our day.   There was a long line to check in, once we made it to the front of the line, to our amazement there was one security person, checking each person purses and bags with a fine-tooth comb.  She put her hands on everything in my spa bag, even though when I opened it, you could clearly see there was nothing but a bathing suit and some water shoes.  I felt actually invaded.  But I thought to myself, "the day will get better, move on and enjoy the wonderful relaxing day".   Well when we went to check in to get our cabana, we were told there was an additional charge of $50 for the fifth person in our party.   I explained to the manager, we were there last year and had the same amount of people and there was no additional charge that time; and when we reserved, paid for the cabana back in July (and I had communicated that there was 5 of us), the additional charge was not communicated to me.   The manager stated the $50 is a new charge.  So we paid the additional charge, and was guided to our cabana.  When we arrived, there was a lot of bees in the cabana.   The attendant told us they are having a bee problem, because there is a hive close by.  Therefore, keep our food covered, because food tends to attract the bees. Then we noticed that there were only 4 table chairs and 4 loungers.   When we requested an additional chair for our 5th person, we were told they could not provide additional chairs.  I said we paid an additional $50 for the 5th person.   Why are you charging an additional $50 if you are not going to provide the amenities necessary?  The attendant told me because it takes more time to provide service to 5 people.  I thought to myself "nonsense".   We ordered breakfast and several platters, and when our food arrived, we requested additional plates, for the platter, so we could all share, and we were told they did not have any.  \nAlthough the pools at HIGH END SPA and massages are wonderful, something needs to be done about customer service.   1st and foremost, with the amount of money that HIGH END SPA makes each day, they could have hired a professional to come in and take care of the bee problem.   2nd why charge an additional $50 for extra people if you are not going to provide the same amenities.   3rd the check in was an absolute horrible and violating experience and needs to be changed.  Lastly, the communication with the guest needs to be improved.
## 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I am so upset!\nI came here for my bachelorette party and then again the weekend after from Orange County.\nFirst we did the grotto which probably would have been amazing if this big group of girls weren't yelling (there are signs everywhere to whisper). To give the worker credit he did try to ask them to be quite but it failed. I have general anxiety disorder and PTSD so obviously I try to do things in a nice quite environment (they can't control my disorders but just giving you a understanding of how my body was feeling which is completely out of my control). It got even worse.... they can't control the weather BUT when I went to the front to book a massage there was only one available at 5pm. I booked it. Soon after it got really cold and windy. I was in a wind breaker coat and couldn't get warm. I decided that it was so unbearable that I would ask to cancel my message. I went to the front desk and was approached by a manager named David. He was so rude. No smile, no empathy and no kindness. I asked him if I could cancel my message and he said no- it's way to late because there is a policy. I asked why I wasn't informed of that information when ordering the message at the front desk. I also asked why the cancellation policy was not written on the receipt I signed. He rudely said "most people already know there is a cancelation policy". Obviously my anxiety started. He made it a argument instead of an understanding. He was awful and I don't understand why he is a manager. Then I talk to another manager who clearly saw I was really upset and I disclosed that at this point I wasn't going to get the massage as I was way to anxious to even enjoy it. If David started out nice- none of this would have even happened. I WILL NEVER GO BACK. I left before my massage and have the receipt. I will be contacting David's boss and reporting this to my bank. The girl at the front desk was kind and all of the workers BUT the manager who represents them completely ruined my experience. Customer service would have gone a long way.
## 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          I've been to HIGH END SPA a few times in the past couple of years. All my experience have always been wonderful. I was very disappointed yesterday to find the shallow pool as well as well as the one of the pools in the rear of the property, filled with bugs/gnats.  It was gross.  I could not enjoy myself and the experience was disappointing.  It also left a bad impression with my friend who was excited to visit HIGH END SPA for the first time.  \nIn retrospect, I should've said something to the staff, but I was trying to make the best out of a disappointing day.
## 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Reservations and checkin process was overly convoluted and left a feeling of annoyance even before my visit. Upon arrival long lines and disorganization only confirmed this dysfunctional spa.  This was my first experience and impression of HIGH END SPA and it was a far departure from a luxury relaxing first impression.\n\nSome of the showers and restrooms were not kept and being that the place was crowded the cleaning service needs to upkeep these places to continue to instill a sense of still being at a spa and to keep the image of luxury which HIGH END SPA failed to deliver.\n\nThe heat of the Day negated the need for a HIGH END SPA robe but nothing was offered up by the Spa as a replacement comp so there was a shortfall in satisfaction in my upgraded purchase with the Passport to Wellness Plus package.\n\nThe quartz massage was amazing and the facial although felt amazing didn't last long afterwards since there was still other activities to do that countered the benefits of the treatment. I would recommend having your a facial before a massage and closer to the tail end of your day.\n\nThere were not enough Keto friendly menu options at both the Cafe or Kitchen. So I was very limited as to what I was able to eat and the price points for the food cost more than you would expect for the size portions you receive so the food value was really not there for me either.\n\nOverall on a scale of Spend your money at Red Door Spa, the Mandarin Oriental, or some other smaller boutique Spa who will provide you a customized unique spa day tailored a personalized for you at the cost you will pay at HIGH END SPA.\n\nHIGH END SPA is overpriced for a subpar Spa experience, which was unorganized, not clean, super crowded, lacked greater food options, and far from a luxury Spa experience for the money you can spend elsewhere.
## 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               I came here for my sisters birthday, we got here early on a Wednesday. I was super excited to come here until I ordered my breakfast, I ordered a omelette with potatoes. My sister got the same meal and we both couldn't finish half of it. I would not recommend eating here. I also got nachos for lunch $30 not the yummiest nachos. The soda cost about $5.30 it did not have syrup, went back to pick another drink and both machines were out of syrup for soft drinks. Definitely come in a full stomach so you don't have to spend a lot money for horrible food. What I did love was the amount of pools they have and jacuzzi. Mud pool and hot/cool pool was my favorite. Also don't bring a hair dryer they provide that as well as towels and water.
## 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Had a very terrible experience during these tuff times of everyone dealing with covid19. My daughter and I were unable to purchase merchandise because we walked into the store together.  We asked Gabriel to verify the different addresses on our driver license, however he refused. He was very rude,going back and forth with me. I would like to also add that the cashier Jasmine was extremely rude as well. I have been a customer of this store since they have come into the community.  With the rudeness of Gabriel and Jasmine I will never return to this location ever again. With this treatment they don't  even deserve 1 star.
## 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Wow!!!! Customer service tonight was NOT good at all. For a company that is employee owned you would think that they would strive for excellent customer service every time. I am a frequent shopper of LOW COST GROCERY STORE in Norco because of the proximity to my house and frankly the prices are better  than the Vons which is much closer to my home. However tonight with my $300 plus shopping cart full of food. I literally almost walked out and said forget it I'll wait for Costco in the morning. As much as I have loved shopping here in the past this one incident of poor customer service will definitely make me think twice about making that drive from Limonite to Hidden Valley.
## 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       I go to HIGH END SPA often.   I love it there, the atmosphere is so luxurious.   In the summer I go during the twilight hours, it's not as crowded and has a different vibe.   During the summer it is at capacity most days.  I also go during the winter, it's not as crowded and they have robes you can rent, or you can buy your own.  You really can't go in the lounge pool during the cold season, it's too cold.   I LOVE LOVE LOVE the Club Mud and the Grotto.  Doing those two makes your skin so soft and silky.   I went over the Thanksgiving weekend and tried their yoga class.  I was not impressed with the instructor.  I could have taught the class with more flow and accuracy.   I was seriously considering getting a yearly pass so I can do the yoga, Club Mud and the Grotto during the year and am going to pass because the yoga is not that great.  I hope they get another yoga instructor soon.  \n\nThe food, is good quality and typical spa type food. You also get a good amount of food to each order.  Their drinks are good as well.   The price for the drinks and food is pricey, but it's the spa, so it's expected to be overpriced.  \n\nI would absolutely recommend HIGH END SPA, just not the yoga instruction or during the summer months.
## 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      I was present for a bachelorette party.\nI was in line at Cabana to buy sodas.  There was a line formed with chords.\nA couple young woman went to front of line.  I let them know there was a line.  Service men took care them. Then did not wait on me.for more than 10 minutes.  It was so obvious.  I am 50. They were 20ish.  They had to wait on me because there was a line behind me.\nThe people behind me said 'go girl,'\nThey were not happy that young woman do not have to wait in same line.
## 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          I wish this could have been a better review. BUT due to poor communication between workers its not. We had booked our grotto for NOT happy and even more reason why I will continue to go to Burke Williams at least they listen when I say I am allergic to something !
## 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     It's odd to me how you see the complaint, then a response but no update from the customer that their experience was ever made whole. Or try to make up for the bad experience?\n\nRead less\n
## 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     It's odd to me how you see the complaint, then a response but no update from the customer that their experience was ever made whole. Or try to make up for the bad experience?\n\nRead less\n
## 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     It's odd to me how you see the complaint, then a response but no update from the customer that their experience was ever made whole. Or try to make up for the bad experience?\n\nRead less\n
## 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WORST EXPERIENCE EVER!!\n\nFor our wedding anniversary, my parents purchased a pamper package from this establishment. We woke up early on our anniversary day, and drove three hours to make an After back and forward with the manager he offer a 
## 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WORST EXPERIENCE EVER!!\n\nFor our wedding anniversary, my parents purchased a pamper package from this establishment. We woke up early on our anniversary day, and drove three hours to make an After back and forward with the manager he offer a 
## 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                So I was having back problems for a long time and Realized I needed to go to a professional. The first visit seemed be perfect. A caring Chiropractor that wanted to fix my issues. We went over a game plan to get me moving again.\n\nNow to the Third visit, As the chiropractor walks in he recommends I should get a massage. I said you told me that last time I did go to who you recommended which was in the same office. He clearly did not look at my file!! Then he began to do his job but did nothing we spoke about in the first appointment. I reality he had no clue who I was or Didn't even remember me. After This place is quick to take patients and even quicker to dismiss you. He walks in the room and leaves as quick as he comes in. I would not recommend this place because they are about money and not helping the client.\n\nHorrible experience. Word to the wise, go somewhere that really wants to help you. This place is far from helping!!!
## 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    I WILL NEVER GO BACK HERE, EVER. Came for a friend's birthday... She was unfortunately disappointed.\n\nThe Bad:\n- SO SO SO CROWDED... The pics do no justice to how incredibly wall-to-wall crowded this place is\n- Pretty gross. Clumps of hair in the pools, dead wasps everywhere, can wear shoes in the locker room... Just all around nasty.\n- Some staff is cool (especially in the grotto) but otherwise rude, beaten down by life, and slow as molasses in winter.\n- food was bland and drowning in sauce or salad dressing, etc\n- drinks were processed (not like a fresh, craft cocktail). Hangover city.\n- Who the f*@k came up with the layout of this place? I'm not kidding, it's this weird, convoluted maze trying to hide the fact that it's actually a lot smaller than you think\n- Hot springs..? More like lukewarm to cold springs with an overcrowded hot tub\n\nThe Good:\n- the people I was with! Love you girls! xoxo\n- The grotto was nice\n- Well maintained grounds (trees, rock garden, etc)... More so than the pools it seemed\n\nGood and Bad:\n- The mud! Makes your skin glow for the rest of the day, but it REALLY dries you out afterwards! Not good for dry skinned folks like myself. Also the pool is warmish, but also filled with people, dead bugs and probably dead skin... (shudder) If you're renting a robe and get mud on it, they charge to clean.\n\nMy advice: SKIP THIS PLACE and find a good Korean Spa! It'll be cheaper and more bang for your buck. Seriously, this place is YIKES!\n\n*OR* if you're looking for an actual luxury experience and don't mind paying for it, try Terranea in Rancho Palos Verdes. That place is (kisses fingers) magnifique!!
## 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     We booked the bamboo cabana on 11/02/19. I have nothing negative to say about the staff. They were all great. I am upset that there were mosquitos inside the cabana and it looked like the fan blades had not been cleaned since this place opened. We were hot at one point and could not turn on the fan in fear that we would all start having severe allergies with all the dust. Another negative is that we weren't able to bring any outside food and I would have liked to at least bring in a celebratory cake or cupcakes for our little get together. We were celebrating a bachelorette. For the price that we payed it was not worth it. This place is good if you're just paying for the entrance fee and maybe one of their spa services but it's not worth booking a cabana.
## 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Don't get me wrong this place is USUALLY excellent but I just had the worst experience. The person didn't know the price for the fruit. The lady also asked me what fruit it was.. this person then made up a price for it. I ended up paying 3.86$ for 3 prices of fruit... I called after to ask for the original price and they said they don't do price checks over the phone. I offered to give them the code so that if they were near a computer they can.. he said sorry they couldnt. Not sure why but yea worst experience here ever. Ill give it one more try.
## 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Treated myself to a birthday spa day!! Well needed. Free birthday admission on your actual birthday ($50 value) with the purchase of a spa service. I bought 2 spa services. An organic facial ($110) and aroma therapy 50 min. Massage ($100).\nI arrived on a busy Friday mid morning. Very friendly, inviting young lady checked me in. I had not pre paid my spa services, luckily they did have a facial and massage opening.\nPretty packed. Busy day at the spa.\nI put my stuff in the ary locks and enjoyed the Roman pool located in the women's locker room. Only 2 occupants. Enjoyed this for 30 minutes then off to my next stop. Dry sauna!! Smelled very refreshing and relaxing. I only lasted 7 minutes!!! Extremely warm inside. But good for you.\nLunch was delicious. I ordered a salad ($18). Scrumptious salad with green goddess dressing. Quite pricey yet nice portion size. Incredibly nice gentlemen customized my salad, thank you.\nFacial. Good but not great. The lady was very friendly and knowledgeable. But she was a little rough. Not very tender. I was getting a facial not a Swedish massage. Not as quite relaxing as I desired.\nMassage. Was good not great. I get massages on a monthly basis. And this was average. I requested light light pressure, a relaxing massage. This particular massage therapist light pressure was more like medium pressure. Overall good massage.\nOverall exceptional experience and will return soon!!! Maybe not for a facial but definitely for the other amenities such Roman baths, mineral baths ( often very full), wet & dry sauna, the grotto extra $25, red clay pool bath, Starbucks cafe, fabulous cool & warm pools. Refreshing ice cold water with lemon coolers available all throughout the spa grounds.\nary lotion, towels, shampoo, conditioner, body wash, lockers and q-tips in bath house!!!
##     rating avgScore
## 6        5     -2.0
## 12       1     -2.0
## 21       1     -2.0
## 27       3     -2.0
## 28       3     -2.0
## 30       5     -2.0
## 36       2     -2.0
## 41       2     -2.0
## 44       2     -2.0
## 48       4     -2.0
## 50       2     -2.0
## 76       1     -2.0
## 77       2     -2.0
## 82       2     -2.0
## 83       3     -2.0
## 8        1     -3.0
## 13       1     -3.0
## 35       3     -3.0
## 57       1     -3.0
## 75       1     -3.0
## 84       1     -3.0
## 94       1     -3.0
## 99       1     -3.0
## 102      1     -3.0
## 108      1     -3.0
## 16       1     -3.5
## 42       2     -3.5
## 80       2     -4.0
## 20       1     -6.0
## 74       4     -6.0

Looking at the above it almost apppeared as though we could use a theshold value of less than some threshold is a 1 and above it is a 5, but that doesn’t hold true for many values. Because some -2 avgScore values are rated a 1 or 2 and those above an avgScore of 3 are a 4 or 5, yet some of those -2 avgScores are a 4 or 5, and some of those avgScores of 3 are a -1. So, it isn’t that simple to adjust the algorithm to fit this model of avgScore. Lets look at those instances where the avgScore is > 3, but the rating is less than 4, and those that are less than -2, but the rating is greater than 3.

negRate_out <- subset(text_df2, text_df2$avgScore < -1 & text_df2$rating > 3)
posRate_out <- subset(text_df2, text_df2$avgScore > 3 & text_df2$rating < 4)
oddOnes <- rbind(negRate_out,posRate_out)
oddOnes
##    line
## 1    18
## 4    56
## 6    62
## 30  227
## 48  301
## 74  378
## 52  307
## 65  343
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  text
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   I can't say enough great things about CHIROPRACTIC. After dealing with a nerve injury for 5 years complete with constant pain, fainting, and doctors continuously telling me they could not help me, DOCTOR was able to diagnose the problem and put me on the path to living pain free in one visit. His prices are very reasonable, and he is willing to work with the patient to provide the best and most affordable service possible. The staff are all very kind and personable, and make the treatments go quickly. If you are looking for relief, don't go anywhere else.
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 The moment I walked into this place i knew I was in good hands!! I had never visited a chiropractor before and it was an amazingly "un-scary" experience!  Love this place and would highly recommend it to anyone and everyone!!!!
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I went to visit DOCTOR after being diagnosed with Cervical Radiculopathy the pain was no joke. After my first visit I felt 100% better. I could actually move my neck and shoulder. The atmosphere is wonderful and service is great. I recommend CHIROPRACTIC to anyone you want be disappointed.
## 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             My sweet boyfriend surprised me with a spa day. He bought the BETTER WITH FRIENDS package that includes: Taking the Waters admission, We had arrived before doors opened at That massage though! Heidi was absolutely lovely. Very skilled and I had the best massage. Thank you, Heidi!! PRO TIP: When you book your massage, request to be in the same village (building) as your friend/significant other. Not like it makes much of a difference since you'll be in different rooms, but I had to walk further to village #We spent the rest of the day in the hot/cold pools, spas, hot saunas, club mud, etc. Towels are abundant, so thank you HIGH END SPA. The two of us were able to relax and really enjoy our day because we intentionally focused on relaxation. You WILL NEED to be able to block out your surroundings (i.e. noise, laughter, convos, drunk people) in order to truly have a relaxing time here. It was fairly crowded, especially for such a cold, windy day. If you wanted to get away from the crowds, you would've had to enter the lap pool or cold pools (heated to TIPS:\n- Eat breakfast at home  \n- Bring your own robe from home\n- Wear sandals or flip flops\n- Don't lose your locker key\n- Bring CA$H to tip\n- Don't leave your patience or humor at home\n- HIGHLY recommend their therapeutic pools\n- Try the Grotto at least once in your lifetime
## 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      I came in about a month ago dealing with a very sore, tight, and overused  back. I've been bodybuilding/exercise training for the past six years and have never received massage work until I came here. I met with Juliard and have stuck with him since. He has helped to relieve so much tension and alleviate the soreness from my back. His deep tissue is no joke and I only recommend to those who don't mind being sore the next day.
## 74   Treated myself to a birthday spa day!! Well needed. Free birthday admission on your actual birthday ($50 value) with the purchase of a spa service. I bought 2 spa services. An organic facial ($110) and aroma therapy 50 min. Massage ($100).\nI arrived on a busy Friday mid morning. Very friendly, inviting young lady checked me in. I had not pre paid my spa services, luckily they did have a facial and massage opening.\nPretty packed. Busy day at the spa.\nI put my stuff in the ary locks and enjoyed the Roman pool located in the women's locker room. Only 2 occupants. Enjoyed this for 30 minutes then off to my next stop. Dry sauna!! Smelled very refreshing and relaxing. I only lasted 7 minutes!!! Extremely warm inside. But good for you.\nLunch was delicious. I ordered a salad ($18). Scrumptious salad with green goddess dressing. Quite pricey yet nice portion size. Incredibly nice gentlemen customized my salad, thank you.\nFacial. Good but not great. The lady was very friendly and knowledgeable. But she was a little rough. Not very tender. I was getting a facial not a Swedish massage. Not as quite relaxing as I desired.\nMassage. Was good not great. I get massages on a monthly basis. And this was average. I requested light light pressure, a relaxing massage. This particular massage therapist light pressure was more like medium pressure. Overall good massage.\nOverall exceptional experience and will return soon!!! Maybe not for a facial but definitely for the other amenities such Roman baths, mineral baths ( often very full), wet & dry sauna, the grotto extra $25, red clay pool bath, Starbucks cafe, fabulous cool & warm pools. Refreshing ice cold water with lemon coolers available all throughout the spa grounds.\nary lotion, towels, shampoo, conditioner, body wash, lockers and q-tips in bath house!!!
## 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Had to make a spa trip while we were visiting California. I have been seeing pictures of my friends going here and just had me curious for a while, especially the mud bath! We added the Grotto service on to our admission. The Grotto mask was amazing! It was warm and so thick so made your skin feel great after, however it's a so hard to rinse off after. In all reality, I would say the extra you have to pay for the Grotto isn't really worth it. I would just suggest the regular "Taking on the Waters" admission. It's more bang for your buck. The reason I gave 3 instead of 5 stars, was because the locker rooms and bathrooms weren't as clean and they probably could have been. The pools were decent however they should have timers for people on certain ones cause you could spend so long waiting for space in a pool. The drinks were sooo high priced and you have to pay extra for robes which I thought was different since every spa I've gone to has given you ary robes. Little things that added up, however still a fun experience!
## 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Spent the day here for a girlfriends birthday!\n\nI had a fun experience here. HIGH END SPA is huge. They offer many things to do when you pay for your package. I was able to go to the mud spa, sauna, heated pool, and many other mineral pools. They also offer other amenities such as a massage but it would cost extra. This is a nice getaway to relax. We were able to order food and drinks at our cabana.\n\nOne of our girlfriends ended up drinking way too much mimosa. She fell over the stairs and hit her head. She got immediate attention and the ambulance came. After that, we went to the nearest hospital to get her examined. She got a minor head injury. Thankfully she was ok and the day was already ending.\n
##    rating avgScore
## 1       5       -2
## 4       5       -2
## 6       5       -2
## 30      5       -2
## 48      4       -2
## 74      4       -6
## 52      3        4
## 65      3        4

There are only 6 instances where the rating is high even though the score is less than a -1 for the bigram average scores. And there are only 2 reviews that the avgScore is greater than 3 but the rating is less than 4. Out of 614 reviews, there are only eight instances of the reviews that are odd or outliers for not fitting these threshold values based on bigram avgScore per review and using only the selected negative words with the experience bigrams.

Lets see if there are any bigrams that stand out in these specific reviews by line.

oddOnes2 <- oddOnes$line

oddOnesBg <- bothScores2 %>% filter(line %in% oddOnes2)
bg6 <- merge(oddOnesBg, text_df2, by.x='line', by.y='line')
bg6[,c(1,2,6,7)]
##   line           bigram rating avgScore.y
## 1   18         not help      5         -2
## 2   56 scary experience      5         -2
## 3   62          no joke      5         -2
## 4  227         not like      5         -2
## 5  301          no joke      4         -2
## 6  307   fun experience      3          4
## 7  343   fun experience      3          4
## 8  378        not great      4         -6
## 9  378        not great      4         -6

It looks like even though the avgScore was low for ‘not great,’ ‘no joke,’,‘not like,’ ‘scary experience,’ and ‘not help’ the ratings were still a 4 or 5. And for ‘fun experience’ even though those reviews containing ‘fun experience’ had a high average score, the rating was mediocre and not high but also not low.

bothScores3 <- bothScores2[order(bothScores2$avgScore, decreasing=TRUE),]
low <- unique(bothScores3$bigram)[1:12]
high <- unique(bothScores3$bigram)[
  (length(unique(bothScores3$bigram))-11):length(unique(bothScores3$bigram))]
bothScores4 <- bothScores3 %>% filter(bigram %in% low | bigram %in% high)

Lets see about spreading some of these bigrams in our experience or negation bigrams out into feature variables and testing out how well the machine learning does on them. Not a bunch, just 24, where 12 are the top 12 avgScore and 12 are the bottom avgScore.

bothScores4 <- bothScores4[!duplicated(bothScores4),]
bothScores5 <- spread(bothScores4, 'bigram','score')
colnames(bothScores5)
##  [1] "line"                 "avgScore"             "amazing experience"  
##  [4] "awesome experience"   "best experience"      "fantastic experience"
##  [7] "fun experience"       "great experience"     "never died"          
## [10] "no justice"           "no pain"              "no problems"         
## [13] "no smile"             "not clean"            "not disappoint"      
## [16] "not great"            "not happy"            "not helping"         
## [19] "not impressed"        "not like"             "not worry"           
## [22] "not worth"            "terrible experience"  "violating experience"
## [25] "wonderful experience" "worst experience"

Now lets merge this table with the ratings and then start our machine learning to see if these bigrams are better than our other keywords used in predicting ratings 1-5. Since there are only 109 out 614 reviews that have any of these 24 bigrams, we can only use those 109 reviews to split into our training and testing sets. Then we can later add in all the other 24 keywords to these 24 bigrams to predict the rating with all 614 reviews, but the NAs will have to be 0 imputed.

ratings <- text_df2[,c(1,3)]
ML_ready_bigrams <- merge(ratings, bothScores5, by.x='line', by.y='line', all.x=TRUE)
head(ML_ready_bigrams,20)
##    line rating avgScore amazing experience awesome experience best experience
## 1    18      5       NA                 NA                 NA              NA
## 2    34      5      3.0                 NA                 NA              NA
## 3    35      4       NA                 NA                 NA              NA
## 4    56      5       NA                 NA                 NA              NA
## 5    58      2       NA                 NA                 NA              NA
## 6    62      5       NA                 NA                 NA              NA
## 7    65      1       NA                 NA                 NA              NA
## 8    70      1     -3.0                 NA                 NA              NA
## 9    95      4       NA                 NA                 NA              NA
## 10  112      4       NA                 NA                 NA              NA
## 11  120      1       NA                 NA                 NA              NA
## 12  125      1       NA                 NA                 NA              NA
## 13  130      1       NA                 NA                 NA              NA
## 14  139      1       NA                 NA                 NA              NA
## 15  140      4       NA                 NA                 NA              NA
## 16  146      1     -3.5                 NA                 NA              NA
## 17  152      4      3.0                 NA                 NA              NA
## 18  153      4      3.0                 NA                 NA              NA
## 19  156      5       NA                 NA                 NA              NA
## 20  171      1     -6.0                 NA                 NA              NA
##    fantastic experience fun experience great experience never died no justice
## 1                    NA             NA               NA         NA         NA
## 2                    NA             NA                3         NA         NA
## 3                    NA             NA               NA         NA         NA
## 4                    NA             NA               NA         NA         NA
## 5                    NA             NA               NA         NA         NA
## 6                    NA             NA               NA         NA         NA
## 7                    NA             NA               NA         NA         NA
## 8                    NA             NA               NA         NA         NA
## 9                    NA             NA               NA         NA         NA
## 10                   NA             NA               NA         NA         NA
## 11                   NA             NA               NA         NA         NA
## 12                   NA             NA               NA         NA         NA
## 13                   NA             NA               NA         NA         NA
## 14                   NA             NA               NA         NA         NA
## 15                   NA             NA               NA         NA         NA
## 16                   NA             NA               NA         NA         NA
## 17                   NA             NA               NA          3         NA
## 18                   NA             NA                3         NA         NA
## 19                   NA             NA               NA         NA         NA
## 20                   NA             NA               NA         NA         NA
##    no pain no problems no smile not clean not disappoint not great not happy
## 1       NA          NA       NA        NA             NA        NA        NA
## 2       NA          NA       NA        NA             NA        NA        NA
## 3       NA          NA       NA        NA             NA        NA        NA
## 4       NA          NA       NA        NA             NA        NA        NA
## 5       NA          NA       NA        NA             NA        NA        NA
## 6       NA          NA       NA        NA             NA        NA        NA
## 7       NA          NA       NA        NA             NA        NA        NA
## 8       NA          NA       NA        NA             NA        NA        NA
## 9       NA          NA       NA        NA             NA        NA        NA
## 10      NA          NA       NA        NA             NA        NA        NA
## 11      NA          NA       NA        NA             NA        NA        NA
## 12      NA          NA       NA        NA             NA        NA        NA
## 13      NA          NA       NA        NA             NA        NA        NA
## 14      NA          NA       NA        NA             NA        NA        NA
## 15      NA          NA       NA        NA             NA        NA        NA
## 16      NA          NA       NA        NA             NA        NA        NA
## 17      NA          NA       NA        NA             NA        NA        NA
## 18      NA          NA       NA        NA             NA        NA        NA
## 19      NA          NA       NA        NA             NA        NA        NA
## 20      NA          NA       NA        NA             NA        NA        NA
##    not helping not impressed not like not worry not worth terrible experience
## 1           NA            NA       NA        NA        NA                  NA
## 2           NA            NA       NA        NA        NA                  NA
## 3           NA            NA       NA        NA        NA                  NA
## 4           NA            NA       NA        NA        NA                  NA
## 5           NA            NA       NA        NA        NA                  NA
## 6           NA            NA       NA        NA        NA                  NA
## 7           NA            NA       NA        NA        NA                  NA
## 8           NA            NA       NA        NA        NA                  -3
## 9           NA            NA       NA        NA        NA                  NA
## 10          NA            NA       NA        NA        NA                  NA
## 11          NA            NA       NA        NA        NA                  NA
## 12          NA            NA       NA        NA        NA                  NA
## 13          NA            NA       NA        NA        NA                  NA
## 14          NA            NA       NA        NA        NA                  NA
## 15          NA            NA       NA        NA        NA                  NA
## 16          -2            NA       NA        NA        NA                  NA
## 17          NA            NA       NA        NA        NA                  NA
## 18          NA            NA       NA        NA        NA                  NA
## 19          NA            NA       NA        NA        NA                  NA
## 20          NA            NA       NA        NA        NA                  NA
##    violating experience wonderful experience worst experience
## 1                    NA                   NA               NA
## 2                    NA                   NA               NA
## 3                    NA                   NA               NA
## 4                    NA                   NA               NA
## 5                    NA                   NA               NA
## 6                    NA                   NA               NA
## 7                    NA                   NA               NA
## 8                    NA                   NA               NA
## 9                    NA                   NA               NA
## 10                   NA                   NA               NA
## 11                   NA                   NA               NA
## 12                   NA                   NA               NA
## 13                   NA                   NA               NA
## 14                   NA                   NA               NA
## 15                   NA                   NA               NA
## 16                   NA                   NA               NA
## 17                   NA                   NA               NA
## 18                   NA                   NA               NA
## 19                   NA                   NA               NA
## 20                   NA                   NA               -3

We now have a table of the 24 bigrams with their assigned scores and the review by line 1-614, the rating as 1-5, and the average score of all bigram scores selected in our negation and experience bigrams that had AFINN scores.

Lets write this out to csv after 0-imputing the NAs.

ml1 <- as.matrix(ML_ready_bigrams)
ml2 <- as.factor(paste(ml1))
ml3 <- gsub('NA','0',ml2)
ml4 <- as.numeric(paste(ml3))#to make numeric 2nd run
ml5 <- matrix(ml4,nrow=109,ncol=27,byrow=FALSE)
ml6 <- as.data.frame(ml5)
colnames(ml6) <- colnames(ML_ready_bigrams)



write.csv(ml6,'ML_ready_bigrams.csv', row.names=FALSE)

Lets split up the data into a 70% training and 30% testing set. Make sure the libraries are loaded. The caret package is needed.

row.names(ml6) <- ml6$line
ml7 <- ml6[,-1]#drop the line column
ml7$rating <- as.factor(paste(ml6$rating))#turn to factor to classify

set.seed(12345)
inTrain <- createDataPartition(y=ml7$rating, p=0.7, list=FALSE)

trainingSet <- ml7[inTrain,]
testingSet <- ml7[-inTrain,]

Lets use random forest, knn, and glm algorithms to predict the ratings.

rf_boot <- train(rating~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)
predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$rating)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.4666667
head(DF_boot,30)
##    predRF_boot type
## 1            1    5
## 2            5    5
## 3            1    2
## 4            1    4
## 5            1    1
## 6            5    4
## 7            1    1
## 8            5    5
## 9            1    5
## 10           1    3
## 11           5    5
## 12           1    4
## 13           1    2
## 14           5    4
## 15           5    1
## 16           1    5
## 17           1    1
## 18           5    5
## 19           1    3
## 20           5    5
## 21           5    5
## 22           1    2
## 23           1    1
## 24           1    4
## 25           4    4
## 26           1    1
## 27           1    3
## 28           1    1
## 29           1    1
## 30           1    5

The accuracy is 47% with these 24 bigrams using the bootstrap method for validating on the random forest classification to predict ratings 1-5.

knn_boot <- train(rating ~ .,
                method='knn', preProcess=c('center','scale'),
                tuneLength=10, trControl=trainControl(method='boot'),
                data=trainingSet)
predKNN_boot <- predict(knn_boot, testingSet)

DF_KNN_boot <- data.frame(predKNN_boot, type=testingSet$rating)

length_KNN_boot <- length(DF_KNN_boot$type)

sum_KNN_boot <- sum(DF_KNN_boot$predKNN_boot==DF_KNN_boot$type)

accKNN_boot <- (sum_KNN_boot/length_KNN_boot)

accKNN_boot
## [1] 0.3
head(DF_KNN_boot,30)
##    predKNN_boot type
## 1             1    5
## 2             1    5
## 3             1    2
## 4             1    4
## 5             1    1
## 6             1    4
## 7             1    1
## 8             1    5
## 9             1    5
## 10            1    3
## 11            1    5
## 12            1    4
## 13            1    2
## 14            4    4
## 15            1    1
## 16            1    5
## 17            1    1
## 18            4    5
## 19            1    3
## 20            1    5
## 21            1    5
## 22            1    2
## 23            1    1
## 24            1    4
## 25            1    4
## 26            1    1
## 27            1    3
## 28            1    1
## 29            1    1
## 30            1    5

The KNN algorithm scored 27%. Not better than the random forest algorithm. Note, that I planned on usin rpart, but when using the same format as previously used, there was a traceback error saying that undefined columns were selected. It should work with the current libraries and the same exact target and features of predictors, but for some reason threw an error. I might look into that later.

Lets try the ceiling of GLM.

trainingSet$rating <- as.numeric(paste(trainingSet$rating))
testingSet$rating <- as.numeric(paste(testingSet$rating))

glmMod2 <- train(rating ~ .,
                method='glm', data=trainingSet)
predglm2 <- predict(glmMod2, testingSet)

DF_glm2 <- data.frame(predglm2,ceiling=ceiling(predglm2), type=testingSet$rating)

length_glm2 <- length(DF_glm2$type)

sum_glm2 <- sum(ceiling(DF_glm2$predglm2)==DF_glm2$type)

accglm2 <- (sum_glm2/length_glm2)

accglm2
## [1] 0.3666667
head(DF_glm2,30)
##     predglm2 ceiling type
## 18  2.953488       3    5
## 34  4.060646       5    5
## 58  2.953488       3    2
## 95  2.953488       3    4
## 130 2.953488       3    1
## 153 4.060646       5    4
## 186 2.953488       3    1
## 204 5.000000       5    5
## 211 2.953488       3    5
## 219 2.953488       3    3
## 224 4.060646       5    5
## 230 2.953488       3    4
## 280 4.290837       5    2
## 303 4.677291       5    4
## 308 3.979668       4    1
## 315 2.953488       3    5
## 321 1.000000       1    1
## 322 4.677291       5    5
## 327 2.953488       3    3
## 331 4.060646       5    5
## 360 5.000000       5    5
## 408 2.007937       3    2
## 416 2.953488       3    1
## 456 2.953488       3    4
## 458 4.000000       4    4
## 474 2.953488       3    1
## 475 2.953488       3    3
## 507 2.953488       3    1
## 605 1.709163       2    1
## 610 2.953488       3    5

The ceiling of the glm model on predicting the class of the rating as 1-5 when numeric data type for rating scored 36%. So far these 24 bigrams aren’t doing well even on the 109/614 reviews that contains at least one of the bigrams.

We didn’t improve and in fact, made worse, the prediction accuracy of the rating based on the review of extracted keywords, where bigrams were used. The prediction accuracy ranged from 27-47%.

Lets see if adding our other 24 keywords with these 24 keywords would be better.

MLr4 <- read.csv('Reviews15_AbsMinresults.csv', sep=',', header=TRUE,
                 na.strings=c('',' ','NA'))
colnames(MLr4)
##  [1] "id"                    "userReviewSeries"      "userReviewOnlyContent"
##  [4] "userRatingSeries"      "userRatingValue"       "businessReplied"      
##  [7] "businessReplyContent"  "userReviewContent"     "LowAvgHighCost"       
## [10] "businessType"          "cityState"             "friends"              
## [13] "reviews"               "photos"                "eliteStatus"          
## [16] "userName"              "Date"                  "userBusinessPhotos"   
## [19] "userCheckIns"          "weekday"               "area"                 
## [22] "big"                   "busy"                  "definitely"           
## [25] "feel"                  "lot"                   "many"                 
## [28] "open"                  "plus"                  "two"                  
## [31] "worth"                 "year"                  "the"                  
## [34] "and"                   "for."                  "have"                 
## [37] "that"                  "they"                  "this"                 
## [40] "you"                   "not"                   "but"                  
## [43] "good"                  "with"                  "area_ratios"          
## [46] "big_ratios"            "busy_ratios"           "definitely_ratios"    
## [49] "feel_ratios"           "lot_ratios"            "many_ratios"          
## [52] "open_ratios"           "plus_ratios"           "two_ratios"           
## [55] "worth_ratios"          "year_ratios"           "the_ratios"           
## [58] "and_ratios"            "for_ratios"            "have_ratios"          
## [61] "that_ratios"           "they_ratios"           "this_ratios"          
## [64] "you_ratios"            "not_ratios"            "but_ratios"           
## [67] "good_ratios"           "with_ratios"           "maxVote"              
## [70] "votedRating"           "Rating"                "finalPrediction"      
## [73] "CorrectlyPredicted"    "CorrectPrediction"     "actualRatingValue"

Lets select our feature ratios.

MLr5 <- MLr4[,c(1,71,45:68)]
colnames(MLr5)
##  [1] "id"                "Rating"            "area_ratios"      
##  [4] "big_ratios"        "busy_ratios"       "definitely_ratios"
##  [7] "feel_ratios"       "lot_ratios"        "many_ratios"      
## [10] "open_ratios"       "plus_ratios"       "two_ratios"       
## [13] "worth_ratios"      "year_ratios"       "the_ratios"       
## [16] "and_ratios"        "for_ratios"        "have_ratios"      
## [19] "that_ratios"       "they_ratios"       "this_ratios"      
## [22] "you_ratios"        "not_ratios"        "but_ratios"       
## [25] "good_ratios"       "with_ratios"
colnames(ml6)
##  [1] "line"                 "rating"               "avgScore"            
##  [4] "amazing experience"   "awesome experience"   "best experience"     
##  [7] "fantastic experience" "fun experience"       "great experience"    
## [10] "never died"           "no justice"           "no pain"             
## [13] "no problems"          "no smile"             "not clean"           
## [16] "not disappoint"       "not great"            "not happy"           
## [19] "not helping"          "not impressed"        "not like"            
## [22] "not worry"            "not worth"            "terrible experience" 
## [25] "violating experience" "wonderful experience" "worst experience"

This data set will still have 109 observations or those reviews that had these bigrams, but also the 12 stopwords and 12 other keywords previously used.

ML7 <- merge(MLr5,ml6, by.x='id', by.y='line')
row.names(ML7) <- ML7$id
ML8 <- ML7[,c(27,3:26,29:52)]
colnames(ML8)
##  [1] "rating"               "area_ratios"          "big_ratios"          
##  [4] "busy_ratios"          "definitely_ratios"    "feel_ratios"         
##  [7] "lot_ratios"           "many_ratios"          "open_ratios"         
## [10] "plus_ratios"          "two_ratios"           "worth_ratios"        
## [13] "year_ratios"          "the_ratios"           "and_ratios"          
## [16] "for_ratios"           "have_ratios"          "that_ratios"         
## [19] "they_ratios"          "this_ratios"          "you_ratios"          
## [22] "not_ratios"           "but_ratios"           "good_ratios"         
## [25] "with_ratios"          "amazing experience"   "awesome experience"  
## [28] "best experience"      "fantastic experience" "fun experience"      
## [31] "great experience"     "never died"           "no justice"          
## [34] "no pain"              "no problems"          "no smile"            
## [37] "not clean"            "not disappoint"       "not great"           
## [40] "not happy"            "not helping"          "not impressed"       
## [43] "not like"             "not worry"            "not worth"           
## [46] "terrible experience"  "violating experience" "wonderful experience"
## [49] "worst experience"

We have to impute the NAs with zeros.

ML_1 <- as.matrix(ML8)
ML_2 <- as.factor(paste(ML_1))
ML_3 <- gsub('NA','0',ML_2)
ML_4 <- as.numeric(paste(ML_3))#to make numeric 2nd run
ML_5 <- matrix(ML_4,nrow=109,ncol=49,byrow=FALSE)
ML_6 <- as.data.frame(ML_5)
colnames(ML_6) <- colnames(ML8)
row.names(ML_6) <- row.names(ML8)
write.csv(ML_6, 'ML_48_keywords_bigrams.csv', row.names=TRUE)

Now lets run our knn, random forest and glm algorithms on this data and see if there are any improvements.

ML_6$rating <- as.factor(paste(ml6$rating))#turn to factor to classify

set.seed(12345)
inTrain <- createDataPartition(y=ML_6$rating, p=0.7, list=FALSE)

trainingSet <- ML_6[inTrain,]
testingSet <- ML_6[-inTrain,]

Lets use random forest, knn, and glm algorithms to predict the ratings.

rf_boot <- train(rating~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)
predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$rating)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.2333333
head(DF_boot,30)
##    predRF_boot type
## 1            1    5
## 2            5    5
## 3            5    2
## 4            1    4
## 5            5    1
## 6            1    4
## 7            5    1
## 8            1    5
## 9            1    5
## 10           5    3
## 11           5    5
## 12           1    4
## 13           5    2
## 14           1    4
## 15           5    1
## 16           5    5
## 17           5    1
## 18           5    5
## 19           5    3
## 20           1    5
## 21           5    5
## 22           1    2
## 23           1    1
## 24           1    4
## 25           5    4
## 26           5    1
## 27           5    3
## 28           5    1
## 29           5    1
## 30           5    5

The random forest scored 23% accuracy. There must be more noise than value added by these feature when used altogether. But we can see if the other two algorithms do better.

knn_boot <- train(rating ~ .,
                method='knn', preProcess=c('center','scale'),
                tuneLength=10, trControl=trainControl(method='boot'),
                data=trainingSet)
predKNN_boot <- predict(knn_boot, testingSet)

DF_KNN_boot <- data.frame(predKNN_boot, type=testingSet$rating)

length_KNN_boot <- length(DF_KNN_boot$type)

sum_KNN_boot <- sum(DF_KNN_boot$predKNN_boot==DF_KNN_boot$type)

accKNN_boot <- (sum_KNN_boot/length_KNN_boot)

accKNN_boot
## [1] 0.4
head(DF_KNN_boot,30)
##    predKNN_boot type
## 1             4    5
## 2             5    5
## 3             5    2
## 4             2    4
## 5             2    1
## 6             5    4
## 7             1    1
## 8             2    5
## 9             1    5
## 10            4    3
## 11            1    5
## 12            4    4
## 13            1    2
## 14            4    4
## 15            5    1
## 16            1    5
## 17            1    1
## 18            5    5
## 19            3    3
## 20            5    5
## 21            5    5
## 22            1    2
## 23            4    1
## 24            4    4
## 25            1    4
## 26            1    1
## 27            1    3
## 28            4    1
## 29            1    1
## 30            1    5

The KNN scored 40% accuracy.

Lets try the ceiling of GLM.

trainingSet$rating <- as.numeric(paste(trainingSet$rating))
testingSet$rating <- as.numeric(paste(testingSet$rating))

glmMod2 <- train(rating ~ .,
                method='glm', data=trainingSet)
predglm2 <- predict(glmMod2, testingSet)

DF_glm2 <- data.frame(predglm2,ceiling=ceiling(predglm2), type=testingSet$rating)

length_glm2 <- length(DF_glm2$type)

sum_glm2 <- sum(ceiling(DF_glm2$predglm2)==DF_glm2$type)

accglm2 <- (sum_glm2/length_glm2)

accglm2
## [1] 0.2666667
head(DF_glm2,30)
##       predglm2 ceiling type
## 18   2.5491252       3    5
## 34   4.8735086       5    5
## 58   2.9374546       3    2
## 95   2.1478452       3    4
## 130  3.2305343       4    1
## 153  5.2685868       6    4
## 186  4.3371657       5    1
## 204  2.6148240       3    5
## 211  2.6424274       3    5
## 219  2.9959584       3    3
## 224  4.8353283       5    5
## 230  2.1789302       3    4
## 280  5.3764506       6    2
## 303  4.3443788       5    4
## 308  7.2435515       8    1
## 315  4.3766337       5    5
## 321  0.6355124       1    1
## 322  5.0533019       6    5
## 327 12.0571964      13    3
## 331  4.4958538       5    5
## 360  5.3429426       6    5
## 408  1.7327416       2    2
## 416  6.0839505       7    1
## 456  8.8581002       9    4
## 458 16.8753035      17    4
## 474  2.3655459       3    1
## 475  2.1336747       3    3
## 507 -2.2033604      -2    1
## 605  2.6723522       3    1
## 610  2.6543036       3    5

The GLM algorithm scored 27% accuracy on rating prediction with the 48 mixtures of 24 bigrams, 12 stopwords, and 12 keywords. The best in prediction has been the data on all 614 observations where the 12 keywords and 12 stopwords were used. These bigrams, tend to add noise, probably due to the scoring of their bigrams, and how avgScore might have thrown off the calculations in predicting the ratings 1-5. And the bigrams were only used on the data that had at least one bigram in that review.

For curiosity, earlier we wanted to see a threshold value for those reviews that had a low avgScore but a high rating and vice versa with a high avgScore but low rating using those 48 bigrams. Lets see if we can devise a simple theshold model that selects the rating based on the value, and see if it is at least better than these last few models of 23-40% accuracy on 109/614 reviews.

Lets just use the ml6 data with the rating and avgScore for 109 reviews. Then predict based on the threshold.

ml6b <- ml6[,1:3]
ml6c <- ml6b %>% group_by(rating,avgScore) %>% count()
ml6d <- ml6c[with(ml6c, order(rating,avgScore,decreasing=TRUE)),]
ml6d
## # A tibble: 25 x 3
## # Groups:   rating, avgScore [25]
##    rating avgScore     n
##     <dbl>    <dbl> <int>
##  1      5      4       9
##  2      5      3.5     1
##  3      5      3       9
##  4      5      2       2
##  5      5      0      13
##  6      5     -2       1
##  7      4      4       4
##  8      4      3       3
##  9      4      2.5     1
## 10      4      0      14
## # … with 15 more rows

We see in the above table that in the ratings of 5, most have an average score of 0 (13), then equally a 3 or 4 (9 each), and the range of 5 is -2 to 4 for the average score. Then for rating 4, the range is -6 to 4, with most (14) having an avgScore of 0, then a 4 (4). For rating 3, the range is -3 to 4 with more at a 0 (8) and the next having an avgScore of 4 (2). For rating 2, the range is -4 to 0, also with more having a 0 (6) and the next having a -2 (4). And for rating 1, the range is -6 to 1, with most also at 0 (18), then a -3 (5). So we know that the avgScore isn’t helpful as all ratings fall into an avgScore of 0. But some of these ratings do have their next best as a noticeable range. For 1s it is -3 as a threshold, and for 2s the threshold is -2, 3s have a threshold of 2, for 4s the theshold is 4, and for 5s the threshold is 3 or 4 as its tie. Lets create this predictor field based on these thresholds. Since there are more 1s at 0 then 5s and 4s, we will let that range belong to 1 ratings. The 2 ratings will go to any values between -2 and -3, the 1 rating not only get the 0s of avgScore but also any values less than or equal to -3, and the 4 ratings get the values including 3 and up to 4 for avgScore, and 5 ratings go to any ratings equal to a 4 in avgScore. This is literally a generalization, what models are built upon the training set by using discriminants like the following ifelse statement. So, anytime there is a zero, it will be a 1 predicted rating, but it will miss 41 of those 0 avgScore values because that is the total of the 0 values for a 4 or 5. Adding in those bigrams with the average score we saw above get up to 47% accuracy.

ml6b$prediction <- ifelse(ml6b$avgScore <= -2, 2,
                          ifelse(ml6b$avgScore <= -3, 1,
                                 ifelse(ml6b$avgScore>=2,3,
                                        ifelse(ml6b$avgScore>=3,4,
                                               ifelse(ml6b$avgScore>=4,5,
                                                      ifelse(ml6b$avgScore==0,1,
                                                             5)))
                                                      
                                        )
                                 )
                          )
                                
ml6b$true <- ifelse(ml6b$prediction==ml6b$rating,1,0)
accuracy <- sum(ml6b$true)/length(ml6b$true)
accuracy
## [1] 0.2385321

Using a simple threshold logic on avgScore of the bigrams scored 24 % accuracy approximately.


We developed many models, many features, and found some models with certain features were best, while some added more noise to the models and didn’t do well.

The best data of features was the data set that had all 12 selected keywords and stopwords of the same number comparing ratios of term/total terms in each document then taking the difference from each ratio to each ratio within each rating of sampled reviews. From there a vote for the minimum distance was used with the ceiling of the mean or the highest rating if there was a tie in which rating got the most votes. We also used a distance measure that took the absolute value instead of the minimum to get the votes for each rating and then take the ceiling of the mean or highest rating to predict the rating. With those ratios and not using the manual ceiling of the mean on the minimum or absolute distance, only those 24 keywords of ratios were used in various random forest models, a knn, rpart, glm, and other models to predict the rating. The best score was 64% using the glm, ceiling of the prediction as a regression instead of classification to predict the rating, also on the absolute shortest difference between review to rating reviews keyword ratios.

Natural language processing gets a lot of garbage in and garbage out when there is to much noise, but that is why playing with certain features and functions can pull out the best predictors that can be used in predicting a rating. There is another method that we used called latent dirichlet allocation for topic modeling, where ratings 1-5 would show if the review could be categorized into 1-5 topics based on that algorithm, but it scored 48% as we saw earlier when using it on the absolute minimum distance between review to rating term/total terms ratios. When using the combination of the 24 bigrams and the 24 stop/keywords, the absolute minimum distance data was used.

The best solution right now, to improve accuracy would be to lower our standards to classify the ratings 1-5 into low or high, where a low score is 1-3 and a high score is 4-5. Or to use the 1000s of words independently in their sparse matrices to predict the rating based on 1000s of features.

Lets try the lowered standards version. Python has its own method with the scikit and tensorflow and keras packages to do just this for the large dtms, and they do take a while to predict, but the accuracies in prediction are in the 90% to 98% range just using the reviews and those packages.

ml6b$lowHigh <- ifelse(ml6b$rating >=4,'high','low')
ml6b$predictLowHigh <- ifelse(ml6b$avgScore <= 0,'low','high')
ml6b$truth2 <- ifelse(ml6b$predictLowHigh==ml6b$lowHigh,1,0)
accuracy <- sum(ml6b$truth2)/length(ml6b$truth2)
accuracy
## [1] 0.6972477

Well, thats good for an improvement by breaking the reviews into dichotomies instead of quintets of classes. The prediction accuracy in the review being a low or high rating scored 70% accuracy approximately.

There is more that can be done to improve the predictions and to generalize to the entire data. There are more than one type of word scoring model, from the tidytext link given earlier, there are also bing and litigation type word scoring measures that could be incorporated into the feature selection to drive the right model selection in predicting accuracy in rating, there is also the option to add tens of thousands more reviews with ratings to give a better pool of samples to generalize a better built model to the universe of reviews, and many more. There may or many not be a keras or scikit version for R that could run the thousands of tokens through it to predict the rating based on these 614 reviews. But I do know for sure, there is one in python. I will do that and then see how well my default models do in predicitng with the ensemble linear models, naive bayes, decision trees, random forest, etc.




But wait! Theres more!

After looking at the other lexicons of word values and using those as features from AFINN, NRC, Loughran, and Bing a data frame was created. Here are the steps to get to the data frame of those word values per review. We used the same reference as above for tidytext and other libraries.

library(tidytext)
library(tm)#corpus of docs to dtm
library(dplyr)
library(ggplot2)
library(tidyr)
library(Matrix)
library(janeaustenr)
library(topicmodels)
library(quanteda) #dfm

They require commercial licensing for the NRC and Loughran sourced lexicons and citation if used in published mediums.

afinn <- get_sentiments('afinn')
nrc <- get_sentiments('nrc')
bing <- get_sentiments('bing')
loughran <- get_sentiments('loughran')

This is to run the script in Rmarkdown when knitting and not having it stop the process due to answering 1 or 2 to understanding copyright infringement.

write.csv(afinn,'afinn.csv',row.names=FALSE)
write.csv(bing,'bing.csv', row.names=FALSE)
write.csv(nrc,'nrc.csv',row.names=FALSE)
write.csv(loughran,'loughran.csv',row.names=FALSE)
afinn <- read.csv('afinn.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'))
bing <- read.csv('bing.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'))
nrc <- read.csv('nrc.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'))
loughran <- read.csv('loughran.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'))
afinn
##                    word value
## 1               abandon    -2
## 2             abandoned    -2
## 3              abandons    -2
## 4              abducted    -2
## 5             abduction    -2
## 6            abductions    -2
## 7                 abhor    -3
## 8              abhorred    -3
## 9             abhorrent    -3
## 10               abhors    -3
## 11            abilities     2
## 12              ability     2
## 13               aboard     1
## 14             absentee    -1
## 15            absentees    -1
## 16              absolve     2
## 17             absolved     2
## 18             absolves     2
## 19            absolving     2
## 20             absorbed     1
## 21                abuse    -3
## 22               abused    -3
## 23               abuses    -3
## 24              abusive    -3
## 25               accept     1
## 26             accepted     1
## 27            accepting     1
## 28              accepts     1
## 29             accident    -2
## 30           accidental    -2
## 31         accidentally    -2
## 32            accidents    -2
## 33           accomplish     2
## 34         accomplished     2
## 35         accomplishes     2
## 36           accusation    -2
## 37          accusations    -2
## 38               accuse    -2
## 39              accused    -2
## 40              accuses    -2
## 41             accusing    -2
## 42                 ache    -2
## 43           achievable     1
## 44               aching    -2
## 45               acquit     2
## 46              acquits     2
## 47            acquitted     2
## 48           acquitting     2
## 49          acrimonious    -3
## 50               active     1
## 51             adequate     1
## 52               admire     3
## 53              admired     3
## 54              admires     3
## 55             admiring     3
## 56                admit    -1
## 57               admits    -1
## 58             admitted    -1
## 59             admonish    -2
## 60           admonished    -2
## 61                adopt     1
## 62               adopts     1
## 63             adorable     3
## 64                adore     3
## 65               adored     3
## 66               adores     3
## 67             advanced     1
## 68            advantage     2
## 69           advantages     2
## 70            adventure     2
## 71           adventures     2
## 72          adventurous     2
## 73             affected    -1
## 74            affection     3
## 75         affectionate     3
## 76            afflicted    -1
## 77            affronted    -1
## 78               afraid    -2
## 79            aggravate    -2
## 80           aggravated    -2
## 81           aggravates    -2
## 82          aggravating    -2
## 83           aggression    -2
## 84          aggressions    -2
## 85           aggressive    -2
## 86               aghast    -2
## 87                 agog     2
## 88              agonise    -3
## 89             agonised    -3
## 90             agonises    -3
## 91            agonising    -3
## 92              agonize    -3
## 93             agonized    -3
## 94             agonizes    -3
## 95            agonizing    -3
## 96                agree     1
## 97            agreeable     2
## 98               agreed     1
## 99            agreement     1
## 100              agrees     1
## 101               alarm    -2
## 102             alarmed    -2
## 103            alarmist    -2
## 104           alarmists    -2
## 105                alas    -1
## 106               alert    -1
## 107          alienation    -2
## 108               alive     1
## 109            allergic    -2
## 110               allow     1
## 111               alone    -2
## 112               amaze     2
## 113              amazed     2
## 114              amazes     2
## 115             amazing     4
## 116           ambitious     2
## 117          ambivalent    -1
## 118               amuse     3
## 119              amused     3
## 120           amusement     3
## 121          amusements     3
## 122               anger    -3
## 123              angers    -3
## 124               angry    -3
## 125             anguish    -3
## 126           anguished    -3
## 127           animosity    -2
## 128               annoy    -2
## 129           annoyance    -2
## 130             annoyed    -2
## 131            annoying    -2
## 132              annoys    -2
## 133        antagonistic    -2
## 134                anti    -1
## 135        anticipation     1
## 136             anxiety    -2
## 137             anxious    -2
## 138           apathetic    -3
## 139              apathy    -3
## 140             apeshit    -3
## 141         apocalyptic    -2
## 142           apologise    -1
## 143          apologised    -1
## 144          apologises    -1
## 145         apologising    -1
## 146           apologize    -1
## 147          apologized    -1
## 148          apologizes    -1
## 149         apologizing    -1
## 150             apology    -1
## 151            appalled    -2
## 152           appalling    -2
## 153             appease     2
## 154            appeased     2
## 155            appeases     2
## 156           appeasing     2
## 157             applaud     2
## 158           applauded     2
## 159          applauding     2
## 160            applauds     2
## 161            applause     2
## 162          appreciate     2
## 163         appreciated     2
## 164         appreciates     2
## 165        appreciating     2
## 166        appreciation     2
## 167        apprehensive    -2
## 168            approval     2
## 169            approved     2
## 170            approves     2
## 171              ardent     1
## 172              arrest    -2
## 173            arrested    -3
## 174             arrests    -2
## 175            arrogant    -2
## 176              ashame    -2
## 177             ashamed    -2
## 178                 ass    -4
## 179       assassination    -3
## 180      assassinations    -3
## 181               asset     2
## 182              assets     2
## 183          assfucking    -4
## 184             asshole    -4
## 185          astonished     2
## 186             astound     3
## 187           astounded     3
## 188          astounding     3
## 189        astoundingly     3
## 190            astounds     3
## 191              attack    -1
## 192            attacked    -1
## 193           attacking    -1
## 194             attacks    -1
## 195             attract     1
## 196           attracted     1
## 197          attracting     2
## 198          attraction     2
## 199         attractions     2
## 200            attracts     1
## 201           audacious     3
## 202           authority     1
## 203               avert    -1
## 204             averted    -1
## 205              averts    -1
## 206                avid     2
## 207               avoid    -1
## 208             avoided    -1
## 209              avoids    -1
## 210               await    -1
## 211             awaited    -1
## 212              awaits    -1
## 213               award     3
## 214             awarded     3
## 215              awards     3
## 216             awesome     4
## 217               awful    -3
## 218             awkward    -2
## 219                 axe    -1
## 220                axed    -1
## 221              backed     1
## 222             backing     2
## 223               backs     1
## 224                 bad    -3
## 225              badass    -3
## 226               badly    -3
## 227             bailout    -2
## 228           bamboozle    -2
## 229          bamboozled    -2
## 230          bamboozles    -2
## 231                 ban    -2
## 232              banish    -1
## 233            bankrupt    -3
## 234            bankster    -3
## 235              banned    -2
## 236             bargain     2
## 237             barrier    -2
## 238             bastard    -5
## 239            bastards    -5
## 240              battle    -1
## 241             battles    -1
## 242              beaten    -2
## 243            beatific     3
## 244             beating    -1
## 245            beauties     3
## 246           beautiful     3
## 247         beautifully     3
## 248            beautify     3
## 249            belittle    -2
## 250           belittled    -2
## 251             beloved     3
## 252             benefit     2
## 253            benefits     2
## 254          benefitted     2
## 255         benefitting     2
## 256             bereave    -2
## 257            bereaved    -2
## 258            bereaves    -2
## 259           bereaving    -2
## 260                best     3
## 261              betray    -3
## 262            betrayal    -3
## 263            betrayed    -3
## 264           betraying    -3
## 265             betrays    -3
## 266              better     2
## 267                bias    -1
## 268              biased    -2
## 269                 big     1
## 270               bitch    -5
## 271             bitches    -5
## 272              bitter    -2
## 273            bitterly    -2
## 274             bizarre    -2
## 275                blah    -2
## 276               blame    -2
## 277              blamed    -2
## 278              blames    -2
## 279             blaming    -2
## 280               bless     2
## 281             blesses     2
## 282            blessing     3
## 283               blind    -1
## 284               bliss     3
## 285            blissful     3
## 286              blithe     2
## 287               block    -1
## 288         blockbuster     3
## 289             blocked    -1
## 290            blocking    -1
## 291              blocks    -1
## 292              bloody    -3
## 293              blurry    -2
## 294            boastful    -2
## 295                bold     2
## 296              boldly     2
## 297                bomb    -1
## 298               boost     1
## 299             boosted     1
## 300            boosting     1
## 301              boosts     1
## 302                bore    -2
## 303               bored    -2
## 304              boring    -3
## 305              bother    -2
## 306            bothered    -2
## 307             bothers    -2
## 308          bothersome    -2
## 309             boycott    -2
## 310           boycotted    -2
## 311          boycotting    -2
## 312            boycotts    -2
## 313        brainwashing    -3
## 314               brave     2
## 315        breakthrough     3
## 316        breathtaking     5
## 317               bribe    -3
## 318              bright     1
## 319           brightest     2
## 320          brightness     1
## 321           brilliant     4
## 322               brisk     2
## 323               broke    -1
## 324              broken    -1
## 325            brooding    -2
## 326             bullied    -2
## 327            bullshit    -4
## 328               bully    -2
## 329            bullying    -2
## 330              bummer    -2
## 331             buoyant     2
## 332              burden    -2
## 333            burdened    -2
## 334           burdening    -2
## 335             burdens    -2
## 336                calm     2
## 337              calmed     2
## 338             calming     2
## 339               calms     2
## 340         can't stand    -3
## 341              cancel    -1
## 342           cancelled    -1
## 343          cancelling    -1
## 344             cancels    -1
## 345              cancer    -1
## 346             capable     1
## 347          captivated     3
## 348                care     2
## 349            carefree     1
## 350             careful     2
## 351           carefully     2
## 352            careless    -2
## 353               cares     2
## 354          cashing in    -2
## 355            casualty    -2
## 356         catastrophe    -3
## 357        catastrophic    -4
## 358            cautious    -1
## 359           celebrate     3
## 360          celebrated     3
## 361          celebrates     3
## 362         celebrating     3
## 363              censor    -2
## 364            censored    -2
## 365             censors    -2
## 366             certain     1
## 367             chagrin    -2
## 368           chagrined    -2
## 369           challenge    -1
## 370              chance     2
## 371             chances     2
## 372               chaos    -2
## 373             chaotic    -2
## 374             charged    -3
## 375             charges    -2
## 376               charm     3
## 377            charming     3
## 378           charmless    -3
## 379            chastise    -3
## 380           chastised    -3
## 381           chastises    -3
## 382          chastising    -3
## 383               cheat    -3
## 384             cheated    -3
## 385             cheater    -3
## 386            cheaters    -3
## 387              cheats    -3
## 388               cheer     2
## 389             cheered     2
## 390            cheerful     2
## 391            cheering     2
## 392           cheerless    -2
## 393              cheers     2
## 394              cheery     3
## 395             cherish     2
## 396           cherished     2
## 397           cherishes     2
## 398          cherishing     2
## 399                chic     2
## 400            childish    -2
## 401            chilling    -1
## 402               choke    -2
## 403              choked    -2
## 404              chokes    -2
## 405             choking    -2
## 406           clarifies     2
## 407             clarity     2
## 408               clash    -2
## 409              classy     3
## 410               clean     2
## 411             cleaner     2
## 412               clear     1
## 413             cleared     1
## 414             clearly     1
## 415              clears     1
## 416              clever     2
## 417             clouded    -1
## 418            clueless    -2
## 419                cock    -5
## 420          cocksucker    -5
## 421         cocksuckers    -5
## 422               cocky    -2
## 423             coerced    -2
## 424            collapse    -2
## 425           collapsed    -2
## 426           collapses    -2
## 427          collapsing    -2
## 428             collide    -1
## 429            collides    -1
## 430           colliding    -1
## 431           collision    -2
## 432          collisions    -2
## 433           colluding    -3
## 434              combat    -1
## 435             combats    -1
## 436              comedy     1
## 437             comfort     2
## 438         comfortable     2
## 439          comforting     2
## 440            comforts     2
## 441             commend     2
## 442           commended     2
## 443              commit     1
## 444          commitment     2
## 445             commits     1
## 446           committed     1
## 447          committing     1
## 448       compassionate     2
## 449           compelled     1
## 450           competent     2
## 451         competitive     2
## 452          complacent    -2
## 453            complain    -2
## 454          complained    -2
## 455           complains    -2
## 456       comprehensive     2
## 457          conciliate     2
## 458         conciliated     2
## 459         conciliates     2
## 460        conciliating     2
## 461             condemn    -2
## 462        condemnation    -2
## 463           condemned    -2
## 464            condemns    -2
## 465          confidence     2
## 466           confident     2
## 467            conflict    -2
## 468         conflicting    -2
## 469         conflictive    -2
## 470           conflicts    -2
## 471             confuse    -2
## 472            confused    -2
## 473           confusing    -2
## 474            congrats     2
## 475        congratulate     2
## 476      congratulation     2
## 477     congratulations     2
## 478             consent     2
## 479            consents     2
## 480          consolable     2
## 481          conspiracy    -3
## 482         constrained    -2
## 483           contagion    -2
## 484          contagions    -2
## 485          contagious    -1
## 486            contempt    -2
## 487        contemptuous    -2
## 488      contemptuously    -2
## 489             contend    -1
## 490           contender    -1
## 491          contending    -1
## 492         contentious    -2
## 493         contestable    -2
## 494       controversial    -2
## 495     controversially    -2
## 496            convince     1
## 497           convinced     1
## 498           convinces     1
## 499           convivial     2
## 500                cool     1
## 501          cool stuff     3
## 502            cornered    -2
## 503              corpse    -1
## 504              costly    -2
## 505             courage     2
## 506          courageous     2
## 507           courteous     2
## 508            courtesy     2
## 509            cover-up    -3
## 510              coward    -2
## 511            cowardly    -2
## 512            coziness     2
## 513               cramp    -1
## 514                crap    -3
## 515               crash    -2
## 516             crazier    -2
## 517            craziest    -2
## 518               crazy    -2
## 519            creative     2
## 520         crestfallen    -2
## 521               cried    -2
## 522               cries    -2
## 523               crime    -3
## 524            criminal    -3
## 525           criminals    -3
## 526              crisis    -3
## 527              critic    -2
## 528           criticism    -2
## 529           criticize    -2
## 530          criticized    -2
## 531          criticizes    -2
## 532         criticizing    -2
## 533             critics    -2
## 534               cruel    -3
## 535             cruelty    -3
## 536               crush    -1
## 537             crushed    -2
## 538             crushes    -1
## 539            crushing    -1
## 540                 cry    -1
## 541              crying    -2
## 542                cunt    -5
## 543             curious     1
## 544               curse    -1
## 545                 cut    -1
## 546                cute     2
## 547                cuts    -1
## 548             cutting    -1
## 549               cynic    -2
## 550             cynical    -2
## 551            cynicism    -2
## 552              damage    -3
## 553             damages    -3
## 554                damn    -4
## 555              damned    -4
## 556              damnit    -4
## 557              danger    -2
## 558           daredevil     2
## 559              daring     2
## 560             darkest    -2
## 561            darkness    -1
## 562           dauntless     2
## 563                dead    -3
## 564            deadlock    -2
## 565           deafening    -1
## 566                dear     2
## 567              dearly     3
## 568               death    -2
## 569            debonair     2
## 570                debt    -2
## 571              deceit    -3
## 572           deceitful    -3
## 573             deceive    -3
## 574            deceived    -3
## 575            deceives    -3
## 576           deceiving    -3
## 577           deception    -3
## 578            decisive     1
## 579           dedicated     2
## 580            defeated    -2
## 581              defect    -3
## 582             defects    -3
## 583            defender     2
## 584           defenders     2
## 585         defenseless    -2
## 586               defer    -1
## 587           deferring    -1
## 588             defiant    -1
## 589             deficit    -2
## 590             degrade    -2
## 591            degraded    -2
## 592            degrades    -2
## 593          dehumanize    -2
## 594         dehumanized    -2
## 595         dehumanizes    -2
## 596        dehumanizing    -2
## 597              deject    -2
## 598            dejected    -2
## 599           dejecting    -2
## 600             dejects    -2
## 601               delay    -1
## 602             delayed    -1
## 603             delight     3
## 604           delighted     3
## 605          delighting     3
## 606            delights     3
## 607              demand    -1
## 608            demanded    -1
## 609           demanding    -1
## 610             demands    -1
## 611       demonstration    -1
## 612         demoralized    -2
## 613              denied    -2
## 614              denier    -2
## 615             deniers    -2
## 616              denies    -2
## 617            denounce    -2
## 618           denounces    -2
## 619                deny    -2
## 620             denying    -2
## 621           depressed    -2
## 622          depressing    -2
## 623              derail    -2
## 624            derailed    -2
## 625             derails    -2
## 626              deride    -2
## 627             derided    -2
## 628             derides    -2
## 629            deriding    -2
## 630            derision    -2
## 631           desirable     2
## 632              desire     1
## 633             desired     2
## 634            desirous     2
## 635             despair    -3
## 636          despairing    -3
## 637            despairs    -3
## 638           desperate    -3
## 639         desperately    -3
## 640          despondent    -3
## 641             destroy    -3
## 642           destroyed    -3
## 643          destroying    -3
## 644            destroys    -3
## 645         destruction    -3
## 646         destructive    -3
## 647            detached    -1
## 648              detain    -2
## 649            detained    -2
## 650           detention    -2
## 651          determined     2
## 652           devastate    -2
## 653          devastated    -2
## 654         devastating    -2
## 655             devoted     3
## 656             diamond     1
## 657                dick    -4
## 658            dickhead    -4
## 659                 die    -3
## 660                died    -3
## 661           difficult    -1
## 662           diffident    -2
## 663             dilemma    -1
## 664             dipshit    -3
## 665                dire    -3
## 666             direful    -3
## 667                dirt    -2
## 668             dirtier    -2
## 669            dirtiest    -2
## 670               dirty    -2
## 671           disabling    -1
## 672        disadvantage    -2
## 673       disadvantaged    -2
## 674           disappear    -1
## 675         disappeared    -1
## 676          disappears    -1
## 677          disappoint    -2
## 678        disappointed    -2
## 679       disappointing    -2
## 680      disappointment    -2
## 681     disappointments    -2
## 682         disappoints    -2
## 683            disaster    -2
## 684           disasters    -2
## 685          disastrous    -3
## 686          disbelieve    -2
## 687             discard    -1
## 688           discarded    -1
## 689          discarding    -1
## 690            discards    -1
## 691        disconsolate    -2
## 692      disconsolation    -2
## 693        discontented    -2
## 694             discord    -2
## 695          discounted    -1
## 696         discouraged    -2
## 697         discredited    -2
## 698             disdain    -2
## 699            disgrace    -2
## 700           disgraced    -2
## 701            disguise    -1
## 702           disguised    -1
## 703           disguises    -1
## 704          disguising    -1
## 705             disgust    -3
## 706           disgusted    -3
## 707          disgusting    -3
## 708        disheartened    -2
## 709           dishonest    -2
## 710       disillusioned    -2
## 711         disinclined    -2
## 712          disjointed    -2
## 713             dislike    -2
## 714              dismal    -2
## 715            dismayed    -2
## 716            disorder    -2
## 717        disorganized    -2
## 718         disoriented    -2
## 719           disparage    -2
## 720          disparaged    -2
## 721          disparages    -2
## 722         disparaging    -2
## 723          displeased    -2
## 724             dispute    -2
## 725            disputed    -2
## 726            disputes    -2
## 727           disputing    -2
## 728        disqualified    -2
## 729            disquiet    -2
## 730           disregard    -2
## 731         disregarded    -2
## 732        disregarding    -2
## 733          disregards    -2
## 734          disrespect    -2
## 735        disrespected    -2
## 736          disruption    -2
## 737         disruptions    -2
## 738          disruptive    -2
## 739        dissatisfied    -2
## 740             distort    -2
## 741           distorted    -2
## 742          distorting    -2
## 743            distorts    -2
## 744            distract    -2
## 745          distracted    -2
## 746         distraction    -2
## 747           distracts    -2
## 748            distress    -2
## 749          distressed    -2
## 750          distresses    -2
## 751         distressing    -2
## 752            distrust    -3
## 753         distrustful    -3
## 754             disturb    -2
## 755           disturbed    -2
## 756          disturbing    -2
## 757            disturbs    -2
## 758           dithering    -2
## 759               dizzy    -1
## 760             dodging    -2
## 761               dodgy    -2
## 762       does not work    -3
## 763            dolorous    -2
## 764           dont like    -2
## 765                doom    -2
## 766              doomed    -2
## 767               doubt    -1
## 768             doubted    -1
## 769            doubtful    -1
## 770            doubting    -1
## 771              doubts    -1
## 772              douche    -3
## 773           douchebag    -3
## 774            downcast    -2
## 775         downhearted    -2
## 776            downside    -2
## 777                drag    -1
## 778             dragged    -1
## 779               drags    -1
## 780             drained    -2
## 781               dread    -2
## 782             dreaded    -2
## 783            dreadful    -3
## 784            dreading    -2
## 785               dream     1
## 786              dreams     1
## 787              dreary    -2
## 788              droopy    -2
## 789                drop    -1
## 790               drown    -2
## 791             drowned    -2
## 792              drowns    -2
## 793               drunk    -2
## 794             dubious    -2
## 795                 dud    -2
## 796                dull    -2
## 797                dumb    -3
## 798             dumbass    -3
## 799                dump    -1
## 800              dumped    -2
## 801               dumps    -1
## 802                dupe    -2
## 803               duped    -2
## 804         dysfunction    -2
## 805               eager     2
## 806             earnest     2
## 807                ease     2
## 808                easy     1
## 809            ecstatic     4
## 810               eerie    -2
## 811                eery    -2
## 812           effective     2
## 813         effectively     2
## 814              elated     3
## 815             elation     3
## 816             elegant     2
## 817           elegantly     2
## 818           embarrass    -2
## 819         embarrassed    -2
## 820         embarrasses    -2
## 821        embarrassing    -2
## 822       embarrassment    -2
## 823          embittered    -2
## 824             embrace     1
## 825           emergency    -2
## 826          empathetic     2
## 827           emptiness    -1
## 828               empty    -1
## 829           enchanted     2
## 830           encourage     2
## 831          encouraged     2
## 832       encouragement     2
## 833          encourages     2
## 834             endorse     2
## 835            endorsed     2
## 836         endorsement     2
## 837            endorses     2
## 838             enemies    -2
## 839               enemy    -2
## 840           energetic     2
## 841              engage     1
## 842             engages     1
## 843           engrossed     1
## 844               enjoy     2
## 845            enjoying     2
## 846              enjoys     2
## 847           enlighten     2
## 848         enlightened     2
## 849        enlightening     2
## 850          enlightens     2
## 851               ennui    -2
## 852              enrage    -2
## 853             enraged    -2
## 854             enrages    -2
## 855            enraging    -2
## 856           enrapture     3
## 857             enslave    -2
## 858            enslaved    -2
## 859            enslaves    -2
## 860              ensure     1
## 861            ensuring     1
## 862        enterprising     1
## 863        entertaining     2
## 864             enthral     3
## 865        enthusiastic     3
## 866            entitled     1
## 867           entrusted     2
## 868              envies    -1
## 869             envious    -2
## 870                envy    -1
## 871             envying    -1
## 872           erroneous    -2
## 873               error    -2
## 874              errors    -2
## 875              escape    -1
## 876             escapes    -1
## 877            escaping    -1
## 878            esteemed     2
## 879             ethical     2
## 880            euphoria     3
## 881            euphoric     4
## 882            eviction    -1
## 883                evil    -3
## 884          exaggerate    -2
## 885         exaggerated    -2
## 886         exaggerates    -2
## 887        exaggerating    -2
## 888         exasperated     2
## 889          excellence     3
## 890           excellent     3
## 891              excite     3
## 892             excited     3
## 893          excitement     3
## 894            exciting     3
## 895             exclude    -1
## 896            excluded    -2
## 897           exclusion    -1
## 898           exclusive     2
## 899              excuse    -1
## 900              exempt    -1
## 901           exhausted    -2
## 902         exhilarated     3
## 903         exhilarates     3
## 904        exhilarating     3
## 905           exonerate     2
## 906          exonerated     2
## 907          exonerates     2
## 908         exonerating     2
## 909              expand     1
## 910             expands     1
## 911               expel    -2
## 912            expelled    -2
## 913           expelling    -2
## 914              expels    -2
## 915             exploit    -2
## 916           exploited    -2
## 917          exploiting    -2
## 918            exploits    -2
## 919         exploration     1
## 920        explorations     1
## 921              expose    -1
## 922             exposed    -1
## 923             exposes    -1
## 924            exposing    -1
## 925              extend     1
## 926             extends     1
## 927           exuberant     4
## 928            exultant     3
## 929          exultantly     3
## 930            fabulous     4
## 931                 fad    -2
## 932                 fag    -3
## 933              faggot    -3
## 934             faggots    -3
## 935                fail    -2
## 936              failed    -2
## 937             failing    -2
## 938               fails    -2
## 939             failure    -2
## 940            failures    -2
## 941        fainthearted    -2
## 942                fair     2
## 943               faith     1
## 944            faithful     3
## 945                fake    -3
## 946               fakes    -3
## 947              faking    -3
## 948              fallen    -2
## 949             falling    -1
## 950           falsified    -3
## 951             falsify    -3
## 952                fame     1
## 953                 fan     3
## 954           fantastic     4
## 955               farce    -1
## 956           fascinate     3
## 957          fascinated     3
## 958          fascinates     3
## 959         fascinating     3
## 960             fascist    -2
## 961            fascists    -2
## 962          fatalities    -3
## 963            fatality    -3
## 964             fatigue    -2
## 965            fatigued    -2
## 966            fatigues    -2
## 967           fatiguing    -2
## 968               favor     2
## 969             favored     2
## 970            favorite     2
## 971           favorited     2
## 972           favorites     2
## 973              favors     2
## 974                fear    -2
## 975             fearful    -2
## 976             fearing    -2
## 977            fearless     2
## 978            fearsome    -2
## 979              fed up    -3
## 980              feeble    -2
## 981             feeling     1
## 982            felonies    -3
## 983              felony    -3
## 984             fervent     2
## 985              fervid     2
## 986             festive     2
## 987              fiasco    -3
## 988             fidgety    -2
## 989               fight    -1
## 990                fine     2
## 991                fire    -2
## 992               fired    -2
## 993              firing    -2
## 994                 fit     1
## 995             fitness     1
## 996            flagship     2
## 997               flees    -1
## 998                flop    -2
## 999               flops    -2
## 1000                flu    -2
## 1001          flustered    -2
## 1002            focused     2
## 1003               fond     2
## 1004           fondness     2
## 1005               fool    -2
## 1006            foolish    -2
## 1007              fools    -2
## 1008             forced    -1
## 1009        foreclosure    -2
## 1010       foreclosures    -2
## 1011             forget    -1
## 1012          forgetful    -2
## 1013            forgive     1
## 1014          forgiving     1
## 1015          forgotten    -1
## 1016          fortunate     2
## 1017            frantic    -1
## 1018              fraud    -4
## 1019             frauds    -4
## 1020          fraudster    -4
## 1021         fraudsters    -4
## 1022        fraudulence    -4
## 1023         fraudulent    -4
## 1024               free     1
## 1025            freedom     2
## 1026             frenzy    -3
## 1027              fresh     1
## 1028           friendly     2
## 1029             fright    -2
## 1030         frightened    -2
## 1031        frightening    -3
## 1032             frikin    -2
## 1033             frisky     2
## 1034           frowning    -1
## 1035          frustrate    -2
## 1036         frustrated    -2
## 1037         frustrates    -2
## 1038        frustrating    -2
## 1039        frustration    -2
## 1040                ftw     3
## 1041               fuck    -4
## 1042             fucked    -4
## 1043             fucker    -4
## 1044            fuckers    -4
## 1045           fuckface    -4
## 1046           fuckhead    -4
## 1047            fucking    -4
## 1048           fucktard    -4
## 1049                fud    -3
## 1050              fuked    -4
## 1051             fuking    -4
## 1052            fulfill     2
## 1053          fulfilled     2
## 1054           fulfills     2
## 1055             fuming    -2
## 1056                fun     4
## 1057            funeral    -1
## 1058           funerals    -1
## 1059              funky     2
## 1060            funnier     4
## 1061              funny     4
## 1062            furious    -3
## 1063             futile     2
## 1064                gag    -2
## 1065             gagged    -2
## 1066               gain     2
## 1067             gained     2
## 1068            gaining     2
## 1069              gains     2
## 1070            gallant     3
## 1071          gallantly     3
## 1072          gallantry     3
## 1073           generous     2
## 1074             genial     3
## 1075              ghost    -1
## 1076              giddy    -2
## 1077               gift     2
## 1078               glad     3
## 1079          glamorous     3
## 1080         glamourous     3
## 1081               glee     3
## 1082            gleeful     3
## 1083              gloom    -1
## 1084             gloomy    -2
## 1085           glorious     2
## 1086              glory     2
## 1087               glum    -2
## 1088                god     1
## 1089            goddamn    -3
## 1090            godsend     4
## 1091               good     3
## 1092           goodness     3
## 1093              grace     1
## 1094           gracious     3
## 1095              grand     3
## 1096              grant     1
## 1097            granted     1
## 1098           granting     1
## 1099             grants     1
## 1100           grateful     3
## 1101      gratification     2
## 1102              grave    -2
## 1103               gray    -1
## 1104              great     3
## 1105            greater     3
## 1106           greatest     3
## 1107              greed    -3
## 1108             greedy    -2
## 1109         green wash    -3
## 1110      green washing    -3
## 1111          greenwash    -3
## 1112        greenwasher    -3
## 1113       greenwashers    -3
## 1114       greenwashing    -3
## 1115              greet     1
## 1116            greeted     1
## 1117           greeting     1
## 1118          greetings     2
## 1119             greets     1
## 1120               grey    -1
## 1121              grief    -2
## 1122            grieved    -2
## 1123              gross    -2
## 1124            growing     1
## 1125             growth     2
## 1126          guarantee     1
## 1127              guilt    -3
## 1128             guilty    -3
## 1129        gullibility    -2
## 1130           gullible    -2
## 1131                gun    -1
## 1132                 ha     2
## 1133             hacked    -1
## 1134               haha     3
## 1135             hahaha     3
## 1136            hahahah     3
## 1137               hail     2
## 1138             hailed     2
## 1139            hapless    -2
## 1140        haplessness    -2
## 1141          happiness     3
## 1142              happy     3
## 1143               hard    -1
## 1144            hardier     2
## 1145           hardship    -2
## 1146              hardy     2
## 1147               harm    -2
## 1148             harmed    -2
## 1149            harmful    -2
## 1150            harming    -2
## 1151              harms    -2
## 1152            harried    -2
## 1153              harsh    -2
## 1154            harsher    -2
## 1155           harshest    -2
## 1156               hate    -3
## 1157              hated    -3
## 1158             haters    -3
## 1159              hates    -3
## 1160             hating    -3
## 1161              haunt    -1
## 1162            haunted    -2
## 1163           haunting     1
## 1164             haunts    -1
## 1165              havoc    -2
## 1166            healthy     2
## 1167      heartbreaking    -3
## 1168        heartbroken    -3
## 1169          heartfelt     3
## 1170             heaven     2
## 1171           heavenly     4
## 1172       heavyhearted    -2
## 1173               hell    -4
## 1174               help     2
## 1175            helpful     2
## 1176            helping     2
## 1177           helpless    -2
## 1178              helps     2
## 1179               hero     2
## 1180             heroes     2
## 1181             heroic     3
## 1182           hesitant    -2
## 1183           hesitate    -2
## 1184                hid    -1
## 1185               hide    -1
## 1186              hides    -1
## 1187             hiding    -1
## 1188          highlight     2
## 1189          hilarious     2
## 1190          hindrance    -2
## 1191               hoax    -2
## 1192           homesick    -2
## 1193             honest     2
## 1194              honor     2
## 1195            honored     2
## 1196           honoring     2
## 1197             honour     2
## 1198           honoured     2
## 1199          honouring     2
## 1200           hooligan    -2
## 1201        hooliganism    -2
## 1202          hooligans    -2
## 1203               hope     2
## 1204            hopeful     2
## 1205          hopefully     2
## 1206           hopeless    -2
## 1207       hopelessness    -2
## 1208              hopes     2
## 1209             hoping     2
## 1210         horrendous    -3
## 1211           horrible    -3
## 1212           horrific    -3
## 1213          horrified    -3
## 1214            hostile    -2
## 1215           huckster    -2
## 1216                hug     2
## 1217               huge     1
## 1218               hugs     2
## 1219           humerous     3
## 1220         humiliated    -3
## 1221        humiliation    -3
## 1222              humor     2
## 1223           humorous     2
## 1224             humour     2
## 1225          humourous     2
## 1226             hunger    -2
## 1227             hurrah     5
## 1228               hurt    -2
## 1229            hurting    -2
## 1230              hurts    -2
## 1231       hypocritical    -2
## 1232           hysteria    -3
## 1233         hysterical    -3
## 1234          hysterics    -3
## 1235              idiot    -3
## 1236            idiotic    -3
## 1237          ignorance    -2
## 1238           ignorant    -2
## 1239             ignore    -1
## 1240            ignored    -2
## 1241            ignores    -1
## 1242                ill    -2
## 1243            illegal    -3
## 1244         illiteracy    -2
## 1245            illness    -2
## 1246          illnesses    -2
## 1247           imbecile    -3
## 1248        immobilized    -1
## 1249           immortal     2
## 1250             immune     1
## 1251          impatient    -2
## 1252          imperfect    -2
## 1253         importance     2
## 1254          important     2
## 1255             impose    -1
## 1256            imposed    -1
## 1257            imposes    -1
## 1258           imposing    -1
## 1259           impotent    -2
## 1260            impress     3
## 1261          impressed     3
## 1262          impresses     3
## 1263         impressive     3
## 1264         imprisoned    -2
## 1265            improve     2
## 1266           improved     2
## 1267        improvement     2
## 1268           improves     2
## 1269          improving     2
## 1270          inability    -2
## 1271           inaction    -2
## 1272         inadequate    -2
## 1273          incapable    -2
## 1274      incapacitated    -2
## 1275           incensed    -2
## 1276       incompetence    -2
## 1277        incompetent    -2
## 1278      inconsiderate    -2
## 1279      inconvenience    -2
## 1280       inconvenient    -2
## 1281           increase     1
## 1282          increased     1
## 1283         indecisive    -2
## 1284     indestructible     2
## 1285       indifference    -2
## 1286        indifferent    -2
## 1287          indignant    -2
## 1288        indignation    -2
## 1289       indoctrinate    -2
## 1290      indoctrinated    -2
## 1291      indoctrinates    -2
## 1292     indoctrinating    -2
## 1293        ineffective    -2
## 1294      ineffectively    -2
## 1295         infatuated     2
## 1296        infatuation     2
## 1297           infected    -2
## 1298           inferior    -2
## 1299           inflamed    -2
## 1300        influential     2
## 1301       infringement    -2
## 1302          infuriate    -2
## 1303         infuriated    -2
## 1304         infuriates    -2
## 1305        infuriating    -2
## 1306            inhibit    -1
## 1307            injured    -2
## 1308             injury    -2
## 1309          injustice    -2
## 1310           innovate     1
## 1311          innovates     1
## 1312         innovation     1
## 1313         innovative     2
## 1314        inquisition    -2
## 1315        inquisitive     2
## 1316             insane    -2
## 1317           insanity    -2
## 1318           insecure    -2
## 1319        insensitive    -2
## 1320      insensitivity    -2
## 1321      insignificant    -2
## 1322            insipid    -2
## 1323        inspiration     2
## 1324      inspirational     2
## 1325            inspire     2
## 1326           inspired     2
## 1327           inspires     2
## 1328          inspiring     3
## 1329             insult    -2
## 1330           insulted    -2
## 1331          insulting    -2
## 1332            insults    -2
## 1333             intact     2
## 1334          integrity     2
## 1335        intelligent     2
## 1336            intense     1
## 1337           interest     1
## 1338         interested     2
## 1339        interesting     2
## 1340          interests     1
## 1341       interrogated    -2
## 1342          interrupt    -2
## 1343        interrupted    -2
## 1344       interrupting    -2
## 1345       interruption    -2
## 1346         interrupts    -2
## 1347         intimidate    -2
## 1348        intimidated    -2
## 1349        intimidates    -2
## 1350       intimidating    -2
## 1351       intimidation    -2
## 1352          intricate     2
## 1353          intrigues     1
## 1354         invincible     2
## 1355             invite     1
## 1356           inviting     1
## 1357       invulnerable     2
## 1358              irate    -3
## 1359             ironic    -1
## 1360              irony    -1
## 1361         irrational    -1
## 1362       irresistible     2
## 1363         irresolute    -2
## 1364      irresponsible     2
## 1365       irreversible    -1
## 1366           irritate    -3
## 1367          irritated    -3
## 1368         irritating    -3
## 1369           isolated    -1
## 1370              itchy    -2
## 1371            jackass    -4
## 1372          jackasses    -4
## 1373             jailed    -2
## 1374             jaunty     2
## 1375            jealous    -2
## 1376           jeopardy    -2
## 1377               jerk    -3
## 1378              jesus     1
## 1379              jewel     1
## 1380             jewels     1
## 1381            jocular     2
## 1382               join     1
## 1383               joke     2
## 1384              jokes     2
## 1385              jolly     2
## 1386             jovial     2
## 1387                joy     3
## 1388             joyful     3
## 1389           joyfully     3
## 1390            joyless    -2
## 1391             joyous     3
## 1392           jubilant     3
## 1393              jumpy    -1
## 1394            justice     2
## 1395        justifiably     2
## 1396          justified     2
## 1397               keen     1
## 1398               kill    -3
## 1399             killed    -3
## 1400            killing    -3
## 1401              kills    -3
## 1402               kind     2
## 1403             kinder     2
## 1404               kiss     2
## 1405              kudos     3
## 1406               lack    -2
## 1407      lackadaisical    -2
## 1408                lag    -1
## 1409             lagged    -2
## 1410            lagging    -2
## 1411               lags    -2
## 1412               lame    -2
## 1413           landmark     2
## 1414              laugh     1
## 1415            laughed     1
## 1416           laughing     1
## 1417             laughs     1
## 1418          laughting     1
## 1419           launched     1
## 1420               lawl     3
## 1421            lawsuit    -2
## 1422           lawsuits    -2
## 1423               lazy    -1
## 1424               leak    -1
## 1425             leaked    -1
## 1426              leave    -1
## 1427              legal     1
## 1428            legally     1
## 1429            lenient     1
## 1430          lethargic    -2
## 1431           lethargy    -2
## 1432               liar    -3
## 1433              liars    -3
## 1434           libelous    -2
## 1435               lied    -2
## 1436          lifesaver     4
## 1437       lighthearted     1
## 1438               like     2
## 1439              liked     2
## 1440              likes     2
## 1441         limitation    -1
## 1442            limited    -1
## 1443             limits    -1
## 1444         litigation    -1
## 1445          litigious    -2
## 1446             lively     2
## 1447              livid    -2
## 1448               lmao     4
## 1449              lmfao     4
## 1450             loathe    -3
## 1451            loathed    -3
## 1452            loathes    -3
## 1453           loathing    -3
## 1454              lobby    -2
## 1455           lobbying    -2
## 1456                lol     3
## 1457             lonely    -2
## 1458           lonesome    -2
## 1459            longing    -1
## 1460               loom    -1
## 1461             loomed    -1
## 1462            looming    -1
## 1463              looms    -1
## 1464              loose    -3
## 1465             looses    -3
## 1466              loser    -3
## 1467             losing    -3
## 1468               loss    -3
## 1469               lost    -3
## 1470            lovable     3
## 1471               love     3
## 1472              loved     3
## 1473           lovelies     3
## 1474             lovely     3
## 1475             loving     2
## 1476             lowest    -1
## 1477              loyal     3
## 1478            loyalty     3
## 1479               luck     3
## 1480            luckily     3
## 1481              lucky     3
## 1482         lugubrious    -2
## 1483            lunatic    -3
## 1484           lunatics    -3
## 1485               lurk    -1
## 1486            lurking    -1
## 1487              lurks    -1
## 1488                mad    -3
## 1489          maddening    -3
## 1490            made-up    -1
## 1491              madly    -3
## 1492            madness    -3
## 1493          mandatory    -1
## 1494        manipulated    -1
## 1495       manipulating    -1
## 1496       manipulation    -1
## 1497             marvel     3
## 1498          marvelous     3
## 1499            marvels     3
## 1500        masterpiece     4
## 1501       masterpieces     4
## 1502             matter     1
## 1503            matters     1
## 1504             mature     2
## 1505         meaningful     2
## 1506        meaningless    -2
## 1507              medal     3
## 1508         mediocrity    -3
## 1509         meditative     1
## 1510         melancholy    -2
## 1511             menace    -2
## 1512            menaced    -2
## 1513              mercy     2
## 1514              merry     3
## 1515               mess    -2
## 1516             messed    -2
## 1517         messing up    -2
## 1518         methodical     2
## 1519           mindless    -2
## 1520            miracle     4
## 1521              mirth     3
## 1522           mirthful     3
## 1523         mirthfully     3
## 1524          misbehave    -2
## 1525         misbehaved    -2
## 1526         misbehaves    -2
## 1527        misbehaving    -2
## 1528           mischief    -1
## 1529          mischiefs    -1
## 1530          miserable    -3
## 1531             misery    -2
## 1532          misgiving    -2
## 1533     misinformation    -2
## 1534        misinformed    -2
## 1535     misinterpreted    -2
## 1536         misleading    -3
## 1537            misread    -1
## 1538       misreporting    -2
## 1539  misrepresentation    -2
## 1540               miss    -2
## 1541             missed    -2
## 1542            missing    -2
## 1543            mistake    -2
## 1544           mistaken    -2
## 1545           mistakes    -2
## 1546          mistaking    -2
## 1547      misunderstand    -2
## 1548   misunderstanding    -2
## 1549     misunderstands    -2
## 1550      misunderstood    -2
## 1551               moan    -2
## 1552             moaned    -2
## 1553            moaning    -2
## 1554              moans    -2
## 1555               mock    -2
## 1556             mocked    -2
## 1557            mocking    -2
## 1558              mocks    -2
## 1559          mongering    -2
## 1560         monopolize    -2
## 1561        monopolized    -2
## 1562        monopolizes    -2
## 1563       monopolizing    -2
## 1564              moody    -1
## 1565               mope    -1
## 1566             moping    -1
## 1567              moron    -3
## 1568       motherfucker    -5
## 1569      motherfucking    -5
## 1570           motivate     1
## 1571          motivated     2
## 1572         motivating     2
## 1573         motivation     1
## 1574              mourn    -2
## 1575            mourned    -2
## 1576           mournful    -2
## 1577           mourning    -2
## 1578             mourns    -2
## 1579            mumpish    -2
## 1580             murder    -2
## 1581           murderer    -2
## 1582          murdering    -3
## 1583          murderous    -3
## 1584            murders    -2
## 1585               myth    -1
## 1586               n00b    -2
## 1587              naive    -2
## 1588              nasty    -3
## 1589            natural     1
## 1590              naïve    -2
## 1591              needy    -2
## 1592           negative    -2
## 1593         negativity    -2
## 1594            neglect    -2
## 1595          neglected    -2
## 1596         neglecting    -2
## 1597           neglects    -2
## 1598             nerves    -1
## 1599            nervous    -2
## 1600          nervously    -2
## 1601               nice     3
## 1602              nifty     2
## 1603             niggas    -5
## 1604             nigger    -5
## 1605                 no    -1
## 1606             no fun    -3
## 1607              noble     2
## 1608              noisy    -1
## 1609           nonsense    -2
## 1610               noob    -2
## 1611              nosey    -2
## 1612           not good    -2
## 1613        not working    -3
## 1614          notorious    -2
## 1615              novel     2
## 1616               numb    -1
## 1617               nuts    -3
## 1618         obliterate    -2
## 1619        obliterated    -2
## 1620          obnoxious    -3
## 1621            obscene    -2
## 1622           obsessed     2
## 1623           obsolete    -2
## 1624           obstacle    -2
## 1625          obstacles    -2
## 1626          obstinate    -2
## 1627                odd    -2
## 1628             offend    -2
## 1629           offended    -2
## 1630           offender    -2
## 1631          offending    -2
## 1632            offends    -2
## 1633            offline    -1
## 1634                oks     2
## 1635            ominous     3
## 1636 once-in-a-lifetime     3
## 1637      opportunities     2
## 1638        opportunity     2
## 1639          oppressed    -2
## 1640         oppressive    -2
## 1641           optimism     2
## 1642         optimistic     2
## 1643         optionless    -2
## 1644             outcry    -2
## 1645      outmaneuvered    -2
## 1646            outrage    -3
## 1647           outraged    -3
## 1648           outreach     2
## 1649        outstanding     5
## 1650          overjoyed     4
## 1651           overload    -1
## 1652         overlooked    -1
## 1653          overreact    -2
## 1654        overreacted    -2
## 1655       overreaction    -2
## 1656         overreacts    -2
## 1657           oversell    -2
## 1658        overselling    -2
## 1659          oversells    -2
## 1660 oversimplification    -2
## 1661     oversimplified    -2
## 1662     oversimplifies    -2
## 1663       oversimplify    -2
## 1664      overstatement    -2
## 1665     overstatements    -2
## 1666         overweight    -1
## 1667           oxymoron    -1
## 1668               pain    -2
## 1669             pained    -2
## 1670              panic    -3
## 1671           panicked    -3
## 1672             panics    -3
## 1673           paradise     3
## 1674            paradox    -1
## 1675             pardon     2
## 1676           pardoned     2
## 1677          pardoning     2
## 1678            pardons     2
## 1679             parley    -1
## 1680         passionate     2
## 1681            passive    -1
## 1682          passively    -1
## 1683           pathetic    -2
## 1684                pay    -1
## 1685              peace     2
## 1686           peaceful     2
## 1687         peacefully     2
## 1688            penalty    -2
## 1689            pensive    -1
## 1690            perfect     3
## 1691          perfected     2
## 1692          perfectly     3
## 1693           perfects     2
## 1694              peril    -2
## 1695            perjury    -3
## 1696        perpetrator    -2
## 1697       perpetrators    -2
## 1698          perplexed    -2
## 1699          persecute    -2
## 1700         persecuted    -2
## 1701         persecutes    -2
## 1702        persecuting    -2
## 1703          perturbed    -2
## 1704              pesky    -2
## 1705          pessimism    -2
## 1706        pessimistic    -2
## 1707          petrified    -2
## 1708             phobic    -2
## 1709        picturesque     2
## 1710             pileup    -1
## 1711              pique    -2
## 1712             piqued    -2
## 1713               piss    -4
## 1714             pissed    -4
## 1715            pissing    -3
## 1716            piteous    -2
## 1717             pitied    -1
## 1718               pity    -2
## 1719            playful     2
## 1720           pleasant     3
## 1721             please     1
## 1722            pleased     3
## 1723           pleasure     3
## 1724             poised    -2
## 1725             poison    -2
## 1726           poisoned    -2
## 1727            poisons    -2
## 1728            pollute    -2
## 1729           polluted    -2
## 1730           polluter    -2
## 1731          polluters    -2
## 1732           pollutes    -2
## 1733               poor    -2
## 1734             poorer    -2
## 1735            poorest    -2
## 1736            popular     3
## 1737           positive     2
## 1738         positively     2
## 1739         possessive    -2
## 1740           postpone    -1
## 1741          postponed    -1
## 1742          postpones    -1
## 1743         postponing    -1
## 1744            poverty    -1
## 1745           powerful     2
## 1746          powerless    -2
## 1747             praise     3
## 1748            praised     3
## 1749            praises     3
## 1750           praising     3
## 1751               pray     1
## 1752            praying     1
## 1753              prays     1
## 1754              prblm    -2
## 1755             prblms    -2
## 1756           prepared     1
## 1757           pressure    -1
## 1758          pressured    -2
## 1759            pretend    -1
## 1760         pretending    -1
## 1761           pretends    -1
## 1762             pretty     1
## 1763            prevent    -1
## 1764          prevented    -1
## 1765         preventing    -1
## 1766           prevents    -1
## 1767              prick    -5
## 1768             prison    -2
## 1769           prisoner    -2
## 1770          prisoners    -2
## 1771         privileged     2
## 1772          proactive     2
## 1773            problem    -2
## 1774           problems    -2
## 1775          profiteer    -2
## 1776           progress     2
## 1777          prominent     2
## 1778            promise     1
## 1779           promised     1
## 1780           promises     1
## 1781            promote     1
## 1782           promoted     1
## 1783           promotes     1
## 1784          promoting     1
## 1785         propaganda    -2
## 1786          prosecute    -1
## 1787         prosecuted    -2
## 1788         prosecutes    -1
## 1789        prosecution    -1
## 1790           prospect     1
## 1791          prospects     1
## 1792         prosperous     3
## 1793            protect     1
## 1794          protected     1
## 1795           protects     1
## 1796            protest    -2
## 1797         protesters    -2
## 1798         protesting    -2
## 1799           protests    -2
## 1800              proud     2
## 1801            proudly     2
## 1802            provoke    -1
## 1803           provoked    -1
## 1804           provokes    -1
## 1805          provoking    -1
## 1806      pseudoscience    -3
## 1807             punish    -2
## 1808           punished    -2
## 1809           punishes    -2
## 1810           punitive    -2
## 1811              pushy    -1
## 1812            puzzled    -2
## 1813            quaking    -2
## 1814       questionable    -2
## 1815         questioned    -1
## 1816        questioning    -1
## 1817             racism    -3
## 1818             racist    -3
## 1819            racists    -3
## 1820               rage    -2
## 1821            rageful    -2
## 1822              rainy    -1
## 1823               rant    -3
## 1824             ranter    -3
## 1825            ranters    -3
## 1826              rants    -3
## 1827               rape    -4
## 1828             rapist    -4
## 1829            rapture     2
## 1830           raptured     2
## 1831           raptures     2
## 1832          rapturous     4
## 1833               rash    -2
## 1834           ratified     2
## 1835              reach     1
## 1836            reached     1
## 1837            reaches     1
## 1838           reaching     1
## 1839           reassure     1
## 1840          reassured     1
## 1841          reassures     1
## 1842         reassuring     2
## 1843          rebellion    -2
## 1844          recession    -2
## 1845           reckless    -2
## 1846          recommend     2
## 1847        recommended     2
## 1848         recommends     2
## 1849           redeemed     2
## 1850             refuse    -2
## 1851            refused    -2
## 1852           refusing    -2
## 1853             regret    -2
## 1854          regretful    -2
## 1855            regrets    -2
## 1856          regretted    -2
## 1857         regretting    -2
## 1858             reject    -1
## 1859           rejected    -1
## 1860          rejecting    -1
## 1861            rejects    -1
## 1862            rejoice     4
## 1863           rejoiced     4
## 1864           rejoices     4
## 1865          rejoicing     4
## 1866            relaxed     2
## 1867         relentless    -1
## 1868            reliant     2
## 1869            relieve     1
## 1870           relieved     2
## 1871           relieves     1
## 1872          relieving     2
## 1873          relishing     2
## 1874         remarkable     2
## 1875            remorse    -2
## 1876            repulse    -1
## 1877           repulsed    -2
## 1878             rescue     2
## 1879            rescued     2
## 1880            rescues     2
## 1881          resentful    -2
## 1882             resign    -1
## 1883           resigned    -1
## 1884          resigning    -1
## 1885            resigns    -1
## 1886           resolute     2
## 1887            resolve     2
## 1888           resolved     2
## 1889           resolves     2
## 1890          resolving     2
## 1891          respected     2
## 1892        responsible     2
## 1893         responsive     2
## 1894            restful     2
## 1895           restless    -2
## 1896            restore     1
## 1897           restored     1
## 1898           restores     1
## 1899          restoring     1
## 1900           restrict    -2
## 1901         restricted    -2
## 1902        restricting    -2
## 1903        restriction    -2
## 1904          restricts    -2
## 1905           retained    -1
## 1906             retard    -2
## 1907           retarded    -2
## 1908            retreat    -1
## 1909            revenge    -2
## 1910         revengeful    -2
## 1911            revered     2
## 1912             revive     2
## 1913            revives     2
## 1914             reward     2
## 1915           rewarded     2
## 1916          rewarding     2
## 1917            rewards     2
## 1918               rich     2
## 1919         ridiculous    -3
## 1920                rig    -1
## 1921             rigged    -1
## 1922    right direction     3
## 1923           rigorous     3
## 1924         rigorously     3
## 1925               riot    -2
## 1926              riots    -2
## 1927               risk    -2
## 1928              risks    -2
## 1929                rob    -2
## 1930             robber    -2
## 1931              robed    -2
## 1932             robing    -2
## 1933               robs    -2
## 1934             robust     2
## 1935               rofl     4
## 1936         roflcopter     4
## 1937            roflmao     4
## 1938            romance     2
## 1939              rotfl     4
## 1940          rotflmfao     4
## 1941            rotflol     4
## 1942               ruin    -2
## 1943             ruined    -2
## 1944            ruining    -2
## 1945              ruins    -2
## 1946           sabotage    -2
## 1947                sad    -2
## 1948             sadden    -2
## 1949           saddened    -2
## 1950              sadly    -2
## 1951               safe     1
## 1952             safely     1
## 1953             safety     1
## 1954            salient     1
## 1955              sappy    -1
## 1956          sarcastic    -2
## 1957          satisfied     2
## 1958               save     2
## 1959              saved     2
## 1960               scam    -2
## 1961              scams    -2
## 1962            scandal    -3
## 1963         scandalous    -3
## 1964           scandals    -3
## 1965          scapegoat    -2
## 1966         scapegoats    -2
## 1967              scare    -2
## 1968             scared    -2
## 1969              scary    -2
## 1970          sceptical    -2
## 1971              scold    -2
## 1972              scoop     3
## 1973              scorn    -2
## 1974           scornful    -2
## 1975             scream    -2
## 1976           screamed    -2
## 1977          screaming    -2
## 1978            screams    -2
## 1979            screwed    -2
## 1980         screwed up    -3
## 1981            scumbag    -4
## 1982             secure     2
## 1983            secured     2
## 1984            secures     2
## 1985           sedition    -2
## 1986          seditious    -2
## 1987            seduced    -1
## 1988     self-confident     2
## 1989       self-deluded    -2
## 1990            selfish    -3
## 1991        selfishness    -3
## 1992           sentence    -2
## 1993          sentenced    -2
## 1994          sentences    -2
## 1995         sentencing    -2
## 1996             serene     2
## 1997             severe    -2
## 1998               sexy     3
## 1999              shaky    -2
## 2000              shame    -2
## 2001             shamed    -2
## 2002           shameful    -2
## 2003              share     1
## 2004             shared     1
## 2005             shares     1
## 2006          shattered    -2
## 2007               shit    -4
## 2008           shithead    -4
## 2009             shitty    -3
## 2010              shock    -2
## 2011            shocked    -2
## 2012           shocking    -2
## 2013             shocks    -2
## 2014              shoot    -1
## 2015      short-sighted    -2
## 2016  short-sightedness    -2
## 2017           shortage    -2
## 2018          shortages    -2
## 2019              shrew    -4
## 2020                shy    -1
## 2021               sick    -2
## 2022               sigh    -2
## 2023       significance     1
## 2024        significant     1
## 2025          silencing    -1
## 2026              silly    -1
## 2027            sincere     2
## 2028          sincerely     2
## 2029          sincerest     2
## 2030          sincerity     2
## 2031             sinful    -3
## 2032       singleminded    -2
## 2033            skeptic    -2
## 2034          skeptical    -2
## 2035         skepticism    -2
## 2036           skeptics    -2
## 2037               slam    -2
## 2038              slash    -2
## 2039            slashed    -2
## 2040            slashes    -2
## 2041           slashing    -2
## 2042            slavery    -3
## 2043      sleeplessness    -2
## 2044              slick     2
## 2045            slicker     2
## 2046           slickest     2
## 2047           sluggish    -2
## 2048               slut    -5
## 2049              smart     1
## 2050            smarter     2
## 2051           smartest     2
## 2052              smear    -2
## 2053              smile     2
## 2054             smiled     2
## 2055             smiles     2
## 2056            smiling     2
## 2057               smog    -2
## 2058             sneaky    -1
## 2059               snub    -2
## 2060            snubbed    -2
## 2061           snubbing    -2
## 2062              snubs    -2
## 2063           sobering     1
## 2064             solemn    -1
## 2065              solid     2
## 2066         solidarity     2
## 2067           solution     1
## 2068          solutions     1
## 2069              solve     1
## 2070             solved     1
## 2071             solves     1
## 2072            solving     1
## 2073             somber    -2
## 2074          some kind     0
## 2075     son-of-a-bitch    -5
## 2076             soothe     3
## 2077            soothed     3
## 2078           soothing     3
## 2079      sophisticated     2
## 2080               sore    -1
## 2081             sorrow    -2
## 2082          sorrowful    -2
## 2083              sorry    -1
## 2084               spam    -2
## 2085            spammer    -3
## 2086           spammers    -3
## 2087           spamming    -2
## 2088              spark     1
## 2089            sparkle     3
## 2090           sparkles     3
## 2091          sparkling     3
## 2092        speculative    -2
## 2093             spirit     1
## 2094           spirited     2
## 2095         spiritless    -2
## 2096           spiteful    -2
## 2097           splendid     3
## 2098          sprightly     2
## 2099          squelched    -1
## 2100               stab    -2
## 2101            stabbed    -2
## 2102             stable     2
## 2103              stabs    -2
## 2104              stall    -2
## 2105            stalled    -2
## 2106           stalling    -2
## 2107            stamina     2
## 2108           stampede    -2
## 2109           startled    -2
## 2110             starve    -2
## 2111            starved    -2
## 2112            starves    -2
## 2113           starving    -2
## 2114          steadfast     2
## 2115              steal    -2
## 2116             steals    -2
## 2117         stereotype    -2
## 2118        stereotyped    -2
## 2119            stifled    -1
## 2120          stimulate     1
## 2121         stimulated     1
## 2122         stimulates     1
## 2123        stimulating     2
## 2124             stingy    -2
## 2125             stolen    -2
## 2126               stop    -1
## 2127            stopped    -1
## 2128           stopping    -1
## 2129              stops    -1
## 2130              stout     2
## 2131           straight     1
## 2132            strange    -1
## 2133          strangely    -1
## 2134          strangled    -2
## 2135           strength     2
## 2136         strengthen     2
## 2137       strengthened     2
## 2138      strengthening     2
## 2139        strengthens     2
## 2140           stressed    -2
## 2141           stressor    -2
## 2142          stressors    -2
## 2143           stricken    -2
## 2144             strike    -1
## 2145           strikers    -2
## 2146            strikes    -1
## 2147             strong     2
## 2148           stronger     2
## 2149          strongest     2
## 2150             struck    -1
## 2151           struggle    -2
## 2152          struggled    -2
## 2153          struggles    -2
## 2154         struggling    -2
## 2155           stubborn    -2
## 2156              stuck    -2
## 2157            stunned    -2
## 2158           stunning     4
## 2159             stupid    -2
## 2160           stupidly    -2
## 2161              suave     2
## 2162        substantial     1
## 2163      substantially     1
## 2164         subversive    -2
## 2165            success     2
## 2166         successful     3
## 2167               suck    -3
## 2168              sucks    -3
## 2169             suffer    -2
## 2170          suffering    -2
## 2171            suffers    -2
## 2172           suicidal    -2
## 2173            suicide    -2
## 2174              suing    -2
## 2175            sulking    -2
## 2176              sulky    -2
## 2177             sullen    -2
## 2178           sunshine     2
## 2179              super     3
## 2180             superb     5
## 2181           superior     2
## 2182            support     2
## 2183          supported     2
## 2184          supporter     1
## 2185         supporters     1
## 2186         supporting     1
## 2187         supportive     2
## 2188           supports     2
## 2189           survived     2
## 2190          surviving     2
## 2191           survivor     2
## 2192            suspect    -1
## 2193          suspected    -1
## 2194         suspecting    -1
## 2195           suspects    -1
## 2196            suspend    -1
## 2197          suspended    -1
## 2198         suspicious    -2
## 2199              swear    -2
## 2200           swearing    -2
## 2201             swears    -2
## 2202              sweet     2
## 2203              swift     2
## 2204            swiftly     2
## 2205            swindle    -3
## 2206           swindles    -3
## 2207          swindling    -3
## 2208        sympathetic     2
## 2209           sympathy     2
## 2210               tard    -2
## 2211              tears    -2
## 2212             tender     2
## 2213              tense    -2
## 2214            tension    -1
## 2215           terrible    -3
## 2216           terribly    -3
## 2217           terrific     4
## 2218          terrified    -3
## 2219             terror    -3
## 2220          terrorize    -3
## 2221         terrorized    -3
## 2222         terrorizes    -3
## 2223              thank     2
## 2224           thankful     2
## 2225             thanks     2
## 2226             thorny    -2
## 2227         thoughtful     2
## 2228        thoughtless    -2
## 2229             threat    -2
## 2230           threaten    -2
## 2231         threatened    -2
## 2232        threatening    -2
## 2233          threatens    -2
## 2234            threats    -2
## 2235           thrilled     5
## 2236             thwart    -2
## 2237           thwarted    -2
## 2238          thwarting    -2
## 2239            thwarts    -2
## 2240              timid    -2
## 2241           timorous    -2
## 2242              tired    -2
## 2243               tits    -2
## 2244           tolerant     2
## 2245          toothless    -2
## 2246                top     2
## 2247               tops     2
## 2248               torn    -2
## 2249            torture    -4
## 2250           tortured    -4
## 2251           tortures    -4
## 2252          torturing    -4
## 2253       totalitarian    -2
## 2254    totalitarianism    -2
## 2255               tout    -2
## 2256             touted    -2
## 2257            touting    -2
## 2258              touts    -2
## 2259            tragedy    -2
## 2260             tragic    -2
## 2261           tranquil     2
## 2262               trap    -1
## 2263            trapped    -2
## 2264             trauma    -3
## 2265          traumatic    -3
## 2266           travesty    -2
## 2267            treason    -3
## 2268         treasonous    -3
## 2269           treasure     2
## 2270          treasures     2
## 2271          trembling    -2
## 2272          tremulous    -2
## 2273            tricked    -2
## 2274           trickery    -2
## 2275            triumph     4
## 2276         triumphant     4
## 2277            trouble    -2
## 2278           troubled    -2
## 2279           troubles    -2
## 2280               true     2
## 2281              trust     1
## 2282            trusted     2
## 2283              tumor    -2
## 2284               twat    -5
## 2285               ugly    -3
## 2286       unacceptable    -2
## 2287      unappreciated    -2
## 2288         unapproved    -2
## 2289            unaware    -2
## 2290       unbelievable    -1
## 2291        unbelieving    -1
## 2292           unbiased     2
## 2293          uncertain    -1
## 2294            unclear    -1
## 2295      uncomfortable    -2
## 2296        unconcerned    -2
## 2297        unconfirmed    -1
## 2298        unconvinced    -1
## 2299         uncredited    -1
## 2300          undecided    -1
## 2301      underestimate    -1
## 2302     underestimated    -1
## 2303     underestimates    -1
## 2304    underestimating    -1
## 2305          undermine    -2
## 2306         undermined    -2
## 2307         undermines    -2
## 2308        undermining    -2
## 2309        undeserving    -2
## 2310        undesirable    -2
## 2311             uneasy    -2
## 2312       unemployment    -2
## 2313            unequal    -1
## 2314          unequaled     2
## 2315          unethical    -2
## 2316             unfair    -2
## 2317          unfocused    -2
## 2318        unfulfilled    -2
## 2319            unhappy    -2
## 2320          unhealthy    -2
## 2321            unified     1
## 2322        unimpressed    -2
## 2323      unintelligent    -2
## 2324             united     1
## 2325             unjust    -2
## 2326          unlovable    -2
## 2327            unloved    -2
## 2328          unmatched     1
## 2329        unmotivated    -2
## 2330     unprofessional    -2
## 2331       unresearched    -2
## 2332        unsatisfied    -2
## 2333          unsecured    -2
## 2334          unsettled    -1
## 2335    unsophisticated    -2
## 2336           unstable    -2
## 2337        unstoppable     2
## 2338        unsupported    -2
## 2339             unsure    -1
## 2340        untarnished     2
## 2341           unwanted    -2
## 2342           unworthy    -2
## 2343              upset    -2
## 2344             upsets    -2
## 2345          upsetting    -2
## 2346            uptight    -2
## 2347             urgent    -1
## 2348             useful     2
## 2349         usefulness     2
## 2350            useless    -2
## 2351        uselessness    -2
## 2352              vague    -2
## 2353           validate     1
## 2354          validated     1
## 2355          validates     1
## 2356         validating     1
## 2357            verdict    -1
## 2358           verdicts    -1
## 2359             vested     1
## 2360           vexation    -2
## 2361             vexing    -2
## 2362            vibrant     3
## 2363            vicious    -2
## 2364             victim    -3
## 2365          victimize    -3
## 2366         victimized    -3
## 2367         victimizes    -3
## 2368        victimizing    -3
## 2369            victims    -3
## 2370           vigilant     3
## 2371               vile    -3
## 2372          vindicate     2
## 2373         vindicated     2
## 2374         vindicates     2
## 2375        vindicating     2
## 2376            violate    -2
## 2377           violated    -2
## 2378           violates    -2
## 2379          violating    -2
## 2380           violence    -3
## 2381            violent    -3
## 2382           virtuous     2
## 2383           virulent    -2
## 2384             vision     1
## 2385          visionary     3
## 2386          visioning     1
## 2387            visions     1
## 2388           vitality     3
## 2389            vitamin     1
## 2390          vitriolic    -3
## 2391          vivacious     3
## 2392         vociferous    -1
## 2393      vulnerability    -2
## 2394         vulnerable    -2
## 2395            walkout    -2
## 2396           walkouts    -2
## 2397             wanker    -3
## 2398               want     1
## 2399                war    -2
## 2400            warfare    -2
## 2401               warm     1
## 2402             warmth     2
## 2403               warn    -2
## 2404             warned    -2
## 2405            warning    -3
## 2406           warnings    -3
## 2407              warns    -2
## 2408              waste    -1
## 2409             wasted    -2
## 2410            wasting    -2
## 2411           wavering    -1
## 2412               weak    -2
## 2413           weakness    -2
## 2414             wealth     3
## 2415            wealthy     2
## 2416              weary    -2
## 2417               weep    -2
## 2418            weeping    -2
## 2419              weird    -2
## 2420            welcome     2
## 2421           welcomed     2
## 2422           welcomes     2
## 2423          whimsical     1
## 2424          whitewash    -3
## 2425              whore    -4
## 2426             wicked    -2
## 2427            widowed    -1
## 2428        willingness     2
## 2429                win     4
## 2430             winner     4
## 2431            winning     4
## 2432               wins     4
## 2433             winwin     3
## 2434               wish     1
## 2435             wishes     1
## 2436            wishing     1
## 2437         withdrawal    -3
## 2438          woebegone    -2
## 2439             woeful    -3
## 2440                won     3
## 2441          wonderful     4
## 2442                woo     3
## 2443             woohoo     3
## 2444               wooo     4
## 2445               woow     4
## 2446               worn    -1
## 2447            worried    -3
## 2448              worry    -3
## 2449           worrying    -3
## 2450              worse    -3
## 2451             worsen    -3
## 2452           worsened    -3
## 2453          worsening    -3
## 2454            worsens    -3
## 2455          worshiped     3
## 2456              worst    -3
## 2457              worth     2
## 2458          worthless    -2
## 2459             worthy     2
## 2460                wow     4
## 2461              wowow     4
## 2462              wowww     4
## 2463           wrathful    -3
## 2464              wreck    -2
## 2465              wrong    -2
## 2466            wronged    -2
## 2467                wtf    -4
## 2468               yeah     1
## 2469           yearning     1
## 2470              yeees     2
## 2471                yes     1
## 2472           youthful     2
## 2473              yucky    -2
## 2474              yummy     3
## 2475             zealot    -2
## 2476            zealots    -2
## 2477            zealous     2
bing
##                          word sentiment
## 1                     2-faces  negative
## 2                    abnormal  negative
## 3                     abolish  negative
## 4                  abominable  negative
## 5                  abominably  negative
## 6                   abominate  negative
## 7                 abomination  negative
## 8                       abort  negative
## 9                     aborted  negative
## 10                     aborts  negative
## 11                     abound  positive
## 12                    abounds  positive
## 13                     abrade  negative
## 14                   abrasive  negative
## 15                     abrupt  negative
## 16                   abruptly  negative
## 17                    abscond  negative
## 18                    absence  negative
## 19              absent-minded  negative
## 20                   absentee  negative
## 21                     absurd  negative
## 22                  absurdity  negative
## 23                   absurdly  negative
## 24                 absurdness  negative
## 25                  abundance  positive
## 26                   abundant  positive
## 27                      abuse  negative
## 28                     abused  negative
## 29                     abuses  negative
## 30                    abusive  negative
## 31                    abysmal  negative
## 32                  abysmally  negative
## 33                      abyss  negative
## 34                 accessable  positive
## 35                 accessible  positive
## 36                 accidental  negative
## 37                    acclaim  positive
## 38                  acclaimed  positive
## 39                acclamation  positive
## 40                   accolade  positive
## 41                  accolades  positive
## 42              accommodative  positive
## 43               accomodative  positive
## 44                 accomplish  positive
## 45               accomplished  positive
## 46             accomplishment  positive
## 47            accomplishments  positive
## 48                     accost  negative
## 49                   accurate  positive
## 50                 accurately  positive
## 51                   accursed  negative
## 52                 accusation  negative
## 53                accusations  negative
## 54                     accuse  negative
## 55                    accuses  negative
## 56                   accusing  negative
## 57                 accusingly  negative
## 58                   acerbate  negative
## 59                    acerbic  negative
## 60                acerbically  negative
## 61                       ache  negative
## 62                      ached  negative
## 63                      aches  negative
## 64                      achey  negative
## 65                 achievable  positive
## 66                achievement  positive
## 67               achievements  positive
## 68                 achievible  positive
## 69                     aching  negative
## 70                      acrid  negative
## 71                    acridly  negative
## 72                  acridness  negative
## 73                acrimonious  negative
## 74              acrimoniously  negative
## 75                   acrimony  negative
## 76                     acumen  positive
## 77                    adamant  negative
## 78                  adamantly  negative
## 79                  adaptable  positive
## 80                   adaptive  positive
## 81                     addict  negative
## 82                   addicted  negative
## 83                  addicting  negative
## 84                    addicts  negative
## 85                   adequate  positive
## 86                 adjustable  positive
## 87                  admirable  positive
## 88                  admirably  positive
## 89                 admiration  positive
## 90                     admire  positive
## 91                    admirer  positive
## 92                   admiring  positive
## 93                 admiringly  positive
## 94                   admonish  negative
## 95                 admonisher  negative
## 96              admonishingly  negative
## 97               admonishment  negative
## 98                 admonition  negative
## 99                   adorable  positive
## 100                     adore  positive
## 101                    adored  positive
## 102                    adorer  positive
## 103                   adoring  positive
## 104                 adoringly  positive
## 105                    adroit  positive
## 106                  adroitly  positive
## 107                   adulate  positive
## 108                 adulation  positive
## 109                 adulatory  positive
## 110                adulterate  negative
## 111               adulterated  negative
## 112              adulteration  negative
## 113                adulterier  negative
## 114                  advanced  positive
## 115                 advantage  positive
## 116              advantageous  positive
## 117            advantageously  positive
## 118                advantages  positive
## 119             adventuresome  positive
## 120               adventurous  positive
## 121               adversarial  negative
## 122                 adversary  negative
## 123                   adverse  negative
## 124                 adversity  negative
## 125                  advocate  positive
## 126                 advocated  positive
## 127                 advocates  positive
## 128                affability  positive
## 129                   affable  positive
## 130                   affably  positive
## 131               affectation  positive
## 132                 affection  positive
## 133              affectionate  positive
## 134                  affinity  positive
## 135                    affirm  positive
## 136               affirmation  positive
## 137               affirmative  positive
## 138                   afflict  negative
## 139                affliction  negative
## 140                afflictive  negative
## 141                 affluence  positive
## 142                  affluent  positive
## 143                    afford  positive
## 144                affordable  positive
## 145                affordably  positive
## 146                   affront  negative
## 147                 afordable  positive
## 148                    afraid  negative
## 149                 aggravate  negative
## 150               aggravating  negative
## 151               aggravation  negative
## 152                aggression  negative
## 153                aggressive  negative
## 154            aggressiveness  negative
## 155                 aggressor  negative
## 156                  aggrieve  negative
## 157                 aggrieved  negative
## 158               aggrivation  negative
## 159                    aghast  negative
## 160                     agile  positive
## 161                   agilely  positive
## 162                   agility  positive
## 163                   agonies  negative
## 164                   agonize  negative
## 165                 agonizing  negative
## 166               agonizingly  negative
## 167                     agony  negative
## 168                 agreeable  positive
## 169             agreeableness  positive
## 170                 agreeably  positive
## 171                   aground  negative
## 172                       ail  negative
## 173                    ailing  negative
## 174                   ailment  negative
## 175                   aimless  negative
## 176                     alarm  negative
## 177                   alarmed  negative
## 178                  alarming  negative
## 179                alarmingly  negative
## 180                  alienate  negative
## 181                 alienated  negative
## 182                alienation  negative
## 183                all-around  positive
## 184                allegation  negative
## 185               allegations  negative
## 186                    allege  negative
## 187                  allergic  negative
## 188                 allergies  negative
## 189                   allergy  negative
## 190                  alluring  positive
## 191                alluringly  positive
## 192                     aloof  negative
## 193               altercation  negative
## 194                altruistic  positive
## 195            altruistically  positive
## 196                     amaze  positive
## 197                    amazed  positive
## 198                 amazement  positive
## 199                    amazes  positive
## 200                   amazing  positive
## 201                 amazingly  positive
## 202                 ambiguity  negative
## 203                 ambiguous  negative
## 204                 ambitious  positive
## 205               ambitiously  positive
## 206               ambivalence  negative
## 207                ambivalent  negative
## 208                    ambush  negative
## 209                ameliorate  positive
## 210                  amenable  positive
## 211                   amenity  positive
## 212                amiability  positive
## 213                  amiabily  positive
## 214                   amiable  positive
## 215               amicability  positive
## 216                  amicable  positive
## 217                  amicably  positive
## 218                     amiss  negative
## 219                     amity  positive
## 220                     ample  positive
## 221                     amply  positive
## 222                  amputate  negative
## 223                     amuse  positive
## 224                   amusing  positive
## 225                 amusingly  positive
## 226                 anarchism  negative
## 227                 anarchist  negative
## 228               anarchistic  negative
## 229                   anarchy  negative
## 230                    anemic  negative
## 231                     angel  positive
## 232                   angelic  positive
## 233                     anger  negative
## 234                   angrily  negative
## 235                 angriness  negative
## 236                     angry  negative
## 237                   anguish  negative
## 238                 animosity  negative
## 239                annihilate  negative
## 240              annihilation  negative
## 241                     annoy  negative
## 242                 annoyance  negative
## 243                annoyances  negative
## 244                   annoyed  negative
## 245                  annoying  negative
## 246                annoyingly  negative
## 247                    annoys  negative
## 248                 anomalous  negative
## 249                   anomaly  negative
## 250                antagonism  negative
## 251                antagonist  negative
## 252              antagonistic  negative
## 253                antagonize  negative
## 254                     anti-  negative
## 255             anti-american  negative
## 256              anti-israeli  negative
## 257           anti-occupation  negative
## 258        anti-proliferation  negative
## 259              anti-semites  negative
## 260               anti-social  negative
## 261                   anti-us  negative
## 262                anti-white  negative
## 263                 antipathy  negative
## 264                antiquated  negative
## 265              antithetical  negative
## 266                 anxieties  negative
## 267                   anxiety  negative
## 268                   anxious  negative
## 269                 anxiously  negative
## 270               anxiousness  negative
## 271                 apathetic  negative
## 272             apathetically  negative
## 273                    apathy  negative
## 274                apocalypse  negative
## 275               apocalyptic  negative
## 276                 apologist  negative
## 277                apologists  negative
## 278                apotheosis  positive
## 279                     appal  negative
## 280                    appall  negative
## 281                  appalled  negative
## 282                 appalling  negative
## 283               appallingly  negative
## 284                    appeal  positive
## 285                 appealing  positive
## 286                   applaud  positive
## 287               appreciable  positive
## 288                appreciate  positive
## 289               appreciated  positive
## 290               appreciates  positive
## 291              appreciative  positive
## 292            appreciatively  positive
## 293              apprehension  negative
## 294             apprehensions  negative
## 295              apprehensive  negative
## 296            apprehensively  negative
## 297               appropriate  positive
## 298                  approval  positive
## 299                   approve  positive
## 300                 arbitrary  negative
## 301                    arcane  negative
## 302                   archaic  negative
## 303                    ardent  positive
## 304                  ardently  positive
## 305                     ardor  positive
## 306                   arduous  negative
## 307                 arduously  negative
## 308             argumentative  negative
## 309                 arrogance  negative
## 310                  arrogant  negative
## 311                arrogantly  negative
## 312                articulate  positive
## 313                   ashamed  negative
## 314                   asinine  negative
## 315                 asininely  negative
## 316               asinininity  negative
## 317                   askance  negative
## 318                   asperse  negative
## 319                 aspersion  negative
## 320                aspersions  negative
## 321                aspiration  positive
## 322               aspirations  positive
## 323                    aspire  positive
## 324                    assail  negative
## 325                  assassin  negative
## 326               assassinate  negative
## 327                   assault  negative
## 328                    assult  negative
## 329                 assurance  positive
## 330                assurances  positive
## 331                    assure  positive
## 332                 assuredly  positive
## 333                  assuring  positive
## 334                  astonish  positive
## 335                astonished  positive
## 336               astonishing  positive
## 337             astonishingly  positive
## 338              astonishment  positive
## 339                   astound  positive
## 340                 astounded  positive
## 341                astounding  positive
## 342              astoundingly  positive
## 343                    astray  negative
## 344                  astutely  positive
## 345                   asunder  negative
## 346                 atrocious  negative
## 347                atrocities  negative
## 348                  atrocity  negative
## 349                   atrophy  negative
## 350                    attack  negative
## 351                   attacks  negative
## 352                 attentive  positive
## 353                attraction  positive
## 354                attractive  positive
## 355              attractively  positive
## 356                    attune  positive
## 357                 audacious  negative
## 358               audaciously  negative
## 359             audaciousness  negative
## 360                  audacity  negative
## 361                   audible  positive
## 362                   audibly  positive
## 363               audiciously  negative
## 364                auspicious  positive
## 365                   austere  negative
## 366                 authentic  positive
## 367             authoritarian  negative
## 368             authoritative  positive
## 369                  autocrat  negative
## 370                autocratic  negative
## 371                autonomous  positive
## 372                 available  positive
## 373                 avalanche  negative
## 374                   avarice  negative
## 375                avaricious  negative
## 376              avariciously  negative
## 377                    avenge  negative
## 378                      aver  positive
## 379                    averse  negative
## 380                  aversion  negative
## 381                      avid  positive
## 382                    avidly  positive
## 383                     award  positive
## 384                   awarded  positive
## 385                    awards  positive
## 386                       awe  positive
## 387                      awed  positive
## 388                    aweful  negative
## 389                   awesome  positive
## 390                 awesomely  positive
## 391               awesomeness  positive
## 392                 awestruck  positive
## 393                     awful  negative
## 394                   awfully  negative
## 395                 awfulness  negative
## 396                   awkward  negative
## 397               awkwardness  negative
## 398                    awsome  positive
## 399                        ax  negative
## 400                    babble  negative
## 401               back-logged  negative
## 402                 back-wood  negative
## 403                back-woods  negative
## 404                  backache  negative
## 405                 backaches  negative
## 406                backaching  negative
## 407                  backbite  negative
## 408                backbiting  negative
## 409                  backbone  positive
## 410                  backward  negative
## 411              backwardness  negative
## 412                  backwood  negative
## 413                 backwoods  negative
## 414                       bad  negative
## 415                     badly  negative
## 416                    baffle  negative
## 417                   baffled  negative
## 418                bafflement  negative
## 419                  baffling  negative
## 420                      bait  negative
## 421                  balanced  positive
## 422                      balk  negative
## 423                     banal  negative
## 424                  banalize  negative
## 425                      bane  negative
## 426                    banish  negative
## 427                banishment  negative
## 428                  bankrupt  negative
## 429                 barbarian  negative
## 430                  barbaric  negative
## 431              barbarically  negative
## 432                 barbarity  negative
## 433                 barbarous  negative
## 434               barbarously  negative
## 435                   bargain  positive
## 436                    barren  negative
## 437                  baseless  negative
## 438                      bash  negative
## 439                    bashed  negative
## 440                   bashful  negative
## 441                   bashing  negative
## 442                   bastard  negative
## 443                  bastards  negative
## 444                  battered  negative
## 445                 battering  negative
## 446                     batty  negative
## 447                   bearish  negative
## 448                   beastly  negative
## 449                 beauteous  positive
## 450                 beautiful  positive
## 451              beautifullly  positive
## 452               beautifully  positive
## 453                  beautify  positive
## 454                    beauty  positive
## 455                    beckon  positive
## 456                  beckoned  positive
## 457                 beckoning  positive
## 458                   beckons  positive
## 459                    bedlam  negative
## 460                 bedlamite  negative
## 461                    befoul  negative
## 462                       beg  negative
## 463                    beggar  negative
## 464                  beggarly  negative
## 465                   begging  negative
## 466                   beguile  negative
## 467                   belabor  negative
## 468                   belated  negative
## 469                 beleaguer  negative
## 470                     belie  negative
## 471                believable  positive
## 472               believeable  positive
## 473                  belittle  negative
## 474                 belittled  negative
## 475                belittling  negative
## 476                 bellicose  negative
## 477              belligerence  negative
## 478               belligerent  negative
## 479             belligerently  negative
## 480                   beloved  positive
## 481                    bemoan  negative
## 482                 bemoaning  negative
## 483                   bemused  negative
## 484                benefactor  positive
## 485                beneficent  positive
## 486                beneficial  positive
## 487              beneficially  positive
## 488               beneficiary  positive
## 489                   benefit  positive
## 490                  benefits  positive
## 491               benevolence  positive
## 492                benevolent  positive
## 493                  benifits  positive
## 494                      bent  negative
## 495                    berate  negative
## 496                   bereave  negative
## 497               bereavement  negative
## 498                    bereft  negative
## 499                   berserk  negative
## 500                   beseech  negative
## 501                     beset  negative
## 502                   besiege  negative
## 503                  besmirch  negative
## 504                      best  positive
## 505                best-known  positive
## 506           best-performing  positive
## 507              best-selling  positive
## 508                   bestial  negative
## 509                    betray  negative
## 510                  betrayal  negative
## 511                 betrayals  negative
## 512                  betrayer  negative
## 513                 betraying  negative
## 514                   betrays  negative
## 515                    better  positive
## 516              better-known  positive
## 517      better-than-expected  positive
## 518                beutifully  positive
## 519                    bewail  negative
## 520                    beware  negative
## 521                  bewilder  negative
## 522                bewildered  negative
## 523               bewildering  negative
## 524             bewilderingly  negative
## 525              bewilderment  negative
## 526                   bewitch  negative
## 527                      bias  negative
## 528                    biased  negative
## 529                    biases  negative
## 530                    bicker  negative
## 531                 bickering  negative
## 532               bid-rigging  negative
## 533                 bigotries  negative
## 534                   bigotry  negative
## 535                     bitch  negative
## 536                    bitchy  negative
## 537                    biting  negative
## 538                  bitingly  negative
## 539                    bitter  negative
## 540                  bitterly  negative
## 541                bitterness  negative
## 542                   bizarre  negative
## 543                      blab  negative
## 544                   blabber  negative
## 545                 blackmail  negative
## 546                      blah  negative
## 547                     blame  negative
## 548                 blameless  positive
## 549               blameworthy  negative
## 550                     bland  negative
## 551                  blandish  negative
## 552                 blaspheme  negative
## 553               blasphemous  negative
## 554                 blasphemy  negative
## 555                   blasted  negative
## 556                   blatant  negative
## 557                 blatantly  negative
## 558                   blather  negative
## 559                     bleak  negative
## 560                   bleakly  negative
## 561                 bleakness  negative
## 562                     bleed  negative
## 563                  bleeding  negative
## 564                    bleeds  negative
## 565                   blemish  negative
## 566                     bless  positive
## 567                  blessing  positive
## 568                     blind  negative
## 569                  blinding  negative
## 570                blindingly  negative
## 571                 blindside  negative
## 572                     bliss  positive
## 573                  blissful  positive
## 574                blissfully  positive
## 575                   blister  negative
## 576                blistering  negative
## 577                    blithe  positive
## 578                   bloated  negative
## 579                  blockage  negative
## 580               blockbuster  positive
## 581                 blockhead  negative
## 582                 bloodshed  negative
## 583              bloodthirsty  negative
## 584                    bloody  negative
## 585                     bloom  positive
## 586                   blossom  positive
## 587                   blotchy  negative
## 588                      blow  negative
## 589                   blunder  negative
## 590                blundering  negative
## 591                  blunders  negative
## 592                     blunt  negative
## 593                      blur  negative
## 594                   bluring  negative
## 595                   blurred  negative
## 596                  blurring  negative
## 597                    blurry  negative
## 598                     blurs  negative
## 599                     blurt  negative
## 600                  boastful  negative
## 601                    boggle  negative
## 602                     bogus  negative
## 603                      boil  negative
## 604                   boiling  negative
## 605                boisterous  negative
## 606                   bolster  positive
## 607                      bomb  negative
## 608                   bombard  negative
## 609               bombardment  negative
## 610                 bombastic  negative
## 611                   bondage  negative
## 612                   bonkers  negative
## 613                     bonny  positive
## 614                     bonus  positive
## 615                   bonuses  positive
## 616                      boom  positive
## 617                   booming  positive
## 618                     boost  positive
## 619                      bore  negative
## 620                     bored  negative
## 621                   boredom  negative
## 622                     bores  negative
## 623                    boring  negative
## 624                     botch  negative
## 625                    bother  negative
## 626                  bothered  negative
## 627                 bothering  negative
## 628                   bothers  negative
## 629                bothersome  negative
## 630                 boundless  positive
## 631                 bountiful  positive
## 632                bowdlerize  negative
## 633                   boycott  negative
## 634                  braggart  negative
## 635                   bragger  negative
## 636                 brainiest  positive
## 637                 brainless  negative
## 638                 brainwash  negative
## 639                    brainy  positive
## 640                 brand-new  positive
## 641                     brash  negative
## 642                   brashly  negative
## 643                 brashness  negative
## 644                      brat  negative
## 645                   bravado  negative
## 646                     brave  positive
## 647                   bravery  positive
## 648                     bravo  positive
## 649                    brazen  negative
## 650                  brazenly  negative
## 651                brazenness  negative
## 652                    breach  negative
## 653                     break  negative
## 654                  break-up  negative
## 655                 break-ups  negative
## 656                 breakdown  negative
## 657                  breaking  negative
## 658                    breaks  negative
## 659              breakthrough  positive
## 660             breakthroughs  positive
## 661                   breakup  negative
## 662                  breakups  negative
## 663            breathlessness  positive
## 664              breathtaking  positive
## 665            breathtakingly  positive
## 666                    breeze  positive
## 667                   bribery  negative
## 668                    bright  positive
## 669                  brighten  positive
## 670                  brighter  positive
## 671                 brightest  positive
## 672                brilliance  positive
## 673               brilliances  positive
## 674                 brilliant  positive
## 675               brilliantly  positive
## 676                 brimstone  negative
## 677                     brisk  positive
## 678                   bristle  negative
## 679                   brittle  negative
## 680                     broke  negative
## 681                    broken  negative
## 682            broken-hearted  negative
## 683                     brood  negative
## 684                 brotherly  positive
## 685                  browbeat  negative
## 686                    bruise  negative
## 687                   bruised  negative
## 688                   bruises  negative
## 689                  bruising  negative
## 690                   brusque  negative
## 691                    brutal  negative
## 692               brutalising  negative
## 693               brutalities  negative
## 694                 brutality  negative
## 695                 brutalize  negative
## 696               brutalizing  negative
## 697                  brutally  negative
## 698                     brute  negative
## 699                   brutish  negative
## 700                        bs  negative
## 701                    buckle  negative
## 702                       bug  negative
## 703                   bugging  negative
## 704                     buggy  negative
## 705                      bugs  negative
## 706                   bulkier  negative
## 707                 bulkiness  negative
## 708                     bulky  negative
## 709                 bulkyness  negative
## 710                  bull----  negative
## 711                  bull****  negative
## 712                   bullies  negative
## 713                   bullish  positive
## 714                  bullshit  negative
## 715                  bullshyt  negative
## 716                     bully  negative
## 717                  bullying  negative
## 718                bullyingly  negative
## 719                       bum  negative
## 720                      bump  negative
## 721                    bumped  negative
## 722                   bumping  negative
## 723                  bumpping  negative
## 724                     bumps  negative
## 725                     bumpy  negative
## 726                    bungle  negative
## 727                   bungler  negative
## 728                  bungling  negative
## 729                      bunk  negative
## 730                   buoyant  positive
## 731                    burden  negative
## 732                burdensome  negative
## 733              burdensomely  negative
## 734                      burn  negative
## 735                    burned  negative
## 736                   burning  negative
## 737                     burns  negative
## 738                      bust  negative
## 739                     busts  negative
## 740                  busybody  negative
## 741                   butcher  negative
## 742                  butchery  negative
## 743                   buzzing  negative
## 744                 byzantine  negative
## 745                    cackle  negative
## 746                    cajole  positive
## 747                calamities  negative
## 748                calamitous  negative
## 749              calamitously  negative
## 750                  calamity  negative
## 751                   callous  negative
## 752                      calm  positive
## 753                   calming  positive
## 754                  calmness  positive
## 755                calumniate  negative
## 756              calumniation  negative
## 757                 calumnies  negative
## 758                calumnious  negative
## 759              calumniously  negative
## 760                   calumny  negative
## 761                    cancer  negative
## 762                 cancerous  negative
## 763                  cannibal  negative
## 764               cannibalize  negative
## 765                capability  positive
## 766                   capable  positive
## 767                   capably  positive
## 768                capitulate  negative
## 769                capricious  negative
## 770              capriciously  negative
## 771            capriciousness  negative
## 772                   capsize  negative
## 773                 captivate  positive
## 774               captivating  positive
## 775                  carefree  positive
## 776                  careless  negative
## 777              carelessness  negative
## 778                caricature  negative
## 779                   carnage  negative
## 780                      carp  negative
## 781                cartoonish  negative
## 782             cash-strapped  negative
## 783                  cashback  positive
## 784                 cashbacks  positive
## 785                 castigate  negative
## 786                 castrated  negative
## 787                  casualty  negative
## 788                 cataclysm  negative
## 789               cataclysmal  negative
## 790               cataclysmic  negative
## 791           cataclysmically  negative
## 792               catastrophe  negative
## 793              catastrophes  negative
## 794              catastrophic  negative
## 795          catastrophically  negative
## 796             catastrophies  negative
## 797                    catchy  positive
## 798                   caustic  negative
## 799               caustically  negative
## 800                cautionary  negative
## 801                      cave  negative
## 802                 celebrate  positive
## 803                celebrated  positive
## 804               celebration  positive
## 805               celebratory  positive
## 806                   censure  negative
## 807                     chafe  negative
## 808                     chaff  negative
## 809                   chagrin  negative
## 810               challenging  negative
## 811                     champ  positive
## 812                  champion  positive
## 813                     chaos  negative
## 814                   chaotic  negative
## 815                  charisma  positive
## 816               charismatic  positive
## 817                charitable  positive
## 818                     charm  positive
## 819                  charming  positive
## 820                charmingly  positive
## 821                    chaste  positive
## 822                   chasten  negative
## 823                  chastise  negative
## 824              chastisement  negative
## 825                   chatter  negative
## 826                chatterbox  negative
## 827                     cheap  negative
## 828                   cheapen  negative
## 829                   cheaper  positive
## 830                  cheapest  positive
## 831                   cheaply  negative
## 832                     cheat  negative
## 833                   cheated  negative
## 834                   cheater  negative
## 835                  cheating  negative
## 836                    cheats  negative
## 837                 checkered  negative
## 838                     cheer  positive
## 839                  cheerful  positive
## 840                 cheerless  negative
## 841                    cheery  positive
## 842                    cheesy  negative
## 843                   cherish  positive
## 844                 cherished  positive
## 845                    cherub  positive
## 846                      chic  positive
## 847                     chide  negative
## 848                  childish  negative
## 849                     chill  negative
## 850                    chilly  negative
## 851                   chintzy  negative
## 852                chivalrous  positive
## 853                  chivalry  positive
## 854                     choke  negative
## 855                  choleric  negative
## 856                    choppy  negative
## 857                     chore  negative
## 858                   chronic  negative
## 859                    chunky  negative
## 860                  civility  positive
## 861                  civilize  positive
## 862                    clamor  negative
## 863                 clamorous  negative
## 864                   clarity  positive
## 865                     clash  negative
## 866                   classic  positive
## 867                    classy  positive
## 868                     clean  positive
## 869                   cleaner  positive
## 870                  cleanest  positive
## 871               cleanliness  positive
## 872                   cleanly  positive
## 873                     clear  positive
## 874                 clear-cut  positive
## 875                   cleared  positive
## 876                   clearer  positive
## 877                   clearly  positive
## 878                    clears  positive
## 879                    clever  positive
## 880                  cleverly  positive
## 881                    cliche  negative
## 882                   cliched  negative
## 883                    clique  negative
## 884                      clog  negative
## 885                   clogged  negative
## 886                     clogs  negative
## 887                     cloud  negative
## 888                  clouding  negative
## 889                    cloudy  negative
## 890                  clueless  negative
## 891                    clumsy  negative
## 892                    clunky  negative
## 893                    coarse  negative
## 894                     cocky  negative
## 895                    coerce  negative
## 896                  coercion  negative
## 897                  coercive  negative
## 898                    cohere  positive
## 899                 coherence  positive
## 900                  coherent  positive
## 901                  cohesive  positive
## 902                      cold  negative
## 903                    coldly  negative
## 904                  collapse  negative
## 905                   collude  negative
## 906                 collusion  negative
## 907                  colorful  positive
## 908                 combative  negative
## 909                   combust  negative
## 910                    comely  positive
## 911                   comfort  positive
## 912               comfortable  positive
## 913               comfortably  positive
## 914                comforting  positive
## 915                     comfy  positive
## 916                   comical  negative
## 917                   commend  positive
## 918               commendable  positive
## 919               commendably  positive
## 920               commiserate  negative
## 921                commitment  positive
## 922                commodious  positive
## 923               commonplace  negative
## 924                 commotion  negative
## 925                commotions  negative
## 926                   compact  positive
## 927                 compactly  positive
## 928                compassion  positive
## 929             compassionate  positive
## 930                compatible  positive
## 931               competitive  positive
## 932                complacent  negative
## 933                  complain  negative
## 934                complained  negative
## 935               complaining  negative
## 936                 complains  negative
## 937                 complaint  negative
## 938                complaints  negative
## 939                complement  positive
## 940             complementary  positive
## 941              complemented  positive
## 942               complements  positive
## 943                   complex  negative
## 944                 compliant  positive
## 945               complicated  negative
## 946              complication  negative
## 947                 complicit  negative
## 948                compliment  positive
## 949             complimentary  positive
## 950             comprehensive  positive
## 951                compulsion  negative
## 952                compulsive  negative
## 953                   concede  negative
## 954                  conceded  negative
## 955                   conceit  negative
## 956                 conceited  negative
## 957                    concen  negative
## 958                   concens  negative
## 959                   concern  negative
## 960                 concerned  negative
## 961                  concerns  negative
## 962                concession  negative
## 963               concessions  negative
## 964                conciliate  positive
## 965              conciliatory  positive
## 966                   concise  positive
## 967                   condemn  negative
## 968               condemnable  negative
## 969              condemnation  negative
## 970                 condemned  negative
## 971                  condemns  negative
## 972                condescend  negative
## 973             condescending  negative
## 974           condescendingly  negative
## 975             condescension  negative
## 976                   confess  negative
## 977                confession  negative
## 978               confessions  negative
## 979                confidence  positive
## 980                 confident  positive
## 981                  confined  negative
## 982                  conflict  negative
## 983                conflicted  negative
## 984               conflicting  negative
## 985                 conflicts  negative
## 986                  confound  negative
## 987                confounded  negative
## 988               confounding  negative
## 989                  confront  negative
## 990             confrontation  negative
## 991           confrontational  negative
## 992                   confuse  negative
## 993                  confused  negative
## 994                  confuses  negative
## 995                 confusing  negative
## 996                 confusion  negative
## 997                confusions  negative
## 998                 congenial  positive
## 999                 congested  negative
## 1000               congestion  negative
## 1001             congratulate  positive
## 1002           congratulation  positive
## 1003          congratulations  positive
## 1004           congratulatory  positive
## 1005                     cons  negative
## 1006            conscientious  positive
## 1007                 conscons  negative
## 1008             conservative  negative
## 1009              considerate  positive
## 1010               consistent  positive
## 1011             consistently  positive
## 1012              conspicuous  negative
## 1013            conspicuously  negative
## 1014             conspiracies  negative
## 1015               conspiracy  negative
## 1016              conspirator  negative
## 1017           conspiratorial  negative
## 1018                 conspire  negative
## 1019            consternation  negative
## 1020             constructive  positive
## 1021               consummate  positive
## 1022               contagious  negative
## 1023              contaminate  negative
## 1024             contaminated  negative
## 1025             contaminates  negative
## 1026            contaminating  negative
## 1027            contamination  negative
## 1028                 contempt  negative
## 1029             contemptible  negative
## 1030             contemptuous  negative
## 1031           contemptuously  negative
## 1032                  contend  negative
## 1033               contention  negative
## 1034              contentious  negative
## 1035              contentment  positive
## 1036               continuity  positive
## 1037                  contort  negative
## 1038              contortions  negative
## 1039               contradict  negative
## 1040            contradiction  negative
## 1041            contradictory  negative
## 1042             contrariness  negative
## 1043                contrasty  positive
## 1044               contravene  negative
## 1045             contribution  positive
## 1046                 contrive  negative
## 1047                contrived  negative
## 1048            controversial  negative
## 1049              controversy  negative
## 1050              convenience  positive
## 1051               convenient  positive
## 1052             conveniently  positive
## 1053                convience  positive
## 1054              convienient  positive
## 1055                 convient  positive
## 1056               convincing  positive
## 1057             convincingly  positive
## 1058               convoluted  negative
## 1059                     cool  positive
## 1060                  coolest  positive
## 1061              cooperative  positive
## 1062            cooperatively  positive
## 1063              cornerstone  positive
## 1064                  correct  positive
## 1065                correctly  positive
## 1066                  corrode  negative
## 1067                corrosion  negative
## 1068               corrosions  negative
## 1069                corrosive  negative
## 1070                  corrupt  negative
## 1071                corrupted  negative
## 1072               corrupting  negative
## 1073               corruption  negative
## 1074                 corrupts  negative
## 1075               corruptted  negative
## 1076           cost-effective  positive
## 1077              cost-saving  positive
## 1078                 costlier  negative
## 1079                   costly  negative
## 1080           counter-attack  positive
## 1081          counter-attacks  positive
## 1082       counter-productive  negative
## 1083        counterproductive  negative
## 1084                 coupists  negative
## 1085                  courage  positive
## 1086               courageous  positive
## 1087             courageously  positive
## 1088           courageousness  positive
## 1089                courteous  positive
## 1090                  courtly  positive
## 1091                 covenant  positive
## 1092                 covetous  negative
## 1093                   coward  negative
## 1094                 cowardly  negative
## 1095                     cozy  positive
## 1096                   crabby  negative
## 1097                    crack  negative
## 1098                  cracked  negative
## 1099                   cracks  negative
## 1100                 craftily  negative
## 1101                  craftly  negative
## 1102                   crafty  negative
## 1103                    cramp  negative
## 1104                  cramped  negative
## 1105                 cramping  negative
## 1106                   cranky  negative
## 1107                     crap  negative
## 1108                   crappy  negative
## 1109                    craps  negative
## 1110                    crash  negative
## 1111                  crashed  negative
## 1112                  crashes  negative
## 1113                 crashing  negative
## 1114                    crass  negative
## 1115                   craven  negative
## 1116                 cravenly  negative
## 1117                    craze  negative
## 1118                  crazily  negative
## 1119                craziness  negative
## 1120                    crazy  negative
## 1121                    creak  negative
## 1122                 creaking  negative
## 1123                   creaks  negative
## 1124                 creative  positive
## 1125                 credence  positive
## 1126                 credible  positive
## 1127                credulous  negative
## 1128                    creep  negative
## 1129                 creeping  negative
## 1130                   creeps  negative
## 1131                   creepy  negative
## 1132                    crept  negative
## 1133                    crime  negative
## 1134                 criminal  negative
## 1135                   cringe  negative
## 1136                  cringed  negative
## 1137                  cringes  negative
## 1138                  cripple  negative
## 1139                 crippled  negative
## 1140                 cripples  negative
## 1141                crippling  negative
## 1142                   crisis  negative
## 1143                    crisp  positive
## 1144                  crisper  positive
## 1145                   critic  negative
## 1146                 critical  negative
## 1147                criticism  negative
## 1148               criticisms  negative
## 1149                criticize  negative
## 1150               criticized  negative
## 1151              criticizing  negative
## 1152                  critics  negative
## 1153                 cronyism  negative
## 1154                    crook  negative
## 1155                  crooked  negative
## 1156                   crooks  negative
## 1157                  crowded  negative
## 1158              crowdedness  negative
## 1159                    crude  negative
## 1160                    cruel  negative
## 1161                  crueler  negative
## 1162                 cruelest  negative
## 1163                  cruelly  negative
## 1164                cruelness  negative
## 1165                cruelties  negative
## 1166                  cruelty  negative
## 1167                  crumble  negative
## 1168                crumbling  negative
## 1169                   crummy  negative
## 1170                  crumple  negative
## 1171                 crumpled  negative
## 1172                 crumples  negative
## 1173                    crush  negative
## 1174                  crushed  negative
## 1175                 crushing  negative
## 1176                      cry  negative
## 1177                 culpable  negative
## 1178                  culprit  negative
## 1179               cumbersome  negative
## 1180                     cunt  negative
## 1181                    cunts  negative
## 1182                  cuplrit  negative
## 1183                     cure  positive
## 1184                 cure-all  positive
## 1185                    curse  negative
## 1186                   cursed  negative
## 1187                   curses  negative
## 1188                     curt  negative
## 1189                    cushy  positive
## 1190                     cuss  negative
## 1191                   cussed  negative
## 1192                     cute  positive
## 1193                 cuteness  positive
## 1194                cutthroat  negative
## 1195                  cynical  negative
## 1196                 cynicism  negative
## 1197                     d*mn  negative
## 1198                   damage  negative
## 1199                  damaged  negative
## 1200                  damages  negative
## 1201                 damaging  negative
## 1202                     damn  negative
## 1203                 damnable  negative
## 1204                 damnably  negative
## 1205                damnation  negative
## 1206                   damned  negative
## 1207                  damning  negative
## 1208                   damper  negative
## 1209                   danger  negative
## 1210                dangerous  negative
## 1211            dangerousness  negative
## 1212                    danke  positive
## 1213                   danken  positive
## 1214                   daring  positive
## 1215                 daringly  positive
## 1216                     dark  negative
## 1217                   darken  negative
## 1218                 darkened  negative
## 1219                   darker  negative
## 1220                 darkness  negative
## 1221                  darling  positive
## 1222                  dashing  positive
## 1223                  dastard  negative
## 1224                dastardly  negative
## 1225                    daunt  negative
## 1226                 daunting  negative
## 1227               dauntingly  negative
## 1228                dauntless  positive
## 1229                   dawdle  negative
## 1230                     dawn  positive
## 1231                     daze  negative
## 1232                    dazed  negative
## 1233                   dazzle  positive
## 1234                  dazzled  positive
## 1235                 dazzling  positive
## 1236                     dead  negative
## 1237               dead-cheap  positive
## 1238                  dead-on  positive
## 1239                 deadbeat  negative
## 1240                 deadlock  negative
## 1241                   deadly  negative
## 1242               deadweight  negative
## 1243                     deaf  negative
## 1244                   dearth  negative
## 1245                    death  negative
## 1246                  debacle  negative
## 1247                   debase  negative
## 1248               debasement  negative
## 1249                  debaser  negative
## 1250                debatable  negative
## 1251                  debauch  negative
## 1252                debaucher  negative
## 1253               debauchery  negative
## 1254               debilitate  negative
## 1255             debilitating  negative
## 1256                 debility  negative
## 1257                     debt  negative
## 1258                    debts  negative
## 1259                decadence  negative
## 1260                 decadent  negative
## 1261                    decay  negative
## 1262                  decayed  negative
## 1263                   deceit  negative
## 1264                deceitful  negative
## 1265              deceitfully  negative
## 1266            deceitfulness  negative
## 1267                  deceive  negative
## 1268                 deceiver  negative
## 1269                deceivers  negative
## 1270                deceiving  negative
## 1271                  decency  positive
## 1272                   decent  positive
## 1273                deception  negative
## 1274                deceptive  negative
## 1275              deceptively  negative
## 1276                 decisive  positive
## 1277             decisiveness  positive
## 1278                  declaim  negative
## 1279                  decline  negative
## 1280                 declines  negative
## 1281                declining  negative
## 1282                decrement  negative
## 1283                 decrepit  negative
## 1284              decrepitude  negative
## 1285                    decry  negative
## 1286                dedicated  positive
## 1287               defamation  negative
## 1288              defamations  negative
## 1289               defamatory  negative
## 1290                   defame  negative
## 1291                   defeat  positive
## 1292                 defeated  positive
## 1293                defeating  positive
## 1294                  defeats  positive
## 1295                   defect  negative
## 1296                defective  negative
## 1297                  defects  negative
## 1298                 defender  positive
## 1299                defensive  negative
## 1300                deference  positive
## 1301                 defiance  negative
## 1302                  defiant  negative
## 1303                defiantly  negative
## 1304             deficiencies  negative
## 1305               deficiency  negative
## 1306                deficient  negative
## 1307                   defile  negative
## 1308                  defiler  negative
## 1309                   deform  negative
## 1310                 deformed  negative
## 1311               defrauding  negative
## 1312                     deft  positive
## 1313                  defunct  negative
## 1314                     defy  negative
## 1315               degenerate  negative
## 1316             degenerately  negative
## 1317             degeneration  negative
## 1318               deginified  positive
## 1319              degradation  negative
## 1320                  degrade  negative
## 1321                degrading  negative
## 1322              degradingly  negative
## 1323           dehumanization  negative
## 1324               dehumanize  negative
## 1325                    deign  negative
## 1326                   deject  negative
## 1327                 dejected  negative
## 1328               dejectedly  negative
## 1329                dejection  negative
## 1330                    delay  negative
## 1331                  delayed  negative
## 1332                 delaying  negative
## 1333                   delays  negative
## 1334               delectable  positive
## 1335                 delicacy  positive
## 1336                 delicate  positive
## 1337                delicious  positive
## 1338                  delight  positive
## 1339                delighted  positive
## 1340               delightful  positive
## 1341             delightfully  positive
## 1342           delightfulness  positive
## 1343              delinquency  negative
## 1344               delinquent  negative
## 1345                delirious  negative
## 1346                 delirium  negative
## 1347                   delude  negative
## 1348                  deluded  negative
## 1349                   deluge  negative
## 1350                 delusion  negative
## 1351               delusional  negative
## 1352                delusions  negative
## 1353                   demean  negative
## 1354                demeaning  negative
## 1355                   demise  negative
## 1356                 demolish  negative
## 1357               demolisher  negative
## 1358                    demon  negative
## 1359                  demonic  negative
## 1360                 demonize  negative
## 1361                demonized  negative
## 1362                demonizes  negative
## 1363               demonizing  negative
## 1364               demoralize  negative
## 1365             demoralizing  negative
## 1366           demoralizingly  negative
## 1367                   denial  negative
## 1368                   denied  negative
## 1369                   denies  negative
## 1370                denigrate  negative
## 1371                 denounce  negative
## 1372                    dense  negative
## 1373                     dent  negative
## 1374                   dented  negative
## 1375                    dents  negative
## 1376               denunciate  negative
## 1377             denunciation  negative
## 1378            denunciations  negative
## 1379                     deny  negative
## 1380                  denying  negative
## 1381               dependable  positive
## 1382               dependably  positive
## 1383                  deplete  negative
## 1384               deplorable  negative
## 1385               deplorably  negative
## 1386                  deplore  negative
## 1387                deploring  negative
## 1388              deploringly  negative
## 1389                  deprave  negative
## 1390                 depraved  negative
## 1391               depravedly  negative
## 1392                deprecate  negative
## 1393                  depress  negative
## 1394                depressed  negative
## 1395               depressing  negative
## 1396             depressingly  negative
## 1397               depression  negative
## 1398              depressions  negative
## 1399                  deprive  negative
## 1400                 deprived  negative
## 1401                   deride  negative
## 1402                 derision  negative
## 1403                 derisive  negative
## 1404               derisively  negative
## 1405             derisiveness  negative
## 1406               derogatory  negative
## 1407                desecrate  negative
## 1408                   desert  negative
## 1409                desertion  negative
## 1410               deservedly  positive
## 1411                deserving  positive
## 1412                desiccate  negative
## 1413               desiccated  negative
## 1414                desirable  positive
## 1415                 desiring  positive
## 1416                 desirous  positive
## 1417               desititute  negative
## 1418                 desolate  negative
## 1419               desolately  negative
## 1420               desolation  negative
## 1421                  despair  negative
## 1422               despairing  negative
## 1423             despairingly  negative
## 1424                desperate  negative
## 1425              desperately  negative
## 1426              desperation  negative
## 1427               despicable  negative
## 1428               despicably  negative
## 1429                  despise  negative
## 1430                 despised  negative
## 1431                  despoil  negative
## 1432                despoiler  negative
## 1433              despondence  negative
## 1434              despondency  negative
## 1435               despondent  negative
## 1436             despondently  negative
## 1437                   despot  negative
## 1438                 despotic  negative
## 1439                despotism  negative
## 1440          destabilisation  negative
## 1441                 destains  negative
## 1442                  destiny  positive
## 1443                destitute  negative
## 1444              destitution  negative
## 1445                  destroy  negative
## 1446                destroyer  negative
## 1447              destruction  negative
## 1448              destructive  negative
## 1449                desultory  negative
## 1450               detachable  positive
## 1451                    deter  negative
## 1452              deteriorate  negative
## 1453            deteriorating  negative
## 1454            deterioration  negative
## 1455                deterrent  negative
## 1456                   detest  negative
## 1457               detestable  negative
## 1458               detestably  negative
## 1459                 detested  negative
## 1460                detesting  negative
## 1461                  detests  negative
## 1462                  detract  negative
## 1463                detracted  negative
## 1464               detracting  negative
## 1465               detraction  negative
## 1466                 detracts  negative
## 1467                detriment  negative
## 1468              detrimental  negative
## 1469                devastate  negative
## 1470               devastated  negative
## 1471               devastates  negative
## 1472              devastating  negative
## 1473            devastatingly  negative
## 1474              devastation  negative
## 1475                  deviate  negative
## 1476                deviation  negative
## 1477                    devil  negative
## 1478                 devilish  negative
## 1479               devilishly  negative
## 1480                devilment  negative
## 1481                  devilry  negative
## 1482                  devious  negative
## 1483                deviously  negative
## 1484              deviousness  negative
## 1485                   devoid  negative
## 1486                   devout  positive
## 1487                dexterous  positive
## 1488              dexterously  positive
## 1489                 dextrous  positive
## 1490                 diabolic  negative
## 1491               diabolical  negative
## 1492             diabolically  negative
## 1493            diametrically  negative
## 1494              diappointed  negative
## 1495                 diatribe  negative
## 1496                diatribes  negative
## 1497                     dick  negative
## 1498                 dictator  negative
## 1499              dictatorial  negative
## 1500                      die  negative
## 1501                 die-hard  negative
## 1502                     died  negative
## 1503                     dies  negative
## 1504                difficult  negative
## 1505             difficulties  negative
## 1506               difficulty  negative
## 1507               diffidence  negative
## 1508                dignified  positive
## 1509                  dignify  positive
## 1510                  dignity  positive
## 1511              dilapidated  negative
## 1512                  dilemma  negative
## 1513                diligence  positive
## 1514                 diligent  positive
## 1515               diligently  positive
## 1516              dilly-dally  negative
## 1517                      dim  negative
## 1518                   dimmer  negative
## 1519                      din  negative
## 1520                     ding  negative
## 1521                    dings  negative
## 1522                    dinky  negative
## 1523               diplomatic  positive
## 1524                     dire  negative
## 1525                   direly  negative
## 1526                 direness  negative
## 1527                     dirt  negative
## 1528               dirt-cheap  positive
## 1529                  dirtbag  negative
## 1530                 dirtbags  negative
## 1531                    dirts  negative
## 1532                    dirty  negative
## 1533                  disable  negative
## 1534                 disabled  negative
## 1535                disaccord  negative
## 1536             disadvantage  negative
## 1537            disadvantaged  negative
## 1538          disadvantageous  negative
## 1539            disadvantages  negative
## 1540                disaffect  negative
## 1541              disaffected  negative
## 1542                disaffirm  negative
## 1543                 disagree  negative
## 1544             disagreeable  negative
## 1545             disagreeably  negative
## 1546                disagreed  negative
## 1547              disagreeing  negative
## 1548             disagreement  negative
## 1549                disagrees  negative
## 1550                 disallow  negative
## 1551              disapointed  negative
## 1552             disapointing  negative
## 1553            disapointment  negative
## 1554               disappoint  negative
## 1555             disappointed  negative
## 1556            disappointing  negative
## 1557          disappointingly  negative
## 1558           disappointment  negative
## 1559          disappointments  negative
## 1560              disappoints  negative
## 1561           disapprobation  negative
## 1562              disapproval  negative
## 1563               disapprove  negative
## 1564             disapproving  negative
## 1565                   disarm  negative
## 1566                 disarray  negative
## 1567                 disaster  negative
## 1568              disasterous  negative
## 1569               disastrous  negative
## 1570             disastrously  negative
## 1571                  disavow  negative
## 1572                disavowal  negative
## 1573                disbelief  negative
## 1574               disbelieve  negative
## 1575              disbeliever  negative
## 1576                 disclaim  negative
## 1577           discombobulate  negative
## 1578                discomfit  negative
## 1579           discomfititure  negative
## 1580               discomfort  negative
## 1581               discompose  negative
## 1582               disconcert  negative
## 1583             disconcerted  negative
## 1584            disconcerting  negative
## 1585          disconcertingly  negative
## 1586             disconsolate  negative
## 1587           disconsolately  negative
## 1588           disconsolation  negative
## 1589               discontent  negative
## 1590             discontented  negative
## 1591           discontentedly  negative
## 1592             discontinued  negative
## 1593            discontinuity  negative
## 1594            discontinuous  negative
## 1595                  discord  negative
## 1596              discordance  negative
## 1597               discordant  negative
## 1598           discountenance  negative
## 1599               discourage  negative
## 1600           discouragement  negative
## 1601             discouraging  negative
## 1602           discouragingly  negative
## 1603             discourteous  negative
## 1604           discourteously  negative
## 1605             discoutinous  negative
## 1606                discredit  negative
## 1607               discrepant  negative
## 1608             discriminate  negative
## 1609           discrimination  negative
## 1610           discriminatory  negative
## 1611                  disdain  negative
## 1612                disdained  negative
## 1613               disdainful  negative
## 1614             disdainfully  negative
## 1615                 disfavor  negative
## 1616                 disgrace  negative
## 1617                disgraced  negative
## 1618              disgraceful  negative
## 1619            disgracefully  negative
## 1620               disgruntle  negative
## 1621              disgruntled  negative
## 1622                  disgust  negative
## 1623                disgusted  negative
## 1624              disgustedly  negative
## 1625               disgustful  negative
## 1626             disgustfully  negative
## 1627               disgusting  negative
## 1628             disgustingly  negative
## 1629               dishearten  negative
## 1630            disheartening  negative
## 1631          dishearteningly  negative
## 1632                dishonest  negative
## 1633              dishonestly  negative
## 1634               dishonesty  negative
## 1635                 dishonor  negative
## 1636             dishonorable  negative
## 1637           dishonorablely  negative
## 1638              disillusion  negative
## 1639            disillusioned  negative
## 1640          disillusionment  negative
## 1641             disillusions  negative
## 1642           disinclination  negative
## 1643              disinclined  negative
## 1644             disingenuous  negative
## 1645           disingenuously  negative
## 1646             disintegrate  negative
## 1647            disintegrated  negative
## 1648            disintegrates  negative
## 1649           disintegration  negative
## 1650              disinterest  negative
## 1651            disinterested  negative
## 1652                  dislike  negative
## 1653                 disliked  negative
## 1654                 dislikes  negative
## 1655                disliking  negative
## 1656               dislocated  negative
## 1657                 disloyal  negative
## 1658               disloyalty  negative
## 1659                   dismal  negative
## 1660                 dismally  negative
## 1661               dismalness  negative
## 1662                   dismay  negative
## 1663                 dismayed  negative
## 1664                dismaying  negative
## 1665              dismayingly  negative
## 1666               dismissive  negative
## 1667             dismissively  negative
## 1668             disobedience  negative
## 1669              disobedient  negative
## 1670                  disobey  negative
## 1671             disoobedient  negative
## 1672                 disorder  negative
## 1673               disordered  negative
## 1674               disorderly  negative
## 1675             disorganized  negative
## 1676                disorient  negative
## 1677              disoriented  negative
## 1678                   disown  negative
## 1679                disparage  negative
## 1680              disparaging  negative
## 1681            disparagingly  negative
## 1682              dispensable  negative
## 1683                 dispirit  negative
## 1684               dispirited  negative
## 1685             dispiritedly  negative
## 1686              dispiriting  negative
## 1687                 displace  negative
## 1688                displaced  negative
## 1689                displease  negative
## 1690               displeased  negative
## 1691              displeasing  negative
## 1692              displeasure  negative
## 1693         disproportionate  negative
## 1694                 disprove  negative
## 1695               disputable  negative
## 1696                  dispute  negative
## 1697                 disputed  negative
## 1698                 disquiet  negative
## 1699              disquieting  negative
## 1700            disquietingly  negative
## 1701              disquietude  negative
## 1702                disregard  negative
## 1703             disregardful  negative
## 1704             disreputable  negative
## 1705                disrepute  negative
## 1706               disrespect  negative
## 1707           disrespectable  negative
## 1708         disrespectablity  negative
## 1709            disrespectful  negative
## 1710          disrespectfully  negative
## 1711        disrespectfulness  negative
## 1712            disrespecting  negative
## 1713                  disrupt  negative
## 1714               disruption  negative
## 1715               disruptive  negative
## 1716                     diss  negative
## 1717             dissapointed  negative
## 1718            dissappointed  negative
## 1719           dissappointing  negative
## 1720          dissatisfaction  negative
## 1721          dissatisfactory  negative
## 1722             dissatisfied  negative
## 1723             dissatisfies  negative
## 1724               dissatisfy  negative
## 1725            dissatisfying  negative
## 1726                   dissed  negative
## 1727                dissemble  negative
## 1728               dissembler  negative
## 1729               dissension  negative
## 1730                  dissent  negative
## 1731                dissenter  negative
## 1732               dissention  negative
## 1733               disservice  negative
## 1734                   disses  negative
## 1735               dissidence  negative
## 1736                dissident  negative
## 1737               dissidents  negative
## 1738                  dissing  negative
## 1739                dissocial  negative
## 1740                dissolute  negative
## 1741              dissolution  negative
## 1742               dissonance  negative
## 1743                dissonant  negative
## 1744              dissonantly  negative
## 1745                 dissuade  negative
## 1746               dissuasive  negative
## 1747                 distains  negative
## 1748                 distaste  negative
## 1749              distasteful  negative
## 1750            distastefully  negative
## 1751              distinction  positive
## 1752              distinctive  positive
## 1753            distinguished  positive
## 1754                  distort  negative
## 1755                distorted  negative
## 1756               distortion  negative
## 1757                 distorts  negative
## 1758                 distract  negative
## 1759              distracting  negative
## 1760              distraction  negative
## 1761               distraught  negative
## 1762             distraughtly  negative
## 1763           distraughtness  negative
## 1764                 distress  negative
## 1765               distressed  negative
## 1766              distressing  negative
## 1767            distressingly  negative
## 1768                 distrust  negative
## 1769              distrustful  negative
## 1770              distrusting  negative
## 1771                  disturb  negative
## 1772              disturbance  negative
## 1773                disturbed  negative
## 1774               disturbing  negative
## 1775             disturbingly  negative
## 1776                 disunity  negative
## 1777                 disvalue  negative
## 1778                divergent  negative
## 1779              diversified  positive
## 1780                   divine  positive
## 1781                 divinely  positive
## 1782                 divisive  negative
## 1783               divisively  negative
## 1784             divisiveness  negative
## 1785                  dizzing  negative
## 1786                dizzingly  negative
## 1787                    dizzy  negative
## 1788                doddering  negative
## 1789                   dodgey  negative
## 1790                   dogged  negative
## 1791                 doggedly  negative
## 1792                 dogmatic  negative
## 1793                 doldrums  negative
## 1794                 dominate  positive
## 1795                dominated  positive
## 1796                dominates  positive
## 1797                 domineer  negative
## 1798              domineering  negative
## 1799                  donside  negative
## 1800                     doom  negative
## 1801                   doomed  negative
## 1802                 doomsday  negative
## 1803                     dope  negative
## 1804                     dote  positive
## 1805                 dotingly  positive
## 1806                    doubt  negative
## 1807                 doubtful  negative
## 1808               doubtfully  negative
## 1809                doubtless  positive
## 1810                   doubts  negative
## 1811                 douchbag  negative
## 1812                douchebag  negative
## 1813               douchebags  negative
## 1814                 downbeat  negative
## 1815                 downcast  negative
## 1816                   downer  negative
## 1817                 downfall  negative
## 1818               downfallen  negative
## 1819                downgrade  negative
## 1820              downhearted  negative
## 1821            downheartedly  negative
## 1822                 downhill  negative
## 1823                 downside  negative
## 1824                downsides  negative
## 1825                 downturn  negative
## 1826                downturns  negative
## 1827                     drab  negative
## 1828                draconian  negative
## 1829                 draconic  negative
## 1830                     drag  negative
## 1831                  dragged  negative
## 1832                 dragging  negative
## 1833                  dragoon  negative
## 1834                    drags  negative
## 1835                    drain  negative
## 1836                  drained  negative
## 1837                 draining  negative
## 1838                   drains  negative
## 1839                  drastic  negative
## 1840              drastically  negative
## 1841                 drawback  negative
## 1842                drawbacks  negative
## 1843                    dread  negative
## 1844                 dreadful  negative
## 1845               dreadfully  negative
## 1846             dreadfulness  negative
## 1847                dreamland  positive
## 1848                   dreary  negative
## 1849                  dripped  negative
## 1850                 dripping  negative
## 1851                   drippy  negative
## 1852                    drips  negative
## 1853                   drones  negative
## 1854                    droop  negative
## 1855                   droops  negative
## 1856                 drop-out  negative
## 1857                drop-outs  negative
## 1858                  dropout  negative
## 1859                 dropouts  negative
## 1860                  drought  negative
## 1861                 drowning  negative
## 1862                    drunk  negative
## 1863                 drunkard  negative
## 1864                  drunken  negative
## 1865                  dubious  negative
## 1866                dubiously  negative
## 1867                dubitable  negative
## 1868                      dud  negative
## 1869                     dull  negative
## 1870                  dullard  negative
## 1871                     dumb  negative
## 1872                dumbfound  negative
## 1873              dumbfounded  positive
## 1874             dumbfounding  positive
## 1875              dummy-proof  positive
## 1876                     dump  negative
## 1877                   dumped  negative
## 1878                  dumping  negative
## 1879                    dumps  negative
## 1880                    dunce  negative
## 1881                  dungeon  negative
## 1882                 dungeons  negative
## 1883                     dupe  negative
## 1884                  durable  positive
## 1885                     dust  negative
## 1886                    dusty  negative
## 1887                dwindling  negative
## 1888                    dying  negative
## 1889                  dynamic  positive
## 1890                    eager  positive
## 1891                  eagerly  positive
## 1892                eagerness  positive
## 1893                  earnest  positive
## 1894                earnestly  positive
## 1895              earnestness  positive
## 1896             earsplitting  negative
## 1897                     ease  positive
## 1898                    eased  positive
## 1899                    eases  positive
## 1900                   easier  positive
## 1901                  easiest  positive
## 1902                 easiness  positive
## 1903                   easing  positive
## 1904                     easy  positive
## 1905              easy-to-use  positive
## 1906                easygoing  positive
## 1907               ebullience  positive
## 1908                ebullient  positive
## 1909              ebulliently  positive
## 1910                eccentric  negative
## 1911             eccentricity  negative
## 1912               ecenomical  positive
## 1913               economical  positive
## 1914                ecstasies  positive
## 1915                  ecstasy  positive
## 1916                 ecstatic  positive
## 1917             ecstatically  positive
## 1918                    edify  positive
## 1919                 educated  positive
## 1920                effective  positive
## 1921              effectively  positive
## 1922            effectiveness  positive
## 1923                effectual  positive
## 1924              efficacious  positive
## 1925                efficient  positive
## 1926              efficiently  positive
## 1927                   effigy  negative
## 1928               effortless  positive
## 1929             effortlessly  positive
## 1930               effrontery  negative
## 1931                 effusion  positive
## 1932                 effusive  positive
## 1933               effusively  positive
## 1934             effusiveness  positive
## 1935               egocentric  negative
## 1936                 egomania  negative
## 1937                  egotism  negative
## 1938              egotistical  negative
## 1939            egotistically  negative
## 1940                egregious  negative
## 1941              egregiously  negative
## 1942                     elan  positive
## 1943                    elate  positive
## 1944                   elated  positive
## 1945                 elatedly  positive
## 1946                  elation  positive
## 1947          election-rigger  negative
## 1948                electrify  positive
## 1949                 elegance  positive
## 1950                  elegant  positive
## 1951                elegantly  positive
## 1952                  elevate  positive
## 1953              elimination  negative
## 1954                    elite  positive
## 1955                eloquence  positive
## 1956                 eloquent  positive
## 1957               eloquently  positive
## 1958                emaciated  negative
## 1959               emasculate  negative
## 1960                embarrass  negative
## 1961             embarrassing  negative
## 1962           embarrassingly  negative
## 1963            embarrassment  negative
## 1964                embattled  negative
## 1965                 embolden  positive
## 1966                  embroil  negative
## 1967                embroiled  negative
## 1968              embroilment  negative
## 1969                emergency  negative
## 1970                 eminence  positive
## 1971                  eminent  positive
## 1972                empathize  positive
## 1973                  empathy  positive
## 1974                 emphatic  negative
## 1975             emphatically  negative
## 1976                  empower  positive
## 1977              empowerment  positive
## 1978                emptiness  negative
## 1979                  enchant  positive
## 1980                enchanted  positive
## 1981               enchanting  positive
## 1982             enchantingly  positive
## 1983                encourage  positive
## 1984            encouragement  positive
## 1985              encouraging  positive
## 1986            encouragingly  positive
## 1987                 encroach  negative
## 1988             encroachment  negative
## 1989                 endanger  negative
## 1990                   endear  positive
## 1991                endearing  positive
## 1992                  endorse  positive
## 1993                 endorsed  positive
## 1994              endorsement  positive
## 1995                 endorses  positive
## 1996                endorsing  positive
## 1997                  enemies  negative
## 1998                    enemy  negative
## 1999                energetic  positive
## 2000                 energize  positive
## 2001         energy-efficient  positive
## 2002            energy-saving  positive
## 2003                 enervate  negative
## 2004                 enfeeble  negative
## 2005                  enflame  negative
## 2006                 engaging  positive
## 2007               engrossing  positive
## 2008                   engulf  negative
## 2009                  enhance  positive
## 2010                 enhanced  positive
## 2011              enhancement  positive
## 2012                 enhances  positive
## 2013                   enjoin  negative
## 2014                    enjoy  positive
## 2015                enjoyable  positive
## 2016                enjoyably  positive
## 2017                  enjoyed  positive
## 2018                 enjoying  positive
## 2019                enjoyment  positive
## 2020                   enjoys  positive
## 2021                enlighten  positive
## 2022            enlightenment  positive
## 2023                  enliven  positive
## 2024                   enmity  negative
## 2025                  ennoble  positive
## 2026                   enough  positive
## 2027                   enrage  negative
## 2028                  enraged  negative
## 2029                 enraging  negative
## 2030                   enrapt  positive
## 2031                enrapture  positive
## 2032               enraptured  positive
## 2033                   enrich  positive
## 2034               enrichment  positive
## 2035                  enslave  negative
## 2036                 entangle  negative
## 2037             entanglement  negative
## 2038             enterprising  positive
## 2039                entertain  positive
## 2040             entertaining  positive
## 2041               entertains  positive
## 2042                  enthral  positive
## 2043                 enthrall  positive
## 2044               enthralled  positive
## 2045                  enthuse  positive
## 2046               enthusiasm  positive
## 2047               enthusiast  positive
## 2048             enthusiastic  positive
## 2049         enthusiastically  positive
## 2050                   entice  positive
## 2051                  enticed  positive
## 2052                 enticing  positive
## 2053               enticingly  positive
## 2054                entranced  positive
## 2055               entrancing  positive
## 2056                   entrap  negative
## 2057               entrapment  negative
## 2058                  entrust  positive
## 2059                 enviable  positive
## 2060                 enviably  positive
## 2061                  envious  positive
## 2062                  envious  negative
## 2063                enviously  positive
## 2064                enviously  negative
## 2065              enviousness  positive
## 2066              enviousness  negative
## 2067                     envy  positive
## 2068                 epidemic  negative
## 2069                equitable  positive
## 2070                equivocal  negative
## 2071                    erase  negative
## 2072              ergonomical  positive
## 2073                    erode  negative
## 2074                   erodes  negative
## 2075                  erosion  negative
## 2076                      err  negative
## 2077                 err-free  positive
## 2078                   errant  negative
## 2079                  erratic  negative
## 2080              erratically  negative
## 2081                erroneous  negative
## 2082              erroneously  negative
## 2083                    error  negative
## 2084                   errors  negative
## 2085                  erudite  positive
## 2086                eruptions  negative
## 2087                 escapade  negative
## 2088                   eschew  negative
## 2089                estranged  negative
## 2090                  ethical  positive
## 2091                 eulogize  positive
## 2092                 euphoria  positive
## 2093                 euphoric  positive
## 2094             euphorically  positive
## 2095                    evade  negative
## 2096               evaluative  positive
## 2097                  evasion  negative
## 2098                  evasive  negative
## 2099                   evenly  positive
## 2100                 eventful  positive
## 2101              everlasting  positive
## 2102                     evil  negative
## 2103                 evildoer  negative
## 2104                    evils  negative
## 2105               eviscerate  negative
## 2106                evocative  positive
## 2107               exacerbate  negative
## 2108                exagerate  negative
## 2109               exagerated  negative
## 2110               exagerates  negative
## 2111               exaggerate  negative
## 2112             exaggeration  negative
## 2113                    exalt  positive
## 2114               exaltation  positive
## 2115                  exalted  positive
## 2116                exaltedly  positive
## 2117                 exalting  positive
## 2118               exaltingly  positive
## 2119                 examplar  positive
## 2120                examplary  positive
## 2121               exasperate  negative
## 2122              exasperated  negative
## 2123             exasperating  negative
## 2124           exasperatingly  negative
## 2125             exasperation  negative
## 2126                excallent  positive
## 2127                   exceed  positive
## 2128                 exceeded  positive
## 2129                exceeding  positive
## 2130              exceedingly  positive
## 2131                  exceeds  positive
## 2132                    excel  positive
## 2133                  exceled  positive
## 2134                 excelent  positive
## 2135                excellant  positive
## 2136                 excelled  positive
## 2137               excellence  positive
## 2138               excellency  positive
## 2139                excellent  positive
## 2140              excellently  positive
## 2141                   excels  positive
## 2142              exceptional  positive
## 2143            exceptionally  positive
## 2144                excessive  negative
## 2145              excessively  negative
## 2146                   excite  positive
## 2147                  excited  positive
## 2148                excitedly  positive
## 2149              excitedness  positive
## 2150               excitement  positive
## 2151                  excites  positive
## 2152                 exciting  positive
## 2153               excitingly  positive
## 2154                exclusion  negative
## 2155                excoriate  negative
## 2156             excruciating  negative
## 2157           excruciatingly  negative
## 2158                   excuse  negative
## 2159                  excuses  negative
## 2160                 execrate  negative
## 2161                 exellent  positive
## 2162                 exemplar  positive
## 2163                exemplary  positive
## 2164                  exhaust  negative
## 2165                exhausted  negative
## 2166               exhaustion  negative
## 2167                 exhausts  negative
## 2168               exhilarate  positive
## 2169             exhilarating  positive
## 2170           exhilaratingly  positive
## 2171             exhilaration  positive
## 2172              exhorbitant  negative
## 2173                   exhort  negative
## 2174                    exile  negative
## 2175                exonerate  positive
## 2176               exorbitant  negative
## 2177           exorbitantance  negative
## 2178             exorbitantly  negative
## 2179                expansive  positive
## 2180            expeditiously  positive
## 2181                    expel  negative
## 2182                expensive  negative
## 2183                 expertly  positive
## 2184                   expire  negative
## 2185                  expired  negative
## 2186                  explode  negative
## 2187                  exploit  negative
## 2188             exploitation  negative
## 2189                explosive  negative
## 2190              expropriate  negative
## 2191            expropriation  negative
## 2192                  expulse  negative
## 2193                  expunge  negative
## 2194                exquisite  positive
## 2195              exquisitely  positive
## 2196              exterminate  negative
## 2197            extermination  negative
## 2198               extinguish  negative
## 2199                    extol  positive
## 2200                   extoll  positive
## 2201                   extort  negative
## 2202                extortion  negative
## 2203               extraneous  negative
## 2204          extraordinarily  positive
## 2205            extraordinary  positive
## 2206             extravagance  negative
## 2207              extravagant  negative
## 2208            extravagantly  negative
## 2209                extremism  negative
## 2210                extremist  negative
## 2211               extremists  negative
## 2212               exuberance  positive
## 2213                exuberant  positive
## 2214              exuberantly  positive
## 2215                    exult  positive
## 2216                 exultant  positive
## 2217               exultation  positive
## 2218               exultingly  positive
## 2219                eye-catch  positive
## 2220             eye-catching  positive
## 2221                 eyecatch  positive
## 2222              eyecatching  positive
## 2223                  eyesore  negative
## 2224                     f**k  negative
## 2225                fabricate  negative
## 2226              fabrication  negative
## 2227                 fabulous  positive
## 2228               fabulously  positive
## 2229                facetious  negative
## 2230              facetiously  negative
## 2231               facilitate  positive
## 2232                     fail  negative
## 2233                   failed  negative
## 2234                  failing  negative
## 2235                    fails  negative
## 2236                  failure  negative
## 2237                 failures  negative
## 2238                    faint  negative
## 2239             fainthearted  negative
## 2240                     fair  positive
## 2241                   fairly  positive
## 2242                 fairness  positive
## 2243                    faith  positive
## 2244                 faithful  positive
## 2245               faithfully  positive
## 2246             faithfulness  positive
## 2247                faithless  negative
## 2248                     fake  negative
## 2249                     fall  negative
## 2250                fallacies  negative
## 2251               fallacious  negative
## 2252             fallaciously  negative
## 2253           fallaciousness  negative
## 2254                  fallacy  negative
## 2255                   fallen  negative
## 2256                  falling  negative
## 2257                  fallout  negative
## 2258                    falls  negative
## 2259                    false  negative
## 2260                falsehood  negative
## 2261                  falsely  negative
## 2262                  falsify  negative
## 2263                   falter  negative
## 2264                 faltered  negative
## 2265                     fame  positive
## 2266                    famed  positive
## 2267                   famine  negative
## 2268                 famished  negative
## 2269                   famous  positive
## 2270                 famously  positive
## 2271                  fanatic  negative
## 2272                fanatical  negative
## 2273              fanatically  negative
## 2274               fanaticism  negative
## 2275                 fanatics  negative
## 2276                  fancier  positive
## 2277                 fanciful  negative
## 2278              fancinating  positive
## 2279                    fancy  positive
## 2280                  fanfare  positive
## 2281                     fans  positive
## 2282                fantastic  positive
## 2283            fantastically  positive
## 2284              far-fetched  negative
## 2285                    farce  negative
## 2286                 farcical  negative
## 2287 farcical-yet-provocative  negative
## 2288               farcically  negative
## 2289               farfetched  negative
## 2290                fascinate  positive
## 2291              fascinating  positive
## 2292            fascinatingly  positive
## 2293              fascination  positive
## 2294                  fascism  negative
## 2295                  fascist  negative
## 2296              fashionable  positive
## 2297              fashionably  positive
## 2298                     fast  positive
## 2299             fast-growing  positive
## 2300               fast-paced  positive
## 2301                   faster  positive
## 2302                  fastest  positive
## 2303          fastest-growing  positive
## 2304               fastidious  negative
## 2305             fastidiously  negative
## 2306                 fastuous  negative
## 2307                      fat  negative
## 2308                  fat-cat  negative
## 2309                 fat-cats  negative
## 2310                    fatal  negative
## 2311               fatalistic  negative
## 2312           fatalistically  negative
## 2313                  fatally  negative
## 2314                   fatcat  negative
## 2315                  fatcats  negative
## 2316                  fateful  negative
## 2317                fatefully  negative
## 2318               fathomless  negative
## 2319                  fatigue  negative
## 2320                 fatigued  negative
## 2321                  fatique  negative
## 2322                    fatty  negative
## 2323                  fatuity  negative
## 2324                  fatuous  negative
## 2325                fatuously  negative
## 2326                    fault  negative
## 2327                faultless  positive
## 2328                   faults  negative
## 2329                   faulty  negative
## 2330                      fav  positive
## 2331                     fave  positive
## 2332                    favor  positive
## 2333                favorable  positive
## 2334                  favored  positive
## 2335                 favorite  positive
## 2336                favorited  positive
## 2337                   favour  positive
## 2338                fawningly  negative
## 2339                     faze  negative
## 2340                     fear  negative
## 2341                  fearful  negative
## 2342                fearfully  negative
## 2343                 fearless  positive
## 2344               fearlessly  positive
## 2345                    fears  negative
## 2346                 fearsome  negative
## 2347                 feasible  positive
## 2348                 feasibly  positive
## 2349                     feat  positive
## 2350             feature-rich  positive
## 2351               fecilitous  positive
## 2352                 feckless  negative
## 2353                   feeble  negative
## 2354                 feeblely  negative
## 2355             feebleminded  negative
## 2356                    feign  negative
## 2357                    feint  negative
## 2358                   feisty  positive
## 2359               felicitate  positive
## 2360               felicitous  positive
## 2361                 felicity  positive
## 2362                     fell  negative
## 2363                    felon  negative
## 2364                felonious  negative
## 2365              ferociously  negative
## 2366                 ferocity  negative
## 2367                  fertile  positive
## 2368                  fervent  positive
## 2369                fervently  positive
## 2370                   fervid  positive
## 2371                 fervidly  positive
## 2372                   fervor  positive
## 2373                  festive  positive
## 2374                    fetid  negative
## 2375                    fever  negative
## 2376                 feverish  negative
## 2377                   fevers  negative
## 2378                   fiasco  negative
## 2379                      fib  negative
## 2380                   fibber  negative
## 2381                   fickle  negative
## 2382                  fiction  negative
## 2383                fictional  negative
## 2384               fictitious  negative
## 2385                 fidelity  positive
## 2386                   fidget  negative
## 2387                  fidgety  negative
## 2388                    fiend  negative
## 2389                 fiendish  negative
## 2390                   fierce  negative
## 2391                    fiery  positive
## 2392               figurehead  negative
## 2393                    filth  negative
## 2394                   filthy  negative
## 2395                  finagle  negative
## 2396                     fine  positive
## 2397             fine-looking  positive
## 2398                   finely  positive
## 2399                    finer  positive
## 2400                   finest  positive
## 2401                  finicky  negative
## 2402                   firmer  positive
## 2403              first-class  positive
## 2404           first-in-class  positive
## 2405               first-rate  positive
## 2406                 fissures  negative
## 2407                     fist  negative
## 2408              flabbergast  negative
## 2409            flabbergasted  negative
## 2410                 flagging  negative
## 2411                 flagrant  negative
## 2412               flagrantly  negative
## 2413                    flair  negative
## 2414                   flairs  negative
## 2415                     flak  negative
## 2416                    flake  negative
## 2417                   flakey  negative
## 2418               flakieness  negative
## 2419                  flaking  negative
## 2420                    flaky  negative
## 2421                    flare  negative
## 2422                   flares  negative
## 2423                  flareup  negative
## 2424                 flareups  negative
## 2425                   flashy  positive
## 2426                 flat-out  negative
## 2427                  flatter  positive
## 2428               flattering  positive
## 2429             flatteringly  positive
## 2430                   flaunt  negative
## 2431                     flaw  negative
## 2432                   flawed  negative
## 2433                 flawless  positive
## 2434               flawlessly  positive
## 2435                    flaws  negative
## 2436                     flee  negative
## 2437                    fleed  negative
## 2438                  fleeing  negative
## 2439                    fleer  negative
## 2440                    flees  negative
## 2441                 fleeting  negative
## 2442              flexibility  positive
## 2443                 flexible  positive
## 2444                flicering  negative
## 2445                  flicker  negative
## 2446               flickering  negative
## 2447                 flickers  negative
## 2448                  flighty  negative
## 2449                 flimflam  negative
## 2450                   flimsy  negative
## 2451                    flirt  negative
## 2452                   flirty  negative
## 2453                  floored  negative
## 2454                 flounder  negative
## 2455              floundering  negative
## 2456                 flourish  positive
## 2457              flourishing  positive
## 2458                    flout  negative
## 2459                   fluent  positive
## 2460                  fluster  negative
## 2461                  flutter  positive
## 2462                      foe  negative
## 2463                     fond  positive
## 2464                   fondly  positive
## 2465                 fondness  positive
## 2466                     fool  negative
## 2467                   fooled  negative
## 2468                foolhardy  negative
## 2469                  foolish  negative
## 2470                foolishly  negative
## 2471              foolishness  negative
## 2472                foolproof  positive
## 2473                   forbid  negative
## 2474                forbidden  negative
## 2475               forbidding  negative
## 2476                 forceful  negative
## 2477               foreboding  negative
## 2478             forebodingly  negative
## 2479                 foremost  positive
## 2480                foresight  positive
## 2481                  forfeit  negative
## 2482                   forged  negative
## 2483                forgetful  negative
## 2484              forgetfully  negative
## 2485            forgetfulness  negative
## 2486                  forlorn  negative
## 2487                forlornly  negative
## 2488               formidable  positive
## 2489                  forsake  negative
## 2490                 forsaken  negative
## 2491                 forswear  negative
## 2492                fortitude  positive
## 2493               fortuitous  positive
## 2494             fortuitously  positive
## 2495                fortunate  positive
## 2496              fortunately  positive
## 2497                  fortune  positive
## 2498                     foul  negative
## 2499                   foully  negative
## 2500                 foulness  negative
## 2501                fractious  negative
## 2502              fractiously  negative
## 2503                 fracture  negative
## 2504                  fragile  negative
## 2505               fragmented  negative
## 2506                 fragrant  positive
## 2507                    frail  negative
## 2508                  frantic  negative
## 2509              frantically  negative
## 2510                franticly  negative
## 2511                    fraud  negative
## 2512               fraudulent  negative
## 2513                  fraught  negative
## 2514                  frazzle  negative
## 2515                 frazzled  negative
## 2516                    freak  negative
## 2517                 freaking  negative
## 2518                 freakish  negative
## 2519               freakishly  negative
## 2520                   freaks  negative
## 2521                     free  positive
## 2522                    freed  positive
## 2523                  freedom  positive
## 2524                 freedoms  positive
## 2525                   freeze  negative
## 2526                  freezes  negative
## 2527                 freezing  negative
## 2528                 frenetic  negative
## 2529             frenetically  negative
## 2530                 frenzied  negative
## 2531                   frenzy  negative
## 2532                    fresh  positive
## 2533                  fresher  positive
## 2534                 freshest  positive
## 2535                     fret  negative
## 2536                  fretful  negative
## 2537                    frets  negative
## 2538                 friction  negative
## 2539                frictions  negative
## 2540                    fried  negative
## 2541             friendliness  positive
## 2542                 friendly  positive
## 2543                  friggin  negative
## 2544                 frigging  negative
## 2545                   fright  negative
## 2546                 frighten  negative
## 2547              frightening  negative
## 2548            frighteningly  negative
## 2549                frightful  negative
## 2550              frightfully  negative
## 2551                   frigid  negative
## 2552                   frolic  positive
## 2553                    frost  negative
## 2554                    frown  negative
## 2555                    froze  negative
## 2556                   frozen  negative
## 2557                   frugal  positive
## 2558                 fruitful  positive
## 2559                fruitless  negative
## 2560              fruitlessly  negative
## 2561                frustrate  negative
## 2562               frustrated  negative
## 2563               frustrates  negative
## 2564              frustrating  negative
## 2565            frustratingly  negative
## 2566              frustration  negative
## 2567             frustrations  negative
## 2568                      ftw  positive
## 2569                     fuck  negative
## 2570                  fucking  negative
## 2571                    fudge  negative
## 2572                 fugitive  negative
## 2573              fulfillment  positive
## 2574               full-blown  negative
## 2575                fulminate  negative
## 2576                   fumble  negative
## 2577                     fume  negative
## 2578                    fumes  negative
## 2579                      fun  positive
## 2580           fundamentalism  negative
## 2581                    funky  negative
## 2582                  funnily  negative
## 2583                    funny  negative
## 2584                  furious  negative
## 2585                furiously  negative
## 2586                    furor  negative
## 2587                     fury  negative
## 2588                     fuss  negative
## 2589                    fussy  negative
## 2590                fustigate  negative
## 2591                    fusty  negative
## 2592                   futile  negative
## 2593                 futilely  negative
## 2594                 futility  negative
## 2595               futurestic  positive
## 2596               futuristic  positive
## 2597                    fuzzy  negative
## 2598                   gabble  negative
## 2599                     gaff  negative
## 2600                    gaffe  negative
## 2601                   gaiety  positive
## 2602                    gaily  positive
## 2603                     gain  positive
## 2604                   gained  positive
## 2605                  gainful  positive
## 2606                gainfully  positive
## 2607                  gaining  positive
## 2608                    gains  positive
## 2609                  gainsay  negative
## 2610                gainsayer  negative
## 2611                     gall  negative
## 2612                  gallant  positive
## 2613                gallantly  positive
## 2614                  galling  negative
## 2615                gallingly  negative
## 2616                    galls  negative
## 2617                   galore  positive
## 2618                 gangster  negative
## 2619                     gape  negative
## 2620                  garbage  negative
## 2621                   garish  negative
## 2622                     gasp  negative
## 2623                   gauche  negative
## 2624                    gaudy  negative
## 2625                     gawk  negative
## 2626                    gawky  negative
## 2627                  geekier  positive
## 2628                    geeky  positive
## 2629                   geezer  negative
## 2630                      gem  positive
## 2631                     gems  positive
## 2632               generosity  positive
## 2633                 generous  positive
## 2634               generously  positive
## 2635                   genial  positive
## 2636                   genius  positive
## 2637                 genocide  negative
## 2638                   gentle  positive
## 2639                 gentlest  positive
## 2640                  genuine  positive
## 2641                 get-rich  negative
## 2642                  ghastly  negative
## 2643                   ghetto  negative
## 2644                 ghosting  negative
## 2645                   gibber  negative
## 2646                gibberish  negative
## 2647                     gibe  negative
## 2648                    giddy  negative
## 2649                   gifted  positive
## 2650                  gimmick  negative
## 2651                gimmicked  negative
## 2652               gimmicking  negative
## 2653                 gimmicks  negative
## 2654                 gimmicky  negative
## 2655                     glad  positive
## 2656                  gladden  positive
## 2657                   gladly  positive
## 2658                 gladness  positive
## 2659                glamorous  positive
## 2660                    glare  negative
## 2661                glaringly  negative
## 2662                     glee  positive
## 2663                  gleeful  positive
## 2664                gleefully  positive
## 2665                     glib  negative
## 2666                   glibly  negative
## 2667                  glimmer  positive
## 2668               glimmering  positive
## 2669                  glisten  positive
## 2670               glistening  positive
## 2671                   glitch  negative
## 2672                 glitches  negative
## 2673                  glitter  positive
## 2674                    glitz  positive
## 2675               gloatingly  negative
## 2676                    gloom  negative
## 2677                   gloomy  negative
## 2678                  glorify  positive
## 2679                 glorious  positive
## 2680               gloriously  positive
## 2681                    glory  positive
## 2682                     glow  positive
## 2683                   glower  negative
## 2684                  glowing  positive
## 2685                glowingly  positive
## 2686                     glum  negative
## 2687                     glut  negative
## 2688                  gnawing  negative
## 2689                     goad  negative
## 2690                  goading  negative
## 2691                god-awful  negative
## 2692                god-given  positive
## 2693                 god-send  positive
## 2694                  godlike  positive
## 2695                  godsend  positive
## 2696                     gold  positive
## 2697                   golden  positive
## 2698                     good  positive
## 2699                   goodly  positive
## 2700                 goodness  positive
## 2701                 goodwill  positive
## 2702                     goof  negative
## 2703                    goofy  negative
## 2704                     goon  negative
## 2705                    goood  positive
## 2706                   gooood  positive
## 2707                 gorgeous  positive
## 2708               gorgeously  positive
## 2709                   gossip  negative
## 2710                    grace  positive
## 2711                 graceful  positive
## 2712               gracefully  positive
## 2713                graceless  negative
## 2714              gracelessly  negative
## 2715                 gracious  positive
## 2716               graciously  positive
## 2717             graciousness  positive
## 2718                    graft  negative
## 2719                   grainy  negative
## 2720                    grand  positive
## 2721                 grandeur  positive
## 2722                  grapple  negative
## 2723                    grate  negative
## 2724                 grateful  positive
## 2725               gratefully  positive
## 2726            gratification  positive
## 2727                gratified  positive
## 2728                gratifies  positive
## 2729                  gratify  positive
## 2730               gratifying  positive
## 2731             gratifyingly  positive
## 2732                  grating  negative
## 2733                gratitude  positive
## 2734                  gravely  negative
## 2735                   greasy  negative
## 2736                    great  positive
## 2737                 greatest  positive
## 2738                greatness  positive
## 2739                    greed  negative
## 2740                   greedy  negative
## 2741                    grief  negative
## 2742                grievance  negative
## 2743               grievances  negative
## 2744                   grieve  negative
## 2745                 grieving  negative
## 2746                 grievous  negative
## 2747               grievously  negative
## 2748                     grim  negative
## 2749                  grimace  negative
## 2750                     grin  positive
## 2751                    grind  negative
## 2752                    gripe  negative
## 2753                   gripes  negative
## 2754                   grisly  negative
## 2755                   gritty  negative
## 2756                    gross  negative
## 2757                  grossly  negative
## 2758                grotesque  negative
## 2759                   grouch  negative
## 2760                  grouchy  negative
## 2761           groundbreaking  positive
## 2762               groundless  negative
## 2763                   grouse  negative
## 2764                    growl  negative
## 2765                   grudge  negative
## 2766                  grudges  negative
## 2767                 grudging  negative
## 2768               grudgingly  negative
## 2769                 gruesome  negative
## 2770               gruesomely  negative
## 2771                    gruff  negative
## 2772                  grumble  negative
## 2773                 grumpier  negative
## 2774                grumpiest  negative
## 2775                 grumpily  negative
## 2776                 grumpish  negative
## 2777                   grumpy  negative
## 2778                guarantee  positive
## 2779                 guidance  positive
## 2780                    guile  negative
## 2781                    guilt  negative
## 2782                 guiltily  negative
## 2783                guiltless  positive
## 2784                   guilty  negative
## 2785                 gullible  negative
## 2786                 gumption  positive
## 2787                     gush  positive
## 2788                    gusto  positive
## 2789                  gutless  negative
## 2790                    gutsy  positive
## 2791                   gutter  negative
## 2792                     hack  negative
## 2793                    hacks  negative
## 2794                  haggard  negative
## 2795                   haggle  negative
## 2796                     hail  positive
## 2797                 hairloss  negative
## 2798                  halcyon  positive
## 2799                     hale  positive
## 2800              halfhearted  negative
## 2801            halfheartedly  negative
## 2802                 hallmark  positive
## 2803                hallmarks  positive
## 2804                 hallowed  positive
## 2805              hallucinate  negative
## 2806            hallucination  negative
## 2807                   hamper  negative
## 2808                 hampered  negative
## 2809              handicapped  negative
## 2810                  handier  positive
## 2811                  handily  positive
## 2812               hands-down  positive
## 2813                 handsome  positive
## 2814               handsomely  positive
## 2815                    handy  positive
## 2816                     hang  negative
## 2817                    hangs  negative
## 2818                haphazard  negative
## 2819                  hapless  negative
## 2820                  happier  positive
## 2821                  happily  positive
## 2822                happiness  positive
## 2823                    happy  positive
## 2824                 harangue  negative
## 2825                   harass  negative
## 2826                 harassed  negative
## 2827                 harasses  negative
## 2828               harassment  negative
## 2829                harboring  negative
## 2830                  harbors  negative
## 2831                     hard  negative
## 2832                 hard-hit  negative
## 2833                hard-line  negative
## 2834               hard-liner  negative
## 2835             hard-working  positive
## 2836                 hardball  negative
## 2837                   harden  negative
## 2838                 hardened  negative
## 2839               hardheaded  negative
## 2840              hardhearted  negative
## 2841                  hardier  positive
## 2842                hardliner  negative
## 2843               hardliners  negative
## 2844                 hardship  negative
## 2845                hardships  negative
## 2846                    hardy  positive
## 2847                     harm  negative
## 2848                   harmed  negative
## 2849                  harmful  negative
## 2850                 harmless  positive
## 2851               harmonious  positive
## 2852             harmoniously  positive
## 2853                harmonize  positive
## 2854                  harmony  positive
## 2855                    harms  negative
## 2856                    harpy  negative
## 2857                 harridan  negative
## 2858                  harried  negative
## 2859                   harrow  negative
## 2860                    harsh  negative
## 2861                  harshly  negative
## 2862                hasseling  negative
## 2863                   hassle  negative
## 2864                  hassled  negative
## 2865                  hassles  negative
## 2866                    haste  negative
## 2867                  hastily  negative
## 2868                    hasty  negative
## 2869                     hate  negative
## 2870                    hated  negative
## 2871                  hateful  negative
## 2872                hatefully  negative
## 2873              hatefulness  negative
## 2874                    hater  negative
## 2875                   haters  negative
## 2876                    hates  negative
## 2877                   hating  negative
## 2878                   hatred  negative
## 2879                haughtily  negative
## 2880                  haughty  negative
## 2881                    haunt  negative
## 2882                 haunting  negative
## 2883                    havoc  negative
## 2884                  hawkish  negative
## 2885                  haywire  negative
## 2886                   hazard  negative
## 2887                hazardous  negative
## 2888                     haze  negative
## 2889                     hazy  negative
## 2890               head-aches  negative
## 2891                 headache  negative
## 2892                headaches  negative
## 2893                  headway  positive
## 2894                     heal  positive
## 2895                healthful  positive
## 2896                  healthy  positive
## 2897             heartbreaker  negative
## 2898            heartbreaking  negative
## 2899          heartbreakingly  negative
## 2900                  hearten  positive
## 2901               heartening  positive
## 2902                heartfelt  positive
## 2903                 heartily  positive
## 2904                heartless  negative
## 2905             heartwarming  positive
## 2906                  heathen  negative
## 2907                   heaven  positive
## 2908                 heavenly  positive
## 2909             heavy-handed  negative
## 2910             heavyhearted  negative
## 2911                     heck  negative
## 2912                   heckle  negative
## 2913                  heckled  negative
## 2914                  heckles  negative
## 2915                   hectic  negative
## 2916                    hedge  negative
## 2917               hedonistic  negative
## 2918                 heedless  negative
## 2919                    hefty  negative
## 2920               hegemonism  negative
## 2921             hegemonistic  negative
## 2922                 hegemony  negative
## 2923                  heinous  negative
## 2924                     hell  negative
## 2925                hell-bent  negative
## 2926                  hellion  negative
## 2927                    hells  negative
## 2928                   helped  positive
## 2929                  helpful  positive
## 2930                  helping  positive
## 2931                 helpless  negative
## 2932               helplessly  negative
## 2933             helplessness  negative
## 2934                   heresy  negative
## 2935                  heretic  negative
## 2936                heretical  negative
## 2937                     hero  positive
## 2938                   heroic  positive
## 2939               heroically  positive
## 2940                  heroine  positive
## 2941                  heroize  positive
## 2942                    heros  positive
## 2943                 hesitant  negative
## 2944                hestitant  negative
## 2945                  hideous  negative
## 2946                hideously  negative
## 2947              hideousness  negative
## 2948              high-priced  negative
## 2949             high-quality  positive
## 2950            high-spirited  positive
## 2951                hilarious  positive
## 2952               hiliarious  negative
## 2953                   hinder  negative
## 2954                hindrance  negative
## 2955                     hiss  negative
## 2956                   hissed  negative
## 2957                  hissing  negative
## 2958                   ho-hum  negative
## 2959                    hoard  negative
## 2960                     hoax  negative
## 2961                   hobble  negative
## 2962                     hogs  negative
## 2963                   hollow  negative
## 2964                     holy  positive
## 2965                   homage  positive
## 2966                   honest  positive
## 2967                  honesty  positive
## 2968                    honor  positive
## 2969                honorable  positive
## 2970                  honored  positive
## 2971                 honoring  positive
## 2972                  hoodium  negative
## 2973                 hoodwink  negative
## 2974                 hooligan  negative
## 2975                   hooray  positive
## 2976                  hopeful  positive
## 2977                 hopeless  negative
## 2978               hopelessly  negative
## 2979             hopelessness  negative
## 2980                    horde  negative
## 2981               horrendous  negative
## 2982             horrendously  negative
## 2983                 horrible  negative
## 2984                   horrid  negative
## 2985                 horrific  negative
## 2986                horrified  negative
## 2987                horrifies  negative
## 2988                  horrify  negative
## 2989               horrifying  negative
## 2990                 horrifys  negative
## 2991               hospitable  positive
## 2992                  hostage  negative
## 2993                  hostile  negative
## 2994              hostilities  negative
## 2995                hostility  negative
## 2996                      hot  positive
## 2997                  hotbeds  negative
## 2998                  hotcake  positive
## 2999                 hotcakes  positive
## 3000                  hothead  negative
## 3001                hotheaded  negative
## 3002                 hothouse  negative
## 3003                  hottest  positive
## 3004                   hubris  negative
## 3005                 huckster  negative
## 3006                      hug  positive
## 3007                      hum  negative
## 3008                   humane  positive
## 3009                   humble  positive
## 3010                    humid  negative
## 3011                humiliate  negative
## 3012              humiliating  negative
## 3013              humiliation  negative
## 3014                 humility  positive
## 3015                  humming  negative
## 3016                    humor  positive
## 3017                 humorous  positive
## 3018               humorously  positive
## 3019                   humour  positive
## 3020                humourous  positive
## 3021                     hung  negative
## 3022                     hurt  negative
## 3023                   hurted  negative
## 3024                  hurtful  negative
## 3025                  hurting  negative
## 3026                    hurts  negative
## 3027                  hustler  negative
## 3028                     hype  negative
## 3029                hypocricy  negative
## 3030                hypocrisy  negative
## 3031                hypocrite  negative
## 3032               hypocrites  negative
## 3033             hypocritical  negative
## 3034           hypocritically  negative
## 3035                 hysteria  negative
## 3036                 hysteric  negative
## 3037               hysterical  negative
## 3038             hysterically  negative
## 3039                hysterics  negative
## 3040                    ideal  positive
## 3041                 idealize  positive
## 3042                  ideally  positive
## 3043                 idiocies  negative
## 3044                   idiocy  negative
## 3045                    idiot  negative
## 3046                  idiotic  negative
## 3047              idiotically  negative
## 3048                   idiots  negative
## 3049                     idle  negative
## 3050                     idol  positive
## 3051                  idolize  positive
## 3052                 idolized  positive
## 3053                  idyllic  positive
## 3054                  ignoble  negative
## 3055              ignominious  negative
## 3056            ignominiously  negative
## 3057                 ignominy  negative
## 3058                ignorance  negative
## 3059                 ignorant  negative
## 3060                   ignore  negative
## 3061              ill-advised  negative
## 3062            ill-conceived  negative
## 3063              ill-defined  negative
## 3064             ill-designed  negative
## 3065                ill-fated  negative
## 3066              ill-favored  negative
## 3067               ill-formed  negative
## 3068             ill-mannered  negative
## 3069              ill-natured  negative
## 3070               ill-sorted  negative
## 3071             ill-tempered  negative
## 3072              ill-treated  negative
## 3073            ill-treatment  negative
## 3074                ill-usage  negative
## 3075                 ill-used  negative
## 3076                  illegal  negative
## 3077                illegally  negative
## 3078             illegitimate  negative
## 3079                  illicit  negative
## 3080               illiterate  negative
## 3081                  illness  negative
## 3082                  illogic  negative
## 3083                illogical  negative
## 3084              illogically  negative
## 3085               illuminate  positive
## 3086               illuminati  positive
## 3087             illuminating  positive
## 3088                 illumine  positive
## 3089                 illusion  negative
## 3090                illusions  negative
## 3091                 illusory  negative
## 3092              illustrious  positive
## 3093                      ilu  positive
## 3094                imaculate  positive
## 3095                imaginary  negative
## 3096              imaginative  positive
## 3097                imbalance  negative
## 3098                 imbecile  negative
## 3099                imbroglio  negative
## 3100               immaculate  positive
## 3101             immaculately  positive
## 3102               immaterial  negative
## 3103                 immature  negative
## 3104                  immense  positive
## 3105                imminence  negative
## 3106               imminently  negative
## 3107              immobilized  negative
## 3108               immoderate  negative
## 3109             immoderately  negative
## 3110                 immodest  negative
## 3111                  immoral  negative
## 3112               immorality  negative
## 3113                immorally  negative
## 3114                immovable  negative
## 3115                   impair  negative
## 3116                 impaired  negative
## 3117                impartial  positive
## 3118             impartiality  positive
## 3119              impartially  positive
## 3120                  impasse  negative
## 3121              impassioned  positive
## 3122               impatience  negative
## 3123                impatient  negative
## 3124              impatiently  negative
## 3125                  impeach  negative
## 3126               impeccable  positive
## 3127               impeccably  positive
## 3128                impedance  negative
## 3129                   impede  negative
## 3130               impediment  negative
## 3131                impending  negative
## 3132               impenitent  negative
## 3133                imperfect  negative
## 3134             imperfection  negative
## 3135            imperfections  negative
## 3136              imperfectly  negative
## 3137              imperialist  negative
## 3138                  imperil  negative
## 3139                imperious  negative
## 3140              imperiously  negative
## 3141            impermissible  negative
## 3142               impersonal  negative
## 3143              impertinent  negative
## 3144                impetuous  negative
## 3145              impetuously  negative
## 3146                  impiety  negative
## 3147                  impinge  negative
## 3148                  impious  negative
## 3149               implacable  negative
## 3150              implausible  negative
## 3151              implausibly  negative
## 3152                implicate  negative
## 3153              implication  negative
## 3154                  implode  negative
## 3155                 impolite  negative
## 3156               impolitely  negative
## 3157                impolitic  negative
## 3158                important  positive
## 3159              importunate  negative
## 3160                importune  negative
## 3161                   impose  negative
## 3162                 imposers  negative
## 3163                 imposing  negative
## 3164               imposition  negative
## 3165               impossible  negative
## 3166             impossiblity  negative
## 3167               impossibly  negative
## 3168                 impotent  negative
## 3169               impoverish  negative
## 3170             impoverished  negative
## 3171              impractical  negative
## 3172                imprecate  negative
## 3173                imprecise  negative
## 3174              imprecisely  negative
## 3175              imprecision  negative
## 3176                  impress  positive
## 3177                impressed  positive
## 3178                impresses  positive
## 3179               impressive  positive
## 3180             impressively  positive
## 3181           impressiveness  positive
## 3182                 imprison  negative
## 3183             imprisonment  negative
## 3184            improbability  negative
## 3185               improbable  negative
## 3186               improbably  negative
## 3187                 improper  negative
## 3188               improperly  negative
## 3189              impropriety  negative
## 3190                  improve  positive
## 3191                 improved  positive
## 3192              improvement  positive
## 3193             improvements  positive
## 3194                 improves  positive
## 3195                improving  positive
## 3196               imprudence  negative
## 3197                imprudent  negative
## 3198                impudence  negative
## 3199                 impudent  negative
## 3200               impudently  negative
## 3201                   impugn  negative
## 3202                impulsive  negative
## 3203              impulsively  negative
## 3204                 impunity  negative
## 3205                   impure  negative
## 3206                 impurity  negative
## 3207                inability  negative
## 3208             inaccuracies  negative
## 3209               inaccuracy  negative
## 3210               inaccurate  negative
## 3211             inaccurately  negative
## 3212                 inaction  negative
## 3213                 inactive  negative
## 3214               inadequacy  negative
## 3215               inadequate  negative
## 3216             inadequately  negative
## 3217               inadverent  negative
## 3218             inadverently  negative
## 3219              inadvisable  negative
## 3220              inadvisably  negative
## 3221                    inane  negative
## 3222                  inanely  negative
## 3223            inappropriate  negative
## 3224          inappropriately  negative
## 3225                    inapt  negative
## 3226               inaptitude  negative
## 3227             inarticulate  negative
## 3228              inattentive  negative
## 3229                inaudible  negative
## 3230                incapable  negative
## 3231                incapably  negative
## 3232               incautious  negative
## 3233               incendiary  negative
## 3234                  incense  negative
## 3235                incessant  negative
## 3236              incessantly  negative
## 3237                   incite  negative
## 3238               incitement  negative
## 3239               incivility  negative
## 3240                inclement  negative
## 3241              incognizant  negative
## 3242              incoherence  negative
## 3243               incoherent  negative
## 3244             incoherently  negative
## 3245           incommensurate  negative
## 3246             incomparable  negative
## 3247             incomparably  negative
## 3248          incompatability  negative
## 3249          incompatibility  negative
## 3250             incompatible  negative
## 3251             incompetence  negative
## 3252              incompetent  negative
## 3253            incompetently  negative
## 3254               incomplete  negative
## 3255              incompliant  negative
## 3256         incomprehensible  negative
## 3257          incomprehension  negative
## 3258            inconceivable  negative
## 3259            inconceivably  negative
## 3260              incongruous  negative
## 3261            incongruously  negative
## 3262             inconsequent  negative
## 3263          inconsequential  negative
## 3264        inconsequentially  negative
## 3265           inconsequently  negative
## 3266            inconsiderate  negative
## 3267          inconsiderately  negative
## 3268            inconsistence  negative
## 3269          inconsistencies  negative
## 3270            inconsistency  negative
## 3271             inconsistent  negative
## 3272             inconsolable  negative
## 3273             inconsolably  negative
## 3274               inconstant  negative
## 3275            inconvenience  negative
## 3276           inconveniently  negative
## 3277                incorrect  negative
## 3278              incorrectly  negative
## 3279             incorrigible  negative
## 3280             incorrigibly  negative
## 3281               incredible  positive
## 3282               incredibly  positive
## 3283              incredulous  negative
## 3284            incredulously  negative
## 3285                inculcate  negative
## 3286                 indebted  positive
## 3287                indecency  negative
## 3288                 indecent  negative
## 3289               indecently  negative
## 3290               indecision  negative
## 3291               indecisive  negative
## 3292             indecisively  negative
## 3293                indecorum  negative
## 3294             indefensible  negative
## 3295               indelicate  negative
## 3296           indeterminable  negative
## 3297           indeterminably  negative
## 3298            indeterminate  negative
## 3299             indifference  negative
## 3300              indifferent  negative
## 3301                 indigent  negative
## 3302                indignant  negative
## 3303              indignantly  negative
## 3304              indignation  negative
## 3305                indignity  negative
## 3306            indiscernible  negative
## 3307               indiscreet  negative
## 3308             indiscreetly  negative
## 3309             indiscretion  negative
## 3310           indiscriminate  negative
## 3311         indiscriminately  negative
## 3312         indiscriminating  negative
## 3313        indistinguishable  negative
## 3314           individualized  positive
## 3315             indoctrinate  negative
## 3316           indoctrination  negative
## 3317                 indolent  negative
## 3318                  indulge  negative
## 3319               indulgence  positive
## 3320                indulgent  positive
## 3321              industrious  positive
## 3322              ineffective  negative
## 3323            ineffectively  negative
## 3324          ineffectiveness  negative
## 3325              ineffectual  negative
## 3326            ineffectually  negative
## 3327          ineffectualness  negative
## 3328            inefficacious  negative
## 3329               inefficacy  negative
## 3330             inefficiency  negative
## 3331              inefficient  negative
## 3332            inefficiently  negative
## 3333               inelegance  negative
## 3334                inelegant  negative
## 3335               ineligible  negative
## 3336               ineloquent  negative
## 3337             ineloquently  negative
## 3338                    inept  negative
## 3339               ineptitude  negative
## 3340                  ineptly  negative
## 3341             inequalities  negative
## 3342               inequality  negative
## 3343              inequitable  negative
## 3344              inequitably  negative
## 3345               inequities  negative
## 3346              inescapable  negative
## 3347              inescapably  negative
## 3348              inessential  negative
## 3349              inestimable  positive
## 3350              inestimably  positive
## 3351               inevitable  negative
## 3352               inevitably  negative
## 3353              inexcusable  negative
## 3354              inexcusably  negative
## 3355               inexorable  negative
## 3356               inexorably  negative
## 3357              inexpensive  positive
## 3358             inexperience  negative
## 3359            inexperienced  negative
## 3360                 inexpert  negative
## 3361               inexpertly  negative
## 3362               inexpiable  negative
## 3363            inexplainable  negative
## 3364             inextricable  negative
## 3365             inextricably  negative
## 3366            infallibility  positive
## 3367               infallible  positive
## 3368               infallibly  positive
## 3369                 infamous  negative
## 3370               infamously  negative
## 3371                   infamy  negative
## 3372                 infected  negative
## 3373                infection  negative
## 3374               infections  negative
## 3375                 inferior  negative
## 3376              inferiority  negative
## 3377                 infernal  negative
## 3378                   infest  negative
## 3379                 infested  negative
## 3380                  infidel  negative
## 3381                 infidels  negative
## 3382              infiltrator  negative
## 3383             infiltrators  negative
## 3384                   infirm  negative
## 3385                  inflame  negative
## 3386             inflammation  negative
## 3387             inflammatory  negative
## 3388                inflammed  negative
## 3389                 inflated  negative
## 3390             inflationary  negative
## 3391               inflexible  negative
## 3392                  inflict  negative
## 3393              influential  positive
## 3394               infraction  negative
## 3395                 infringe  negative
## 3396             infringement  negative
## 3397            infringements  negative
## 3398                infuriate  negative
## 3399               infuriated  negative
## 3400              infuriating  negative
## 3401            infuriatingly  negative
## 3402                ingenious  positive
## 3403              ingeniously  positive
## 3404                ingenuity  positive
## 3405                ingenuous  positive
## 3406              ingenuously  positive
## 3407               inglorious  negative
## 3408                  ingrate  negative
## 3409              ingratitude  negative
## 3410                  inhibit  negative
## 3411               inhibition  negative
## 3412             inhospitable  negative
## 3413            inhospitality  negative
## 3414                  inhuman  negative
## 3415                 inhumane  negative
## 3416               inhumanity  negative
## 3417                 inimical  negative
## 3418               inimically  negative
## 3419               iniquitous  negative
## 3420                 iniquity  negative
## 3421              injudicious  negative
## 3422                   injure  negative
## 3423                injurious  negative
## 3424                   injury  negative
## 3425                injustice  negative
## 3426               injustices  negative
## 3427                innocuous  positive
## 3428               innovation  positive
## 3429               innovative  positive
## 3430                 innuendo  negative
## 3431               inoperable  negative
## 3432              inopportune  negative
## 3433               inordinate  negative
## 3434             inordinately  negative
## 3435                inpressed  positive
## 3436                   insane  negative
## 3437                 insanely  negative
## 3438                 insanity  negative
## 3439               insatiable  negative
## 3440                 insecure  negative
## 3441               insecurity  negative
## 3442               insensible  negative
## 3443              insensitive  negative
## 3444            insensitively  negative
## 3445            insensitivity  negative
## 3446                insidious  negative
## 3447              insidiously  negative
## 3448               insightful  positive
## 3449             insightfully  positive
## 3450           insignificance  negative
## 3451            insignificant  negative
## 3452          insignificantly  negative
## 3453                insincere  negative
## 3454              insincerely  negative
## 3455              insincerity  negative
## 3456                insinuate  negative
## 3457              insinuating  negative
## 3458              insinuation  negative
## 3459               insociable  negative
## 3460                insolence  negative
## 3461                 insolent  negative
## 3462               insolently  negative
## 3463                insolvent  negative
## 3464              insouciance  negative
## 3465              inspiration  positive
## 3466            inspirational  positive
## 3467                  inspire  positive
## 3468                inspiring  positive
## 3469              instability  negative
## 3470                 instable  negative
## 3471                instantly  positive
## 3472                instigate  negative
## 3473               instigator  negative
## 3474              instigators  negative
## 3475              instructive  positive
## 3476             instrumental  positive
## 3477            insubordinate  negative
## 3478            insubstantial  negative
## 3479          insubstantially  negative
## 3480             insufferable  negative
## 3481             insufferably  negative
## 3482            insufficiency  negative
## 3483             insufficient  negative
## 3484           insufficiently  negative
## 3485                  insular  negative
## 3486                   insult  negative
## 3487                 insulted  negative
## 3488                insulting  negative
## 3489              insultingly  negative
## 3490                  insults  negative
## 3491            insupportable  negative
## 3492            insupportably  negative
## 3493           insurmountable  negative
## 3494           insurmountably  negative
## 3495             insurrection  negative
## 3496                 intefere  negative
## 3497                inteferes  negative
## 3498                 integral  positive
## 3499               integrated  positive
## 3500             intelligence  positive
## 3501              intelligent  positive
## 3502             intelligible  positive
## 3503                  intense  negative
## 3504              interesting  positive
## 3505                interests  positive
## 3506                interfere  negative
## 3507             interference  negative
## 3508               interferes  negative
## 3509             intermittent  negative
## 3510                interrupt  negative
## 3511             interruption  negative
## 3512            interruptions  negative
## 3513                 intimacy  positive
## 3514                 intimate  positive
## 3515               intimidate  negative
## 3516             intimidating  negative
## 3517           intimidatingly  negative
## 3518             intimidation  negative
## 3519              intolerable  negative
## 3520            intolerablely  negative
## 3521              intolerance  negative
## 3522               intoxicate  negative
## 3523              intractable  negative
## 3524            intransigence  negative
## 3525             intransigent  negative
## 3526                intricate  positive
## 3527                 intrigue  positive
## 3528               intriguing  positive
## 3529             intriguingly  positive
## 3530                  intrude  negative
## 3531                intrusion  negative
## 3532                intrusive  negative
## 3533                intuitive  positive
## 3534                 inundate  negative
## 3535                inundated  negative
## 3536                  invader  negative
## 3537                  invalid  negative
## 3538               invalidate  negative
## 3539               invalidity  negative
## 3540               invaluable  positive
## 3541             invaluablely  positive
## 3542                 invasive  negative
## 3543                invective  negative
## 3544                 inveigle  negative
## 3545                inventive  positive
## 3546                invidious  negative
## 3547              invidiously  negative
## 3548            invidiousness  negative
## 3549               invigorate  positive
## 3550             invigorating  positive
## 3551            invincibility  positive
## 3552               invincible  positive
## 3553               inviolable  positive
## 3554                inviolate  positive
## 3555                invisible  negative
## 3556            involuntarily  negative
## 3557              involuntary  negative
## 3558             invulnerable  positive
## 3559                irascible  negative
## 3560                    irate  negative
## 3561                  irately  negative
## 3562                      ire  negative
## 3563                      irk  negative
## 3564                    irked  negative
## 3565                   irking  negative
## 3566                     irks  negative
## 3567                  irksome  negative
## 3568                irksomely  negative
## 3569              irksomeness  negative
## 3570            irksomenesses  negative
## 3571                   ironic  negative
## 3572                 ironical  negative
## 3573               ironically  negative
## 3574                  ironies  negative
## 3575                    irony  negative
## 3576             irragularity  negative
## 3577               irrational  negative
## 3578          irrationalities  negative
## 3579            irrationality  negative
## 3580             irrationally  negative
## 3581              irrationals  negative
## 3582           irreconcilable  negative
## 3583            irrecoverable  negative
## 3584        irrecoverableness  negative
## 3585      irrecoverablenesses  negative
## 3586            irrecoverably  negative
## 3587             irredeemable  negative
## 3588             irredeemably  negative
## 3589             irreformable  negative
## 3590                irregular  negative
## 3591             irregularity  negative
## 3592              irrelevance  negative
## 3593               irrelevant  negative
## 3594              irreparable  negative
## 3595            irreplaceable  positive
## 3596             irreplacible  negative
## 3597            irrepressible  negative
## 3598           irreproachable  positive
## 3599             irresistible  positive
## 3600             irresistibly  positive
## 3601               irresolute  negative
## 3602             irresolvable  negative
## 3603            irresponsible  negative
## 3604            irresponsibly  negative
## 3605               irretating  negative
## 3606            irretrievable  negative
## 3607             irreversible  negative
## 3608                irritable  negative
## 3609                irritably  negative
## 3610                 irritant  negative
## 3611                 irritate  negative
## 3612                irritated  negative
## 3613               irritating  negative
## 3614               irritation  negative
## 3615              irritations  negative
## 3616                  isolate  negative
## 3617                 isolated  negative
## 3618                isolation  negative
## 3619                    issue  negative
## 3620               issue-free  positive
## 3621                   issues  negative
## 3622                     itch  negative
## 3623                  itching  negative
## 3624                    itchy  negative
## 3625                   jabber  negative
## 3626                    jaded  negative
## 3627                   jagged  negative
## 3628                      jam  negative
## 3629                  jarring  negative
## 3630                jaundiced  negative
## 3631              jaw-droping  positive
## 3632             jaw-dropping  positive
## 3633                  jealous  negative
## 3634                jealously  negative
## 3635              jealousness  negative
## 3636                 jealousy  negative
## 3637                     jeer  negative
## 3638                  jeering  negative
## 3639                jeeringly  negative
## 3640                    jeers  negative
## 3641               jeopardize  negative
## 3642                 jeopardy  negative
## 3643                     jerk  negative
## 3644                    jerky  negative
## 3645                   jitter  negative
## 3646                  jitters  negative
## 3647                  jittery  negative
## 3648              job-killing  negative
## 3649                  jobless  negative
## 3650                     joke  negative
## 3651                    joker  negative
## 3652                  jollify  positive
## 3653                    jolly  positive
## 3654                     jolt  negative
## 3655                   jovial  positive
## 3656                      joy  positive
## 3657                   joyful  positive
## 3658                 joyfully  positive
## 3659                   joyous  positive
## 3660                 joyously  positive
## 3661                 jubilant  positive
## 3662               jubilantly  positive
## 3663                 jubilate  positive
## 3664               jubilation  positive
## 3665                jubiliant  positive
## 3666                   judder  negative
## 3667                juddering  negative
## 3668                  judders  negative
## 3669                judicious  positive
## 3670                    jumpy  negative
## 3671                     junk  negative
## 3672                    junky  negative
## 3673                 junkyard  negative
## 3674                   justly  positive
## 3675                   jutter  negative
## 3676                  jutters  negative
## 3677                    kaput  negative
## 3678                     keen  positive
## 3679                   keenly  positive
## 3680                 keenness  positive
## 3681             kid-friendly  positive
## 3682                     kill  negative
## 3683                   killed  negative
## 3684                   killer  negative
## 3685                  killing  negative
## 3686                  killjoy  negative
## 3687                    kills  negative
## 3688               kindliness  positive
## 3689                   kindly  positive
## 3690                 kindness  positive
## 3691                    knave  negative
## 3692                    knife  negative
## 3693                    knock  negative
## 3694                  knotted  negative
## 3695            knowledgeable  positive
## 3696                     kook  negative
## 3697                    kooky  negative
## 3698                    kudos  positive
## 3699                     lack  negative
## 3700            lackadaisical  negative
## 3701                   lacked  negative
## 3702                   lackey  negative
## 3703                  lackeys  negative
## 3704                  lacking  negative
## 3705               lackluster  negative
## 3706                    lacks  negative
## 3707                  laconic  negative
## 3708                      lag  negative
## 3709                   lagged  negative
## 3710                  lagging  negative
## 3711                    laggy  negative
## 3712                     lags  negative
## 3713                 laid-off  negative
## 3714                  lambast  negative
## 3715                 lambaste  negative
## 3716                     lame  negative
## 3717                lame-duck  negative
## 3718                   lament  negative
## 3719               lamentable  negative
## 3720               lamentably  negative
## 3721                  languid  negative
## 3722                 languish  negative
## 3723                  languor  negative
## 3724               languorous  negative
## 3725             languorously  negative
## 3726                    lanky  negative
## 3727                    lapse  negative
## 3728                   lapsed  negative
## 3729                   lapses  negative
## 3730           large-capacity  positive
## 3731               lascivious  negative
## 3732               last-ditch  negative
## 3733                  latency  negative
## 3734                     laud  positive
## 3735                 laudable  positive
## 3736                 laudably  positive
## 3737                laughable  negative
## 3738                laughably  negative
## 3739            laughingstock  negative
## 3740                   lavish  positive
## 3741                 lavishly  positive
## 3742              law-abiding  positive
## 3743               lawbreaker  negative
## 3744              lawbreaking  negative
## 3745                   lawful  positive
## 3746                 lawfully  positive
## 3747                  lawless  negative
## 3748              lawlessness  negative
## 3749                   layoff  negative
## 3750             layoff-happy  negative
## 3751                     lazy  negative
## 3752                     lead  positive
## 3753                  leading  positive
## 3754                    leads  positive
## 3755                     leak  negative
## 3756                  leakage  negative
## 3757                 leakages  negative
## 3758                  leaking  negative
## 3759                    leaks  negative
## 3760                    leaky  negative
## 3761                     lean  positive
## 3762                     lech  negative
## 3763                   lecher  negative
## 3764                lecherous  negative
## 3765                  lechery  negative
## 3766                      led  positive
## 3767                    leech  negative
## 3768                     leer  negative
## 3769                    leery  negative
## 3770             left-leaning  negative
## 3771                legendary  positive
## 3772                    lemon  negative
## 3773                  lengthy  negative
## 3774           less-developed  negative
## 3775             lesser-known  negative
## 3776                    letch  negative
## 3777                   lethal  negative
## 3778                lethargic  negative
## 3779                 lethargy  negative
## 3780                 leverage  positive
## 3781                   levity  positive
## 3782                     lewd  negative
## 3783                   lewdly  negative
## 3784                 lewdness  negative
## 3785                liability  negative
## 3786                   liable  negative
## 3787                     liar  negative
## 3788                    liars  negative
## 3789                 liberate  positive
## 3790               liberation  positive
## 3791                  liberty  positive
## 3792               licentious  negative
## 3793             licentiously  negative
## 3794           licentiousness  negative
## 3795                      lie  negative
## 3796                     lied  negative
## 3797                     lier  negative
## 3798                     lies  negative
## 3799         life-threatening  negative
## 3800                 lifeless  negative
## 3801                lifesaver  positive
## 3802            light-hearted  positive
## 3803                  lighter  positive
## 3804                  likable  positive
## 3805                     like  positive
## 3806                    liked  positive
## 3807                    likes  positive
## 3808                   liking  positive
## 3809                    limit  negative
## 3810               limitation  negative
## 3811              limitations  negative
## 3812                  limited  negative
## 3813                   limits  negative
## 3814                     limp  negative
## 3815              lionhearted  positive
## 3816                 listless  negative
## 3817                litigious  negative
## 3818             little-known  negative
## 3819                   lively  positive
## 3820                    livid  negative
## 3821                  lividly  negative
## 3822                    loath  negative
## 3823                   loathe  negative
## 3824                 loathing  negative
## 3825                  loathly  negative
## 3826                loathsome  negative
## 3827              loathsomely  negative
## 3828                  logical  positive
## 3829                     lone  negative
## 3830               loneliness  negative
## 3831                   lonely  negative
## 3832                    loner  negative
## 3833                 lonesome  negative
## 3834             long-lasting  positive
## 3835                long-time  negative
## 3836              long-winded  negative
## 3837                  longing  negative
## 3838                longingly  negative
## 3839                 loophole  negative
## 3840                loopholes  negative
## 3841                    loose  negative
## 3842                     loot  negative
## 3843                     lorn  negative
## 3844                     lose  negative
## 3845                    loser  negative
## 3846                   losers  negative
## 3847                    loses  negative
## 3848                   losing  negative
## 3849                     loss  negative
## 3850                   losses  negative
## 3851                     lost  negative
## 3852                     loud  negative
## 3853                   louder  negative
## 3854                    lousy  negative
## 3855                  lovable  positive
## 3856                  lovably  positive
## 3857                     love  positive
## 3858                    loved  positive
## 3859                 loveless  negative
## 3860               loveliness  positive
## 3861                 lovelorn  negative
## 3862                   lovely  positive
## 3863                    lover  positive
## 3864                    loves  positive
## 3865                   loving  positive
## 3866                 low-cost  positive
## 3867                low-price  positive
## 3868               low-priced  positive
## 3869                low-rated  negative
## 3870                 low-risk  positive
## 3871             lower-priced  positive
## 3872                    lowly  negative
## 3873                    loyal  positive
## 3874                  loyalty  positive
## 3875                    lucid  positive
## 3876                  lucidly  positive
## 3877                     luck  positive
## 3878                  luckier  positive
## 3879                 luckiest  positive
## 3880                luckiness  positive
## 3881                    lucky  positive
## 3882                lucrative  positive
## 3883                ludicrous  negative
## 3884              ludicrously  negative
## 3885               lugubrious  negative
## 3886                 lukewarm  negative
## 3887                     lull  negative
## 3888                 luminous  positive
## 3889                    lumpy  negative
## 3890                  lunatic  negative
## 3891               lunaticism  negative
## 3892                    lurch  negative
## 3893                     lure  negative
## 3894                    lurid  negative
## 3895                     lurk  negative
## 3896                  lurking  negative
## 3897                     lush  positive
## 3898                   luster  positive
## 3899                 lustrous  positive
## 3900                luxuriant  positive
## 3901                luxuriate  positive
## 3902                luxurious  positive
## 3903              luxuriously  positive
## 3904                   luxury  positive
## 3905                    lying  negative
## 3906                  lyrical  positive
## 3907                  macabre  negative
## 3908                      mad  negative
## 3909                   madden  negative
## 3910                maddening  negative
## 3911              maddeningly  negative
## 3912                   madder  negative
## 3913                    madly  negative
## 3914                   madman  negative
## 3915                  madness  negative
## 3916                    magic  positive
## 3917                  magical  positive
## 3918              magnanimous  positive
## 3919            magnanimously  positive
## 3920             magnificence  positive
## 3921              magnificent  positive
## 3922            magnificently  positive
## 3923                 majestic  positive
## 3924                  majesty  positive
## 3925              maladjusted  negative
## 3926            maladjustment  negative
## 3927                   malady  negative
## 3928                  malaise  negative
## 3929               malcontent  negative
## 3930             malcontented  negative
## 3931                 maledict  negative
## 3932              malevolence  negative
## 3933               malevolent  negative
## 3934             malevolently  negative
## 3935                   malice  negative
## 3936                malicious  negative
## 3937              maliciously  negative
## 3938            maliciousness  negative
## 3939                   malign  negative
## 3940                malignant  negative
## 3941               malodorous  negative
## 3942             maltreatment  negative
## 3943               manageable  positive
## 3944             maneuverable  positive
## 3945                   mangle  negative
## 3946                  mangled  negative
## 3947                  mangles  negative
## 3948                 mangling  negative
## 3949                    mania  negative
## 3950                   maniac  negative
## 3951                 maniacal  negative
## 3952                    manic  negative
## 3953               manipulate  negative
## 3954             manipulation  negative
## 3955             manipulative  negative
## 3956             manipulators  negative
## 3957                      mar  negative
## 3958                 marginal  negative
## 3959               marginally  negative
## 3960                martyrdom  negative
## 3961        martyrdom-seeking  negative
## 3962                   marvel  positive
## 3963                 marveled  positive
## 3964                marvelled  positive
## 3965               marvellous  positive
## 3966                marvelous  positive
## 3967              marvelously  positive
## 3968            marvelousness  positive
## 3969                  marvels  positive
## 3970                   mashed  negative
## 3971                 massacre  negative
## 3972                massacres  negative
## 3973                   master  positive
## 3974                masterful  positive
## 3975              masterfully  positive
## 3976              masterpiece  positive
## 3977             masterpieces  positive
## 3978                  masters  positive
## 3979                  mastery  positive
## 3980                matchless  positive
## 3981                    matte  negative
## 3982                   mature  positive
## 3983                 maturely  positive
## 3984                 maturity  positive
## 3985                  mawkish  negative
## 3986                mawkishly  negative
## 3987              mawkishness  negative
## 3988                   meager  negative
## 3989               meaningful  positive
## 3990              meaningless  negative
## 3991                 meanness  negative
## 3992                   measly  negative
## 3993                   meddle  negative
## 3994               meddlesome  negative
## 3995                 mediocre  negative
## 3996               mediocrity  negative
## 3997               melancholy  negative
## 3998             melodramatic  negative
## 3999         melodramatically  negative
## 4000                 meltdown  negative
## 4001                memorable  positive
## 4002                   menace  negative
## 4003                 menacing  negative
## 4004               menacingly  negative
## 4005               mendacious  negative
## 4006                mendacity  negative
## 4007                   menial  negative
## 4008                 merciful  positive
## 4009               mercifully  positive
## 4010                merciless  negative
## 4011              mercilessly  negative
## 4012                    mercy  positive
## 4013                    merit  positive
## 4014              meritorious  positive
## 4015                  merrily  positive
## 4016                merriment  positive
## 4017                merriness  positive
## 4018                    merry  positive
## 4019                mesmerize  positive
## 4020               mesmerized  positive
## 4021               mesmerizes  positive
## 4022              mesmerizing  positive
## 4023            mesmerizingly  positive
## 4024                     mess  negative
## 4025                   messed  negative
## 4026                   messes  negative
## 4027                  messing  negative
## 4028                    messy  negative
## 4029               meticulous  positive
## 4030             meticulously  positive
## 4031                   midget  negative
## 4032                     miff  negative
## 4033                 mightily  positive
## 4034                   mighty  positive
## 4035                militancy  negative
## 4036             mind-blowing  positive
## 4037                 mindless  negative
## 4038               mindlessly  negative
## 4039                  miracle  positive
## 4040                 miracles  positive
## 4041               miraculous  positive
## 4042             miraculously  positive
## 4043           miraculousness  positive
## 4044                   mirage  negative
## 4045                     mire  negative
## 4046                 misalign  negative
## 4047               misaligned  negative
## 4048                misaligns  negative
## 4049             misapprehend  negative
## 4050                misbecome  negative
## 4051              misbecoming  negative
## 4052              misbegotten  negative
## 4053                misbehave  negative
## 4054              misbehavior  negative
## 4055             miscalculate  negative
## 4056           miscalculation  negative
## 4057            miscellaneous  negative
## 4058                 mischief  negative
## 4059              mischievous  negative
## 4060            mischievously  negative
## 4061            misconception  negative
## 4062           misconceptions  negative
## 4063                miscreant  negative
## 4064               miscreants  negative
## 4065             misdirection  negative
## 4066                    miser  negative
## 4067                miserable  negative
## 4068            miserableness  negative
## 4069                miserably  negative
## 4070                 miseries  negative
## 4071                  miserly  negative
## 4072                   misery  negative
## 4073                   misfit  negative
## 4074               misfortune  negative
## 4075                misgiving  negative
## 4076               misgivings  negative
## 4077              misguidance  negative
## 4078                 misguide  negative
## 4079                misguided  negative
## 4080                mishandle  negative
## 4081                   mishap  negative
## 4082                misinform  negative
## 4083              misinformed  negative
## 4084             misinterpret  negative
## 4085                 misjudge  negative
## 4086              misjudgment  negative
## 4087                  mislead  negative
## 4088               misleading  negative
## 4089             misleadingly  negative
## 4090                  mislike  negative
## 4091                mismanage  negative
## 4092             mispronounce  negative
## 4093            mispronounced  negative
## 4094            mispronounces  negative
## 4095                  misread  negative
## 4096               misreading  negative
## 4097             misrepresent  negative
## 4098        misrepresentation  negative
## 4099                     miss  negative
## 4100                   missed  negative
## 4101                   misses  negative
## 4102             misstatement  negative
## 4103                     mist  negative
## 4104                  mistake  negative
## 4105                 mistaken  negative
## 4106               mistakenly  negative
## 4107                 mistakes  negative
## 4108                mistified  negative
## 4109                 mistress  negative
## 4110                 mistrust  negative
## 4111              mistrustful  negative
## 4112            mistrustfully  negative
## 4113                    mists  negative
## 4114            misunderstand  negative
## 4115         misunderstanding  negative
## 4116        misunderstandings  negative
## 4117            misunderstood  negative
## 4118                   misuse  negative
## 4119                     moan  negative
## 4120                  mobster  negative
## 4121                     mock  negative
## 4122                   mocked  negative
## 4123                mockeries  negative
## 4124                  mockery  negative
## 4125                  mocking  negative
## 4126                mockingly  negative
## 4127                    mocks  negative
## 4128                   modern  positive
## 4129                   modest  positive
## 4130                  modesty  positive
## 4131                   molest  negative
## 4132              molestation  negative
## 4133                momentous  positive
## 4134               monotonous  negative
## 4135                 monotony  negative
## 4136                  monster  negative
## 4137            monstrosities  negative
## 4138              monstrosity  negative
## 4139                monstrous  negative
## 4140              monstrously  negative
## 4141               monumental  positive
## 4142             monumentally  positive
## 4143                    moody  negative
## 4144                     moot  negative
## 4145                     mope  negative
## 4146                 morality  positive
## 4147                   morbid  negative
## 4148                 morbidly  negative
## 4149                  mordant  negative
## 4150                mordantly  negative
## 4151                 moribund  negative
## 4152                    moron  negative
## 4153                  moronic  negative
## 4154                   morons  negative
## 4155            mortification  negative
## 4156                mortified  negative
## 4157                  mortify  negative
## 4158               mortifying  negative
## 4159               motionless  negative
## 4160                motivated  positive
## 4161                   motley  negative
## 4162                    mourn  negative
## 4163                  mourner  negative
## 4164                 mournful  negative
## 4165               mournfully  negative
## 4166                   muddle  negative
## 4167                    muddy  negative
## 4168               mudslinger  negative
## 4169              mudslinging  negative
## 4170                   mulish  negative
## 4171       multi-polarization  negative
## 4172            multi-purpose  positive
## 4173                  mundane  negative
## 4174                   murder  negative
## 4175                 murderer  negative
## 4176                murderous  negative
## 4177              murderously  negative
## 4178                    murky  negative
## 4179           muscle-flexing  negative
## 4180                    mushy  negative
## 4181                    musty  negative
## 4182               mysterious  negative
## 4183             mysteriously  negative
## 4184                  mystery  negative
## 4185                  mystify  negative
## 4186                     myth  negative
## 4187                      nag  negative
## 4188                  nagging  negative
## 4189                    naive  negative
## 4190                  naively  negative
## 4191                 narrower  negative
## 4192                  nastily  negative
## 4193                nastiness  negative
## 4194                    nasty  negative
## 4195                  naughty  negative
## 4196                 nauseate  negative
## 4197                nauseates  negative
## 4198               nauseating  negative
## 4199             nauseatingly  negative
## 4200                navigable  positive
## 4201                     neat  positive
## 4202                  neatest  positive
## 4203                   neatly  positive
## 4204                 nebulous  negative
## 4205               nebulously  negative
## 4206                 needless  negative
## 4207               needlessly  negative
## 4208                    needy  negative
## 4209                nefarious  negative
## 4210              nefariously  negative
## 4211                   negate  negative
## 4212                 negation  negative
## 4213                 negative  negative
## 4214                negatives  negative
## 4215               negativity  negative
## 4216                  neglect  negative
## 4217                neglected  negative
## 4218               negligence  negative
## 4219                negligent  negative
## 4220                  nemesis  negative
## 4221                 nepotism  negative
## 4222                  nervous  negative
## 4223                nervously  negative
## 4224              nervousness  negative
## 4225                   nettle  negative
## 4226               nettlesome  negative
## 4227                 neurotic  negative
## 4228             neurotically  negative
## 4229                     nice  positive
## 4230                   nicely  positive
## 4231                    nicer  positive
## 4232                   nicest  positive
## 4233                    nifty  positive
## 4234                   niggle  negative
## 4235                  niggles  negative
## 4236                nightmare  negative
## 4237              nightmarish  negative
## 4238            nightmarishly  negative
## 4239                   nimble  positive
## 4240                  nitpick  negative
## 4241               nitpicking  negative
## 4242                    noble  positive
## 4243                    nobly  positive
## 4244                    noise  negative
## 4245                noiseless  positive
## 4246                   noises  negative
## 4247                  noisier  negative
## 4248                    noisy  negative
## 4249           non-confidence  negative
## 4250             non-violence  positive
## 4251              non-violent  positive
## 4252              nonexistent  negative
## 4253            nonresponsive  negative
## 4254                 nonsense  negative
## 4255                    nosey  negative
## 4256                  notably  positive
## 4257               noteworthy  positive
## 4258                notoriety  negative
## 4259                notorious  negative
## 4260              notoriously  negative
## 4261                  nourish  positive
## 4262               nourishing  positive
## 4263              nourishment  positive
## 4264                  novelty  positive
## 4265                  noxious  negative
## 4266                 nuisance  negative
## 4267                     numb  negative
## 4268                nurturing  positive
## 4269                    oasis  positive
## 4270                    obese  negative
## 4271                   object  negative
## 4272                objection  negative
## 4273            objectionable  negative
## 4274               objections  negative
## 4275                  oblique  negative
## 4276               obliterate  negative
## 4277              obliterated  negative
## 4278                oblivious  negative
## 4279                obnoxious  negative
## 4280              obnoxiously  negative
## 4281                  obscene  negative
## 4282                obscenely  negative
## 4283                obscenity  negative
## 4284                  obscure  negative
## 4285                 obscured  negative
## 4286                 obscures  negative
## 4287                obscurity  negative
## 4288                   obsess  negative
## 4289                obsession  positive
## 4290               obsessions  positive
## 4291                obsessive  negative
## 4292              obsessively  negative
## 4293            obsessiveness  negative
## 4294                 obsolete  negative
## 4295                 obstacle  negative
## 4296                obstinate  negative
## 4297              obstinately  negative
## 4298                 obstruct  negative
## 4299               obstructed  negative
## 4300              obstructing  negative
## 4301              obstruction  negative
## 4302                obstructs  negative
## 4303               obtainable  positive
## 4304                obtrusive  negative
## 4305                   obtuse  negative
## 4306                  occlude  negative
## 4307                 occluded  negative
## 4308                 occludes  negative
## 4309                occluding  negative
## 4310                      odd  negative
## 4311                    odder  negative
## 4312                   oddest  negative
## 4313                 oddities  negative
## 4314                   oddity  negative
## 4315                    oddly  negative
## 4316                     odor  negative
## 4317                  offence  negative
## 4318                   offend  negative
## 4319                 offender  negative
## 4320                offending  negative
## 4321                 offenses  negative
## 4322                offensive  negative
## 4323              offensively  negative
## 4324            offensiveness  negative
## 4325                officious  negative
## 4326                  ominous  negative
## 4327                ominously  negative
## 4328                 omission  negative
## 4329                     omit  negative
## 4330                one-sided  negative
## 4331                  onerous  negative
## 4332                onerously  negative
## 4333                onslaught  negative
## 4334                   openly  positive
## 4335                 openness  positive
## 4336              opinionated  negative
## 4337                 opponent  negative
## 4338            opportunistic  negative
## 4339                   oppose  negative
## 4340               opposition  negative
## 4341              oppositions  negative
## 4342                  oppress  negative
## 4343               oppression  negative
## 4344               oppressive  negative
## 4345             oppressively  negative
## 4346           oppressiveness  negative
## 4347               oppressors  negative
## 4348                  optimal  positive
## 4349                 optimism  positive
## 4350               optimistic  positive
## 4351                  opulent  positive
## 4352                   ordeal  negative
## 4353                  orderly  positive
## 4354              originality  positive
## 4355                   orphan  negative
## 4356                ostracize  negative
## 4357                 outbreak  negative
## 4358                 outburst  negative
## 4359                outbursts  negative
## 4360                  outcast  negative
## 4361                   outcry  negative
## 4362                    outdo  positive
## 4363                  outdone  positive
## 4364                   outlaw  negative
## 4365                 outmoded  negative
## 4366               outperform  positive
## 4367             outperformed  positive
## 4368            outperforming  positive
## 4369              outperforms  positive
## 4370                  outrage  negative
## 4371                 outraged  negative
## 4372               outrageous  negative
## 4373             outrageously  negative
## 4374           outrageousness  negative
## 4375                 outrages  negative
## 4376                 outshine  positive
## 4377                 outshone  positive
## 4378                 outsider  negative
## 4379                 outsmart  positive
## 4380              outstanding  positive
## 4381            outstandingly  positive
## 4382                 outstrip  positive
## 4383                   outwit  positive
## 4384                  ovation  positive
## 4385               over-acted  negative
## 4386                 over-awe  negative
## 4387            over-balanced  negative
## 4388               over-hyped  negative
## 4389              over-priced  negative
## 4390           over-valuation  negative
## 4391                  overact  negative
## 4392                overacted  negative
## 4393                  overawe  negative
## 4394              overbalance  negative
## 4395             overbalanced  negative
## 4396              overbearing  negative
## 4397            overbearingly  negative
## 4398                overblown  negative
## 4399                   overdo  negative
## 4400                 overdone  negative
## 4401                  overdue  negative
## 4402            overemphasize  negative
## 4403                 overheat  negative
## 4404                overjoyed  positive
## 4405                 overkill  negative
## 4406               overloaded  negative
## 4407                 overlook  negative
## 4408                 overpaid  negative
## 4409                overpayed  negative
## 4410                 overplay  negative
## 4411                overpower  negative
## 4412               overpriced  negative
## 4413                overrated  negative
## 4414                overreach  negative
## 4415                  overrun  negative
## 4416               overshadow  negative
## 4417                oversight  negative
## 4418               oversights  negative
## 4419       oversimplification  negative
## 4420           oversimplified  negative
## 4421             oversimplify  negative
## 4422                 oversize  negative
## 4423                overstate  negative
## 4424               overstated  negative
## 4425            overstatement  negative
## 4426           overstatements  negative
## 4427               overstates  negative
## 4428                 overtake  positive
## 4429                overtaken  positive
## 4430                overtakes  positive
## 4431               overtaking  positive
## 4432                overtaxed  negative
## 4433                overthrow  negative
## 4434               overthrows  negative
## 4435                 overtook  positive
## 4436                 overture  positive
## 4437                 overturn  negative
## 4438               overweight  negative
## 4439                overwhelm  negative
## 4440              overwhelmed  negative
## 4441             overwhelming  negative
## 4442           overwhelmingly  negative
## 4443               overwhelms  negative
## 4444              overzealous  negative
## 4445            overzealously  negative
## 4446               overzelous  negative
## 4447                     pain  negative
## 4448                pain-free  positive
## 4449                  painful  negative
## 4450                 painfull  negative
## 4451                painfully  negative
## 4452                 painless  positive
## 4453               painlessly  positive
## 4454                    pains  negative
## 4455                 palatial  positive
## 4456                     pale  negative
## 4457                    pales  negative
## 4458                   paltry  negative
## 4459                   pamper  positive
## 4460                 pampered  positive
## 4461               pamperedly  positive
## 4462             pamperedness  positive
## 4463                  pampers  positive
## 4464                      pan  negative
## 4465              pandemonium  negative
## 4466                   pander  negative
## 4467                pandering  negative
## 4468                  panders  negative
## 4469                    panic  negative
## 4470                   panick  negative
## 4471                 panicked  negative
## 4472                panicking  negative
## 4473                  panicky  negative
## 4474                panoramic  positive
## 4475                 paradise  positive
## 4476              paradoxical  negative
## 4477            paradoxically  negative
## 4478                 paralize  negative
## 4479                paralyzed  negative
## 4480                paramount  positive
## 4481                 paranoia  negative
## 4482                 paranoid  negative
## 4483                 parasite  negative
## 4484                   pardon  positive
## 4485                   pariah  negative
## 4486                   parody  negative
## 4487               partiality  negative
## 4488                 partisan  negative
## 4489                partisans  negative
## 4490                    passe  negative
## 4491                  passion  positive
## 4492               passionate  positive
## 4493             passionately  positive
## 4494                  passive  negative
## 4495              passiveness  negative
## 4496                 pathetic  negative
## 4497             pathetically  negative
## 4498                 patience  positive
## 4499                  patient  positive
## 4500                patiently  positive
## 4501                  patriot  positive
## 4502                patriotic  positive
## 4503                patronize  negative
## 4504                  paucity  negative
## 4505                   pauper  negative
## 4506                  paupers  negative
## 4507                  payback  negative
## 4508                    peace  positive
## 4509                peaceable  positive
## 4510                 peaceful  positive
## 4511               peacefully  positive
## 4512             peacekeepers  positive
## 4513                    peach  positive
## 4514                 peculiar  negative
## 4515               peculiarly  negative
## 4516                 pedantic  negative
## 4517                   peeled  negative
## 4518                 peerless  positive
## 4519                    peeve  negative
## 4520                   peeved  negative
## 4521                  peevish  negative
## 4522                peevishly  negative
## 4523                 penalize  negative
## 4524                  penalty  negative
## 4525                      pep  positive
## 4526                   pepped  positive
## 4527                  pepping  positive
## 4528                    peppy  positive
## 4529                     peps  positive
## 4530                  perfect  positive
## 4531               perfection  positive
## 4532                perfectly  positive
## 4533               perfidious  negative
## 4534                perfidity  negative
## 4535              perfunctory  negative
## 4536                    peril  negative
## 4537                 perilous  negative
## 4538               perilously  negative
## 4539                   perish  negative
## 4540              permissible  positive
## 4541               pernicious  negative
## 4542                  perplex  negative
## 4543                perplexed  negative
## 4544               perplexing  negative
## 4545               perplexity  negative
## 4546                persecute  negative
## 4547              persecution  negative
## 4548             perseverance  positive
## 4549                persevere  positive
## 4550               personages  positive
## 4551             personalized  positive
## 4552             pertinacious  negative
## 4553           pertinaciously  negative
## 4554              pertinacity  negative
## 4555                  perturb  negative
## 4556                perturbed  negative
## 4557                pervasive  negative
## 4558                 perverse  negative
## 4559               perversely  negative
## 4560               perversion  negative
## 4561               perversity  negative
## 4562                  pervert  negative
## 4563                perverted  negative
## 4564                 perverts  negative
## 4565                pessimism  negative
## 4566              pessimistic  negative
## 4567          pessimistically  negative
## 4568                     pest  negative
## 4569                pestilent  negative
## 4570                petrified  negative
## 4571                  petrify  negative
## 4572                 pettifog  negative
## 4573                    petty  negative
## 4574               phenomenal  positive
## 4575             phenomenally  positive
## 4576                   phobia  negative
## 4577                   phobic  negative
## 4578                    phony  negative
## 4579                   picket  negative
## 4580                 picketed  negative
## 4581                picketing  negative
## 4582                  pickets  negative
## 4583                    picky  negative
## 4584              picturesque  positive
## 4585                    piety  positive
## 4586                      pig  negative
## 4587                     pigs  negative
## 4588                  pillage  negative
## 4589                  pillory  negative
## 4590                   pimple  negative
## 4591                    pinch  negative
## 4592                 pinnacle  positive
## 4593                    pique  negative
## 4594                 pitiable  negative
## 4595                  pitiful  negative
## 4596                pitifully  negative
## 4597                 pitiless  negative
## 4598               pitilessly  negative
## 4599                 pittance  negative
## 4600                     pity  negative
## 4601               plagiarize  negative
## 4602                   plague  negative
## 4603                plasticky  negative
## 4604                  playful  positive
## 4605                playfully  positive
## 4606                plaything  negative
## 4607                     plea  negative
## 4608                    pleas  negative
## 4609                 pleasant  positive
## 4610               pleasantly  positive
## 4611                  pleased  positive
## 4612                  pleases  positive
## 4613                 pleasing  positive
## 4614               pleasingly  positive
## 4615              pleasurable  positive
## 4616              pleasurably  positive
## 4617                 pleasure  positive
## 4618                 plebeian  negative
## 4619                plentiful  positive
## 4620                   plight  negative
## 4621                     plot  negative
## 4622                 plotters  negative
## 4623                     ploy  negative
## 4624                  plunder  negative
## 4625                plunderer  negative
## 4626                   pluses  positive
## 4627                    plush  positive
## 4628                  plusses  positive
## 4629                   poetic  positive
## 4630                poeticize  positive
## 4631                 poignant  positive
## 4632                pointless  negative
## 4633              pointlessly  negative
## 4634                    poise  positive
## 4635                   poised  positive
## 4636                   poison  negative
## 4637                poisonous  negative
## 4638              poisonously  negative
## 4639                    pokey  negative
## 4640                     poky  negative
## 4641             polarisation  negative
## 4642                 polemize  negative
## 4643                 polished  positive
## 4644                   polite  positive
## 4645               politeness  positive
## 4646                  pollute  negative
## 4647                 polluter  negative
## 4648                polluters  negative
## 4649                 polution  negative
## 4650                  pompous  negative
## 4651                     poor  negative
## 4652                   poorer  negative
## 4653                  poorest  negative
## 4654                   poorly  negative
## 4655                  popular  positive
## 4656                 portable  positive
## 4657                     posh  positive
## 4658                 positive  positive
## 4659               positively  positive
## 4660                positives  positive
## 4661                posturing  negative
## 4662                     pout  negative
## 4663                  poverty  negative
## 4664                 powerful  positive
## 4665               powerfully  positive
## 4666                powerless  negative
## 4667                   praise  positive
## 4668             praiseworthy  positive
## 4669                 praising  positive
## 4670                    prate  negative
## 4671                 pratfall  negative
## 4672                  prattle  negative
## 4673              pre-eminent  positive
## 4674               precarious  negative
## 4675             precariously  negative
## 4676                 precious  positive
## 4677              precipitate  negative
## 4678              precipitous  negative
## 4679                  precise  positive
## 4680                precisely  positive
## 4681                predatory  negative
## 4682              predicament  negative
## 4683               preeminent  positive
## 4684                   prefer  positive
## 4685               preferable  positive
## 4686               preferably  positive
## 4687                 prefered  positive
## 4688                 preferes  positive
## 4689               preferring  positive
## 4690                  prefers  positive
## 4691                 prejudge  negative
## 4692                prejudice  negative
## 4693               prejudices  negative
## 4694              prejudicial  negative
## 4695             premeditated  negative
## 4696                  premier  positive
## 4697                preoccupy  negative
## 4698             preposterous  negative
## 4699           preposterously  negative
## 4700                 prestige  positive
## 4701              prestigious  positive
## 4702             presumptuous  negative
## 4703           presumptuously  negative
## 4704                 pretence  negative
## 4705                  pretend  negative
## 4706                 pretense  negative
## 4707              pretentious  negative
## 4708            pretentiously  negative
## 4709                 prettily  positive
## 4710                   pretty  positive
## 4711              prevaricate  negative
## 4712                priceless  positive
## 4713                   pricey  negative
## 4714                  pricier  negative
## 4715                    prick  negative
## 4716                  prickle  negative
## 4717                 prickles  negative
## 4718                    pride  positive
## 4719                 prideful  negative
## 4720                     prik  negative
## 4721                primitive  negative
## 4722               principled  positive
## 4723                   prison  negative
## 4724                 prisoner  negative
## 4725                privilege  positive
## 4726               privileged  positive
## 4727                    prize  positive
## 4728                proactive  positive
## 4729                  problem  negative
## 4730             problem-free  positive
## 4731           problem-solver  positive
## 4732              problematic  negative
## 4733                 problems  negative
## 4734            procrastinate  negative
## 4735           procrastinates  negative
## 4736          procrastination  negative
## 4737               prodigious  positive
## 4738             prodigiously  positive
## 4739                  prodigy  positive
## 4740               productive  positive
## 4741             productively  positive
## 4742                  profane  negative
## 4743                profanity  negative
## 4744               proficient  positive
## 4745             proficiently  positive
## 4746                 profound  positive
## 4747               profoundly  positive
## 4748                  profuse  positive
## 4749                profusion  positive
## 4750                 progress  positive
## 4751              progressive  positive
## 4752                 prohibit  negative
## 4753              prohibitive  negative
## 4754            prohibitively  negative
## 4755                 prolific  positive
## 4756               prominence  positive
## 4757                prominent  positive
## 4758                  promise  positive
## 4759                 promised  positive
## 4760                 promises  positive
## 4761                promising  positive
## 4762                 promoter  positive
## 4763                   prompt  positive
## 4764                 promptly  positive
## 4765               propaganda  negative
## 4766             propagandize  negative
## 4767                   proper  positive
## 4768                 properly  positive
## 4769               propitious  positive
## 4770             propitiously  positive
## 4771              proprietary  negative
## 4772                     pros  positive
## 4773                prosecute  negative
## 4774                  prosper  positive
## 4775               prosperity  positive
## 4776               prosperous  positive
## 4777                 prospros  positive
## 4778                  protect  positive
## 4779               protection  positive
## 4780               protective  positive
## 4781                  protest  negative
## 4782                protested  negative
## 4783               protesting  negative
## 4784                 protests  negative
## 4785               protracted  negative
## 4786                    proud  positive
## 4787                   proven  positive
## 4788                   proves  positive
## 4789               providence  positive
## 4790                  proving  positive
## 4791              provocation  negative
## 4792              provocative  negative
## 4793                  provoke  negative
## 4794                  prowess  positive
## 4795                 prudence  positive
## 4796                  prudent  positive
## 4797                prudently  positive
## 4798                      pry  negative
## 4799               pugnacious  negative
## 4800             pugnaciously  negative
## 4801                pugnacity  negative
## 4802                    punch  negative
## 4803                 punctual  positive
## 4804                   punish  negative
## 4805               punishable  negative
## 4806                 punitive  negative
## 4807                     punk  negative
## 4808                     puny  negative
## 4809                   puppet  negative
## 4810                  puppets  negative
## 4811                     pure  positive
## 4812                   purify  positive
## 4813               purposeful  positive
## 4814                  puzzled  negative
## 4815               puzzlement  negative
## 4816                 puzzling  negative
## 4817                    quack  negative
## 4818                   quaint  positive
## 4819                qualified  positive
## 4820                  qualify  positive
## 4821                    qualm  negative
## 4822                   qualms  negative
## 4823                 quandary  negative
## 4824                  quarrel  negative
## 4825              quarrellous  negative
## 4826            quarrellously  negative
## 4827                 quarrels  negative
## 4828              quarrelsome  negative
## 4829                    quash  negative
## 4830                    queer  negative
## 4831             questionable  negative
## 4832                  quibble  negative
## 4833                 quibbles  negative
## 4834                  quicker  positive
## 4835                    quiet  positive
## 4836                  quieter  positive
## 4837                  quitter  negative
## 4838                    rabid  negative
## 4839                   racism  negative
## 4840                   racist  negative
## 4841                  racists  negative
## 4842                     racy  negative
## 4843                 radiance  positive
## 4844                  radiant  positive
## 4845                  radical  negative
## 4846           radicalization  negative
## 4847                radically  negative
## 4848                 radicals  negative
## 4849                     rage  negative
## 4850                   ragged  negative
## 4851                   raging  negative
## 4852                     rail  negative
## 4853                    raked  negative
## 4854                  rampage  negative
## 4855                  rampant  negative
## 4856               ramshackle  negative
## 4857                   rancor  negative
## 4858                 randomly  negative
## 4859                   rankle  negative
## 4860                     rant  negative
## 4861                   ranted  negative
## 4862                  ranting  negative
## 4863                rantingly  negative
## 4864                    rants  negative
## 4865                     rape  negative
## 4866                    raped  negative
## 4867                    rapid  positive
## 4868                   raping  negative
## 4869                  rapport  positive
## 4870                     rapt  positive
## 4871                  rapture  positive
## 4872               raptureous  positive
## 4873             raptureously  positive
## 4874                rapturous  positive
## 4875              rapturously  positive
## 4876                   rascal  negative
## 4877                  rascals  negative
## 4878                     rash  negative
## 4879                 rational  positive
## 4880                   rattle  negative
## 4881                  rattled  negative
## 4882                  rattles  negative
## 4883                   ravage  negative
## 4884                   raving  negative
## 4885              razor-sharp  positive
## 4886                reachable  positive
## 4887              reactionary  negative
## 4888                 readable  positive
## 4889                  readily  positive
## 4890                    ready  positive
## 4891                 reaffirm  positive
## 4892            reaffirmation  positive
## 4893                realistic  positive
## 4894               realizable  positive
## 4895               reasonable  positive
## 4896               reasonably  positive
## 4897                 reasoned  positive
## 4898              reassurance  positive
## 4899                 reassure  positive
## 4900               rebellious  negative
## 4901                   rebuff  negative
## 4902                   rebuke  negative
## 4903             recalcitrant  negative
## 4904                   recant  negative
## 4905                receptive  positive
## 4906                recession  negative
## 4907             recessionary  negative
## 4908                 reckless  negative
## 4909               recklessly  negative
## 4910             recklessness  negative
## 4911                  reclaim  positive
## 4912                   recoil  negative
## 4913                 recomend  positive
## 4914                recommend  positive
## 4915           recommendation  positive
## 4916          recommendations  positive
## 4917              recommended  positive
## 4918                reconcile  positive
## 4919           reconciliation  positive
## 4920           record-setting  positive
## 4921                recourses  negative
## 4922                  recover  positive
## 4923                 recovery  positive
## 4924            rectification  positive
## 4925                  rectify  positive
## 4926               rectifying  positive
## 4927                   redeem  positive
## 4928                redeeming  positive
## 4929               redemption  positive
## 4930               redundancy  negative
## 4931                redundant  negative
## 4932                   refine  positive
## 4933                  refined  positive
## 4934               refinement  positive
## 4935                   reform  positive
## 4936                 reformed  positive
## 4937                reforming  positive
## 4938                  reforms  positive
## 4939                  refresh  positive
## 4940                refreshed  positive
## 4941               refreshing  positive
## 4942                   refund  positive
## 4943                 refunded  positive
## 4944                  refusal  negative
## 4945                   refuse  negative
## 4946                  refused  negative
## 4947                  refuses  negative
## 4948                 refusing  negative
## 4949               refutation  negative
## 4950                   refute  negative
## 4951                  refuted  negative
## 4952                  refutes  negative
## 4953                 refuting  negative
## 4954                    regal  positive
## 4955                  regally  positive
## 4956                   regard  positive
## 4957                  regress  negative
## 4958               regression  negative
## 4959               regressive  negative
## 4960                   regret  negative
## 4961                 regreted  negative
## 4962                regretful  negative
## 4963              regretfully  negative
## 4964                  regrets  negative
## 4965              regrettable  negative
## 4966              regrettably  negative
## 4967                regretted  negative
## 4968                   reject  negative
## 4969                 rejected  negative
## 4970                rejecting  negative
## 4971                rejection  negative
## 4972                  rejects  negative
## 4973                  rejoice  positive
## 4974                rejoicing  positive
## 4975              rejoicingly  positive
## 4976               rejuvenate  positive
## 4977              rejuvenated  positive
## 4978             rejuvenating  positive
## 4979                  relapse  negative
## 4980                  relaxed  positive
## 4981                   relent  positive
## 4982               relentless  negative
## 4983             relentlessly  negative
## 4984           relentlessness  negative
## 4985                 reliable  positive
## 4986                 reliably  positive
## 4987                   relief  positive
## 4988                   relish  positive
## 4989               reluctance  negative
## 4990                reluctant  negative
## 4991              reluctantly  negative
## 4992               remarkable  positive
## 4993               remarkably  positive
## 4994                   remedy  positive
## 4995                remission  positive
## 4996                  remorse  negative
## 4997               remorseful  negative
## 4998             remorsefully  negative
## 4999              remorseless  negative
## 5000            remorselessly  negative
## 5001          remorselessness  negative
## 5002               remunerate  positive
## 5003              renaissance  positive
## 5004                  renewed  positive
## 5005                 renounce  negative
## 5006                   renown  positive
## 5007                 renowned  positive
## 5008             renunciation  negative
## 5009                    repel  negative
## 5010               repetitive  negative
## 5011              replaceable  positive
## 5012            reprehensible  negative
## 5013            reprehensibly  negative
## 5014             reprehension  negative
## 5015             reprehensive  negative
## 5016                  repress  negative
## 5017               repression  negative
## 5018               repressive  negative
## 5019                reprimand  negative
## 5020                 reproach  negative
## 5021              reproachful  negative
## 5022                  reprove  negative
## 5023              reprovingly  negative
## 5024                repudiate  negative
## 5025              repudiation  negative
## 5026                   repugn  negative
## 5027               repugnance  negative
## 5028                repugnant  negative
## 5029              repugnantly  negative
## 5030                  repulse  negative
## 5031                 repulsed  negative
## 5032                repulsing  negative
## 5033                repulsive  negative
## 5034              repulsively  negative
## 5035            repulsiveness  negative
## 5036                reputable  positive
## 5037               reputation  positive
## 5038                   resent  negative
## 5039                resentful  negative
## 5040               resentment  negative
## 5041              resignation  negative
## 5042                 resigned  negative
## 5043                resilient  positive
## 5044               resistance  negative
## 5045                 resolute  positive
## 5046                  resound  positive
## 5047               resounding  positive
## 5048              resourceful  positive
## 5049          resourcefulness  positive
## 5050                  respect  positive
## 5051              respectable  positive
## 5052               respectful  positive
## 5053             respectfully  positive
## 5054                  respite  positive
## 5055              resplendent  positive
## 5056              responsibly  positive
## 5057               responsive  positive
## 5058                  restful  positive
## 5059                 restless  negative
## 5060             restlessness  negative
## 5061                 restored  positive
## 5062                 restrict  negative
## 5063               restricted  negative
## 5064              restriction  negative
## 5065              restrictive  negative
## 5066              restructure  positive
## 5067             restructured  positive
## 5068            restructuring  positive
## 5069                resurgent  negative
## 5070                retaliate  negative
## 5071              retaliatory  negative
## 5072                   retard  negative
## 5073                 retarded  negative
## 5074             retardedness  negative
## 5075                  retards  negative
## 5076                 reticent  negative
## 5077                  retract  negative
## 5078              retractable  positive
## 5079                  retreat  negative
## 5080                retreated  negative
## 5081                    revel  positive
## 5082               revelation  positive
## 5083                  revenge  negative
## 5084               revengeful  negative
## 5085             revengefully  negative
## 5086                   revere  positive
## 5087                reverence  positive
## 5088                 reverent  positive
## 5089               reverently  positive
## 5090                   revert  negative
## 5091                   revile  negative
## 5092                  reviled  negative
## 5093               revitalize  positive
## 5094                  revival  positive
## 5095                   revive  positive
## 5096                  revives  positive
## 5097                   revoke  negative
## 5098                   revolt  negative
## 5099                revolting  negative
## 5100              revoltingly  negative
## 5101            revolutionary  positive
## 5102            revolutionize  positive
## 5103           revolutionized  positive
## 5104           revolutionizes  positive
## 5105                revulsion  negative
## 5106                revulsive  negative
## 5107                   reward  positive
## 5108                rewarding  positive
## 5109              rewardingly  positive
## 5110               rhapsodize  negative
## 5111                 rhetoric  negative
## 5112               rhetorical  negative
## 5113                    ricer  negative
## 5114                     rich  positive
## 5115                   richer  positive
## 5116                   richly  positive
## 5117                 richness  positive
## 5118                 ridicule  negative
## 5119                ridicules  negative
## 5120               ridiculous  negative
## 5121             ridiculously  negative
## 5122                     rife  negative
## 5123                     rift  negative
## 5124                    rifts  negative
## 5125                    right  positive
## 5126                  righten  positive
## 5127                righteous  positive
## 5128              righteously  positive
## 5129            righteousness  positive
## 5130                 rightful  positive
## 5131               rightfully  positive
## 5132                  rightly  positive
## 5133                rightness  positive
## 5134                    rigid  negative
## 5135                 rigidity  negative
## 5136                rigidness  negative
## 5137                     rile  negative
## 5138                    riled  negative
## 5139                      rip  negative
## 5140                  rip-off  negative
## 5141                   ripoff  negative
## 5142                   ripped  negative
## 5143                     risk  negative
## 5144                risk-free  positive
## 5145                    risks  negative
## 5146                    risky  negative
## 5147                    rival  negative
## 5148                  rivalry  negative
## 5149               roadblocks  negative
## 5150                   robust  positive
## 5151                rock-star  positive
## 5152               rock-stars  positive
## 5153                 rockstar  positive
## 5154                rockstars  positive
## 5155                    rocky  negative
## 5156                    rogue  negative
## 5157            rollercoaster  negative
## 5158                 romantic  positive
## 5159             romantically  positive
## 5160              romanticize  positive
## 5161                  roomier  positive
## 5162                    roomy  positive
## 5163                     rosy  positive
## 5164                      rot  negative
## 5165                   rotten  negative
## 5166                    rough  negative
## 5167              rremediable  negative
## 5168                  rubbish  negative
## 5169                     rude  negative
## 5170                      rue  negative
## 5171                  ruffian  negative
## 5172                   ruffle  negative
## 5173                     ruin  negative
## 5174                   ruined  negative
## 5175                  ruining  negative
## 5176                  ruinous  negative
## 5177                    ruins  negative
## 5178                 rumbling  negative
## 5179                    rumor  negative
## 5180                   rumors  negative
## 5181                  rumours  negative
## 5182                   rumple  negative
## 5183                 run-down  negative
## 5184                  runaway  negative
## 5185                  rupture  negative
## 5186                     rust  negative
## 5187                    rusts  negative
## 5188                    rusty  negative
## 5189                      rut  negative
## 5190                 ruthless  negative
## 5191               ruthlessly  negative
## 5192             ruthlessness  negative
## 5193                     ruts  negative
## 5194                 sabotage  negative
## 5195                     sack  negative
## 5196               sacrificed  negative
## 5197                      sad  negative
## 5198                   sadden  negative
## 5199                    sadly  negative
## 5200                  sadness  negative
## 5201                     safe  positive
## 5202                   safely  positive
## 5203                      sag  negative
## 5204                 sagacity  positive
## 5205                   sagely  positive
## 5206                   sagged  negative
## 5207                  sagging  negative
## 5208                    saggy  negative
## 5209                     sags  negative
## 5210                    saint  positive
## 5211              saintliness  positive
## 5212                  saintly  positive
## 5213                salacious  negative
## 5214                 salutary  positive
## 5215                   salute  positive
## 5216            sanctimonious  negative
## 5217                     sane  positive
## 5218                      sap  negative
## 5219                  sarcasm  negative
## 5220                sarcastic  negative
## 5221            sarcastically  negative
## 5222                 sardonic  negative
## 5223             sardonically  negative
## 5224                     sass  negative
## 5225                satirical  negative
## 5226                 satirize  negative
## 5227           satisfactorily  positive
## 5228             satisfactory  positive
## 5229                satisfied  positive
## 5230                satisfies  positive
## 5231                  satisfy  positive
## 5232               satisfying  positive
## 5233               satisified  positive
## 5234                   savage  negative
## 5235                  savaged  negative
## 5236                 savagery  negative
## 5237                  savages  negative
## 5238                    saver  positive
## 5239                  savings  positive
## 5240                   savior  positive
## 5241                    savvy  positive
## 5242                    scaly  negative
## 5243                     scam  negative
## 5244                    scams  negative
## 5245                  scandal  negative
## 5246               scandalize  negative
## 5247              scandalized  negative
## 5248               scandalous  negative
## 5249             scandalously  negative
## 5250                 scandals  negative
## 5251                  scandel  negative
## 5252                 scandels  negative
## 5253                    scant  negative
## 5254                scapegoat  negative
## 5255                     scar  negative
## 5256                   scarce  negative
## 5257                 scarcely  negative
## 5258                 scarcity  negative
## 5259                    scare  negative
## 5260                   scared  negative
## 5261                  scarier  negative
## 5262                 scariest  negative
## 5263                  scarily  negative
## 5264                  scarred  negative
## 5265                    scars  negative
## 5266                    scary  negative
## 5267                 scathing  negative
## 5268               scathingly  negative
## 5269                   scenic  positive
## 5270                sceptical  negative
## 5271                    scoff  negative
## 5272               scoffingly  negative
## 5273                    scold  negative
## 5274                  scolded  negative
## 5275                 scolding  negative
## 5276               scoldingly  negative
## 5277                scorching  negative
## 5278              scorchingly  negative
## 5279                    scorn  negative
## 5280                 scornful  negative
## 5281               scornfully  negative
## 5282                scoundrel  negative
## 5283                  scourge  negative
## 5284                    scowl  negative
## 5285                 scramble  negative
## 5286                scrambled  negative
## 5287                scrambles  negative
## 5288               scrambling  negative
## 5289                    scrap  negative
## 5290                  scratch  negative
## 5291                scratched  negative
## 5292                scratches  negative
## 5293                 scratchy  negative
## 5294                   scream  negative
## 5295                  screech  negative
## 5296                 screw-up  negative
## 5297                  screwed  negative
## 5298               screwed-up  negative
## 5299                   screwy  negative
## 5300                    scuff  negative
## 5301                   scuffs  negative
## 5302                     scum  negative
## 5303                   scummy  negative
## 5304                 seamless  positive
## 5305                 seasoned  positive
## 5306             second-class  negative
## 5307              second-tier  negative
## 5308                secretive  negative
## 5309                   secure  positive
## 5310                 securely  positive
## 5311                sedentary  negative
## 5312                    seedy  negative
## 5313                   seethe  negative
## 5314                 seething  negative
## 5315                selective  positive
## 5316                self-coup  negative
## 5317           self-criticism  negative
## 5318           self-defeating  negative
## 5319         self-destructive  negative
## 5320       self-determination  positive
## 5321         self-humiliation  negative
## 5322            self-interest  negative
## 5323          self-interested  negative
## 5324             self-respect  positive
## 5325        self-satisfaction  positive
## 5326             self-serving  negative
## 5327         self-sufficiency  positive
## 5328          self-sufficient  positive
## 5329           selfinterested  negative
## 5330                  selfish  negative
## 5331                selfishly  negative
## 5332              selfishness  negative
## 5333            semi-retarded  negative
## 5334                   senile  negative
## 5335                sensation  positive
## 5336              sensational  positive
## 5337           sensationalize  negative
## 5338            sensationally  positive
## 5339               sensations  positive
## 5340                senseless  negative
## 5341              senselessly  negative
## 5342                 sensible  positive
## 5343                 sensibly  positive
## 5344                sensitive  positive
## 5345                   serene  positive
## 5346                 serenity  positive
## 5347              seriousness  negative
## 5348                sermonize  negative
## 5349                servitude  negative
## 5350                   set-up  negative
## 5351                  setback  negative
## 5352                 setbacks  negative
## 5353                    sever  negative
## 5354                   severe  negative
## 5355                 severity  negative
## 5356                     sexy  positive
## 5357                     sh*t  negative
## 5358                   shabby  negative
## 5359                  shadowy  negative
## 5360                    shady  negative
## 5361                    shake  negative
## 5362                    shaky  negative
## 5363                  shallow  negative
## 5364                     sham  negative
## 5365                 shambles  negative
## 5366                    shame  negative
## 5367                 shameful  negative
## 5368               shamefully  negative
## 5369             shamefulness  negative
## 5370                shameless  negative
## 5371              shamelessly  negative
## 5372            shamelessness  negative
## 5373                    shark  negative
## 5374                    sharp  positive
## 5375                  sharper  positive
## 5376                 sharpest  positive
## 5377                  sharply  negative
## 5378                  shatter  negative
## 5379                  shemale  negative
## 5380                  shimmer  negative
## 5381               shimmering  positive
## 5382             shimmeringly  positive
## 5383                   shimmy  negative
## 5384                    shine  positive
## 5385                    shiny  positive
## 5386                shipwreck  negative
## 5387                    shirk  negative
## 5388                  shirker  negative
## 5389                     shit  negative
## 5390                   shiver  negative
## 5391                    shock  negative
## 5392                  shocked  negative
## 5393                 shocking  negative
## 5394               shockingly  negative
## 5395                   shoddy  negative
## 5396              short-lived  negative
## 5397                 shortage  negative
## 5398              shortchange  negative
## 5399              shortcoming  negative
## 5400             shortcomings  negative
## 5401                shortness  negative
## 5402             shortsighted  negative
## 5403         shortsightedness  negative
## 5404                 showdown  negative
## 5405                    shrew  negative
## 5406                   shriek  negative
## 5407                   shrill  negative
## 5408                  shrilly  negative
## 5409                  shrivel  negative
## 5410                   shroud  negative
## 5411                 shrouded  negative
## 5412                    shrug  negative
## 5413                     shun  negative
## 5414                  shunned  negative
## 5415                     sick  negative
## 5416                   sicken  negative
## 5417                sickening  negative
## 5418              sickeningly  negative
## 5419                   sickly  negative
## 5420                 sickness  negative
## 5421                sidetrack  negative
## 5422              sidetracked  negative
## 5423                    siege  negative
## 5424              significant  positive
## 5425                   silent  positive
## 5426                  sillily  negative
## 5427                    silly  negative
## 5428                  simpler  positive
## 5429                 simplest  positive
## 5430               simplified  positive
## 5431               simplifies  positive
## 5432                 simplify  positive
## 5433              simplifying  positive
## 5434               simplistic  negative
## 5435           simplistically  negative
## 5436                      sin  negative
## 5437                  sincere  positive
## 5438                sincerely  positive
## 5439                sincerity  positive
## 5440                   sinful  negative
## 5441                 sinfully  negative
## 5442                 sinister  negative
## 5443               sinisterly  negative
## 5444                     sink  negative
## 5445                  sinking  negative
## 5446                skeletons  negative
## 5447                  skeptic  negative
## 5448                skeptical  negative
## 5449              skeptically  negative
## 5450               skepticism  negative
## 5451                  sketchy  negative
## 5452                    skill  positive
## 5453                  skilled  positive
## 5454                 skillful  positive
## 5455               skillfully  positive
## 5456                   skimpy  negative
## 5457                   skinny  negative
## 5458                 skittish  negative
## 5459               skittishly  negative
## 5460                    skulk  negative
## 5461                    slack  negative
## 5462                  slammin  positive
## 5463                  slander  negative
## 5464                slanderer  negative
## 5465               slanderous  negative
## 5466             slanderously  negative
## 5467                 slanders  negative
## 5468                     slap  negative
## 5469                 slashing  negative
## 5470                slaughter  negative
## 5471              slaughtered  negative
## 5472                    slave  negative
## 5473                   slaves  negative
## 5474                   sleazy  negative
## 5475                    sleek  positive
## 5476                    slick  positive
## 5477                    slime  negative
## 5478                     slog  negative
## 5479                  slogged  negative
## 5480                 slogging  negative
## 5481                    slogs  negative
## 5482        sloooooooooooooow  negative
## 5483                  sloooow  negative
## 5484                   slooow  negative
## 5485                    sloow  negative
## 5486                 sloppily  negative
## 5487                   sloppy  negative
## 5488                    sloth  negative
## 5489                 slothful  negative
## 5490                     slow  negative
## 5491              slow-moving  negative
## 5492                   slowed  negative
## 5493                   slower  negative
## 5494                  slowest  negative
## 5495                   slowly  negative
## 5496                    sloww  negative
## 5497                   slowww  negative
## 5498                  slowwww  negative
## 5499                     slug  negative
## 5500                 sluggish  negative
## 5501                    slump  negative
## 5502                 slumping  negative
## 5503                slumpping  negative
## 5504                     slur  negative
## 5505                     slut  negative
## 5506                    sluts  negative
## 5507                      sly  negative
## 5508                    smack  negative
## 5509                 smallish  negative
## 5510                    smart  positive
## 5511                  smarter  positive
## 5512                 smartest  positive
## 5513                  smartly  positive
## 5514                    smash  negative
## 5515                    smear  negative
## 5516                    smell  negative
## 5517                  smelled  negative
## 5518                 smelling  negative
## 5519                   smells  negative
## 5520                   smelly  negative
## 5521                    smelt  negative
## 5522                    smile  positive
## 5523                   smiles  positive
## 5524                  smiling  positive
## 5525                smilingly  positive
## 5526                  smitten  positive
## 5527                    smoke  negative
## 5528              smokescreen  negative
## 5529                  smolder  negative
## 5530               smoldering  negative
## 5531                   smooth  positive
## 5532                 smoother  positive
## 5533                 smoothes  positive
## 5534                smoothest  positive
## 5535                 smoothly  positive
## 5536                  smother  negative
## 5537                 smoulder  negative
## 5538              smouldering  negative
## 5539                   smudge  negative
## 5540                  smudged  negative
## 5541                  smudges  negative
## 5542                 smudging  negative
## 5543                     smug  negative
## 5544                   smugly  negative
## 5545                     smut  negative
## 5546                 smuttier  negative
## 5547                smuttiest  negative
## 5548                   smutty  negative
## 5549                     snag  negative
## 5550                  snagged  negative
## 5551                 snagging  negative
## 5552                    snags  negative
## 5553                 snappish  negative
## 5554               snappishly  negative
## 5555                   snappy  positive
## 5556                    snare  negative
## 5557                   snarky  negative
## 5558                    snarl  negative
## 5559                   snazzy  positive
## 5560                    sneak  negative
## 5561                 sneakily  negative
## 5562                   sneaky  negative
## 5563                    sneer  negative
## 5564                 sneering  negative
## 5565               sneeringly  negative
## 5566                     snob  negative
## 5567                 snobbish  negative
## 5568                   snobby  negative
## 5569                  snobish  negative
## 5570                    snobs  negative
## 5571                     snub  negative
## 5572                   so-cal  negative
## 5573                    soapy  negative
## 5574                      sob  negative
## 5575                    sober  negative
## 5576                 sobering  negative
## 5577                 sociable  positive
## 5578                     soft  positive
## 5579                   softer  positive
## 5580                   solace  positive
## 5581                   solemn  negative
## 5582               solicitous  positive
## 5583             solicitously  positive
## 5584               solicitude  negative
## 5585                    solid  positive
## 5586               solidarity  positive
## 5587                   somber  negative
## 5588                   soothe  positive
## 5589               soothingly  positive
## 5590            sophisticated  positive
## 5591                     sore  negative
## 5592                   sorely  negative
## 5593                 soreness  negative
## 5594                   sorrow  negative
## 5595                sorrowful  negative
## 5596              sorrowfully  negative
## 5597                    sorry  negative
## 5598                  soulful  positive
## 5599                  soundly  positive
## 5600                soundness  positive
## 5601                     sour  negative
## 5602                   sourly  negative
## 5603                 spacious  positive
## 5604                    spade  negative
## 5605                    spank  negative
## 5606                  sparkle  positive
## 5607                sparkling  positive
## 5608              spectacular  positive
## 5609            spectacularly  positive
## 5610                 speedily  positive
## 5611                   speedy  positive
## 5612                spellbind  positive
## 5613             spellbinding  positive
## 5614           spellbindingly  positive
## 5615               spellbound  positive
## 5616                   spendy  negative
## 5617                     spew  negative
## 5618                   spewed  negative
## 5619                  spewing  negative
## 5620                    spews  negative
## 5621                 spilling  negative
## 5622                 spinster  negative
## 5623                 spirited  positive
## 5624               spiritless  negative
## 5625                spiritual  positive
## 5626                    spite  negative
## 5627                 spiteful  negative
## 5628               spitefully  negative
## 5629             spitefulness  negative
## 5630                 splatter  negative
## 5631                 splendid  positive
## 5632               splendidly  positive
## 5633                 splendor  positive
## 5634                    split  negative
## 5635                splitting  negative
## 5636                    spoil  negative
## 5637                 spoilage  negative
## 5638                spoilages  negative
## 5639                  spoiled  negative
## 5640                 spoilled  negative
## 5641                   spoils  negative
## 5642              spontaneous  positive
## 5643                    spook  negative
## 5644                 spookier  negative
## 5645                spookiest  negative
## 5646                 spookily  negative
## 5647                   spooky  negative
## 5648                spoon-fed  negative
## 5649               spoon-feed  negative
## 5650                 spoonfed  negative
## 5651                 sporadic  negative
## 5652                   sporty  positive
## 5653                 spotless  positive
## 5654                   spotty  negative
## 5655                sprightly  positive
## 5656                 spurious  negative
## 5657                    spurn  negative
## 5658                  sputter  negative
## 5659                 squabble  negative
## 5660               squabbling  negative
## 5661                 squander  negative
## 5662                   squash  negative
## 5663                   squeak  negative
## 5664                  squeaks  negative
## 5665                  squeaky  negative
## 5666                   squeal  negative
## 5667                squealing  negative
## 5668                  squeals  negative
## 5669                   squirm  negative
## 5670                     stab  negative
## 5671                stability  positive
## 5672                stabilize  positive
## 5673                   stable  positive
## 5674                 stagnant  negative
## 5675                 stagnate  negative
## 5676               stagnation  negative
## 5677                    staid  negative
## 5678                    stain  negative
## 5679                stainless  positive
## 5680                   stains  negative
## 5681                    stale  negative
## 5682                stalemate  negative
## 5683                    stall  negative
## 5684                   stalls  negative
## 5685                  stammer  negative
## 5686                 stampede  negative
## 5687                 standout  positive
## 5688               standstill  negative
## 5689                    stark  negative
## 5690                  starkly  negative
## 5691                  startle  negative
## 5692                startling  negative
## 5693              startlingly  negative
## 5694               starvation  negative
## 5695                   starve  negative
## 5696         state-of-the-art  positive
## 5697                  stately  positive
## 5698                   static  negative
## 5699               statuesque  positive
## 5700                  staunch  positive
## 5701                staunchly  positive
## 5702              staunchness  positive
## 5703                steadfast  positive
## 5704              steadfastly  positive
## 5705            steadfastness  positive
## 5706                steadiest  positive
## 5707               steadiness  positive
## 5708                   steady  positive
## 5709                    steal  negative
## 5710                 stealing  negative
## 5711                   steals  negative
## 5712                    steep  negative
## 5713                  steeply  negative
## 5714                  stellar  positive
## 5715                stellarly  positive
## 5716                   stench  negative
## 5717               stereotype  negative
## 5718            stereotypical  negative
## 5719          stereotypically  negative
## 5720                    stern  negative
## 5721                     stew  negative
## 5722                   sticky  negative
## 5723                    stiff  negative
## 5724                stiffness  negative
## 5725                   stifle  negative
## 5726                 stifling  negative
## 5727               stiflingly  negative
## 5728                   stigma  negative
## 5729               stigmatize  negative
## 5730                stimulate  positive
## 5731               stimulates  positive
## 5732              stimulating  positive
## 5733              stimulative  positive
## 5734                    sting  negative
## 5735                 stinging  negative
## 5736               stingingly  negative
## 5737                   stingy  negative
## 5738                    stink  negative
## 5739                   stinks  negative
## 5740               stirringly  positive
## 5741                   stodgy  negative
## 5742                    stole  negative
## 5743                   stolen  negative
## 5744                   stooge  negative
## 5745                  stooges  negative
## 5746                   stormy  negative
## 5747                 straggle  negative
## 5748                straggler  negative
## 5749               straighten  positive
## 5750          straightforward  positive
## 5751                   strain  negative
## 5752                 strained  negative
## 5753                straining  negative
## 5754                  strange  negative
## 5755                strangely  negative
## 5756                 stranger  negative
## 5757                strangest  negative
## 5758                 strangle  negative
## 5759                  streaky  negative
## 5760              streamlined  positive
## 5761                strenuous  negative
## 5762                   stress  negative
## 5763                 stresses  negative
## 5764                stressful  negative
## 5765              stressfully  negative
## 5766                 stricken  negative
## 5767                   strict  negative
## 5768                 strictly  negative
## 5769                 strident  negative
## 5770               stridently  negative
## 5771                   strife  negative
## 5772                   strike  negative
## 5773                 striking  positive
## 5774               strikingly  positive
## 5775                stringent  negative
## 5776              stringently  negative
## 5777                 striving  positive
## 5778                   strong  positive
## 5779                 stronger  positive
## 5780                strongest  positive
## 5781                   struck  negative
## 5782                 struggle  negative
## 5783                struggled  negative
## 5784                struggles  negative
## 5785               struggling  negative
## 5786                    strut  negative
## 5787                 stubborn  negative
## 5788               stubbornly  negative
## 5789             stubbornness  negative
## 5790                    stuck  negative
## 5791                   stuffy  negative
## 5792                  stumble  negative
## 5793                 stumbled  negative
## 5794                 stumbles  negative
## 5795                    stump  negative
## 5796                  stumped  negative
## 5797                   stumps  negative
## 5798                     stun  negative
## 5799                  stunned  positive
## 5800                 stunning  positive
## 5801               stunningly  positive
## 5802                    stunt  negative
## 5803                  stunted  negative
## 5804               stupendous  positive
## 5805             stupendously  positive
## 5806                   stupid  negative
## 5807                stupidest  negative
## 5808                stupidity  negative
## 5809                 stupidly  negative
## 5810                stupified  negative
## 5811                  stupify  negative
## 5812                   stupor  negative
## 5813                 sturdier  positive
## 5814                   sturdy  positive
## 5815                  stutter  negative
## 5816                stuttered  negative
## 5817               stuttering  negative
## 5818                 stutters  negative
## 5819                      sty  negative
## 5820                  stylish  positive
## 5821                stylishly  positive
## 5822                 stylized  positive
## 5823                  stymied  negative
## 5824                    suave  positive
## 5825                  suavely  positive
## 5826                  sub-par  negative
## 5827                  subdued  negative
## 5828                subjected  negative
## 5829               subjection  negative
## 5830                subjugate  negative
## 5831              subjugation  negative
## 5832                  sublime  positive
## 5833               submissive  negative
## 5834              subordinate  negative
## 5835                 subpoena  negative
## 5836                subpoenas  negative
## 5837             subservience  negative
## 5838              subservient  negative
## 5839                subsidize  positive
## 5840               subsidized  positive
## 5841               subsidizes  positive
## 5842              subsidizing  positive
## 5843              substandard  negative
## 5844              substantive  positive
## 5845                 subtract  negative
## 5846               subversion  negative
## 5847               subversive  negative
## 5848             subversively  negative
## 5849                  subvert  negative
## 5850                  succeed  positive
## 5851                succeeded  positive
## 5852               succeeding  positive
## 5853                 succeeds  positive
## 5854                   succes  positive
## 5855                  success  positive
## 5856                successes  positive
## 5857               successful  positive
## 5858             successfully  positive
## 5859                  succumb  negative
## 5860                     suck  negative
## 5861                   sucked  negative
## 5862                   sucker  negative
## 5863                    sucks  negative
## 5864                    sucky  negative
## 5865                      sue  negative
## 5866                     sued  negative
## 5867                   sueing  negative
## 5868                     sues  negative
## 5869                   suffer  negative
## 5870                 suffered  negative
## 5871                 sufferer  negative
## 5872                sufferers  negative
## 5873                suffering  negative
## 5874                  suffers  negative
## 5875                  suffice  positive
## 5876                 sufficed  positive
## 5877                 suffices  positive
## 5878               sufficient  positive
## 5879             sufficiently  positive
## 5880                suffocate  negative
## 5881               sugar-coat  negative
## 5882             sugar-coated  negative
## 5883              sugarcoated  negative
## 5884                 suicidal  negative
## 5885                  suicide  negative
## 5886                 suitable  positive
## 5887                     sulk  negative
## 5888                   sullen  negative
## 5889                    sully  negative
## 5890                sumptuous  positive
## 5891              sumptuously  positive
## 5892            sumptuousness  positive
## 5893                   sunder  negative
## 5894                     sunk  negative
## 5895                   sunken  negative
## 5896                    super  positive
## 5897                   superb  positive
## 5898                 superbly  positive
## 5899              superficial  negative
## 5900           superficiality  negative
## 5901            superficially  negative
## 5902              superfluous  negative
## 5903                 superior  positive
## 5904              superiority  positive
## 5905             superstition  negative
## 5906            superstitious  negative
## 5907                   supple  positive
## 5908                  support  positive
## 5909                supported  positive
## 5910                supporter  positive
## 5911               supporting  positive
## 5912               supportive  positive
## 5913                 supports  positive
## 5914                 suppress  negative
## 5915              suppression  negative
## 5916                supremacy  positive
## 5917                  supreme  positive
## 5918                supremely  positive
## 5919                   supurb  positive
## 5920                 supurbly  positive
## 5921                 surmount  positive
## 5922                  surpass  positive
## 5923                  surreal  positive
## 5924                surrender  negative
## 5925                 survival  positive
## 5926                 survivor  positive
## 5927              susceptible  negative
## 5928                  suspect  negative
## 5929                suspicion  negative
## 5930               suspicions  negative
## 5931               suspicious  negative
## 5932             suspiciously  negative
## 5933           sustainability  positive
## 5934              sustainable  positive
## 5935                  swagger  negative
## 5936                  swamped  negative
## 5937                    swank  positive
## 5938                 swankier  positive
## 5939                swankiest  positive
## 5940                   swanky  positive
## 5941                   sweaty  negative
## 5942                 sweeping  positive
## 5943                    sweet  positive
## 5944                  sweeten  positive
## 5945               sweetheart  positive
## 5946                  sweetly  positive
## 5947                sweetness  positive
## 5948                  swelled  negative
## 5949                 swelling  negative
## 5950                    swift  positive
## 5951                swiftness  positive
## 5952                  swindle  negative
## 5953                    swipe  negative
## 5954                  swollen  negative
## 5955                  symptom  negative
## 5956                 symptoms  negative
## 5957                 syndrome  negative
## 5958                    taboo  negative
## 5959                    tacky  negative
## 5960                    taint  negative
## 5961                  tainted  negative
## 5962                   talent  positive
## 5963                 talented  positive
## 5964                  talents  positive
## 5965                   tamper  negative
## 5966                   tangle  negative
## 5967                  tangled  negative
## 5968                  tangles  negative
## 5969                     tank  negative
## 5970                   tanked  negative
## 5971                    tanks  negative
## 5972                tantalize  positive
## 5973              tantalizing  positive
## 5974            tantalizingly  positive
## 5975                  tantrum  negative
## 5976                    tardy  negative
## 5977                  tarnish  negative
## 5978                tarnished  negative
## 5979                tarnishes  negative
## 5980               tarnishing  negative
## 5981                 tattered  negative
## 5982                    taunt  negative
## 5983                 taunting  negative
## 5984               tauntingly  negative
## 5985                   taunts  negative
## 5986                     taut  negative
## 5987                   tawdry  negative
## 5988                   taxing  negative
## 5989                    tease  negative
## 5990                teasingly  negative
## 5991                  tedious  negative
## 5992                tediously  negative
## 5993                 temerity  negative
## 5994                   temper  negative
## 5995                  tempest  negative
## 5996                    tempt  positive
## 5997               temptation  negative
## 5998                 tempting  positive
## 5999               temptingly  positive
## 6000                tenacious  positive
## 6001              tenaciously  positive
## 6002                 tenacity  positive
## 6003                   tender  positive
## 6004                 tenderly  positive
## 6005               tenderness  negative
## 6006                    tense  negative
## 6007                  tension  negative
## 6008                tentative  negative
## 6009              tentatively  negative
## 6010                  tenuous  negative
## 6011                tenuously  negative
## 6012                    tepid  negative
## 6013                 terrible  negative
## 6014             terribleness  negative
## 6015                 terribly  negative
## 6016                 terrific  positive
## 6017             terrifically  positive
## 6018                   terror  negative
## 6019             terror-genic  negative
## 6020                terrorism  negative
## 6021                terrorize  negative
## 6022                  testily  negative
## 6023                    testy  negative
## 6024                 tetchily  negative
## 6025                   tetchy  negative
## 6026                    thank  positive
## 6027                 thankful  positive
## 6028                thankless  negative
## 6029                  thicker  negative
## 6030                  thinner  positive
## 6031                   thirst  negative
## 6032                   thorny  negative
## 6033               thoughtful  positive
## 6034             thoughtfully  positive
## 6035           thoughtfulness  positive
## 6036              thoughtless  negative
## 6037            thoughtlessly  negative
## 6038          thoughtlessness  negative
## 6039                   thrash  negative
## 6040                   threat  negative
## 6041                 threaten  negative
## 6042              threatening  negative
## 6043                  threats  negative
## 6044                threesome  negative
## 6045                   thrift  positive
## 6046                  thrifty  positive
## 6047                   thrill  positive
## 6048                 thrilled  positive
## 6049                thrilling  positive
## 6050              thrillingly  positive
## 6051                  thrills  positive
## 6052                   thrive  positive
## 6053                 thriving  positive
## 6054                    throb  negative
## 6055                 throbbed  negative
## 6056                throbbing  negative
## 6057                   throbs  negative
## 6058                 throttle  negative
## 6059                     thug  negative
## 6060               thumb-down  negative
## 6061                 thumb-up  positive
## 6062              thumbs-down  negative
## 6063                thumbs-up  positive
## 6064                   thwart  negative
## 6065                   tickle  positive
## 6066                     tidy  positive
## 6067           time-consuming  negative
## 6068             time-honored  positive
## 6069                   timely  positive
## 6070                    timid  negative
## 6071                 timidity  negative
## 6072                  timidly  negative
## 6073                timidness  negative
## 6074                    tin-y  negative
## 6075                   tingle  positive
## 6076                  tingled  negative
## 6077                 tingling  negative
## 6078                    tired  negative
## 6079                 tiresome  negative
## 6080                   tiring  negative
## 6081                 tiringly  negative
## 6082                titillate  positive
## 6083              titillating  positive
## 6084            titillatingly  positive
## 6085             togetherness  positive
## 6086                     toil  negative
## 6087                tolerable  positive
## 6088                     toll  negative
## 6089                toll-free  positive
## 6090                      top  positive
## 6091                top-heavy  negative
## 6092                top-notch  positive
## 6093              top-quality  positive
## 6094                 topnotch  positive
## 6095                   topple  negative
## 6096                     tops  positive
## 6097                  torment  negative
## 6098                tormented  negative
## 6099                  torrent  negative
## 6100                 tortuous  negative
## 6101                  torture  negative
## 6102                 tortured  negative
## 6103                 tortures  negative
## 6104                torturing  negative
## 6105                torturous  negative
## 6106              torturously  negative
## 6107             totalitarian  negative
## 6108                   touchy  negative
## 6109                    tough  positive
## 6110                  tougher  positive
## 6111                 toughest  positive
## 6112                toughness  negative
## 6113                     tout  negative
## 6114                   touted  negative
## 6115                    touts  negative
## 6116                    toxic  negative
## 6117                 traction  positive
## 6118                  traduce  negative
## 6119                  tragedy  negative
## 6120                   tragic  negative
## 6121               tragically  negative
## 6122                  traitor  negative
## 6123               traitorous  negative
## 6124             traitorously  negative
## 6125                    tramp  negative
## 6126                  trample  negative
## 6127                 tranquil  positive
## 6128              tranquility  positive
## 6129               transgress  negative
## 6130            transgression  negative
## 6131              transparent  positive
## 6132                     trap  negative
## 6133                   traped  negative
## 6134                  trapped  negative
## 6135                    trash  negative
## 6136                  trashed  negative
## 6137                   trashy  negative
## 6138                   trauma  negative
## 6139                traumatic  negative
## 6140            traumatically  negative
## 6141               traumatize  negative
## 6142              traumatized  negative
## 6143               travesties  negative
## 6144                 travesty  negative
## 6145              treacherous  negative
## 6146            treacherously  negative
## 6147                treachery  negative
## 6148                  treason  negative
## 6149               treasonous  negative
## 6150                 treasure  positive
## 6151             tremendously  positive
## 6152                   trendy  positive
## 6153                    trick  negative
## 6154                  tricked  negative
## 6155                 trickery  negative
## 6156                   tricky  negative
## 6157                  triumph  positive
## 6158                triumphal  positive
## 6159               triumphant  positive
## 6160             triumphantly  positive
## 6161                  trivial  negative
## 6162               trivialize  negative
## 6163                trivially  positive
## 6164                   trophy  positive
## 6165                  trouble  negative
## 6166             trouble-free  positive
## 6167                 troubled  negative
## 6168             troublemaker  negative
## 6169                 troubles  negative
## 6170              troublesome  negative
## 6171            troublesomely  negative
## 6172                troubling  negative
## 6173              troublingly  negative
## 6174                   truant  negative
## 6175                    trump  positive
## 6176                  trumpet  positive
## 6177                    trust  positive
## 6178                  trusted  positive
## 6179                 trusting  positive
## 6180               trustingly  positive
## 6181          trustworthiness  positive
## 6182              trustworthy  positive
## 6183                   trusty  positive
## 6184                 truthful  positive
## 6185               truthfully  positive
## 6186             truthfulness  positive
## 6187                   tumble  negative
## 6188                  tumbled  negative
## 6189                  tumbles  negative
## 6190               tumultuous  negative
## 6191                turbulent  negative
## 6192                  turmoil  negative
## 6193                  twinkly  positive
## 6194                    twist  negative
## 6195                  twisted  negative
## 6196                   twists  negative
## 6197                two-faced  negative
## 6198                two-faces  negative
## 6199               tyrannical  negative
## 6200             tyrannically  negative
## 6201                  tyranny  negative
## 6202                   tyrant  negative
## 6203                      ugh  negative
## 6204                   uglier  negative
## 6205                  ugliest  negative
## 6206                 ugliness  negative
## 6207                     ugly  negative
## 6208                 ulterior  negative
## 6209                ultimatum  negative
## 6210               ultimatums  negative
## 6211              ultra-crisp  positive
## 6212           ultra-hardline  negative
## 6213              un-viewable  negative
## 6214                unabashed  positive
## 6215              unabashedly  positive
## 6216                   unable  negative
## 6217             unacceptable  negative
## 6218           unacceptablely  negative
## 6219             unacceptably  negative
## 6220             unaccessible  negative
## 6221             unaccustomed  negative
## 6222             unachievable  negative
## 6223               unaffected  positive
## 6224             unaffordable  negative
## 6225              unappealing  negative
## 6226             unassailable  positive
## 6227             unattractive  negative
## 6228              unauthentic  negative
## 6229              unavailable  negative
## 6230              unavoidably  negative
## 6231               unbearable  negative
## 6232             unbearablely  negative
## 6233               unbeatable  positive
## 6234             unbelievable  negative
## 6235             unbelievably  negative
## 6236                 unbiased  positive
## 6237                  unbound  positive
## 6238                 uncaring  negative
## 6239                uncertain  negative
## 6240                  uncivil  negative
## 6241              uncivilized  negative
## 6242                  unclean  negative
## 6243                  unclear  negative
## 6244            uncollectible  negative
## 6245            uncomfortable  negative
## 6246            uncomfortably  negative
## 6247                  uncomfy  negative
## 6248            uncompetitive  negative
## 6249            uncomplicated  positive
## 6250           uncompromising  negative
## 6251         uncompromisingly  negative
## 6252            unconditional  positive
## 6253              unconfirmed  negative
## 6254         unconstitutional  negative
## 6255             uncontrolled  negative
## 6256             unconvincing  negative
## 6257           unconvincingly  negative
## 6258            uncooperative  negative
## 6259                  uncouth  negative
## 6260               uncreative  negative
## 6261                undamaged  positive
## 6262                undaunted  positive
## 6263                undecided  negative
## 6264                undefined  negative
## 6265          undependability  negative
## 6266             undependable  negative
## 6267                 undercut  negative
## 6268                undercuts  negative
## 6269             undercutting  negative
## 6270                 underdog  negative
## 6271            underestimate  negative
## 6272               underlings  negative
## 6273                undermine  negative
## 6274               undermined  negative
## 6275               undermines  negative
## 6276              undermining  negative
## 6277                underpaid  negative
## 6278             underpowered  negative
## 6279               undersized  negative
## 6280           understandable  positive
## 6281              undesirable  negative
## 6282             undetermined  negative
## 6283                    undid  negative
## 6284              undignified  negative
## 6285             undisputable  positive
## 6286             undisputably  positive
## 6287               undisputed  positive
## 6288              undissolved  negative
## 6289             undocumented  negative
## 6290                   undone  negative
## 6291                    undue  negative
## 6292                   unease  negative
## 6293                 uneasily  negative
## 6294               uneasiness  negative
## 6295                   uneasy  negative
## 6296             uneconomical  negative
## 6297               unemployed  negative
## 6298             unencumbered  positive
## 6299                  unequal  negative
## 6300              unequivocal  positive
## 6301            unequivocally  positive
## 6302                unethical  negative
## 6303                   uneven  negative
## 6304               uneventful  negative
## 6305               unexpected  negative
## 6306             unexpectedly  negative
## 6307              unexplained  negative
## 6308                 unfairly  negative
## 6309               unfaithful  negative
## 6310             unfaithfully  negative
## 6311               unfamiliar  negative
## 6312              unfavorable  negative
## 6313                  unfazed  positive
## 6314                unfeeling  negative
## 6315               unfettered  positive
## 6316               unfinished  negative
## 6317                    unfit  negative
## 6318               unforeseen  negative
## 6319            unforgettable  positive
## 6320              unforgiving  negative
## 6321              unfortunate  negative
## 6322            unfortunately  negative
## 6323                unfounded  negative
## 6324               unfriendly  negative
## 6325              unfulfilled  negative
## 6326                 unfunded  negative
## 6327             ungovernable  negative
## 6328               ungrateful  negative
## 6329                unhappily  negative
## 6330              unhappiness  negative
## 6331                  unhappy  negative
## 6332                unhealthy  negative
## 6333                unhelpful  negative
## 6334            unilateralism  negative
## 6335             unimaginable  negative
## 6336             unimaginably  negative
## 6337              unimportant  negative
## 6338               uninformed  negative
## 6339                uninsured  negative
## 6340           unintelligible  negative
## 6341            unintelligile  negative
## 6342                 unipolar  negative
## 6343                    unity  positive
## 6344                   unjust  negative
## 6345            unjustifiable  negative
## 6346            unjustifiably  negative
## 6347              unjustified  negative
## 6348                 unjustly  negative
## 6349                   unkind  negative
## 6350                 unkindly  negative
## 6351                  unknown  negative
## 6352             unlamentable  negative
## 6353             unlamentably  negative
## 6354                 unlawful  negative
## 6355               unlawfully  negative
## 6356             unlawfulness  negative
## 6357                  unleash  negative
## 6358               unlicensed  negative
## 6359                 unlikely  negative
## 6360                unlimited  positive
## 6361                  unlucky  negative
## 6362                unmatched  positive
## 6363                  unmoved  negative
## 6364                unnatural  negative
## 6365              unnaturally  negative
## 6366              unnecessary  negative
## 6367                 unneeded  negative
## 6368                  unnerve  negative
## 6369                 unnerved  negative
## 6370                unnerving  negative
## 6371              unnervingly  negative
## 6372                unnoticed  negative
## 6373               unobserved  negative
## 6374               unorthodox  negative
## 6375              unorthodoxy  negative
## 6376             unparalleled  positive
## 6377               unpleasant  negative
## 6378           unpleasantries  negative
## 6379                unpopular  negative
## 6380            unpredictable  negative
## 6381               unprepared  negative
## 6382             unproductive  negative
## 6383             unprofitable  negative
## 6384                  unprove  negative
## 6385                 unproved  negative
## 6386                 unproven  negative
## 6387                 unproves  negative
## 6388                unproving  negative
## 6389              unqualified  negative
## 6390           unquestionable  positive
## 6391           unquestionably  positive
## 6392                  unravel  negative
## 6393                unraveled  negative
## 6394              unreachable  negative
## 6395               unreadable  negative
## 6396                   unreal  positive
## 6397              unrealistic  negative
## 6398             unreasonable  negative
## 6399             unreasonably  negative
## 6400              unrelenting  negative
## 6401            unrelentingly  negative
## 6402            unreliability  negative
## 6403               unreliable  negative
## 6404               unresolved  negative
## 6405             unresponsive  negative
## 6406                   unrest  negative
## 6407             unrestricted  positive
## 6408                unrivaled  positive
## 6409                   unruly  negative
## 6410                   unsafe  negative
## 6411           unsatisfactory  negative
## 6412                 unsavory  negative
## 6413             unscrupulous  negative
## 6414           unscrupulously  negative
## 6415                 unsecure  negative
## 6416                 unseemly  negative
## 6417                unselfish  positive
## 6418                 unsettle  negative
## 6419                unsettled  negative
## 6420               unsettling  negative
## 6421             unsettlingly  negative
## 6422                unskilled  negative
## 6423          unsophisticated  negative
## 6424                  unsound  negative
## 6425              unspeakable  negative
## 6426            unspeakablely  negative
## 6427              unspecified  negative
## 6428                 unstable  negative
## 6429               unsteadily  negative
## 6430             unsteadiness  negative
## 6431                 unsteady  negative
## 6432             unsuccessful  negative
## 6433           unsuccessfully  negative
## 6434              unsupported  negative
## 6435             unsupportive  negative
## 6436                   unsure  negative
## 6437             unsuspecting  negative
## 6438            unsustainable  negative
## 6439                untenable  negative
## 6440                 untested  negative
## 6441              unthinkable  negative
## 6442              unthinkably  negative
## 6443                 untimely  negative
## 6444                untouched  negative
## 6445                   untrue  negative
## 6446            untrustworthy  negative
## 6447               untruthful  negative
## 6448                 unusable  negative
## 6449                 unusably  negative
## 6450                unuseable  negative
## 6451                unuseably  negative
## 6452                  unusual  negative
## 6453                unusually  negative
## 6454               unviewable  negative
## 6455                 unwanted  negative
## 6456              unwarranted  negative
## 6457              unwatchable  negative
## 6458               unwavering  positive
## 6459                unwelcome  negative
## 6460                   unwell  negative
## 6461                 unwieldy  negative
## 6462                unwilling  negative
## 6463              unwillingly  negative
## 6464            unwillingness  negative
## 6465                   unwise  negative
## 6466                 unwisely  negative
## 6467               unworkable  negative
## 6468                 unworthy  negative
## 6469               unyielding  negative
## 6470                   upbeat  positive
## 6471                  upbraid  negative
## 6472               upgradable  positive
## 6473              upgradeable  positive
## 6474                 upgraded  positive
## 6475                 upheaval  negative
## 6476                   upheld  positive
## 6477                   uphold  positive
## 6478                   uplift  positive
## 6479                uplifting  positive
## 6480              upliftingly  positive
## 6481               upliftment  positive
## 6482                 uprising  negative
## 6483                   uproar  negative
## 6484               uproarious  negative
## 6485             uproariously  negative
## 6486                uproarous  negative
## 6487              uproarously  negative
## 6488                   uproot  negative
## 6489                  upscale  positive
## 6490                    upset  negative
## 6491                 upseting  negative
## 6492                   upsets  negative
## 6493                upsetting  negative
## 6494              upsettingly  negative
## 6495                   urgent  negative
## 6496                   usable  positive
## 6497                  useable  positive
## 6498                   useful  positive
## 6499                  useless  negative
## 6500            user-friendly  positive
## 6501         user-replaceable  positive
## 6502                    usurp  negative
## 6503                  usurper  negative
## 6504                  utterly  negative
## 6505                  vagrant  negative
## 6506                    vague  negative
## 6507                vagueness  negative
## 6508                     vain  negative
## 6509                   vainly  negative
## 6510                  valiant  positive
## 6511                valiantly  positive
## 6512                    valor  positive
## 6513                 valuable  positive
## 6514                   vanity  negative
## 6515                  variety  positive
## 6516                 vehement  negative
## 6517               vehemently  negative
## 6518                 venerate  positive
## 6519                vengeance  negative
## 6520                 vengeful  negative
## 6521               vengefully  negative
## 6522             vengefulness  negative
## 6523                    venom  negative
## 6524                 venomous  negative
## 6525               venomously  negative
## 6526                     vent  negative
## 6527               verifiable  positive
## 6528                veritable  positive
## 6529                versatile  positive
## 6530              versatility  positive
## 6531                 vestiges  negative
## 6532                      vex  negative
## 6533                 vexation  negative
## 6534                   vexing  negative
## 6535                 vexingly  negative
## 6536                  vibrant  positive
## 6537                vibrantly  positive
## 6538                  vibrate  negative
## 6539                 vibrated  negative
## 6540                 vibrates  negative
## 6541                vibrating  negative
## 6542                vibration  negative
## 6543                     vice  negative
## 6544                  vicious  negative
## 6545                viciously  negative
## 6546              viciousness  negative
## 6547                victimize  negative
## 6548               victorious  positive
## 6549                  victory  positive
## 6550                 viewable  positive
## 6551                vigilance  positive
## 6552                 vigilant  positive
## 6553                     vile  negative
## 6554                 vileness  negative
## 6555                   vilify  negative
## 6556               villainous  negative
## 6557             villainously  negative
## 6558                 villains  negative
## 6559                  villian  negative
## 6560               villianous  negative
## 6561             villianously  negative
## 6562                  villify  negative
## 6563               vindictive  negative
## 6564             vindictively  negative
## 6565           vindictiveness  negative
## 6566                  violate  negative
## 6567                violation  negative
## 6568                 violator  negative
## 6569                violators  negative
## 6570                  violent  negative
## 6571                violently  negative
## 6572                    viper  negative
## 6573                   virtue  positive
## 6574                 virtuous  positive
## 6575               virtuously  positive
## 6576                virulence  negative
## 6577                 virulent  negative
## 6578               virulently  negative
## 6579                    virus  negative
## 6580                visionary  positive
## 6581                vivacious  positive
## 6582                    vivid  positive
## 6583               vociferous  negative
## 6584             vociferously  negative
## 6585                 volatile  negative
## 6586               volatility  negative
## 6587                    vomit  negative
## 6588                  vomited  negative
## 6589                 vomiting  negative
## 6590                   vomits  negative
## 6591                    vouch  positive
## 6592                vouchsafe  positive
## 6593                   vulgar  negative
## 6594               vulnerable  negative
## 6595                     wack  negative
## 6596                     wail  negative
## 6597                   wallow  negative
## 6598                     wane  negative
## 6599                   waning  negative
## 6600                   wanton  negative
## 6601                 war-like  negative
## 6602                   warily  negative
## 6603                 wariness  negative
## 6604                  warlike  negative
## 6605                     warm  positive
## 6606                   warmer  positive
## 6607              warmhearted  positive
## 6608                   warmly  positive
## 6609                   warmth  positive
## 6610                   warned  negative
## 6611                  warning  negative
## 6612                     warp  negative
## 6613                   warped  negative
## 6614                     wary  negative
## 6615               washed-out  negative
## 6616                    waste  negative
## 6617                   wasted  negative
## 6618                 wasteful  negative
## 6619             wastefulness  negative
## 6620                  wasting  negative
## 6621               water-down  negative
## 6622             watered-down  negative
## 6623                  wayward  negative
## 6624                     weak  negative
## 6625                   weaken  negative
## 6626                weakening  negative
## 6627                   weaker  negative
## 6628                 weakness  negative
## 6629               weaknesses  negative
## 6630                  wealthy  positive
## 6631                weariness  negative
## 6632                wearisome  negative
## 6633                    weary  negative
## 6634                    wedge  negative
## 6635                     weed  negative
## 6636                     weep  negative
## 6637                    weird  negative
## 6638                  weirdly  negative
## 6639                  welcome  positive
## 6640                     well  positive
## 6641             well-backlit  positive
## 6642            well-balanced  positive
## 6643             well-behaved  positive
## 6644               well-being  positive
## 6645                well-bred  positive
## 6646           well-connected  positive
## 6647            well-educated  positive
## 6648         well-established  positive
## 6649            well-informed  positive
## 6650         well-intentioned  positive
## 6651               well-known  positive
## 6652                well-made  positive
## 6653             well-managed  positive
## 6654            well-mannered  positive
## 6655          well-positioned  positive
## 6656            well-received  positive
## 6657            well-regarded  positive
## 6658             well-rounded  positive
## 6659                 well-run  positive
## 6660             well-wishers  positive
## 6661                wellbeing  positive
## 6662                  wheedle  negative
## 6663                  whimper  negative
## 6664                    whine  negative
## 6665                  whining  negative
## 6666                    whiny  negative
## 6667                    whips  negative
## 6668                     whoa  positive
## 6669           wholeheartedly  positive
## 6670                wholesome  positive
## 6671                    whooa  positive
## 6672                   whoooa  positive
## 6673                    whore  negative
## 6674                   whores  negative
## 6675                   wicked  negative
## 6676                 wickedly  negative
## 6677               wickedness  negative
## 6678                   wieldy  positive
## 6679                     wild  negative
## 6680                   wildly  negative
## 6681                    wiles  negative
## 6682                  willing  positive
## 6683                willingly  positive
## 6684              willingness  positive
## 6685                     wilt  negative
## 6686                     wily  negative
## 6687                    wimpy  negative
## 6688                      win  positive
## 6689                    wince  negative
## 6690                 windfall  positive
## 6691                 winnable  positive
## 6692                   winner  positive
## 6693                  winners  positive
## 6694                  winning  positive
## 6695                     wins  positive
## 6696                   wisdom  positive
## 6697                     wise  positive
## 6698                   wisely  positive
## 6699                    witty  positive
## 6700                   wobble  negative
## 6701                  wobbled  negative
## 6702                  wobbles  negative
## 6703                      woe  negative
## 6704                woebegone  negative
## 6705                   woeful  negative
## 6706                 woefully  negative
## 6707                womanizer  negative
## 6708               womanizing  negative
## 6709                      won  positive
## 6710                   wonder  positive
## 6711                wonderful  positive
## 6712              wonderfully  positive
## 6713                wonderous  positive
## 6714              wonderously  positive
## 6715                  wonders  positive
## 6716                 wondrous  positive
## 6717                      woo  positive
## 6718                     work  positive
## 6719                 workable  positive
## 6720                   worked  positive
## 6721                    works  positive
## 6722             world-famous  positive
## 6723                     worn  negative
## 6724                  worried  negative
## 6725                worriedly  negative
## 6726                  worrier  negative
## 6727                  worries  negative
## 6728                worrisome  negative
## 6729                    worry  negative
## 6730                 worrying  negative
## 6731               worryingly  negative
## 6732                    worse  negative
## 6733                   worsen  negative
## 6734                worsening  negative
## 6735                    worst  negative
## 6736                    worth  positive
## 6737              worth-while  positive
## 6738               worthiness  positive
## 6739                worthless  negative
## 6740              worthlessly  negative
## 6741            worthlessness  negative
## 6742               worthwhile  positive
## 6743                   worthy  positive
## 6744                    wound  negative
## 6745                   wounds  negative
## 6746                      wow  positive
## 6747                    wowed  positive
## 6748                   wowing  positive
## 6749                     wows  positive
## 6750                  wrangle  negative
## 6751                    wrath  negative
## 6752                    wreak  negative
## 6753                  wreaked  negative
## 6754                   wreaks  negative
## 6755                    wreck  negative
## 6756                    wrest  negative
## 6757                  wrestle  negative
## 6758                   wretch  negative
## 6759                 wretched  negative
## 6760               wretchedly  negative
## 6761             wretchedness  negative
## 6762                  wrinkle  negative
## 6763                 wrinkled  negative
## 6764                 wrinkles  negative
## 6765                     wrip  negative
## 6766                  wripped  negative
## 6767                 wripping  negative
## 6768                   writhe  negative
## 6769                    wrong  negative
## 6770                 wrongful  negative
## 6771                  wrongly  negative
## 6772                  wrought  negative
## 6773                     yawn  negative
## 6774                      yay  positive
## 6775                 youthful  positive
## 6776                      zap  negative
## 6777                   zapped  negative
## 6778                     zaps  negative
## 6779                     zeal  positive
## 6780                   zealot  negative
## 6781                  zealous  negative
## 6782                zealously  negative
## 6783                   zenith  positive
## 6784                     zest  positive
## 6785                    zippy  positive
## 6786                   zombie  negative
nrc
##                    word    sentiment
## 1                abacus        trust
## 2               abandon         fear
## 3               abandon     negative
## 4               abandon      sadness
## 5             abandoned        anger
## 6             abandoned         fear
## 7             abandoned     negative
## 8             abandoned      sadness
## 9           abandonment        anger
## 10          abandonment         fear
## 11          abandonment     negative
## 12          abandonment      sadness
## 13          abandonment     surprise
## 14                 abba     positive
## 15                abbot        trust
## 16            abduction         fear
## 17            abduction     negative
## 18            abduction      sadness
## 19            abduction     surprise
## 20             aberrant     negative
## 21           aberration      disgust
## 22           aberration     negative
## 23                abhor        anger
## 24                abhor      disgust
## 25                abhor         fear
## 26                abhor     negative
## 27            abhorrent        anger
## 28            abhorrent      disgust
## 29            abhorrent         fear
## 30            abhorrent     negative
## 31              ability     positive
## 32               abject      disgust
## 33               abject     negative
## 34             abnormal      disgust
## 35             abnormal     negative
## 36              abolish        anger
## 37              abolish     negative
## 38            abolition     negative
## 39           abominable      disgust
## 40           abominable         fear
## 41           abominable     negative
## 42          abomination        anger
## 43          abomination      disgust
## 44          abomination         fear
## 45          abomination     negative
## 46                abort     negative
## 47             abortion      disgust
## 48             abortion         fear
## 49             abortion     negative
## 50             abortion      sadness
## 51             abortive     negative
## 52             abortive      sadness
## 53       abovementioned     positive
## 54             abrasion     negative
## 55             abrogate     negative
## 56               abrupt     surprise
## 57              abscess     negative
## 58              abscess      sadness
## 59              absence         fear
## 60              absence     negative
## 61              absence      sadness
## 62               absent     negative
## 63               absent      sadness
## 64             absentee     negative
## 65             absentee      sadness
## 66          absenteeism     negative
## 67             absolute     positive
## 68           absolution          joy
## 69           absolution     positive
## 70           absolution        trust
## 71             absorbed     positive
## 72               absurd     negative
## 73            absurdity     negative
## 74            abundance anticipation
## 75            abundance      disgust
## 76            abundance          joy
## 77            abundance     negative
## 78            abundance     positive
## 79            abundance        trust
## 80             abundant          joy
## 81             abundant     positive
## 82                abuse        anger
## 83                abuse      disgust
## 84                abuse         fear
## 85                abuse     negative
## 86                abuse      sadness
## 87              abysmal     negative
## 88              abysmal      sadness
## 89                abyss         fear
## 90                abyss     negative
## 91                abyss      sadness
## 92             academic     positive
## 93             academic        trust
## 94              academy     positive
## 95           accelerate anticipation
## 96           acceptable     positive
## 97           acceptance     positive
## 98           accessible     positive
## 99             accident         fear
## 100            accident     negative
## 101            accident      sadness
## 102            accident     surprise
## 103          accidental         fear
## 104          accidental     negative
## 105          accidental     surprise
## 106        accidentally     surprise
## 107            accolade anticipation
## 108            accolade          joy
## 109            accolade     positive
## 110            accolade     surprise
## 111            accolade        trust
## 112       accommodation     positive
## 113       accompaniment anticipation
## 114       accompaniment          joy
## 115       accompaniment     positive
## 116       accompaniment        trust
## 117          accomplish          joy
## 118          accomplish     positive
## 119        accomplished          joy
## 120        accomplished     positive
## 121      accomplishment     positive
## 122              accord     positive
## 123              accord        trust
## 124             account        trust
## 125      accountability     positive
## 126      accountability        trust
## 127         accountable     positive
## 128         accountable        trust
## 129          accountant        trust
## 130            accounts        trust
## 131          accredited     positive
## 132          accredited        trust
## 133             accueil     positive
## 134            accurate     positive
## 135            accurate        trust
## 136            accursed        anger
## 137            accursed         fear
## 138            accursed     negative
## 139            accursed      sadness
## 140          accusation        anger
## 141          accusation      disgust
## 142          accusation     negative
## 143          accusative     negative
## 144             accused        anger
## 145             accused         fear
## 146             accused     negative
## 147             accuser        anger
## 148             accuser         fear
## 149             accuser     negative
## 150            accusing        anger
## 151            accusing         fear
## 152            accusing     negative
## 153                 ace     positive
## 154                ache     negative
## 155                ache      sadness
## 156             achieve          joy
## 157             achieve     positive
## 158             achieve        trust
## 159         achievement anticipation
## 160         achievement          joy
## 161         achievement     positive
## 162         achievement        trust
## 163              aching     negative
## 164              aching      sadness
## 165                acid     negative
## 166      acknowledgment     positive
## 167             acquire     positive
## 168           acquiring anticipation
## 169           acquiring     positive
## 170             acrobat         fear
## 171             acrobat          joy
## 172             acrobat     positive
## 173             acrobat        trust
## 174              action     positive
## 175          actionable        anger
## 176          actionable      disgust
## 177          actionable     negative
## 178              actual     positive
## 179              acuity     positive
## 180              acumen     positive
## 181               adapt     positive
## 182           adaptable     positive
## 183               adder        anger
## 184               adder      disgust
## 185               adder         fear
## 186               adder     negative
## 187               adder      sadness
## 188           addiction     negative
## 189           addresses anticipation
## 190           addresses     positive
## 191               adept     positive
## 192            adequacy     positive
## 193            adhering        trust
## 194             adipose     negative
## 195          adjudicate         fear
## 196          adjudicate     negative
## 197             adjunct     positive
## 198      administrative        trust
## 199           admirable          joy
## 200           admirable     positive
## 201           admirable        trust
## 202             admiral     positive
## 203             admiral        trust
## 204          admiration          joy
## 205          admiration     positive
## 206          admiration        trust
## 207              admire     positive
## 208              admire        trust
## 209             admirer     positive
## 210          admissible     positive
## 211          admissible        trust
## 212          admonition         fear
## 213          admonition     negative
## 214            adorable          joy
## 215            adorable     positive
## 216           adoration          joy
## 217           adoration     positive
## 218           adoration        trust
## 219               adore anticipation
## 220               adore          joy
## 221               adore     positive
## 222               adore        trust
## 223              adrift anticipation
## 224              adrift         fear
## 225              adrift     negative
## 226              adrift      sadness
## 227         adulterated     negative
## 228            adultery      disgust
## 229            adultery     negative
## 230            adultery      sadness
## 231             advance anticipation
## 232             advance         fear
## 233             advance          joy
## 234             advance     positive
## 235             advance     surprise
## 236            advanced     positive
## 237         advancement     positive
## 238           advantage     positive
## 239        advantageous     positive
## 240              advent anticipation
## 241              advent          joy
## 242              advent     positive
## 243              advent        trust
## 244           adventure anticipation
## 245           adventure     positive
## 246         adventurous     positive
## 247           adversary        anger
## 248           adversary     negative
## 249             adverse        anger
## 250             adverse      disgust
## 251             adverse         fear
## 252             adverse     negative
## 253             adverse      sadness
## 254           adversity        anger
## 255           adversity         fear
## 256           adversity     negative
## 257           adversity      sadness
## 258              advice        trust
## 259           advisable     positive
## 260           advisable        trust
## 261              advise     positive
## 262              advise        trust
## 263             advised        trust
## 264             adviser     positive
## 265             adviser        trust
## 266            advocacy        anger
## 267            advocacy anticipation
## 268            advocacy          joy
## 269            advocacy     positive
## 270            advocacy        trust
## 271            advocate        trust
## 272           aesthetic     positive
## 273          aesthetics          joy
## 274          aesthetics     positive
## 275             affable     positive
## 276           affection          joy
## 277           affection     positive
## 278           affection        trust
## 279          affiliated     positive
## 280              affirm     positive
## 281              affirm        trust
## 282         affirmation     positive
## 283         affirmative     positive
## 284       affirmatively     positive
## 285       affirmatively        trust
## 286             afflict         fear
## 287             afflict     negative
## 288             afflict      sadness
## 289           afflicted     negative
## 290          affliction      disgust
## 291          affliction         fear
## 292          affliction     negative
## 293          affliction      sadness
## 294           affluence          joy
## 295           affluence     positive
## 296            affluent     positive
## 297              afford     positive
## 298             affront        anger
## 299             affront      disgust
## 300             affront         fear
## 301             affront     negative
## 302             affront      sadness
## 303             affront     surprise
## 304              afraid         fear
## 305              afraid     negative
## 306           aftermath        anger
## 307           aftermath      disgust
## 308           aftermath         fear
## 309           aftermath     negative
## 310           aftermath      sadness
## 311          aftertaste     negative
## 312                 aga         fear
## 313                 aga     positive
## 314                 aga        trust
## 315          aggravated        anger
## 316          aggravated     negative
## 317         aggravating        anger
## 318         aggravating     negative
## 319         aggravating      sadness
## 320         aggravation        anger
## 321         aggravation      disgust
## 322         aggravation     negative
## 323          aggression        anger
## 324          aggression         fear
## 325          aggression     negative
## 326          aggressive        anger
## 327          aggressive         fear
## 328          aggressive     negative
## 329           aggressor        anger
## 330           aggressor         fear
## 331           aggressor     negative
## 332              aghast      disgust
## 333              aghast         fear
## 334              aghast     negative
## 335              aghast     surprise
## 336               agile     positive
## 337             agility     positive
## 338            agitated        anger
## 339            agitated     negative
## 340           agitation        anger
## 341           agitation     negative
## 342           agonizing         fear
## 343           agonizing     negative
## 344               agony        anger
## 345               agony         fear
## 346               agony     negative
## 347               agony      sadness
## 348               agree     positive
## 349           agreeable     positive
## 350           agreeable        trust
## 351              agreed     positive
## 352              agreed        trust
## 353            agreeing     positive
## 354            agreeing        trust
## 355           agreement     positive
## 356           agreement        trust
## 357         agriculture     positive
## 358             aground     negative
## 359               ahead     positive
## 360                 aid     positive
## 361              aiding     positive
## 362                 ail     negative
## 363                 ail      sadness
## 364              ailing         fear
## 365              ailing     negative
## 366              ailing      sadness
## 367             aimless     negative
## 368             airport anticipation
## 369                airs      disgust
## 370                airs     negative
## 371                akin        trust
## 372           alabaster     positive
## 373               alarm         fear
## 374               alarm     negative
## 375               alarm     surprise
## 376            alarming         fear
## 377            alarming     negative
## 378            alarming     surprise
## 379                 alb        trust
## 380          alcoholism        anger
## 381          alcoholism      disgust
## 382          alcoholism         fear
## 383          alcoholism     negative
## 384          alcoholism      sadness
## 385           alertness anticipation
## 386           alertness         fear
## 387           alertness     positive
## 388           alertness     surprise
## 389              alerts anticipation
## 390              alerts         fear
## 391              alerts     surprise
## 392               alien      disgust
## 393               alien         fear
## 394               alien     negative
## 395            alienate        anger
## 396            alienate      disgust
## 397            alienate     negative
## 398           alienated     negative
## 399           alienated      sadness
## 400          alienation        anger
## 401          alienation      disgust
## 402          alienation         fear
## 403          alienation     negative
## 404          alienation      sadness
## 405        alimentation     positive
## 406             alimony     negative
## 407               alive anticipation
## 408               alive          joy
## 409               alive     positive
## 410               alive        trust
## 411               allay     positive
## 412          allegation        anger
## 413          allegation     negative
## 414              allege     negative
## 415          allegiance     positive
## 416          allegiance        trust
## 417             allegro     positive
## 418           alleviate     positive
## 419         alleviation     positive
## 420            alliance        trust
## 421              allied     positive
## 422              allied        trust
## 423           allowable     positive
## 424              allure anticipation
## 425              allure          joy
## 426              allure     positive
## 427              allure     surprise
## 428            alluring     positive
## 429                ally     positive
## 430                ally        trust
## 431            almighty     positive
## 432               aloha anticipation
## 433               aloha          joy
## 434               aloha     positive
## 435               aloof     negative
## 436         altercation        anger
## 437         altercation     negative
## 438               amaze     surprise
## 439           amazingly          joy
## 440           amazingly     positive
## 441           amazingly     surprise
## 442          ambassador     positive
## 443          ambassador        trust
## 444           ambiguous     negative
## 445            ambition anticipation
## 446            ambition          joy
## 447            ambition     positive
## 448            ambition        trust
## 449           ambulance         fear
## 450           ambulance        trust
## 451              ambush        anger
## 452              ambush         fear
## 453              ambush     negative
## 454              ambush     surprise
## 455          ameliorate     positive
## 456                amen          joy
## 457                amen     positive
## 458                amen        trust
## 459            amenable     positive
## 460               amend     positive
## 461              amends     positive
## 462             amenity     positive
## 463             amiable     positive
## 464            amicable          joy
## 465            amicable     positive
## 466             ammonia      disgust
## 467             amnesia     negative
## 468             amnesty          joy
## 469             amnesty     positive
## 470        amortization        trust
## 471               amour anticipation
## 472               amour          joy
## 473               amour     positive
## 474               amour        trust
## 475        amphetamines      disgust
## 476        amphetamines     negative
## 477               amuse          joy
## 478               amuse     positive
## 479              amused          joy
## 480              amused     positive
## 481           amusement          joy
## 482           amusement     positive
## 483             amusing          joy
## 484             amusing     positive
## 485            anaconda      disgust
## 486            anaconda         fear
## 487            anaconda     negative
## 488                anal     negative
## 489             analyst anticipation
## 490             analyst     positive
## 491             analyst        trust
## 492           anarchism        anger
## 493           anarchism         fear
## 494           anarchism     negative
## 495           anarchist        anger
## 496           anarchist         fear
## 497           anarchist     negative
## 498             anarchy        anger
## 499             anarchy         fear
## 500             anarchy     negative
## 501            anathema        anger
## 502            anathema      disgust
## 503            anathema         fear
## 504            anathema     negative
## 505            anathema      sadness
## 506           ancestral        trust
## 507              anchor     positive
## 508           anchorage     positive
## 509           anchorage      sadness
## 510             ancient     negative
## 511               angel anticipation
## 512               angel          joy
## 513               angel     positive
## 514               angel     surprise
## 515               angel        trust
## 516             angelic          joy
## 517             angelic     positive
## 518             angelic        trust
## 519               anger        anger
## 520               anger     negative
## 521              angina         fear
## 522              angina     negative
## 523             angling anticipation
## 524             angling     negative
## 525               angry        anger
## 526               angry      disgust
## 527               angry     negative
## 528             anguish        anger
## 529             anguish         fear
## 530             anguish     negative
## 531             anguish      sadness
## 532             animate     positive
## 533            animated          joy
## 534            animated     positive
## 535           animosity        anger
## 536           animosity      disgust
## 537           animosity         fear
## 538           animosity     negative
## 539           animosity      sadness
## 540              animus        anger
## 541              animus     negative
## 542          annihilate        anger
## 543          annihilate         fear
## 544          annihilate     negative
## 545         annihilated        anger
## 546         annihilated         fear
## 547         annihilated     negative
## 548         annihilated      sadness
## 549        annihilation        anger
## 550        annihilation         fear
## 551        annihilation     negative
## 552        annihilation      sadness
## 553        announcement anticipation
## 554               annoy        anger
## 555               annoy      disgust
## 556               annoy     negative
## 557           annoyance        anger
## 558           annoyance      disgust
## 559           annoyance     negative
## 560            annoying        anger
## 561            annoying     negative
## 562               annul     negative
## 563           annulment     negative
## 564           annulment      sadness
## 565             anomaly         fear
## 566             anomaly     negative
## 567             anomaly     surprise
## 568           anonymous     negative
## 569          answerable        trust
## 570          antagonism        anger
## 571          antagonism     negative
## 572          antagonist        anger
## 573          antagonist     negative
## 574        antagonistic        anger
## 575        antagonistic      disgust
## 576        antagonistic     negative
## 577             anthrax      disgust
## 578             anthrax         fear
## 579             anthrax     negative
## 580             anthrax      sadness
## 581         antibiotics     positive
## 582          antichrist        anger
## 583          antichrist      disgust
## 584          antichrist         fear
## 585          antichrist     negative
## 586        anticipation anticipation
## 587        anticipatory anticipation
## 588            antidote anticipation
## 589            antidote     positive
## 590            antidote        trust
## 591          antifungal     positive
## 592          antifungal        trust
## 593           antipathy        anger
## 594           antipathy      disgust
## 595           antipathy     negative
## 596          antiquated     negative
## 597             antique     positive
## 598          antiseptic     positive
## 599          antiseptic        trust
## 600          antisocial        anger
## 601          antisocial      disgust
## 602          antisocial         fear
## 603          antisocial     negative
## 604          antisocial      sadness
## 605          antithesis        anger
## 606          antithesis     negative
## 607             anxiety        anger
## 608             anxiety anticipation
## 609             anxiety         fear
## 610             anxiety     negative
## 611             anxiety      sadness
## 612             anxious anticipation
## 613             anxious         fear
## 614             anxious     negative
## 615              apache         fear
## 616              apache     negative
## 617           apathetic     negative
## 618           apathetic      sadness
## 619              apathy     negative
## 620              apathy      sadness
## 621               aphid      disgust
## 622               aphid     negative
## 623              aplomb     positive
## 624          apologetic     positive
## 625          apologetic        trust
## 626           apologize     positive
## 627           apologize      sadness
## 628           apologize        trust
## 629             apology     positive
## 630             apostle     positive
## 631             apostle        trust
## 632           apostolic        trust
## 633           appalling      disgust
## 634           appalling         fear
## 635           appalling     negative
## 636          apparition         fear
## 637          apparition     surprise
## 638              appeal anticipation
## 639        appendicitis         fear
## 640        appendicitis     negative
## 641        appendicitis      sadness
## 642            applause          joy
## 643            applause     positive
## 644            applause     surprise
## 645            applause        trust
## 646           applicant anticipation
## 647        appreciation          joy
## 648        appreciation     positive
## 649        appreciation        trust
## 650           apprehend         fear
## 651        apprehension         fear
## 652        apprehension     negative
## 653        apprehensive anticipation
## 654        apprehensive         fear
## 655        apprehensive     negative
## 656          apprentice        trust
## 657         approaching anticipation
## 658         approbation     positive
## 659         approbation        trust
## 660       appropriation     negative
## 661            approval     positive
## 662             approve          joy
## 663             approve     positive
## 664             approve        trust
## 665           approving     positive
## 666                 apt     positive
## 667            aptitude     positive
## 668             arbiter        trust
## 669         arbitration anticipation
## 670          arbitrator        trust
## 671         archaeology anticipation
## 672         archaeology     positive
## 673             archaic     negative
## 674        architecture        trust
## 675              ardent anticipation
## 676              ardent          joy
## 677              ardent     positive
## 678               ardor     positive
## 679             arduous     negative
## 680               argue        anger
## 681               argue     negative
## 682            argument        anger
## 683            argument     negative
## 684       argumentation        anger
## 685       argumentative     negative
## 686           arguments        anger
## 687                arid     negative
## 688                arid      sadness
## 689         aristocracy     positive
## 690        aristocratic     positive
## 691            armament        anger
## 692            armament         fear
## 693           armaments         fear
## 694           armaments     negative
## 695               armed        anger
## 696               armed         fear
## 697               armed     negative
## 698               armed     positive
## 699               armor         fear
## 700               armor     positive
## 701               armor        trust
## 702             armored         fear
## 703              armory        trust
## 704               aroma     positive
## 705              arouse anticipation
## 706              arouse     positive
## 707         arraignment        anger
## 708         arraignment         fear
## 709         arraignment     negative
## 710         arraignment      sadness
## 711               array     positive
## 712             arrears     negative
## 713              arrest     negative
## 714             arrival anticipation
## 715              arrive anticipation
## 716           arrogance     negative
## 717            arrogant        anger
## 718            arrogant      disgust
## 719            arrogant     negative
## 720             arsenic      disgust
## 721             arsenic         fear
## 722             arsenic     negative
## 723             arsenic      sadness
## 724               arson        anger
## 725               arson         fear
## 726               arson     negative
## 727                 art anticipation
## 728                 art          joy
## 729                 art     positive
## 730                 art      sadness
## 731                 art     surprise
## 732          articulate     positive
## 733        articulation     positive
## 734           artillery         fear
## 735           artillery     negative
## 736             artisan     positive
## 737             artiste     positive
## 738            artistic     positive
## 739          ascendancy     positive
## 740              ascent     positive
## 741                 ash     negative
## 742             ashamed      disgust
## 743             ashamed     negative
## 744             ashamed      sadness
## 745               ashes     negative
## 746               ashes      sadness
## 747                 asp         fear
## 748          aspiration anticipation
## 749          aspiration          joy
## 750          aspiration     positive
## 751          aspiration     surprise
## 752          aspiration        trust
## 753              aspire anticipation
## 754              aspire          joy
## 755              aspire     positive
## 756            aspiring anticipation
## 757            aspiring          joy
## 758            aspiring     positive
## 759            aspiring        trust
## 760                 ass     negative
## 761              assail        anger
## 762              assail         fear
## 763              assail     negative
## 764              assail     surprise
## 765           assailant        anger
## 766           assailant         fear
## 767           assailant     negative
## 768           assailant      sadness
## 769            assassin        anger
## 770            assassin         fear
## 771            assassin     negative
## 772            assassin      sadness
## 773         assassinate        anger
## 774         assassinate         fear
## 775         assassinate     negative
## 776       assassination        anger
## 777       assassination         fear
## 778       assassination     negative
## 779       assassination      sadness
## 780             assault        anger
## 781             assault         fear
## 782             assault     negative
## 783            assembly     positive
## 784            assembly        trust
## 785              assent     positive
## 786           asserting     positive
## 787           asserting        trust
## 788          assessment     surprise
## 789          assessment        trust
## 790            assessor        trust
## 791              assets     positive
## 792             asshole        anger
## 793             asshole      disgust
## 794             asshole     negative
## 795            assignee        trust
## 796              assist     positive
## 797              assist        trust
## 798          assistance     positive
## 799           associate     positive
## 800           associate        trust
## 801         association        trust
## 802             assuage     positive
## 803           assurance     positive
## 804           assurance        trust
## 805              assure        trust
## 806             assured     positive
## 807             assured        trust
## 808           assuredly        trust
## 809       astonishingly     positive
## 810       astonishingly     surprise
## 811        astonishment          joy
## 812        astonishment     positive
## 813        astonishment     surprise
## 814              astray         fear
## 815              astray     negative
## 816          astringent     negative
## 817          astrologer anticipation
## 818          astrologer     positive
## 819           astronaut     positive
## 820          astronomer anticipation
## 821          astronomer     positive
## 822              astute     positive
## 823              asylum         fear
## 824              asylum     negative
## 825           asymmetry      disgust
## 826             atheism     negative
## 827     atherosclerosis         fear
## 828     atherosclerosis     negative
## 829     atherosclerosis      sadness
## 830             athlete     positive
## 831            athletic     positive
## 832                atom     positive
## 833               atone anticipation
## 834               atone          joy
## 835               atone     positive
## 836               atone        trust
## 837           atonement     positive
## 838           atrocious        anger
## 839           atrocious      disgust
## 840           atrocious     negative
## 841            atrocity        anger
## 842            atrocity      disgust
## 843            atrocity         fear
## 844            atrocity     negative
## 845            atrocity      sadness
## 846             atrophy      disgust
## 847             atrophy         fear
## 848             atrophy     negative
## 849             atrophy      sadness
## 850          attachment     positive
## 851              attack        anger
## 852              attack         fear
## 853              attack     negative
## 854           attacking        anger
## 855           attacking      disgust
## 856           attacking         fear
## 857           attacking     negative
## 858           attacking      sadness
## 859           attacking     surprise
## 860          attainable anticipation
## 861          attainable     positive
## 862          attainment     positive
## 863             attempt anticipation
## 864          attendance anticipation
## 865           attendant     positive
## 866           attendant        trust
## 867           attention     positive
## 868           attentive     positive
## 869           attentive        trust
## 870          attenuated     negative
## 871         attenuation     negative
## 872         attenuation      sadness
## 873              attest     positive
## 874              attest        trust
## 875         attestation        trust
## 876            attorney        anger
## 877            attorney         fear
## 878            attorney     positive
## 879            attorney        trust
## 880          attraction     positive
## 881      attractiveness     positive
## 882             auction anticipation
## 883            audacity     negative
## 884            audience anticipation
## 885             auditor         fear
## 886             auditor        trust
## 887             augment     positive
## 888              august     positive
## 889                aunt     positive
## 890                aunt        trust
## 891                aura     positive
## 892          auspicious anticipation
## 893          auspicious          joy
## 894          auspicious     positive
## 895             austere         fear
## 896             austere     negative
## 897             austere      sadness
## 898           austerity     negative
## 899           authentic          joy
## 900           authentic     positive
## 901           authentic        trust
## 902        authenticate        trust
## 903      authentication        trust
## 904        authenticity     positive
## 905        authenticity        trust
## 906              author     positive
## 907              author        trust
## 908       authoritative     positive
## 909       authoritative        trust
## 910           authority     positive
## 911           authority        trust
## 912       authorization     positive
## 913       authorization        trust
## 914           authorize        trust
## 915          authorized     positive
## 916          autocratic     negative
## 917           automatic        trust
## 918             autopsy      disgust
## 919             autopsy         fear
## 920             autopsy     negative
## 921             autopsy      sadness
## 922           avalanche         fear
## 923           avalanche     negative
## 924           avalanche      sadness
## 925           avalanche     surprise
## 926             avarice        anger
## 927             avarice      disgust
## 928             avarice     negative
## 929              avatar     positive
## 930             avenger        anger
## 931             avenger     negative
## 932              averse        anger
## 933              averse      disgust
## 934              averse         fear
## 935              averse     negative
## 936            aversion        anger
## 937            aversion      disgust
## 938            aversion         fear
## 939            aversion     negative
## 940               avoid         fear
## 941               avoid     negative
## 942           avoidance         fear
## 943           avoidance     negative
## 944            avoiding         fear
## 945               await anticipation
## 946               award anticipation
## 947               award          joy
## 948               award     positive
## 949               award     surprise
## 950               award        trust
## 951               awful        anger
## 952               awful      disgust
## 953               awful         fear
## 954               awful     negative
## 955               awful      sadness
## 956         awkwardness      disgust
## 957         awkwardness     negative
## 958                awry     negative
## 959               axiom        trust
## 960           axiomatic        trust
## 961                  ay     positive
## 962                 aye     positive
## 963              babble     negative
## 964            babbling     negative
## 965              baboon      disgust
## 966              baboon     negative
## 967                baby          joy
## 968                baby     positive
## 969          babysitter        trust
## 970       baccalaureate     positive
## 971            backbone        anger
## 972            backbone     positive
## 973            backbone        trust
## 974              backer        trust
## 975            backward     negative
## 976           backwards      disgust
## 977           backwards     negative
## 978           backwater     negative
## 979           backwater      sadness
## 980            bacteria      disgust
## 981            bacteria         fear
## 982            bacteria     negative
## 983            bacteria      sadness
## 984           bacterium      disgust
## 985           bacterium         fear
## 986           bacterium     negative
## 987                 bad        anger
## 988                 bad      disgust
## 989                 bad         fear
## 990                 bad     negative
## 991                 bad      sadness
## 992               badge        trust
## 993              badger        anger
## 994              badger     negative
## 995               badly     negative
## 996               badly      sadness
## 997             badness        anger
## 998             badness      disgust
## 999             badness         fear
## 1000            badness     negative
## 1001            bailiff         fear
## 1002            bailiff     negative
## 1003            bailiff        trust
## 1004               bait         fear
## 1005               bait     negative
## 1006               bait        trust
## 1007            balance     positive
## 1008           balanced     positive
## 1009               bale         fear
## 1010               bale     negative
## 1011               balk     negative
## 1012             ballad     positive
## 1013             ballet     positive
## 1014             ballot anticipation
## 1015             ballot     positive
## 1016             ballot        trust
## 1017               balm anticipation
## 1018               balm          joy
## 1019               balm     negative
## 1020               balm     positive
## 1021             balsam     positive
## 1022                ban     negative
## 1023             bandit     negative
## 1024               bane        anger
## 1025               bane      disgust
## 1026               bane         fear
## 1027               bane     negative
## 1028               bang        anger
## 1029               bang      disgust
## 1030               bang         fear
## 1031               bang     negative
## 1032               bang      sadness
## 1033               bang     surprise
## 1034             banger        anger
## 1035             banger anticipation
## 1036             banger         fear
## 1037             banger     negative
## 1038             banger     surprise
## 1039             banish        anger
## 1040             banish      disgust
## 1041             banish         fear
## 1042             banish     negative
## 1043             banish      sadness
## 1044           banished        anger
## 1045           banished         fear
## 1046           banished     negative
## 1047           banished      sadness
## 1048         banishment        anger
## 1049         banishment      disgust
## 1050         banishment     negative
## 1051         banishment      sadness
## 1052               bank        trust
## 1053             banker        trust
## 1054           bankrupt         fear
## 1055           bankrupt     negative
## 1056           bankrupt      sadness
## 1057         bankruptcy        anger
## 1058         bankruptcy      disgust
## 1059         bankruptcy         fear
## 1060         bankruptcy     negative
## 1061         bankruptcy      sadness
## 1062            banquet anticipation
## 1063            banquet          joy
## 1064            banquet     positive
## 1065            banshee        anger
## 1066            banshee      disgust
## 1067            banshee         fear
## 1068            banshee     negative
## 1069            banshee      sadness
## 1070            baptism     positive
## 1071          baptismal          joy
## 1072          baptismal     positive
## 1073               barb        anger
## 1074               barb     negative
## 1075          barbarian         fear
## 1076          barbarian     negative
## 1077           barbaric        anger
## 1078           barbaric      disgust
## 1079           barbaric         fear
## 1080           barbaric     negative
## 1081          barbarism     negative
## 1082               bard     positive
## 1083               barf      disgust
## 1084            bargain     positive
## 1085            bargain        trust
## 1086               bark        anger
## 1087               bark     negative
## 1088             barred     negative
## 1089             barren     negative
## 1090             barren      sadness
## 1091          barricade         fear
## 1092          barricade     negative
## 1093            barrier        anger
## 1094            barrier     negative
## 1095             barrow      disgust
## 1096          bartender        trust
## 1097             barter        trust
## 1098               base        trust
## 1099           baseless     negative
## 1100         basketball anticipation
## 1101         basketball          joy
## 1102         basketball     positive
## 1103            bastard      disgust
## 1104            bastard     negative
## 1105            bastard      sadness
## 1106            bastion        anger
## 1107            bastion     positive
## 1108               bath     positive
## 1109          battalion        anger
## 1110             batter        anger
## 1111             batter         fear
## 1112             batter     negative
## 1113           battered         fear
## 1114           battered     negative
## 1115           battered      sadness
## 1116            battery        anger
## 1117            battery     negative
## 1118             battle        anger
## 1119             battle     negative
## 1120            battled        anger
## 1121            battled         fear
## 1122            battled     negative
## 1123            battled      sadness
## 1124        battlefield         fear
## 1125        battlefield     negative
## 1126              bawdy     negative
## 1127            bayonet        anger
## 1128            bayonet         fear
## 1129            bayonet     negative
## 1130              beach          joy
## 1131               beam          joy
## 1132               beam     positive
## 1133            beaming anticipation
## 1134            beaming          joy
## 1135            beaming     positive
## 1136               bear        anger
## 1137               bear         fear
## 1138             bearer     negative
## 1139            bearish        anger
## 1140            bearish         fear
## 1141              beast        anger
## 1142              beast         fear
## 1143              beast     negative
## 1144            beastly      disgust
## 1145            beastly         fear
## 1146            beastly     negative
## 1147            beating        anger
## 1148            beating         fear
## 1149            beating     negative
## 1150            beating      sadness
## 1151     beautification          joy
## 1152     beautification     positive
## 1153     beautification        trust
## 1154          beautiful          joy
## 1155          beautiful     positive
## 1156           beautify          joy
## 1157           beautify     positive
## 1158             beauty          joy
## 1159             beauty     positive
## 1160            bedrock     positive
## 1161            bedrock        trust
## 1162                bee        anger
## 1163                bee         fear
## 1164               beer          joy
## 1165               beer     positive
## 1166             befall     negative
## 1167          befitting     positive
## 1168           befriend          joy
## 1169           befriend     positive
## 1170           befriend        trust
## 1171                beg     negative
## 1172                beg      sadness
## 1173             beggar     negative
## 1174             beggar      sadness
## 1175            begging     negative
## 1176              begun anticipation
## 1177           behemoth         fear
## 1178           behemoth     negative
## 1179           beholden     negative
## 1180            belated     negative
## 1181           believed        trust
## 1182           believer        trust
## 1183          believing     positive
## 1184          believing        trust
## 1185           belittle        anger
## 1186           belittle      disgust
## 1187           belittle         fear
## 1188           belittle     negative
## 1189           belittle      sadness
## 1190        belligerent        anger
## 1191        belligerent         fear
## 1192        belligerent     negative
## 1193            bellows        anger
## 1194               belt        anger
## 1195               belt         fear
## 1196               belt     negative
## 1197             bender     negative
## 1198         benefactor     positive
## 1199         benefactor        trust
## 1200         beneficial     positive
## 1201            benefit     positive
## 1202        benevolence          joy
## 1203        benevolence     positive
## 1204        benevolence        trust
## 1205             benign          joy
## 1206             benign     positive
## 1207            bequest        trust
## 1208           bereaved     negative
## 1209           bereaved      sadness
## 1210        bereavement     negative
## 1211        bereavement      sadness
## 1212             bereft     negative
## 1213            berserk        anger
## 1214            berserk     negative
## 1215              berth     positive
## 1216            bestial      disgust
## 1217            bestial         fear
## 1218            bestial     negative
## 1219             betray        anger
## 1220             betray      disgust
## 1221             betray     negative
## 1222             betray      sadness
## 1223             betray     surprise
## 1224           betrayal        anger
## 1225           betrayal      disgust
## 1226           betrayal     negative
## 1227           betrayal      sadness
## 1228          betrothed anticipation
## 1229          betrothed          joy
## 1230          betrothed     positive
## 1231          betrothed        trust
## 1232         betterment     positive
## 1233           beverage     positive
## 1234             beware anticipation
## 1235             beware         fear
## 1236             beware     negative
## 1237         bewildered         fear
## 1238         bewildered     negative
## 1239         bewildered     surprise
## 1240       bewilderment         fear
## 1241       bewilderment     surprise
## 1242               bias        anger
## 1243               bias     negative
## 1244             biased     negative
## 1245           biblical     positive
## 1246          bickering        anger
## 1247          bickering      disgust
## 1248          bickering     negative
## 1249           biennial anticipation
## 1250               bier         fear
## 1251               bier     negative
## 1252               bier      sadness
## 1253              bigot        anger
## 1254              bigot      disgust
## 1255              bigot         fear
## 1256              bigot     negative
## 1257            bigoted        anger
## 1258            bigoted      disgust
## 1259            bigoted         fear
## 1260            bigoted     negative
## 1261            bigoted      sadness
## 1262               bile        anger
## 1263               bile      disgust
## 1264               bile     negative
## 1265          bilingual     positive
## 1266             biopsy         fear
## 1267             biopsy     negative
## 1268              birch        anger
## 1269              birch      disgust
## 1270              birch         fear
## 1271              birch     negative
## 1272              birth anticipation
## 1273              birth         fear
## 1274              birth          joy
## 1275              birth     positive
## 1276              birth        trust
## 1277           birthday anticipation
## 1278           birthday          joy
## 1279           birthday     positive
## 1280           birthday     surprise
## 1281         birthplace        anger
## 1282         birthplace     negative
## 1283              bitch        anger
## 1284              bitch      disgust
## 1285              bitch         fear
## 1286              bitch     negative
## 1287              bitch      sadness
## 1288               bite     negative
## 1289           bitterly        anger
## 1290           bitterly      disgust
## 1291           bitterly     negative
## 1292           bitterly      sadness
## 1293         bitterness        anger
## 1294         bitterness      disgust
## 1295         bitterness     negative
## 1296         bitterness      sadness
## 1297            bizarre     negative
## 1298            bizarre     surprise
## 1299              black     negative
## 1300              black      sadness
## 1301          blackjack     negative
## 1302          blackmail        anger
## 1303          blackmail         fear
## 1304          blackmail     negative
## 1305          blackness         fear
## 1306          blackness     negative
## 1307          blackness      sadness
## 1308              blame        anger
## 1309              blame      disgust
## 1310              blame     negative
## 1311          blameless     positive
## 1312              bland     negative
## 1313            blanket        trust
## 1314        blasphemous        anger
## 1315        blasphemous      disgust
## 1316        blasphemous     negative
## 1317          blasphemy        anger
## 1318          blasphemy     negative
## 1319              blast        anger
## 1320              blast         fear
## 1321              blast     negative
## 1322              blast     surprise
## 1323            blatant        anger
## 1324            blatant      disgust
## 1325            blatant     negative
## 1326            blather     negative
## 1327              blaze        anger
## 1328              blaze     negative
## 1329              bleak     negative
## 1330              bleak      sadness
## 1331           bleeding      disgust
## 1332           bleeding         fear
## 1333           bleeding     negative
## 1334           bleeding      sadness
## 1335            blemish        anger
## 1336            blemish      disgust
## 1337            blemish         fear
## 1338            blemish     negative
## 1339            blemish      sadness
## 1340              bless anticipation
## 1341              bless          joy
## 1342              bless     positive
## 1343              bless        trust
## 1344            blessed          joy
## 1345            blessed     positive
## 1346           blessing anticipation
## 1347           blessing          joy
## 1348           blessing     positive
## 1349           blessing        trust
## 1350          blessings anticipation
## 1351          blessings          joy
## 1352          blessings     positive
## 1353          blessings     surprise
## 1354          blessings        trust
## 1355             blight      disgust
## 1356             blight         fear
## 1357             blight     negative
## 1358             blight      sadness
## 1359           blighted      disgust
## 1360           blighted     negative
## 1361           blighted      sadness
## 1362              blind     negative
## 1363            blinded     negative
## 1364          blindfold anticipation
## 1365          blindfold         fear
## 1366          blindfold     surprise
## 1367            blindly     negative
## 1368            blindly      sadness
## 1369          blindness     negative
## 1370          blindness      sadness
## 1371              bliss          joy
## 1372              bliss     positive
## 1373           blissful          joy
## 1374           blissful     positive
## 1375            blister      disgust
## 1376            blister     negative
## 1377              blitz     surprise
## 1378            bloated      disgust
## 1379            bloated     negative
## 1380               blob      disgust
## 1381               blob         fear
## 1382               blob     negative
## 1383           blockade        anger
## 1384           blockade         fear
## 1385           blockade     negative
## 1386           blockade      sadness
## 1387          bloodless     positive
## 1388          bloodshed        anger
## 1389          bloodshed      disgust
## 1390          bloodshed         fear
## 1391          bloodshed     negative
## 1392          bloodshed      sadness
## 1393          bloodshed     surprise
## 1394       bloodthirsty        anger
## 1395       bloodthirsty      disgust
## 1396       bloodthirsty         fear
## 1397       bloodthirsty     negative
## 1398             bloody        anger
## 1399             bloody      disgust
## 1400             bloody         fear
## 1401             bloody     negative
## 1402             bloody      sadness
## 1403              bloom anticipation
## 1404              bloom          joy
## 1405              bloom     positive
## 1406              bloom        trust
## 1407            blossom          joy
## 1408            blossom     positive
## 1409               blot     negative
## 1410             blower     negative
## 1411            blowout     negative
## 1412               blue      sadness
## 1413              blues         fear
## 1414              blues     negative
## 1415              blues      sadness
## 1416              bluff     negative
## 1417            blunder      disgust
## 1418            blunder     negative
## 1419            blunder      sadness
## 1420               blur     negative
## 1421            blurred     negative
## 1422              blush     negative
## 1423              board anticipation
## 1424              boast     negative
## 1425              boast     positive
## 1426           boasting     negative
## 1427          bodyguard     positive
## 1428          bodyguard        trust
## 1429                bog     negative
## 1430              bogus        anger
## 1431              bogus      disgust
## 1432              bogus     negative
## 1433               boil      disgust
## 1434               boil     negative
## 1435        boilerplate     negative
## 1436         boisterous        anger
## 1437         boisterous anticipation
## 1438         boisterous          joy
## 1439         boisterous     negative
## 1440         boisterous     positive
## 1441               bold     positive
## 1442           boldness     positive
## 1443            bolster     positive
## 1444               bomb        anger
## 1445               bomb         fear
## 1446               bomb     negative
## 1447               bomb      sadness
## 1448               bomb     surprise
## 1449            bombard        anger
## 1450            bombard         fear
## 1451            bombard     negative
## 1452        bombardment        anger
## 1453        bombardment         fear
## 1454        bombardment     negative
## 1455             bombed      disgust
## 1456             bombed     negative
## 1457             bomber         fear
## 1458             bomber      sadness
## 1459            bonanza          joy
## 1460            bonanza     positive
## 1461            bondage         fear
## 1462            bondage     negative
## 1463            bondage      sadness
## 1464              bonds     negative
## 1465              bonne     positive
## 1466              bonus anticipation
## 1467              bonus          joy
## 1468              bonus     positive
## 1469              bonus     surprise
## 1470                boo     negative
## 1471              booby     negative
## 1472            bookish     positive
## 1473           bookshop     positive
## 1474           bookworm     negative
## 1475           bookworm     positive
## 1476          boomerang anticipation
## 1477          boomerang        trust
## 1478               boon     positive
## 1479              booze     negative
## 1480               bore     negative
## 1481            boredom     negative
## 1482            boredom      sadness
## 1483             boring     negative
## 1484           borrower     negative
## 1485             bother     negative
## 1486          bothering        anger
## 1487          bothering     negative
## 1488          bothering      sadness
## 1489             bottom     negative
## 1490             bottom      sadness
## 1491         bottomless         fear
## 1492              bound     negative
## 1493          bountiful anticipation
## 1494          bountiful          joy
## 1495          bountiful     positive
## 1496             bounty anticipation
## 1497             bounty          joy
## 1498             bounty     positive
## 1499             bounty        trust
## 1500            bouquet          joy
## 1501            bouquet     positive
## 1502            bouquet        trust
## 1503               bout        anger
## 1504               bout     negative
## 1505             bovine      disgust
## 1506             bovine     negative
## 1507             bowels      disgust
## 1508             boxing        anger
## 1509                boy      disgust
## 1510                boy     negative
## 1511            boycott     negative
## 1512               brag     negative
## 1513             brains     positive
## 1514               bran      disgust
## 1515             brandy     negative
## 1516            bravado     negative
## 1517            bravery     positive
## 1518              brawl        anger
## 1519              brawl      disgust
## 1520              brawl         fear
## 1521              brawl     negative
## 1522             brazen        anger
## 1523             brazen     negative
## 1524             breach     negative
## 1525              break     surprise
## 1526          breakdown     negative
## 1527          breakfast     positive
## 1528          breakneck     negative
## 1529            breakup     negative
## 1530            breakup      sadness
## 1531              bribe     negative
## 1532            bribery      disgust
## 1533            bribery     negative
## 1534             bridal anticipation
## 1535             bridal          joy
## 1536             bridal     positive
## 1537             bridal        trust
## 1538              bride anticipation
## 1539              bride          joy
## 1540              bride     positive
## 1541              bride        trust
## 1542         bridegroom anticipation
## 1543         bridegroom          joy
## 1544         bridegroom     positive
## 1545         bridegroom        trust
## 1546         bridesmaid          joy
## 1547         bridesmaid     positive
## 1548         bridesmaid        trust
## 1549            brigade         fear
## 1550            brigade     negative
## 1551           brighten          joy
## 1552           brighten     positive
## 1553           brighten     surprise
## 1554           brighten        trust
## 1555         brightness     positive
## 1556          brilliant anticipation
## 1557          brilliant          joy
## 1558          brilliant     positive
## 1559          brilliant        trust
## 1560          brimstone        anger
## 1561          brimstone         fear
## 1562          brimstone     negative
## 1563            bristle     negative
## 1564          broadside anticipation
## 1565          broadside     negative
## 1566            brocade     positive
## 1567              broil        anger
## 1568              broil     negative
## 1569              broke         fear
## 1570              broke     negative
## 1571              broke      sadness
## 1572             broken        anger
## 1573             broken         fear
## 1574             broken     negative
## 1575             broken      sadness
## 1576            brothel      disgust
## 1577            brothel     negative
## 1578            brother     positive
## 1579            brother        trust
## 1580        brotherhood     positive
## 1581        brotherhood        trust
## 1582          brotherly anticipation
## 1583          brotherly          joy
## 1584          brotherly     positive
## 1585          brotherly        trust
## 1586             bruise anticipation
## 1587             bruise     negative
## 1588              brunt        anger
## 1589              brunt     negative
## 1590             brutal        anger
## 1591             brutal         fear
## 1592             brutal     negative
## 1593          brutality        anger
## 1594          brutality         fear
## 1595          brutality     negative
## 1596              brute        anger
## 1597              brute         fear
## 1598              brute     negative
## 1599              brute      sadness
## 1600               buck         fear
## 1601               buck     negative
## 1602               buck     positive
## 1603               buck     surprise
## 1604              buddy anticipation
## 1605              buddy          joy
## 1606              buddy     positive
## 1607              buddy        trust
## 1608             budget        trust
## 1609             buffet        anger
## 1610             buffet     negative
## 1611                bug      disgust
## 1612                bug         fear
## 1613                bug     negative
## 1614            bugaboo        anger
## 1615            bugaboo         fear
## 1616            bugaboo     negative
## 1617            bugaboo      sadness
## 1618              bugle anticipation
## 1619              build     positive
## 1620           building     positive
## 1621            bulbous     negative
## 1622            bulldog     positive
## 1623        bulletproof     positive
## 1624              bully        anger
## 1625              bully         fear
## 1626              bully     negative
## 1627                bum      disgust
## 1628                bum     negative
## 1629                bum      sadness
## 1630             bummer        anger
## 1631             bummer      disgust
## 1632             bummer     negative
## 1633             bunker         fear
## 1634               buoy     positive
## 1635         burdensome         fear
## 1636         burdensome     negative
## 1637         burdensome      sadness
## 1638        bureaucracy     negative
## 1639        bureaucracy        trust
## 1640         bureaucrat      disgust
## 1641         bureaucrat     negative
## 1642            burglar      disgust
## 1643            burglar         fear
## 1644            burglar     negative
## 1645           burglary     negative
## 1646             burial        anger
## 1647             burial         fear
## 1648             burial     negative
## 1649             burial      sadness
## 1650             buried         fear
## 1651             buried     negative
## 1652             buried      sadness
## 1653              burke        anger
## 1654              burke      disgust
## 1655              burke         fear
## 1656              burke     negative
## 1657              burke      sadness
## 1658          burlesque     surprise
## 1659              burnt      disgust
## 1660              burnt     negative
## 1661            bursary        trust
## 1662               bury      sadness
## 1663               buss          joy
## 1664               buss     positive
## 1665             busted        anger
## 1666             busted         fear
## 1667             busted     negative
## 1668            butcher        anger
## 1669            butcher      disgust
## 1670            butcher         fear
## 1671            butcher     negative
## 1672             butler     positive
## 1673             butler        trust
## 1674               butt     negative
## 1675            buttery     positive
## 1676              buxom     positive
## 1677               buzz anticipation
## 1678               buzz         fear
## 1679               buzz     positive
## 1680             buzzed     negative
## 1681                bye anticipation
## 1682              bylaw        trust
## 1683                cab     positive
## 1684              cabal         fear
## 1685              cabal     negative
## 1686            cabinet     positive
## 1687            cabinet        trust
## 1688              cable     surprise
## 1689          cacophony        anger
## 1690          cacophony      disgust
## 1691          cacophony     negative
## 1692                cad        anger
## 1693                cad      disgust
## 1694                cad     negative
## 1695            cadaver      disgust
## 1696            cadaver         fear
## 1697            cadaver     negative
## 1698            cadaver      sadness
## 1699            cadaver     surprise
## 1700               cafe     positive
## 1701               cage     negative
## 1702               cage      sadness
## 1703           calamity      sadness
## 1704        calculating     negative
## 1705        calculation anticipation
## 1706         calculator     positive
## 1707         calculator        trust
## 1708               calf          joy
## 1709               calf     positive
## 1710               calf        trust
## 1711            callous        anger
## 1712            callous      disgust
## 1713            callous     negative
## 1714              calls anticipation
## 1715              calls     negative
## 1716              calls        trust
## 1717               calm     positive
## 1718         camouflage     surprise
## 1719        camouflaged     surprise
## 1720        campaigning        anger
## 1721        campaigning         fear
## 1722        campaigning     negative
## 1723             canary     positive
## 1724             cancel     negative
## 1725             cancel      sadness
## 1726             cancer        anger
## 1727             cancer      disgust
## 1728             cancer         fear
## 1729             cancer     negative
## 1730             cancer      sadness
## 1731             candid anticipation
## 1732             candid          joy
## 1733             candid     positive
## 1734             candid     surprise
## 1735             candid        trust
## 1736          candidate     positive
## 1737            candied     positive
## 1738               cane        anger
## 1739               cane         fear
## 1740             canker        anger
## 1741             canker      disgust
## 1742             canker     negative
## 1743           cannibal      disgust
## 1744           cannibal         fear
## 1745           cannibal     negative
## 1746        cannibalism      disgust
## 1747        cannibalism     negative
## 1748             cannon        anger
## 1749             cannon         fear
## 1750             cannon     negative
## 1751             canons        trust
## 1752                cap anticipation
## 1753                cap        trust
## 1754         capitalist     positive
## 1755            captain     positive
## 1756          captivate anticipation
## 1757          captivate          joy
## 1758          captivate     positive
## 1759          captivate     surprise
## 1760          captivate        trust
## 1761        captivating     positive
## 1762            captive         fear
## 1763            captive     negative
## 1764            captive      sadness
## 1765          captivity     negative
## 1766          captivity      sadness
## 1767             captor         fear
## 1768             captor     negative
## 1769            capture     negative
## 1770            carcass      disgust
## 1771            carcass         fear
## 1772            carcass     negative
## 1773            carcass      sadness
## 1774          carcinoma         fear
## 1775          carcinoma     negative
## 1776          carcinoma      sadness
## 1777     cardiomyopathy         fear
## 1778     cardiomyopathy     negative
## 1779     cardiomyopathy      sadness
## 1780             career anticipation
## 1781             career     positive
## 1782            careful     positive
## 1783          carefully     positive
## 1784       carelessness        anger
## 1785       carelessness      disgust
## 1786       carelessness     negative
## 1787             caress     positive
## 1788          caretaker     positive
## 1789          caretaker        trust
## 1790         caricature     negative
## 1791             caries      disgust
## 1792             caries     negative
## 1793            carnage        anger
## 1794            carnage      disgust
## 1795            carnage         fear
## 1796            carnage     negative
## 1797            carnage      sadness
## 1798            carnage     surprise
## 1799             carnal     negative
## 1800        carnivorous         fear
## 1801        carnivorous     negative
## 1802              carol          joy
## 1803              carol     positive
## 1804              carol        trust
## 1805             cartel     negative
## 1806          cartridge         fear
## 1807            cascade     positive
## 1808               case         fear
## 1809               case     negative
## 1810               case      sadness
## 1811               cash        anger
## 1812               cash anticipation
## 1813               cash         fear
## 1814               cash          joy
## 1815               cash     positive
## 1816               cash        trust
## 1817            cashier        trust
## 1818             casket         fear
## 1819             casket     negative
## 1820             casket      sadness
## 1821              caste     negative
## 1822           casualty        anger
## 1823           casualty         fear
## 1824           casualty     negative
## 1825           casualty      sadness
## 1826           cataract anticipation
## 1827           cataract         fear
## 1828           cataract     negative
## 1829           cataract      sadness
## 1830        catastrophe        anger
## 1831        catastrophe      disgust
## 1832        catastrophe         fear
## 1833        catastrophe     negative
## 1834        catastrophe      sadness
## 1835        catastrophe     surprise
## 1836              catch     surprise
## 1837          catechism      disgust
## 1838        categorical     positive
## 1839              cater     positive
## 1840          cathartic     positive
## 1841          cathedral          joy
## 1842          cathedral     positive
## 1843          cathedral        trust
## 1844           catheter     negative
## 1845            caution        anger
## 1846            caution anticipation
## 1847            caution         fear
## 1848            caution     negative
## 1849         cautionary         fear
## 1850           cautious anticipation
## 1851           cautious         fear
## 1852           cautious     positive
## 1853           cautious        trust
## 1854         cautiously         fear
## 1855         cautiously     positive
## 1856               cede     negative
## 1857         celebrated anticipation
## 1858         celebrated          joy
## 1859         celebrated     positive
## 1860        celebrating anticipation
## 1861        celebrating          joy
## 1862        celebrating     positive
## 1863        celebration anticipation
## 1864        celebration          joy
## 1865        celebration     positive
## 1866        celebration     surprise
## 1867        celebration        trust
## 1868          celebrity        anger
## 1869          celebrity anticipation
## 1870          celebrity      disgust
## 1871          celebrity          joy
## 1872          celebrity     negative
## 1873          celebrity     positive
## 1874          celebrity     surprise
## 1875          celebrity        trust
## 1876          celestial anticipation
## 1877          celestial          joy
## 1878          celestial     positive
## 1879             cement anticipation
## 1880             cement        trust
## 1881           cemetery         fear
## 1882           cemetery     negative
## 1883           cemetery      sadness
## 1884             censor        anger
## 1885             censor      disgust
## 1886             censor         fear
## 1887             censor     negative
## 1888             censor        trust
## 1889            censure     negative
## 1890             center     positive
## 1891             center        trust
## 1892          centurion     positive
## 1893           cerebral     positive
## 1894           ceremony          joy
## 1895           ceremony     positive
## 1896           ceremony     surprise
## 1897          certainty     positive
## 1898            certify        trust
## 1899               cess      disgust
## 1900               cess     negative
## 1901          cessation     negative
## 1902              chaff        anger
## 1903              chaff         fear
## 1904              chaff     negative
## 1905            chafing     negative
## 1906            chagrin      disgust
## 1907            chagrin     negative
## 1908            chagrin      sadness
## 1909           chairman     positive
## 1910           chairman        trust
## 1911         chairwoman     positive
## 1912         chairwoman        trust
## 1913          challenge        anger
## 1914          challenge         fear
## 1915          challenge     negative
## 1916           champion anticipation
## 1917           champion          joy
## 1918           champion     positive
## 1919           champion        trust
## 1920             chance     surprise
## 1921         chancellor        trust
## 1922             change         fear
## 1923         changeable anticipation
## 1924         changeable     surprise
## 1925              chant        anger
## 1926              chant anticipation
## 1927              chant          joy
## 1928              chant     positive
## 1929              chant     surprise
## 1930              chaos        anger
## 1931              chaos         fear
## 1932              chaos     negative
## 1933              chaos      sadness
## 1934            chaotic        anger
## 1935            chaotic     negative
## 1936           chaplain        trust
## 1937            charade     negative
## 1938         chargeable         fear
## 1939         chargeable     negative
## 1940         chargeable      sadness
## 1941            charger     positive
## 1942         charitable anticipation
## 1943         charitable          joy
## 1944         charitable     positive
## 1945         charitable        trust
## 1946            charity          joy
## 1947            charity     positive
## 1948              charm     positive
## 1949            charmed          joy
## 1950            charmed     negative
## 1951            charmed     positive
## 1952           charming     positive
## 1953              chart        trust
## 1954              chase     negative
## 1955              chasm         fear
## 1956       chastisement     negative
## 1957           chastity anticipation
## 1958           chastity     positive
## 1959           chastity        trust
## 1960         chattering     positive
## 1961             chatty     negative
## 1962              cheap     negative
## 1963              cheat        anger
## 1964              cheat      disgust
## 1965              cheat     negative
## 1966          checklist     positive
## 1967          checklist        trust
## 1968              cheer anticipation
## 1969              cheer          joy
## 1970              cheer     positive
## 1971              cheer     surprise
## 1972              cheer        trust
## 1973           cheerful          joy
## 1974           cheerful     positive
## 1975           cheerful     surprise
## 1976       cheerfulness anticipation
## 1977       cheerfulness          joy
## 1978       cheerfulness     positive
## 1979       cheerfulness        trust
## 1980           cheering          joy
## 1981           cheering     positive
## 1982             cheery anticipation
## 1983             cheery          joy
## 1984             cheery     positive
## 1985         cheesecake     negative
## 1986            chemist     positive
## 1987            chemist        trust
## 1988            cherish anticipation
## 1989            cherish          joy
## 1990            cherish     positive
## 1991            cherish     surprise
## 1992            cherish        trust
## 1993             cherry     positive
## 1994            chicane anticipation
## 1995            chicane     negative
## 1996            chicane     surprise
## 1997            chicane        trust
## 1998            chicken         fear
## 1999          chieftain     positive
## 2000              child anticipation
## 2001              child          joy
## 2002              child     positive
## 2003          childhood          joy
## 2004          childhood     positive
## 2005           childish     negative
## 2006             chilly     negative
## 2007            chimera         fear
## 2008            chimera     surprise
## 2009              chirp          joy
## 2010              chirp     positive
## 2011             chisel     positive
## 2012           chivalry     positive
## 2013         chloroform     negative
## 2014          chocolate anticipation
## 2015          chocolate          joy
## 2016          chocolate     positive
## 2017          chocolate        trust
## 2018             choice     positive
## 2019              choir          joy
## 2020              choir     positive
## 2021              choir        trust
## 2022              choke        anger
## 2023              choke     negative
## 2024              choke      sadness
## 2025            cholera      disgust
## 2026            cholera         fear
## 2027            cholera     negative
## 2028            cholera      sadness
## 2029               chop     negative
## 2030             choral          joy
## 2031             choral     positive
## 2032              chore     negative
## 2033             chorus     positive
## 2034             chosen     positive
## 2035            chowder     positive
## 2036            chronic     negative
## 2037            chronic      sadness
## 2038          chronicle     positive
## 2039          chronicle        trust
## 2040            chuckle anticipation
## 2041            chuckle          joy
## 2042            chuckle     positive
## 2043            chuckle     surprise
## 2044            chuckle        trust
## 2045             church anticipation
## 2046             church          joy
## 2047             church     positive
## 2048             church        trust
## 2049              cider     positive
## 2050          cigarette     negative
## 2051       circumcision     positive
## 2052      circumvention     negative
## 2053      circumvention     positive
## 2054            citizen     positive
## 2055              civil     positive
## 2056           civility     positive
## 2057       civilization     positive
## 2058       civilization        trust
## 2059          civilized          joy
## 2060          civilized     positive
## 2061          civilized        trust
## 2062           claimant        anger
## 2063           claimant      disgust
## 2064        clairvoyant     positive
## 2065             clamor        anger
## 2066             clamor anticipation
## 2067             clamor      disgust
## 2068             clamor     negative
## 2069             clamor     surprise
## 2070               clan        trust
## 2071               clap anticipation
## 2072               clap          joy
## 2073               clap     positive
## 2074               clap        trust
## 2075            clarify     positive
## 2076              clash        anger
## 2077              clash     negative
## 2078           clashing        anger
## 2079           clashing         fear
## 2080           clashing     negative
## 2081            classic     positive
## 2082          classical     positive
## 2083           classics          joy
## 2084           classics     positive
## 2085           classify     positive
## 2086               claw        anger
## 2087               claw         fear
## 2088               claw     negative
## 2089              clean          joy
## 2090              clean     positive
## 2091              clean        trust
## 2092           cleaning     positive
## 2093        cleanliness     positive
## 2094            cleanly     positive
## 2095            cleanse     positive
## 2096          cleansing     positive
## 2097          clearance     positive
## 2098          clearance        trust
## 2099          clearness     positive
## 2100             cleave         fear
## 2101           clerical     positive
## 2102           clerical        trust
## 2103             clever     positive
## 2104         cleverness     positive
## 2105              cliff         fear
## 2106             climax anticipation
## 2107             climax          joy
## 2108             climax     positive
## 2109             climax     surprise
## 2110             climax        trust
## 2111              clock anticipation
## 2112           cloister     negative
## 2113          closeness          joy
## 2114          closeness     positive
## 2115          closeness        trust
## 2116            closure anticipation
## 2117            closure          joy
## 2118            closure     positive
## 2119            closure      sadness
## 2120             clothe     positive
## 2121            clouded     negative
## 2122            clouded      sadness
## 2123         cloudiness         fear
## 2124         cloudiness     negative
## 2125             cloudy      sadness
## 2126              clown anticipation
## 2127              clown          joy
## 2128              clown     positive
## 2129              clown     surprise
## 2130               clue anticipation
## 2131              clump     negative
## 2132             clumsy      disgust
## 2133             clumsy     negative
## 2134              coach        trust
## 2135           coalesce        trust
## 2136          coalition     positive
## 2137              coast     positive
## 2138               coax        trust
## 2139              cobra         fear
## 2140            cocaine     negative
## 2141            cocaine      sadness
## 2142             coerce        anger
## 2143             coerce      disgust
## 2144             coerce         fear
## 2145             coerce     negative
## 2146           coercion        anger
## 2147           coercion      disgust
## 2148           coercion         fear
## 2149           coercion     negative
## 2150           coercion      sadness
## 2151            coexist     positive
## 2152            coexist        trust
## 2153         coexisting        trust
## 2154             coffin         fear
## 2155             coffin     negative
## 2156             coffin      sadness
## 2157             cogent     positive
## 2158             cogent        trust
## 2159          cognitive     positive
## 2160          coherence     positive
## 2161           coherent     positive
## 2162           cohesion        trust
## 2163           cohesive     positive
## 2164           cohesive        trust
## 2165        coincidence     surprise
## 2166               cold     negative
## 2167             coldly     negative
## 2168           coldness        anger
## 2169           coldness      disgust
## 2170           coldness         fear
## 2171           coldness     negative
## 2172           coldness      sadness
## 2173              colic     negative
## 2174       collaborator        trust
## 2175           collapse      disgust
## 2176           collapse         fear
## 2177           collapse     negative
## 2178           collapse      sadness
## 2179         collateral        trust
## 2180       collectively     positive
## 2181       collectively        trust
## 2182          collision        anger
## 2183          collision     negative
## 2184          collusion        anger
## 2185          collusion      disgust
## 2186          collusion         fear
## 2187          collusion     negative
## 2188          collusion      sadness
## 2189            colonel     positive
## 2190            colonel        trust
## 2191           colossal     positive
## 2192               coma         fear
## 2193               coma     negative
## 2194               coma      sadness
## 2195           comatose         fear
## 2196           comatose     negative
## 2197           comatose      sadness
## 2198             combat        anger
## 2199             combat         fear
## 2200             combat     negative
## 2201          combatant        anger
## 2202          combatant         fear
## 2203          combatant     negative
## 2204          combative        anger
## 2205          combative         fear
## 2206          combative     negative
## 2207            comfort anticipation
## 2208            comfort          joy
## 2209            comfort     positive
## 2210            comfort        trust
## 2211             coming anticipation
## 2212         commandant     positive
## 2213         commandant        trust
## 2214         commanding     positive
## 2215         commanding        trust
## 2216        commemorate anticipation
## 2217        commemorate          joy
## 2218        commemorate     positive
## 2219        commemorate      sadness
## 2220      commemoration anticipation
## 2221      commemoration          joy
## 2222      commemoration     positive
## 2223      commemorative anticipation
## 2224      commemorative     positive
## 2225            commend     positive
## 2226        commendable          joy
## 2227        commendable     positive
## 2228        commendable        trust
## 2229        commentator     positive
## 2230           commerce        trust
## 2231         commission        trust
## 2232          committal     negative
## 2233          committal      sadness
## 2234          committed     positive
## 2235          committed        trust
## 2236          committee        trust
## 2237          commodore     positive
## 2238          commodore        trust
## 2239        commonplace anticipation
## 2240        commonplace        trust
## 2241       commonwealth     positive
## 2242       commonwealth        trust
## 2243          commotion        anger
## 2244          commotion     negative
## 2245        communicate     positive
## 2246        communicate        trust
## 2247      communication        trust
## 2248      communicative     positive
## 2249          communion          joy
## 2250          communion     positive
## 2251          communion        trust
## 2252          communism        anger
## 2253          communism         fear
## 2254          communism     negative
## 2255          communism      sadness
## 2256          communist     negative
## 2257          community     positive
## 2258        commutation     positive
## 2259            commute     positive
## 2260            compact        trust
## 2261          companion          joy
## 2262          companion     positive
## 2263          companion        trust
## 2264            compass        trust
## 2265         compassion         fear
## 2266         compassion     positive
## 2267      compassionate     positive
## 2268      compatibility     positive
## 2269         compatible     positive
## 2270         compelling     positive
## 2271         compensate anticipation
## 2272         compensate          joy
## 2273         compensate     positive
## 2274         compensate     surprise
## 2275         compensate        trust
## 2276       compensatory     positive
## 2277         competence     positive
## 2278         competence        trust
## 2279         competency     positive
## 2280         competency        trust
## 2281          competent     positive
## 2282          competent        trust
## 2283        competition anticipation
## 2284        competition     negative
## 2285        complacency     positive
## 2286           complain        anger
## 2287           complain     negative
## 2288           complain      sadness
## 2289          complaint        anger
## 2290          complaint     negative
## 2291         complement anticipation
## 2292         complement          joy
## 2293         complement     positive
## 2294         complement     surprise
## 2295         complement        trust
## 2296      complementary     positive
## 2297         completely     positive
## 2298       completeness     positive
## 2299         completing anticipation
## 2300         completing          joy
## 2301         completing     positive
## 2302         completion anticipation
## 2303         completion          joy
## 2304         completion     positive
## 2305          complexed     negative
## 2306         complexity     negative
## 2307         compliance     positive
## 2308         compliance        trust
## 2309          compliant     positive
## 2310         complicate        anger
## 2311         complicate     negative
## 2312        complicated     negative
## 2313       complication     negative
## 2314         complicity     negative
## 2315         complicity     positive
## 2316         compliment anticipation
## 2317         compliment          joy
## 2318         compliment     positive
## 2319         compliment     surprise
## 2320         compliment        trust
## 2321           composed     positive
## 2322           composer     positive
## 2323            compost      disgust
## 2324            compost     negative
## 2325          composure     positive
## 2326         comprehend     positive
## 2327      comprehensive     positive
## 2328           compress        anger
## 2329        comptroller        trust
## 2330         compulsion        anger
## 2331         compulsion     negative
## 2332         compulsory     negative
## 2333            comrade     positive
## 2334            comrade        trust
## 2335            conceal     negative
## 2336            conceal      sadness
## 2337          concealed anticipation
## 2338          concealed         fear
## 2339          concealed     negative
## 2340          concealed     surprise
## 2341        concealment        anger
## 2342        concealment anticipation
## 2343        concealment         fear
## 2344        concealment     negative
## 2345            conceit     negative
## 2346          conceited     negative
## 2347         concentric     positive
## 2348          concerned         fear
## 2349          concerned      sadness
## 2350       conciliation          joy
## 2351       conciliation     positive
## 2352       conciliation        trust
## 2353         concluding     positive
## 2354            concord     positive
## 2355            concord        trust
## 2356        concordance     positive
## 2357        concordance        trust
## 2358         concussion        anger
## 2359         concussion     negative
## 2360         concussion      sadness
## 2361            condemn        anger
## 2362            condemn     negative
## 2363       condemnation        anger
## 2364       condemnation anticipation
## 2365       condemnation      disgust
## 2366       condemnation         fear
## 2367       condemnation     negative
## 2368       condemnation      sadness
## 2369      condescending     negative
## 2370      condescension        anger
## 2371      condescension      disgust
## 2372      condescension     negative
## 2373      condescension      sadness
## 2374         condolence     positive
## 2375         condolence      sadness
## 2376            condone     positive
## 2377          conducive     positive
## 2378       conductivity     positive
## 2379        confederate     positive
## 2380        confederate        trust
## 2381            confess     negative
## 2382            confess     positive
## 2383            confess        trust
## 2384         confession anticipation
## 2385         confession         fear
## 2386         confession     negative
## 2387         confession      sadness
## 2388         confession     surprise
## 2389       confessional         fear
## 2390       confessional        trust
## 2391            confide        trust
## 2392         confidence         fear
## 2393         confidence          joy
## 2394         confidence     positive
## 2395         confidence        trust
## 2396          confident          joy
## 2397          confident     positive
## 2398          confident        trust
## 2399       confidential        trust
## 2400     confidentially        trust
## 2401            confine        anger
## 2402            confine         fear
## 2403            confine     negative
## 2404            confine      sadness
## 2405           confined        anger
## 2406           confined      disgust
## 2407           confined         fear
## 2408           confined     negative
## 2409           confined      sadness
## 2410        confinement        anger
## 2411        confinement         fear
## 2412        confinement     negative
## 2413        confinement      sadness
## 2414       confirmation        trust
## 2415          confirmed     positive
## 2416          confirmed        trust
## 2417         confiscate        anger
## 2418         confiscate     negative
## 2419         confiscate      sadness
## 2420       confiscation     negative
## 2421      conflagration        anger
## 2422      conflagration         fear
## 2423      conflagration     negative
## 2424           conflict        anger
## 2425           conflict         fear
## 2426           conflict     negative
## 2427           conflict      sadness
## 2428        conflicting     negative
## 2429        conformance     positive
## 2430         conformity        trust
## 2431           confound     negative
## 2432         confounded     negative
## 2433           confront        anger
## 2434            confuse     negative
## 2435          confusion        anger
## 2436          confusion         fear
## 2437          confusion     negative
## 2438          congenial     positive
## 2439         congestion     negative
## 2440       conglomerate        trust
## 2441     congratulatory          joy
## 2442     congratulatory     positive
## 2443       congregation     positive
## 2444       congregation        trust
## 2445           congress      disgust
## 2446           congress        trust
## 2447        congressman        trust
## 2448         congruence     positive
## 2449         congruence        trust
## 2450         conjecture anticipation
## 2451            conjure anticipation
## 2452            conjure     surprise
## 2453          conjuring     negative
## 2454         connective        trust
## 2455        connoisseur          joy
## 2456        connoisseur     positive
## 2457        connoisseur        trust
## 2458           conquest        anger
## 2459           conquest         fear
## 2460           conquest     negative
## 2461         conscience     positive
## 2462         conscience        trust
## 2463      conscientious     positive
## 2464      conscientious        trust
## 2465      consciousness     positive
## 2466       consecration anticipation
## 2467       consecration          joy
## 2468       consecration     positive
## 2469       consecration      sadness
## 2470       consecration        trust
## 2471         consequent anticipation
## 2472       conservation anticipation
## 2473       conservation     positive
## 2474       conservation        trust
## 2475           conserve     positive
## 2476       considerable     positive
## 2477        considerate     positive
## 2478        considerate        trust
## 2479        consistency     positive
## 2480        consistency        trust
## 2481            console     positive
## 2482            console      sadness
## 2483          consonant     positive
## 2484            consort        trust
## 2485         conspiracy         fear
## 2486        conspirator        anger
## 2487        conspirator anticipation
## 2488        conspirator      disgust
## 2489        conspirator         fear
## 2490        conspirator     negative
## 2491           conspire         fear
## 2492           conspire     negative
## 2493          constable        trust
## 2494          constancy     positive
## 2495          constancy        trust
## 2496           constant     positive
## 2497           constant        trust
## 2498         constantly        trust
## 2499      consternation        anger
## 2500      consternation         fear
## 2501      consternation     negative
## 2502       constipation      disgust
## 2503       constipation     negative
## 2504         constitute        trust
## 2505     constitutional     positive
## 2506     constitutional        trust
## 2507          constrain         fear
## 2508          constrain     negative
## 2509        constrained     negative
## 2510         constraint        anger
## 2511         constraint         fear
## 2512         constraint     negative
## 2513         constraint      sadness
## 2514          construct     positive
## 2515             consul        trust
## 2516            consult        trust
## 2517         consummate     positive
## 2518            contact     positive
## 2519          contagion anticipation
## 2520          contagion      disgust
## 2521          contagion         fear
## 2522          contagion     negative
## 2523         contagious      disgust
## 2524         contagious         fear
## 2525         contagious     negative
## 2526        contaminate      disgust
## 2527        contaminate     negative
## 2528       contaminated      disgust
## 2529       contaminated         fear
## 2530       contaminated     negative
## 2531       contaminated      sadness
## 2532      contamination      disgust
## 2533      contamination     negative
## 2534      contemplation     positive
## 2535           contempt        anger
## 2536           contempt      disgust
## 2537           contempt         fear
## 2538           contempt     negative
## 2539       contemptible        anger
## 2540       contemptible      disgust
## 2541       contemptible     negative
## 2542       contemptuous        anger
## 2543       contemptuous     negative
## 2544            content          joy
## 2545            content     positive
## 2546            content        trust
## 2547        contentious        anger
## 2548        contentious      disgust
## 2549        contentious         fear
## 2550        contentious     negative
## 2551         contingent anticipation
## 2552       continuation anticipation
## 2553           continue anticipation
## 2554           continue     positive
## 2555           continue        trust
## 2556            contour     positive
## 2557         contraband        anger
## 2558         contraband      disgust
## 2559         contraband         fear
## 2560         contraband     negative
## 2561         contracted     negative
## 2562         contradict        anger
## 2563         contradict     negative
## 2564      contradiction     negative
## 2565      contradictory     negative
## 2566           contrary     negative
## 2567         contrasted     negative
## 2568         contravene     negative
## 2569      contravention     negative
## 2570         contribute     positive
## 2571        contributor     positive
## 2572        contributor        trust
## 2573      controversial        anger
## 2574      controversial     negative
## 2575        controversy     negative
## 2576        convenience     positive
## 2577         convenient     positive
## 2578            convent     positive
## 2579            convent        trust
## 2580         convention     positive
## 2581        convergence anticipation
## 2582         conversant     positive
## 2583     conversational     positive
## 2584            convert     positive
## 2585       conveyancing        trust
## 2586            convict        anger
## 2587            convict      disgust
## 2588            convict         fear
## 2589            convict     negative
## 2590            convict      sadness
## 2591         conviction     negative
## 2592           convince anticipation
## 2593           convince     positive
## 2594           convince        trust
## 2595          convinced        trust
## 2596         convincing        trust
## 2597               cool     positive
## 2598           coolness     positive
## 2599               coop        anger
## 2600               coop      disgust
## 2601               coop     negative
## 2602          cooperate     positive
## 2603        cooperating     positive
## 2604        cooperating        trust
## 2605        cooperation     positive
## 2606        cooperation        trust
## 2607        cooperative     positive
## 2608        cooperative        trust
## 2609                cop         fear
## 2610                cop        trust
## 2611               copy     negative
## 2612            copycat        anger
## 2613            copycat      disgust
## 2614            copycat     negative
## 2615               core     positive
## 2616         coronation          joy
## 2617         coronation     positive
## 2618         coronation        trust
## 2619            coroner     negative
## 2620           corporal     negative
## 2621        corporation     positive
## 2622        corporation        trust
## 2623          corporeal     positive
## 2624             corpse      disgust
## 2625             corpse     negative
## 2626             corpse      sadness
## 2627         correction     negative
## 2628         corrective     positive
## 2629        correctness        trust
## 2630     correspondence anticipation
## 2631     correspondence     positive
## 2632        corroborate     positive
## 2633        corroborate        trust
## 2634      corroboration        trust
## 2635          corrosion     negative
## 2636          corrosive         fear
## 2637          corrosive     negative
## 2638            corrupt     negative
## 2639         corrupting        anger
## 2640         corrupting      disgust
## 2641         corrupting         fear
## 2642         corrupting     negative
## 2643         corrupting      sadness
## 2644         corruption      disgust
## 2645         corruption     negative
## 2646              corse      sadness
## 2647       cosmopolitan     positive
## 2648       cosmopolitan        trust
## 2649               cosy     positive
## 2650              couch      sadness
## 2651              cough      disgust
## 2652              cough     negative
## 2653            council anticipation
## 2654            council     positive
## 2655            council        trust
## 2656            counsel     positive
## 2657            counsel        trust
## 2658         counsellor        anger
## 2659         counsellor         fear
## 2660         counsellor     negative
## 2661         counsellor        trust
## 2662          counselor     positive
## 2663          counselor        trust
## 2664              count     positive
## 2665              count        trust
## 2666          countdown anticipation
## 2667           countess     positive
## 2668         countryman        trust
## 2669             county        trust
## 2670               coup        anger
## 2671               coup     surprise
## 2672            courage     positive
## 2673         courageous         fear
## 2674         courageous     positive
## 2675            courier        trust
## 2676           coursing     negative
## 2677              court        anger
## 2678              court anticipation
## 2679              court         fear
## 2680          courteous     positive
## 2681           courtesy     positive
## 2682          courtship anticipation
## 2683          courtship          joy
## 2684          courtship     positive
## 2685          courtship        trust
## 2686               cove anticipation
## 2687               cove      disgust
## 2688               cove         fear
## 2689               cove          joy
## 2690               cove     positive
## 2691           covenant     positive
## 2692           covenant        trust
## 2693              cover        trust
## 2694              covet     negative
## 2695             coward      disgust
## 2696             coward         fear
## 2697             coward     negative
## 2698             coward      sadness
## 2699          cowardice         fear
## 2700          cowardice     negative
## 2701           cowardly         fear
## 2702           cowardly     negative
## 2703                coy         fear
## 2704             coyote         fear
## 2705             crabby        anger
## 2706             crabby     negative
## 2707              crack     negative
## 2708            cracked        anger
## 2709            cracked         fear
## 2710            cracked     negative
## 2711           cracking     negative
## 2712             cradle anticipation
## 2713             cradle          joy
## 2714             cradle     positive
## 2715             cradle        trust
## 2716              craft     positive
## 2717          craftsman     positive
## 2718              cramp anticipation
## 2719              cramp     negative
## 2720            cramped     negative
## 2721              crank     negative
## 2722             cranky        anger
## 2723             cranky     negative
## 2724               crap      disgust
## 2725               crap     negative
## 2726              craps anticipation
## 2727              crash         fear
## 2728              crash     negative
## 2729              crash      sadness
## 2730              crash     surprise
## 2731              crave anticipation
## 2732            craving anticipation
## 2733              crawl      disgust
## 2734              crawl     negative
## 2735             crazed        anger
## 2736             crazed         fear
## 2737             crazed     negative
## 2738              crazy        anger
## 2739              crazy         fear
## 2740              crazy     negative
## 2741              crazy      sadness
## 2742           creaking     negative
## 2743              cream anticipation
## 2744              cream          joy
## 2745              cream     positive
## 2746              cream     surprise
## 2747             create          joy
## 2748             create     positive
## 2749           creative     positive
## 2750           creature      disgust
## 2751           creature         fear
## 2752           creature     negative
## 2753           credence     positive
## 2754           credence        trust
## 2755         credential     positive
## 2756         credential        trust
## 2757        credibility     positive
## 2758        credibility        trust
## 2759           credible     positive
## 2760           credible        trust
## 2761             credit     positive
## 2762             credit        trust
## 2763         creditable     positive
## 2764         creditable        trust
## 2765           credited     positive
## 2766              creep     negative
## 2767           creeping anticipation
## 2768          cremation      sadness
## 2769          crescendo anticipation
## 2770          crescendo          joy
## 2771          crescendo     positive
## 2772          crescendo     surprise
## 2773          crescendo        trust
## 2774               crew        trust
## 2775              crime        anger
## 2776              crime     negative
## 2777           criminal        anger
## 2778           criminal      disgust
## 2779           criminal         fear
## 2780           criminal     negative
## 2781        criminality        anger
## 2782        criminality      disgust
## 2783        criminality         fear
## 2784        criminality     negative
## 2785             cringe      disgust
## 2786             cringe         fear
## 2787             cringe     negative
## 2788             cringe      sadness
## 2789            cripple         fear
## 2790            cripple     negative
## 2791            cripple      sadness
## 2792           crippled     negative
## 2793           crippled      sadness
## 2794             crisis     negative
## 2795              crisp     negative
## 2796              crisp        trust
## 2797             critic     negative
## 2798          criticism        anger
## 2799          criticism     negative
## 2800          criticism      sadness
## 2801          criticize        anger
## 2802          criticize      disgust
## 2803          criticize         fear
## 2804          criticize     negative
## 2805          criticize      sadness
## 2806           critique     positive
## 2807            critter      disgust
## 2808          crocodile         fear
## 2809              crook     negative
## 2810              cross        anger
## 2811              cross         fear
## 2812              cross     negative
## 2813              cross      sadness
## 2814             crouch         fear
## 2815          crouching         fear
## 2816          crouching     negative
## 2817           crowning anticipation
## 2818           crowning          joy
## 2819           crowning     positive
## 2820           crowning     surprise
## 2821           crowning        trust
## 2822            crucial     positive
## 2823            crucial        trust
## 2824           cruciate     negative
## 2825        crucifixion        anger
## 2826        crucifixion      disgust
## 2827        crucifixion         fear
## 2828        crucifixion     negative
## 2829        crucifixion      sadness
## 2830              crude      disgust
## 2831              crude     negative
## 2832              cruel        anger
## 2833              cruel      disgust
## 2834              cruel         fear
## 2835              cruel     negative
## 2836              cruel      sadness
## 2837            cruelly        anger
## 2838            cruelly         fear
## 2839            cruelly     negative
## 2840            cruelty        anger
## 2841            cruelty      disgust
## 2842            cruelty         fear
## 2843            cruelty     negative
## 2844            cruelty      sadness
## 2845          crumbling     negative
## 2846          crumbling      sadness
## 2847             crunch        anger
## 2848             crunch     negative
## 2849            crusade        anger
## 2850            crusade         fear
## 2851            crusade     negative
## 2852            crushed        anger
## 2853            crushed      disgust
## 2854            crushed         fear
## 2855            crushed     negative
## 2856            crushed      sadness
## 2857           crushing        anger
## 2858           crushing      disgust
## 2859           crushing         fear
## 2860           crushing     negative
## 2861             crusty      disgust
## 2862             crusty     negative
## 2863                cry     negative
## 2864                cry      sadness
## 2865             crying     negative
## 2866             crying      sadness
## 2867              crypt         fear
## 2868              crypt     negative
## 2869              crypt      sadness
## 2870            crystal     positive
## 2871               cube        trust
## 2872            cuckold      disgust
## 2873            cuckold     negative
## 2874             cuckoo     negative
## 2875             cuddle          joy
## 2876             cuddle     positive
## 2877             cuddle        trust
## 2878                cue anticipation
## 2879           culinary     positive
## 2880           culinary        trust
## 2881               cull     negative
## 2882        culmination     positive
## 2883        culpability     negative
## 2884           culpable     negative
## 2885            culprit     negative
## 2886               cult         fear
## 2887               cult     negative
## 2888          cultivate anticipation
## 2889          cultivate     positive
## 2890          cultivate        trust
## 2891         cultivated     positive
## 2892        cultivation     positive
## 2893            culture     positive
## 2894         cumbersome     negative
## 2895         cumbersome      sadness
## 2896            cunning     negative
## 2897            cunning     positive
## 2898            cupping      disgust
## 2899            cupping         fear
## 2900            cupping     negative
## 2901            cupping      sadness
## 2902                cur        anger
## 2903                cur      disgust
## 2904                cur         fear
## 2905                cur     negative
## 2906            curable     positive
## 2907            curable        trust
## 2908          curiosity anticipation
## 2909          curiosity     positive
## 2910          curiosity     surprise
## 2911               curl     positive
## 2912              curse        anger
## 2913              curse      disgust
## 2914              curse         fear
## 2915              curse     negative
## 2916              curse      sadness
## 2917             cursed        anger
## 2918             cursed         fear
## 2919             cursed     negative
## 2920             cursed      sadness
## 2921            cursing        anger
## 2922            cursing      disgust
## 2923            cursing     negative
## 2924            cursory     negative
## 2925            cushion     positive
## 2926             cussed        anger
## 2927          custodian        trust
## 2928            custody        trust
## 2929           customer     positive
## 2930               cute     positive
## 2931             cutter         fear
## 2932             cutter     negative
## 2933            cutters     positive
## 2934          cutthroat        anger
## 2935          cutthroat         fear
## 2936          cutthroat     negative
## 2937            cutting        anger
## 2938            cutting      disgust
## 2939            cutting         fear
## 2940            cutting     negative
## 2941            cutting      sadness
## 2942            cyanide         fear
## 2943            cyanide     negative
## 2944            cyclone         fear
## 2945            cyclone     negative
## 2946            cyclone     surprise
## 2947               cyst         fear
## 2948               cyst     negative
## 2949               cyst      sadness
## 2950             cystic      disgust
## 2951    cytomegalovirus     negative
## 2952    cytomegalovirus      sadness
## 2953           dabbling        anger
## 2954           dabbling      disgust
## 2955           dabbling     negative
## 2956             daemon        anger
## 2957             daemon      disgust
## 2958             daemon         fear
## 2959             daemon     negative
## 2960             daemon      sadness
## 2961             daemon     surprise
## 2962               daft      disgust
## 2963               daft     negative
## 2964             dagger         fear
## 2965             dagger     negative
## 2966              daily anticipation
## 2967             damage        anger
## 2968             damage      disgust
## 2969             damage     negative
## 2970             damage      sadness
## 2971            damages     negative
## 2972            damages      sadness
## 2973               dame        anger
## 2974               dame      disgust
## 2975               dame     positive
## 2976               dame        trust
## 2977               damn        anger
## 2978               damn      disgust
## 2979               damn     negative
## 2980          damnation        anger
## 2981          damnation         fear
## 2982          damnation     negative
## 2983          damnation      sadness
## 2984             damned     negative
## 2985             damper     negative
## 2986              dance          joy
## 2987              dance     positive
## 2988              dance        trust
## 2989           dandruff     negative
## 2990              dandy      disgust
## 2991              dandy     negative
## 2992             danger         fear
## 2993             danger     negative
## 2994             danger      sadness
## 2995          dangerous         fear
## 2996          dangerous     negative
## 2997               dank      disgust
## 2998               dare anticipation
## 2999               dare        trust
## 3000             daring     positive
## 3001               dark      sadness
## 3002             darken         fear
## 3003             darken     negative
## 3004             darken      sadness
## 3005           darkened         fear
## 3006           darkened     negative
## 3007           darkened      sadness
## 3008           darkness        anger
## 3009           darkness         fear
## 3010           darkness     negative
## 3011           darkness      sadness
## 3012            darling          joy
## 3013            darling     positive
## 3014            darling        trust
## 3015               dart         fear
## 3016             dashed        anger
## 3017             dashed         fear
## 3018             dashed     negative
## 3019             dashed      sadness
## 3020            dashing     positive
## 3021          dastardly        anger
## 3022          dastardly      disgust
## 3023          dastardly         fear
## 3024          dastardly     negative
## 3025           daughter          joy
## 3026           daughter     positive
## 3027               dawn anticipation
## 3028               dawn          joy
## 3029               dawn     positive
## 3030               dawn     surprise
## 3031               dawn        trust
## 3032              dazed     negative
## 3033             deacon        trust
## 3034         deactivate     negative
## 3035           deadlock     negative
## 3036             deadly        anger
## 3037             deadly      disgust
## 3038             deadly         fear
## 3039             deadly     negative
## 3040             deadly      sadness
## 3041               deaf     negative
## 3042               deal anticipation
## 3043               deal          joy
## 3044               deal     positive
## 3045               deal     surprise
## 3046               deal        trust
## 3047           dealings        trust
## 3048               dear     positive
## 3049              death        anger
## 3050              death anticipation
## 3051              death      disgust
## 3052              death         fear
## 3053              death     negative
## 3054              death      sadness
## 3055              death     surprise
## 3056            debacle         fear
## 3057            debacle     negative
## 3058            debacle      sadness
## 3059             debate     positive
## 3060         debauchery      disgust
## 3061         debauchery         fear
## 3062         debauchery     negative
## 3063          debenture anticipation
## 3064             debris      disgust
## 3065             debris     negative
## 3066               debt     negative
## 3067               debt      sadness
## 3068             debtor     negative
## 3069              decay         fear
## 3070              decay     negative
## 3071              decay      sadness
## 3072            decayed      disgust
## 3073            decayed     negative
## 3074            decayed      sadness
## 3075           deceased     negative
## 3076           deceased      sadness
## 3077             deceit        anger
## 3078             deceit      disgust
## 3079             deceit         fear
## 3080             deceit     negative
## 3081             deceit      sadness
## 3082             deceit     surprise
## 3083          deceitful      disgust
## 3084          deceitful     negative
## 3085          deceitful      sadness
## 3086            deceive        anger
## 3087            deceive      disgust
## 3088            deceive     negative
## 3089            deceive      sadness
## 3090           deceived        anger
## 3091           deceived     negative
## 3092          deceiving     negative
## 3093          deceiving        trust
## 3094            decency     positive
## 3095             decent     positive
## 3096          deception     negative
## 3097          deceptive     negative
## 3098        declaratory     positive
## 3099        declination     negative
## 3100            decline     negative
## 3101          declining     negative
## 3102          decompose      disgust
## 3103         decomposed      sadness
## 3104      decomposition      disgust
## 3105      decomposition         fear
## 3106      decomposition     negative
## 3107      decomposition      sadness
## 3108              decoy     surprise
## 3109           decrease     negative
## 3110          decrement     negative
## 3111           decrepit     negative
## 3112              decry        anger
## 3113              decry     negative
## 3114         dedication     positive
## 3115             deduct     negative
## 3116               deed        trust
## 3117         defamation      disgust
## 3118         defamation         fear
## 3119         defamation     negative
## 3120         defamatory        anger
## 3121         defamatory     negative
## 3122            default      disgust
## 3123            default         fear
## 3124            default     negative
## 3125            default      sadness
## 3126             defeat     negative
## 3127           defeated     negative
## 3128           defeated      sadness
## 3129             defect        anger
## 3130             defect     negative
## 3131          defection         fear
## 3132          defection     negative
## 3133          defective      disgust
## 3134          defective     negative
## 3135             defend         fear
## 3136             defend     positive
## 3137          defendant        anger
## 3138          defendant         fear
## 3139          defendant      sadness
## 3140           defended     positive
## 3141           defended        trust
## 3142           defender     positive
## 3143           defender        trust
## 3144          defending     positive
## 3145            defense        anger
## 3146            defense anticipation
## 3147            defense         fear
## 3148            defense     positive
## 3149        defenseless         fear
## 3150        defenseless     negative
## 3151        defenseless      sadness
## 3152          deference     positive
## 3153          deference        trust
## 3154           deferral     negative
## 3155           defiance        anger
## 3156           defiance      disgust
## 3157           defiance         fear
## 3158           defiance     negative
## 3159            defiant        anger
## 3160            defiant     negative
## 3161         deficiency     negative
## 3162            deficit     negative
## 3163         definitive     positive
## 3164         definitive        trust
## 3165            deflate        anger
## 3166            deflate     negative
## 3167            deflate      sadness
## 3168          deflation         fear
## 3169          deflation     negative
## 3170             deform      disgust
## 3171             deform     negative
## 3172           deformed      disgust
## 3173           deformed     negative
## 3174           deformed      sadness
## 3175          deformity      disgust
## 3176          deformity         fear
## 3177          deformity     negative
## 3178          deformity      sadness
## 3179            defraud        anger
## 3180            defraud      disgust
## 3181            defraud     negative
## 3182            defunct     negative
## 3183            defunct      sadness
## 3184               defy        anger
## 3185               defy         fear
## 3186               defy     negative
## 3187               defy      sadness
## 3188               defy     surprise
## 3189         degeneracy        anger
## 3190         degeneracy      disgust
## 3191         degeneracy     negative
## 3192         degeneracy      sadness
## 3193         degenerate     negative
## 3194        degradation     negative
## 3195            degrade      disgust
## 3196            degrade     negative
## 3197          degrading      disgust
## 3198          degrading         fear
## 3199          degrading     negative
## 3200          degrading      sadness
## 3201             degree     positive
## 3202              delay        anger
## 3203              delay      disgust
## 3204              delay         fear
## 3205              delay     negative
## 3206              delay      sadness
## 3207            delayed     negative
## 3208         delectable     positive
## 3209           delegate     positive
## 3210           delegate        trust
## 3211        deleterious        anger
## 3212        deleterious      disgust
## 3213        deleterious         fear
## 3214        deleterious     negative
## 3215           deletion     negative
## 3216         deliberate     positive
## 3217          delicious          joy
## 3218          delicious     positive
## 3219            delight anticipation
## 3220            delight          joy
## 3221            delight     positive
## 3222          delighted anticipation
## 3223          delighted          joy
## 3224          delighted     positive
## 3225          delighted     surprise
## 3226         delightful anticipation
## 3227         delightful          joy
## 3228         delightful     positive
## 3229         delightful        trust
## 3230        delinquency     negative
## 3231         delinquent        anger
## 3232         delinquent      disgust
## 3233         delinquent     negative
## 3234          delirious     negative
## 3235          delirious      sadness
## 3236           delirium      disgust
## 3237           delirium     negative
## 3238           delirium      sadness
## 3239        deliverance anticipation
## 3240        deliverance          joy
## 3241        deliverance     positive
## 3242        deliverance        trust
## 3243           delivery anticipation
## 3244           delivery     positive
## 3245             deluge         fear
## 3246             deluge     negative
## 3247             deluge      sadness
## 3248             deluge     surprise
## 3249           delusion        anger
## 3250           delusion         fear
## 3251           delusion     negative
## 3252           delusion      sadness
## 3253         delusional        anger
## 3254         delusional         fear
## 3255         delusional     negative
## 3256             demand        anger
## 3257             demand     negative
## 3258          demanding     negative
## 3259           demented         fear
## 3260           demented     negative
## 3261           dementia         fear
## 3262           dementia     negative
## 3263           dementia      sadness
## 3264             demise         fear
## 3265             demise     negative
## 3266             demise      sadness
## 3267          democracy     positive
## 3268           demolish        anger
## 3269           demolish     negative
## 3270           demolish      sadness
## 3271         demolition     negative
## 3272              demon        anger
## 3273              demon      disgust
## 3274              demon         fear
## 3275              demon     negative
## 3276              demon      sadness
## 3277            demonic        anger
## 3278            demonic      disgust
## 3279            demonic         fear
## 3280            demonic     negative
## 3281            demonic      sadness
## 3282       demonstrable     positive
## 3283      demonstrative          joy
## 3284      demonstrative     positive
## 3285      demonstrative      sadness
## 3286        demoralized         fear
## 3287        demoralized     negative
## 3288        demoralized      sadness
## 3289             denial     negative
## 3290             denied     negative
## 3291             denied      sadness
## 3292           denounce        anger
## 3293           denounce      disgust
## 3294           denounce     negative
## 3295          dentistry         fear
## 3296       denunciation        anger
## 3297       denunciation      disgust
## 3298       denunciation         fear
## 3299       denunciation     negative
## 3300               deny        anger
## 3301               deny     negative
## 3302            denying anticipation
## 3303            denying     negative
## 3304             depart anticipation
## 3305             depart      sadness
## 3306           departed     negative
## 3307           departed      sadness
## 3308          departure     negative
## 3309          departure      sadness
## 3310             depend anticipation
## 3311             depend        trust
## 3312         dependence         fear
## 3313         dependence     negative
## 3314         dependence      sadness
## 3315         dependency     negative
## 3316          dependent     negative
## 3317          dependent     positive
## 3318          dependent        trust
## 3319         deplorable        anger
## 3320         deplorable      disgust
## 3321         deplorable         fear
## 3322         deplorable     negative
## 3323         deplorable      sadness
## 3324            deplore        anger
## 3325            deplore      disgust
## 3326            deplore     negative
## 3327            deplore      sadness
## 3328             deport         fear
## 3329             deport     negative
## 3330             deport      sadness
## 3331        deportation        anger
## 3332        deportation         fear
## 3333        deportation     negative
## 3334        deportation      sadness
## 3335         depository        trust
## 3336           depraved        anger
## 3337           depraved anticipation
## 3338           depraved      disgust
## 3339           depraved         fear
## 3340           depraved     negative
## 3341           depraved      sadness
## 3342          depravity        anger
## 3343          depravity      disgust
## 3344          depravity     negative
## 3345         depreciate        anger
## 3346         depreciate      disgust
## 3347         depreciate     negative
## 3348        depreciated        anger
## 3349        depreciated      disgust
## 3350        depreciated         fear
## 3351        depreciated     negative
## 3352        depreciated      sadness
## 3353       depreciation         fear
## 3354       depreciation     negative
## 3355            depress         fear
## 3356            depress     negative
## 3357            depress      sadness
## 3358          depressed        anger
## 3359          depressed         fear
## 3360          depressed     negative
## 3361          depressed      sadness
## 3362         depressing      disgust
## 3363         depressing     negative
## 3364         depressing      sadness
## 3365         depression     negative
## 3366         depression      sadness
## 3367         depressive     negative
## 3368         depressive      sadness
## 3369        deprivation        anger
## 3370        deprivation      disgust
## 3371        deprivation         fear
## 3372        deprivation     negative
## 3373        deprivation      sadness
## 3374              depth     positive
## 3375              depth        trust
## 3376             deputy        trust
## 3377           deranged        anger
## 3378           deranged      disgust
## 3379           deranged         fear
## 3380           deranged     negative
## 3381           derelict     negative
## 3382           derision        anger
## 3383           derision      disgust
## 3384           derision     negative
## 3385      dermatologist        trust
## 3386         derogation        anger
## 3387         derogation      disgust
## 3388         derogation         fear
## 3389         derogation     negative
## 3390         derogation      sadness
## 3391         derogatory        anger
## 3392         derogatory      disgust
## 3393         derogatory         fear
## 3394         derogatory     negative
## 3395         derogatory      sadness
## 3396            descent         fear
## 3397            descent      sadness
## 3398        descriptive     positive
## 3399        desecration        anger
## 3400        desecration      disgust
## 3401        desecration         fear
## 3402        desecration     negative
## 3403        desecration      sadness
## 3404             desert        anger
## 3405             desert      disgust
## 3406             desert         fear
## 3407             desert     negative
## 3408             desert      sadness
## 3409           deserted        anger
## 3410           deserted      disgust
## 3411           deserted         fear
## 3412           deserted     negative
## 3413           deserted      sadness
## 3414          desertion     negative
## 3415            deserve        anger
## 3416            deserve anticipation
## 3417            deserve     positive
## 3418            deserve        trust
## 3419           deserved     positive
## 3420        designation        trust
## 3421           designer     positive
## 3422          desirable     positive
## 3423           desiring     positive
## 3424           desirous     positive
## 3425             desist        anger
## 3426             desist      disgust
## 3427             desist     negative
## 3428         desolation         fear
## 3429         desolation     negative
## 3430         desolation      sadness
## 3431            despair        anger
## 3432            despair      disgust
## 3433            despair         fear
## 3434            despair     negative
## 3435            despair      sadness
## 3436         despairing         fear
## 3437         despairing     negative
## 3438         despairing      sadness
## 3439          desperate     negative
## 3440         despicable        anger
## 3441         despicable      disgust
## 3442         despicable     negative
## 3443            despise        anger
## 3444            despise      disgust
## 3445            despise     negative
## 3446           despotic         fear
## 3447           despotic     negative
## 3448          despotism        anger
## 3449          despotism      disgust
## 3450          despotism         fear
## 3451          despotism     negative
## 3452          despotism      sadness
## 3453        destination anticipation
## 3454        destination         fear
## 3455        destination          joy
## 3456        destination     positive
## 3457        destination      sadness
## 3458        destination     surprise
## 3459           destined anticipation
## 3460          destitute         fear
## 3461          destitute     negative
## 3462          destitute      sadness
## 3463          destroyed        anger
## 3464          destroyed         fear
## 3465          destroyed     negative
## 3466          destroyed      sadness
## 3467          destroyer        anger
## 3468          destroyer         fear
## 3469          destroyer     negative
## 3470         destroying        anger
## 3471         destroying         fear
## 3472         destroying     negative
## 3473         destroying      sadness
## 3474        destruction        anger
## 3475        destruction     negative
## 3476        destructive        anger
## 3477        destructive      disgust
## 3478        destructive         fear
## 3479        destructive     negative
## 3480         detachment     negative
## 3481             detain     negative
## 3482           detainee        anger
## 3483           detainee anticipation
## 3484           detainee         fear
## 3485           detainee     negative
## 3486           detainee      sadness
## 3487             detect     positive
## 3488          detection     positive
## 3489          detention     negative
## 3490          detention      sadness
## 3491        deteriorate         fear
## 3492        deteriorate     negative
## 3493        deteriorate      sadness
## 3494       deteriorated      disgust
## 3495       deteriorated     negative
## 3496       deteriorated      sadness
## 3497      deterioration        anger
## 3498      deterioration      disgust
## 3499      deterioration         fear
## 3500      deterioration     negative
## 3501      deterioration      sadness
## 3502        determinate anticipation
## 3503        determinate        trust
## 3504      determination     positive
## 3505      determination        trust
## 3506         determined     positive
## 3507             detest        anger
## 3508             detest      disgust
## 3509             detest     negative
## 3510           detonate         fear
## 3511           detonate     negative
## 3512           detonate     surprise
## 3513         detonation        anger
## 3514            detract        anger
## 3515            detract     negative
## 3516          detriment     negative
## 3517        detrimental     negative
## 3518           detritus     negative
## 3519          devastate        anger
## 3520          devastate         fear
## 3521          devastate     negative
## 3522          devastate      sadness
## 3523        devastating        anger
## 3524        devastating      disgust
## 3525        devastating         fear
## 3526        devastating     negative
## 3527        devastating      sadness
## 3528        devastating        trust
## 3529        devastation        anger
## 3530        devastation         fear
## 3531        devastation     negative
## 3532        devastation      sadness
## 3533        devastation     surprise
## 3534            develop anticipation
## 3535            develop     positive
## 3536          deviation      sadness
## 3537              devil        anger
## 3538              devil anticipation
## 3539              devil      disgust
## 3540              devil         fear
## 3541              devil     negative
## 3542              devil      sadness
## 3543           devilish      disgust
## 3544           devilish         fear
## 3545           devilish     negative
## 3546            devious     negative
## 3547         devolution     negative
## 3548         devotional     positive
## 3549         devotional        trust
## 3550             devour     negative
## 3551             devout anticipation
## 3552             devout          joy
## 3553             devout     positive
## 3554             devout        trust
## 3555          dexterity     positive
## 3556         diabolical        anger
## 3557         diabolical      disgust
## 3558         diabolical         fear
## 3559         diabolical     negative
## 3560          diagnosis anticipation
## 3561          diagnosis         fear
## 3562          diagnosis     negative
## 3563          diagnosis        trust
## 3564            diamond          joy
## 3565            diamond     positive
## 3566             diaper      disgust
## 3567          diarrhoea      disgust
## 3568              diary          joy
## 3569              diary     positive
## 3570              diary        trust
## 3571           diatribe        anger
## 3572           diatribe      disgust
## 3573           diatribe     negative
## 3574           dictator         fear
## 3575           dictator     negative
## 3576        dictatorial        anger
## 3577        dictatorial     negative
## 3578       dictatorship        anger
## 3579       dictatorship anticipation
## 3580       dictatorship      disgust
## 3581       dictatorship         fear
## 3582       dictatorship     negative
## 3583       dictatorship      sadness
## 3584         dictionary     positive
## 3585         dictionary        trust
## 3586             dictum        trust
## 3587           didactic     positive
## 3588                die         fear
## 3589                die     negative
## 3590                die      sadness
## 3591            dietary anticipation
## 3592            dietary     positive
## 3593       differential        trust
## 3594        differently     surprise
## 3595          difficult         fear
## 3596       difficulties     negative
## 3597       difficulties      sadness
## 3598         difficulty        anger
## 3599         difficulty         fear
## 3600         difficulty     negative
## 3601         difficulty      sadness
## 3602              digit        trust
## 3603          dignified     positive
## 3604            dignity     positive
## 3605            dignity        trust
## 3606            digress anticipation
## 3607            digress     negative
## 3608               dike         fear
## 3609        dilapidated      disgust
## 3610        dilapidated     negative
## 3611        dilapidated      sadness
## 3612          diligence     positive
## 3613          diligence        trust
## 3614             dilute     negative
## 3615           diminish     negative
## 3616           diminish      sadness
## 3617         diminished     negative
## 3618                din     negative
## 3619             dinner     positive
## 3620           dinosaur         fear
## 3621          diplomacy anticipation
## 3622          diplomacy     positive
## 3623          diplomacy        trust
## 3624         diplomatic     positive
## 3625         diplomatic        trust
## 3626               dire      disgust
## 3627               dire         fear
## 3628               dire     negative
## 3629               dire      sadness
## 3630               dire     surprise
## 3631           director     positive
## 3632           director        trust
## 3633               dirt      disgust
## 3634               dirt     negative
## 3635              dirty      disgust
## 3636              dirty     negative
## 3637         disability     negative
## 3638         disability      sadness
## 3639            disable         fear
## 3640            disable     negative
## 3641            disable      sadness
## 3642           disabled         fear
## 3643           disabled     negative
## 3644           disabled      sadness
## 3645        disaffected     negative
## 3646           disagree        anger
## 3647           disagree     negative
## 3648        disagreeing        anger
## 3649        disagreeing     negative
## 3650        disagreeing      sadness
## 3651       disagreement        anger
## 3652       disagreement     negative
## 3653       disagreement      sadness
## 3654         disallowed        anger
## 3655         disallowed      disgust
## 3656         disallowed         fear
## 3657         disallowed     negative
## 3658         disallowed      sadness
## 3659          disappear         fear
## 3660         disappoint        anger
## 3661         disappoint      disgust
## 3662         disappoint     negative
## 3663         disappoint      sadness
## 3664       disappointed        anger
## 3665       disappointed      disgust
## 3666       disappointed     negative
## 3667       disappointed      sadness
## 3668      disappointing     negative
## 3669      disappointing      sadness
## 3670     disappointment      disgust
## 3671     disappointment     negative
## 3672     disappointment      sadness
## 3673        disapproval     negative
## 3674        disapproval      sadness
## 3675         disapprove        anger
## 3676         disapprove      disgust
## 3677         disapprove         fear
## 3678         disapprove     negative
## 3679         disapprove      sadness
## 3680        disapproved        anger
## 3681        disapproved     negative
## 3682        disapproved      sadness
## 3683       disapproving        anger
## 3684       disapproving      disgust
## 3685       disapproving     negative
## 3686       disapproving      sadness
## 3687           disaster        anger
## 3688           disaster      disgust
## 3689           disaster         fear
## 3690           disaster     negative
## 3691           disaster      sadness
## 3692           disaster     surprise
## 3693         disastrous        anger
## 3694         disastrous         fear
## 3695         disastrous     negative
## 3696         disastrous      sadness
## 3697         disbelieve     negative
## 3698           discards     negative
## 3699          discharge     negative
## 3700           disciple        trust
## 3701         discipline         fear
## 3702         discipline     negative
## 3703           disclaim        anger
## 3704           disclaim      disgust
## 3705           disclaim     negative
## 3706           disclaim        trust
## 3707          disclosed        trust
## 3708      discoloration      disgust
## 3709      discoloration     negative
## 3710         discolored      disgust
## 3711         discolored     negative
## 3712         discolored      sadness
## 3713         discomfort     negative
## 3714         discomfort      sadness
## 3715         disconnect     negative
## 3716         disconnect      sadness
## 3717       disconnected     negative
## 3718       disconnected      sadness
## 3719      disconnection     negative
## 3720         discontent        anger
## 3721         discontent      disgust
## 3722         discontent         fear
## 3723         discontent     negative
## 3724         discontent      sadness
## 3725        discontinue     negative
## 3726      discontinuity      disgust
## 3727      discontinuity         fear
## 3728      discontinuity     negative
## 3729      discontinuity      sadness
## 3730            discord        anger
## 3731            discord      disgust
## 3732            discord     negative
## 3733         discourage         fear
## 3734         discourage     negative
## 3735         discourage      sadness
## 3736     discouragement     negative
## 3737          discovery     positive
## 3738          discredit     negative
## 3739           discreet anticipation
## 3740           discreet     positive
## 3741         discretion anticipation
## 3742         discretion     positive
## 3743         discretion        trust
## 3744      discretionary     positive
## 3745       discriminate        anger
## 3746       discriminate     negative
## 3747       discriminate      sadness
## 3748     discriminating      disgust
## 3749     discriminating     negative
## 3750     discrimination        anger
## 3751     discrimination      disgust
## 3752     discrimination         fear
## 3753     discrimination     negative
## 3754     discrimination      sadness
## 3755         discussion     positive
## 3756            disdain        anger
## 3757            disdain      disgust
## 3758            disdain     negative
## 3759            disease        anger
## 3760            disease      disgust
## 3761            disease         fear
## 3762            disease     negative
## 3763            disease      sadness
## 3764           diseased      disgust
## 3765           diseased         fear
## 3766           diseased     negative
## 3767           diseased      sadness
## 3768        disembodied         fear
## 3769        disembodied     negative
## 3770        disembodied      sadness
## 3771      disengagement     negative
## 3772         disfigured        anger
## 3773         disfigured      disgust
## 3774         disfigured         fear
## 3775         disfigured     negative
## 3776         disfigured      sadness
## 3777           disgrace        anger
## 3778           disgrace      disgust
## 3779           disgrace     negative
## 3780           disgrace      sadness
## 3781          disgraced        anger
## 3782          disgraced      disgust
## 3783          disgraced     negative
## 3784          disgraced      sadness
## 3785        disgraceful        anger
## 3786        disgraceful      disgust
## 3787        disgraceful     negative
## 3788        disgruntled        anger
## 3789        disgruntled      disgust
## 3790        disgruntled     negative
## 3791        disgruntled      sadness
## 3792            disgust        anger
## 3793            disgust      disgust
## 3794            disgust         fear
## 3795            disgust     negative
## 3796            disgust      sadness
## 3797         disgusting        anger
## 3798         disgusting      disgust
## 3799         disgusting         fear
## 3800         disgusting     negative
## 3801       disheartened     negative
## 3802       disheartened      sadness
## 3803      disheartening     negative
## 3804      disheartening      sadness
## 3805          dishonest        anger
## 3806          dishonest      disgust
## 3807          dishonest     negative
## 3808          dishonest      sadness
## 3809         dishonesty      disgust
## 3810         dishonesty     negative
## 3811           dishonor        anger
## 3812           dishonor      disgust
## 3813           dishonor         fear
## 3814           dishonor     negative
## 3815           dishonor      sadness
## 3816    disillusionment        anger
## 3817    disillusionment      disgust
## 3818    disillusionment     negative
## 3819    disillusionment      sadness
## 3820       disinfection     positive
## 3821     disinformation        anger
## 3822     disinformation         fear
## 3823     disinformation     negative
## 3824       disingenuous      disgust
## 3825       disingenuous     negative
## 3826       disintegrate      disgust
## 3827       disintegrate         fear
## 3828       disintegrate     negative
## 3829     disintegration     negative
## 3830      disinterested     negative
## 3831            dislike        anger
## 3832            dislike      disgust
## 3833            dislike     negative
## 3834           disliked        anger
## 3835           disliked     negative
## 3836           disliked      sadness
## 3837         dislocated        anger
## 3838         dislocated      disgust
## 3839         dislocated         fear
## 3840         dislocated     negative
## 3841         dislocated      sadness
## 3842             dismal      disgust
## 3843             dismal         fear
## 3844             dismal     negative
## 3845             dismal      sadness
## 3846             dismay        anger
## 3847             dismay anticipation
## 3848             dismay         fear
## 3849             dismay     negative
## 3850             dismay      sadness
## 3851             dismay     surprise
## 3852      dismemberment      disgust
## 3853      dismemberment         fear
## 3854      dismemberment     negative
## 3855      dismemberment      sadness
## 3856          dismissal        anger
## 3857          dismissal      disgust
## 3858          dismissal         fear
## 3859          dismissal     negative
## 3860          dismissal      sadness
## 3861          dismissal     surprise
## 3862       disobedience        anger
## 3863       disobedience      disgust
## 3864       disobedience     negative
## 3865        disobedient        anger
## 3866        disobedient     negative
## 3867            disobey        anger
## 3868            disobey      disgust
## 3869            disobey     negative
## 3870           disorder         fear
## 3871           disorder     negative
## 3872         disorderly     negative
## 3873       disorganized     negative
## 3874          disparage        anger
## 3875          disparage      disgust
## 3876          disparage     negative
## 3877          disparage      sadness
## 3878        disparaging        anger
## 3879        disparaging      disgust
## 3880        disparaging     negative
## 3881        disparaging      sadness
## 3882          disparity        anger
## 3883          disparity      disgust
## 3884          disparity     negative
## 3885          disparity      sadness
## 3886      dispassionate     negative
## 3887      dispassionate      sadness
## 3888             dispel     negative
## 3889             dispel      sadness
## 3890         dispersion     negative
## 3891           displace     negative
## 3892          displaced        anger
## 3893          displaced         fear
## 3894          displaced      sadness
## 3895         displeased        anger
## 3896         displeased      disgust
## 3897         displeased         fear
## 3898         displeased     negative
## 3899         displeased      sadness
## 3900        displeasure      disgust
## 3901        displeasure     negative
## 3902           disposal     negative
## 3903            dispose      disgust
## 3904           disposed anticipation
## 3905           disposed     positive
## 3906           disposed        trust
## 3907       dispossessed        anger
## 3908       dispossessed         fear
## 3909       dispossessed     negative
## 3910       dispossessed      sadness
## 3911            dispute        anger
## 3912            dispute     negative
## 3913   disqualification     negative
## 3914       disqualified        anger
## 3915       disqualified      disgust
## 3916       disqualified     negative
## 3917       disqualified      sadness
## 3918         disqualify     negative
## 3919         disqualify      sadness
## 3920          disregard     negative
## 3921        disregarded      disgust
## 3922        disregarded     negative
## 3923       disreputable        anger
## 3924       disreputable      disgust
## 3925       disreputable         fear
## 3926       disreputable     negative
## 3927         disrespect        anger
## 3928         disrespect     negative
## 3929      disrespectful        anger
## 3930      disrespectful      disgust
## 3931      disrespectful         fear
## 3932      disrespectful     negative
## 3933      disrespectful      sadness
## 3934         disruption        anger
## 3935         disruption         fear
## 3936         disruption     negative
## 3937         disruption     surprise
## 3938    dissatisfaction     negative
## 3939         dissection      disgust
## 3940        disseminate     positive
## 3941         dissension        anger
## 3942         dissension     negative
## 3943         dissenting     negative
## 3944         disservice        anger
## 3945         disservice      disgust
## 3946         disservice     negative
## 3947         disservice      sadness
## 3948          dissident        anger
## 3949          dissident         fear
## 3950          dissident     negative
## 3951        dissolution        anger
## 3952        dissolution         fear
## 3953        dissolution     negative
## 3954        dissolution      sadness
## 3955        dissolution     surprise
## 3956         dissonance        anger
## 3957         dissonance     negative
## 3958           distaste      disgust
## 3959           distaste     negative
## 3960        distasteful      disgust
## 3961        distasteful     negative
## 3962       distillation     positive
## 3963        distinction     positive
## 3964          distorted      disgust
## 3965          distorted     negative
## 3966         distortion     negative
## 3967           distract     negative
## 3968         distracted        anger
## 3969         distracted     negative
## 3970        distracting        anger
## 3971        distracting anticipation
## 3972        distracting     negative
## 3973        distraction     negative
## 3974         distraught     negative
## 3975         distraught      sadness
## 3976           distress        anger
## 3977           distress      disgust
## 3978           distress         fear
## 3979           distress     negative
## 3980           distress      sadness
## 3981           distress     surprise
## 3982         distressed         fear
## 3983         distressed     negative
## 3984        distressing        anger
## 3985        distressing         fear
## 3986        distressing     negative
## 3987           distrust        anger
## 3988           distrust      disgust
## 3989           distrust         fear
## 3990           distrust     negative
## 3991        disturbance        anger
## 3992        disturbance         fear
## 3993        disturbance     negative
## 3994        disturbance      sadness
## 3995        disturbance     surprise
## 3996          disturbed        anger
## 3997          disturbed     negative
## 3998          disturbed      sadness
## 3999             disuse     negative
## 4000            disused        anger
## 4001            disused     negative
## 4002              ditty          joy
## 4003              ditty     positive
## 4004              divan        trust
## 4005          divergent     negative
## 4006          divergent     surprise
## 4007            diverse     negative
## 4008            diverse     positive
## 4009        diversified     positive
## 4010          diversion     positive
## 4011          diversion     surprise
## 4012           divested     negative
## 4013         divestment     negative
## 4014         divination anticipation
## 4015           divinity     positive
## 4016            divorce        anger
## 4017            divorce      disgust
## 4018            divorce         fear
## 4019            divorce     negative
## 4020            divorce      sadness
## 4021            divorce     surprise
## 4022            divorce        trust
## 4023          dizziness     negative
## 4024              dizzy     negative
## 4025             docked     negative
## 4026             doctor     positive
## 4027             doctor        trust
## 4028           doctrine        trust
## 4029               doer     positive
## 4030             dogged     positive
## 4031              dogma        trust
## 4032               doit     negative
## 4033           doldrums     negative
## 4034           doldrums      sadness
## 4035               dole     negative
## 4036               dole      sadness
## 4037               doll          joy
## 4038              dolor     negative
## 4039              dolor      sadness
## 4040            dolphin          joy
## 4041            dolphin     positive
## 4042            dolphin     surprise
## 4043            dolphin        trust
## 4044           dominant         fear
## 4045           dominant     negative
## 4046           dominate        anger
## 4047           dominate         fear
## 4048           dominate     negative
## 4049           dominate     positive
## 4050         domination        anger
## 4051         domination         fear
## 4052         domination     negative
## 4053         domination      sadness
## 4054           dominion         fear
## 4055           dominion        trust
## 4056                don     positive
## 4057                don        trust
## 4058           donation     positive
## 4059             donkey      disgust
## 4060             donkey     negative
## 4061             doodle     negative
## 4062               doom         fear
## 4063               doom     negative
## 4064             doomed         fear
## 4065             doomed     negative
## 4066             doomed      sadness
## 4067           doomsday        anger
## 4068           doomsday anticipation
## 4069           doomsday      disgust
## 4070           doomsday         fear
## 4071           doomsday     negative
## 4072           doomsday      sadness
## 4073              doubt         fear
## 4074              doubt     negative
## 4075              doubt      sadness
## 4076              doubt        trust
## 4077           doubtful     negative
## 4078           doubting     negative
## 4079          doubtless     positive
## 4080          doubtless        trust
## 4081             douche     negative
## 4082               dour     negative
## 4083               dove anticipation
## 4084               dove          joy
## 4085               dove     positive
## 4086               dove        trust
## 4087           downfall         fear
## 4088           downfall     negative
## 4089           downfall      sadness
## 4090          downright        trust
## 4091              downy     positive
## 4092               drab     negative
## 4093               drab      sadness
## 4094              draft anticipation
## 4095             dragon         fear
## 4096           drainage     negative
## 4097           drawback     negative
## 4098              dread anticipation
## 4099              dread         fear
## 4100              dread     negative
## 4101           dreadful        anger
## 4102           dreadful anticipation
## 4103           dreadful      disgust
## 4104           dreadful         fear
## 4105           dreadful     negative
## 4106           dreadful      sadness
## 4107         dreadfully      disgust
## 4108         dreadfully         fear
## 4109         dreadfully     negative
## 4110         dreadfully      sadness
## 4111         dreadfully     surprise
## 4112             dreary     negative
## 4113             dreary      sadness
## 4114           drinking     negative
## 4115             drivel      disgust
## 4116             drivel     negative
## 4117              drone     negative
## 4118              drool      disgust
## 4119           drooping     negative
## 4120            drought     negative
## 4121              drown         fear
## 4122              drown     negative
## 4123              drown      sadness
## 4124         drowsiness     negative
## 4125           drudgery     negative
## 4126            drugged      sadness
## 4127            drunken      disgust
## 4128            drunken     negative
## 4129        drunkenness     negative
## 4130            dubious         fear
## 4131            dubious     negative
## 4132            dubious        trust
## 4133               duel        anger
## 4134               duel anticipation
## 4135               duel         fear
## 4136               duet     positive
## 4137               duke     positive
## 4138               dull     negative
## 4139               dull      sadness
## 4140               dumb     negative
## 4141              dummy     negative
## 4142              dumps        anger
## 4143              dumps     negative
## 4144              dumps      sadness
## 4145                dun     negative
## 4146               dung      disgust
## 4147            dungeon         fear
## 4148            dungeon     negative
## 4149               dupe        anger
## 4150               dupe     negative
## 4151          duplicity        anger
## 4152          duplicity     negative
## 4153         durability     positive
## 4154         durability        trust
## 4155            durable     positive
## 4156            durable        trust
## 4157             duress        anger
## 4158             duress      disgust
## 4159             duress         fear
## 4160             duress     negative
## 4161             duress      sadness
## 4162               dust     negative
## 4163            dutiful anticipation
## 4164            dutiful     positive
## 4165            dutiful        trust
## 4166            dwarfed         fear
## 4167            dwarfed     negative
## 4168            dwarfed      sadness
## 4169              dying        anger
## 4170              dying      disgust
## 4171              dying         fear
## 4172              dying     negative
## 4173              dying      sadness
## 4174            dynamic     surprise
## 4175          dysentery      disgust
## 4176          dysentery     negative
## 4177          dysentery      sadness
## 4178              eager anticipation
## 4179              eager          joy
## 4180              eager     positive
## 4181              eager     surprise
## 4182              eager        trust
## 4183          eagerness anticipation
## 4184          eagerness          joy
## 4185          eagerness     positive
## 4186          eagerness        trust
## 4187              eagle        trust
## 4188               earl     positive
## 4189               earn     positive
## 4190            earnest     positive
## 4191          earnestly     positive
## 4192        earnestness     positive
## 4193         earthquake        anger
## 4194         earthquake         fear
## 4195         earthquake     negative
## 4196         earthquake      sadness
## 4197         earthquake     surprise
## 4198               ease     positive
## 4199           easement     positive
## 4200          easygoing     positive
## 4201                eat     positive
## 4202      eavesdropping     negative
## 4203            economy        trust
## 4204            ecstasy anticipation
## 4205            ecstasy          joy
## 4206            ecstasy     positive
## 4207           ecstatic anticipation
## 4208           ecstatic          joy
## 4209           ecstatic     positive
## 4210           ecstatic     surprise
## 4211              edict         fear
## 4212              edict     negative
## 4213        edification anticipation
## 4214        edification          joy
## 4215        edification     positive
## 4216        edification        trust
## 4217            edition anticipation
## 4218            educate     positive
## 4219           educated     positive
## 4220        educational     positive
## 4221        educational        trust
## 4222                eel         fear
## 4223          effective     positive
## 4224          effective        trust
## 4225         effeminate     negative
## 4226           efficacy     positive
## 4227         efficiency     positive
## 4228          efficient anticipation
## 4229          efficient     positive
## 4230          efficient        trust
## 4231             effigy        anger
## 4232             effort     positive
## 4233        egotistical      disgust
## 4234        egotistical     negative
## 4235          egregious        anger
## 4236          egregious      disgust
## 4237          egregious     negative
## 4238        ejaculation anticipation
## 4239        ejaculation          joy
## 4240        ejaculation     positive
## 4241        ejaculation     surprise
## 4242        ejaculation        trust
## 4243              eject     negative
## 4244           ejection     negative
## 4245        elaboration     positive
## 4246             elated          joy
## 4247             elated     positive
## 4248              elbow        anger
## 4249              elder     positive
## 4250              elder        trust
## 4251             elders     positive
## 4252             elders        trust
## 4253              elect     positive
## 4254              elect        trust
## 4255         electorate        trust
## 4256           electric          joy
## 4257           electric     positive
## 4258           electric     surprise
## 4259        electricity     positive
## 4260           elegance anticipation
## 4261           elegance          joy
## 4262           elegance     positive
## 4263           elegance        trust
## 4264            elegant          joy
## 4265            elegant     positive
## 4266          elevation anticipation
## 4267          elevation         fear
## 4268          elevation          joy
## 4269          elevation     positive
## 4270          elevation        trust
## 4271                elf        anger
## 4272                elf      disgust
## 4273                elf         fear
## 4274           eligible     positive
## 4275        elimination        anger
## 4276        elimination      disgust
## 4277        elimination         fear
## 4278        elimination     negative
## 4279        elimination      sadness
## 4280              elite anticipation
## 4281              elite          joy
## 4282              elite     positive
## 4283              elite        trust
## 4284          eloquence     positive
## 4285           eloquent     positive
## 4286          elucidate     positive
## 4287          elucidate        trust
## 4288            elusive     negative
## 4289            elusive     surprise
## 4290          emaciated         fear
## 4291          emaciated     negative
## 4292          emaciated      sadness
## 4293       emancipation anticipation
## 4294       emancipation          joy
## 4295       emancipation     positive
## 4296            embargo     negative
## 4297          embarrass     negative
## 4298          embarrass      sadness
## 4299       embarrassing     negative
## 4300      embarrassment         fear
## 4301      embarrassment     negative
## 4302      embarrassment      sadness
## 4303      embarrassment     surprise
## 4304       embezzlement     negative
## 4305           embolism         fear
## 4306           embolism     negative
## 4307           embolism      sadness
## 4308            embrace anticipation
## 4309            embrace          joy
## 4310            embrace     positive
## 4311            embrace     surprise
## 4312            embrace        trust
## 4313          embroiled     negative
## 4314          emergency         fear
## 4315          emergency     negative
## 4316          emergency      sadness
## 4317          emergency     surprise
## 4318           emeritus     positive
## 4319           eminence     positive
## 4320           eminence        trust
## 4321            eminent     positive
## 4322          eminently     positive
## 4323               emir     positive
## 4324            empathy     positive
## 4325          emphasize        trust
## 4326             employ        trust
## 4327            empower     positive
## 4328          emptiness      sadness
## 4329            emulate     positive
## 4330             enable     positive
## 4331             enable        trust
## 4332         enablement     positive
## 4333         enablement        trust
## 4334            enchant anticipation
## 4335            enchant          joy
## 4336            enchant     positive
## 4337            enchant     surprise
## 4338          enchanted          joy
## 4339          enchanted     positive
## 4340          enchanted        trust
## 4341         enchanting anticipation
## 4342         enchanting          joy
## 4343         enchanting     positive
## 4344            enclave     negative
## 4345             encore     positive
## 4346          encourage          joy
## 4347          encourage     positive
## 4348          encourage        trust
## 4349      encouragement     positive
## 4350       encroachment         fear
## 4351       encroachment     negative
## 4352        encumbrance        anger
## 4353        encumbrance         fear
## 4354        encumbrance     negative
## 4355        encumbrance      sadness
## 4356       encyclopedia     positive
## 4357       encyclopedia        trust
## 4358           endanger anticipation
## 4359           endanger         fear
## 4360           endanger     negative
## 4361         endangered         fear
## 4362         endangered     negative
## 4363           endeavor anticipation
## 4364           endeavor     positive
## 4365            endemic      disgust
## 4366            endemic         fear
## 4367            endemic     negative
## 4368            endemic      sadness
## 4369            endless        anger
## 4370            endless         fear
## 4371            endless          joy
## 4372            endless     negative
## 4373            endless     positive
## 4374            endless      sadness
## 4375            endless        trust
## 4376       endocarditis         fear
## 4377       endocarditis      sadness
## 4378              endow     positive
## 4379              endow        trust
## 4380            endowed     positive
## 4381          endowment     positive
## 4382          endowment        trust
## 4383          endurance     positive
## 4384             endure     positive
## 4385              enema      disgust
## 4386              enemy        anger
## 4387              enemy      disgust
## 4388              enemy         fear
## 4389              enemy     negative
## 4390          energetic     positive
## 4391            enforce        anger
## 4392            enforce         fear
## 4393            enforce     negative
## 4394            enforce     positive
## 4395        enforcement     negative
## 4396            engaged anticipation
## 4397            engaged          joy
## 4398            engaged     positive
## 4399            engaged        trust
## 4400           engaging          joy
## 4401           engaging     positive
## 4402           engaging        trust
## 4403             engulf anticipation
## 4404            enhance     positive
## 4405          enigmatic         fear
## 4406          enigmatic     negative
## 4407              enjoy anticipation
## 4408              enjoy          joy
## 4409              enjoy     positive
## 4410              enjoy        trust
## 4411           enjoying anticipation
## 4412           enjoying          joy
## 4413           enjoying     positive
## 4414           enjoying        trust
## 4415          enlighten          joy
## 4416          enlighten     positive
## 4417          enlighten        trust
## 4418      enlightenment          joy
## 4419      enlightenment     positive
## 4420      enlightenment        trust
## 4421            enliven          joy
## 4422            enliven     positive
## 4423            enliven     surprise
## 4424            enliven        trust
## 4425             enmity        anger
## 4426             enmity         fear
## 4427             enmity     negative
## 4428             enmity      sadness
## 4429             enrich     positive
## 4430             enroll anticipation
## 4431             enroll        trust
## 4432           ensemble     positive
## 4433           ensemble        trust
## 4434             ensign     positive
## 4435            enslave     negative
## 4436           enslaved        anger
## 4437           enslaved      disgust
## 4438           enslaved         fear
## 4439           enslaved     negative
## 4440           enslaved      sadness
## 4441        enslavement     negative
## 4442          entangled        anger
## 4443          entangled      disgust
## 4444          entangled         fear
## 4445          entangled     negative
## 4446          entangled      sadness
## 4447       entanglement     negative
## 4448       enterprising     positive
## 4449          entertain          joy
## 4450          entertain     positive
## 4451        entertained          joy
## 4452        entertained     positive
## 4453       entertaining anticipation
## 4454       entertaining          joy
## 4455       entertaining     positive
## 4456      entertainment anticipation
## 4457      entertainment          joy
## 4458      entertainment     positive
## 4459      entertainment     surprise
## 4460      entertainment        trust
## 4461         enthusiasm anticipation
## 4462         enthusiasm          joy
## 4463         enthusiasm     positive
## 4464         enthusiasm     surprise
## 4465         enthusiast anticipation
## 4466         enthusiast          joy
## 4467         enthusiast     positive
## 4468         enthusiast     surprise
## 4469           entrails      disgust
## 4470           entrails     negative
## 4471            entrust        trust
## 4472            envious     negative
## 4473            environ     positive
## 4474          ephemeris     positive
## 4475               epic     positive
## 4476           epidemic        anger
## 4477           epidemic anticipation
## 4478           epidemic      disgust
## 4479           epidemic         fear
## 4480           epidemic     negative
## 4481           epidemic      sadness
## 4482           epidemic     surprise
## 4483           epilepsy     negative
## 4484          episcopal        trust
## 4485            epitaph      sadness
## 4486            epitome     positive
## 4487           equality          joy
## 4488           equality     positive
## 4489           equality        trust
## 4490            equally     positive
## 4491        equilibrium     positive
## 4492             equity     positive
## 4493          eradicate        anger
## 4494          eradicate     negative
## 4495        eradication        anger
## 4496        eradication      disgust
## 4497        eradication         fear
## 4498        eradication     negative
## 4499              erase         fear
## 4500              erase     negative
## 4501            erosion     negative
## 4502             erotic anticipation
## 4503             erotic          joy
## 4504             erotic     negative
## 4505             erotic     positive
## 4506             erotic     surprise
## 4507             erotic        trust
## 4508                err     negative
## 4509             errand anticipation
## 4510             errand     positive
## 4511             errand        trust
## 4512             errant     negative
## 4513            erratic     negative
## 4514            erratic     surprise
## 4515            erratum     negative
## 4516          erroneous     negative
## 4517              error     negative
## 4518              error      sadness
## 4519            erudite     positive
## 4520              erupt        anger
## 4521              erupt     negative
## 4522              erupt     surprise
## 4523           eruption        anger
## 4524           eruption         fear
## 4525           eruption     negative
## 4526           eruption     surprise
## 4527           escalate        anger
## 4528           escalate     negative
## 4529             escape anticipation
## 4530             escape         fear
## 4531             escape     negative
## 4532             escape     positive
## 4533            escaped         fear
## 4534             eschew        anger
## 4535             eschew     negative
## 4536             eschew      sadness
## 4537             escort        trust
## 4538          espionage     negative
## 4539             esprit     positive
## 4540          essential     positive
## 4541          establish        trust
## 4542        established          joy
## 4543        established     positive
## 4544             esteem          joy
## 4545             esteem     positive
## 4546             esteem      sadness
## 4547             esteem        trust
## 4548           esthetic     positive
## 4549          estranged     negative
## 4550           ethereal         fear
## 4551            ethical     positive
## 4552             ethics     positive
## 4553         euthanasia         fear
## 4554         euthanasia     negative
## 4555         euthanasia      sadness
## 4556           evacuate         fear
## 4557           evacuate     negative
## 4558         evacuation     negative
## 4559              evade        anger
## 4560              evade      disgust
## 4561              evade         fear
## 4562              evade     negative
## 4563        evanescence      sadness
## 4564        evanescence     surprise
## 4565            evasion         fear
## 4566            evasion     negative
## 4567            evasion      sadness
## 4568           eventual anticipation
## 4569        eventuality anticipation
## 4570        eventuality         fear
## 4571          evergreen          joy
## 4572          evergreen     positive
## 4573          evergreen        trust
## 4574        everlasting     positive
## 4575              evict     negative
## 4576              evict      sadness
## 4577           eviction        anger
## 4578           eviction      disgust
## 4579           eviction         fear
## 4580           eviction     negative
## 4581           eviction      sadness
## 4582            evident     positive
## 4583            evident        trust
## 4584               evil        anger
## 4585               evil      disgust
## 4586               evil         fear
## 4587               evil     negative
## 4588               evil      sadness
## 4589          evolution     positive
## 4590         exacerbate     negative
## 4591       exacerbation        anger
## 4592       exacerbation         fear
## 4593       exacerbation     negative
## 4594           exacting     negative
## 4595         exaggerate        anger
## 4596         exaggerate     negative
## 4597        exaggerated     negative
## 4598              exalt anticipation
## 4599              exalt          joy
## 4600              exalt     positive
## 4601              exalt        trust
## 4602         exaltation          joy
## 4603         exaltation     positive
## 4604         exaltation        trust
## 4605            exalted          joy
## 4606            exalted     positive
## 4607            exalted        trust
## 4608        examination         fear
## 4609        examination     negative
## 4610        examination     surprise
## 4611       exasperation        anger
## 4612       exasperation      disgust
## 4613       exasperation     negative
## 4614         excavation anticipation
## 4615         excavation     negative
## 4616         excavation     surprise
## 4617             exceed anticipation
## 4618             exceed          joy
## 4619             exceed     positive
## 4620              excel anticipation
## 4621              excel          joy
## 4622              excel     positive
## 4623              excel     surprise
## 4624              excel        trust
## 4625         excellence      disgust
## 4626         excellence          joy
## 4627         excellence     positive
## 4628         excellence        trust
## 4629          excellent          joy
## 4630          excellent     positive
## 4631          excellent        trust
## 4632             excess     negative
## 4633           exchange     positive
## 4634           exchange        trust
## 4635             excise     negative
## 4636          excitable     positive
## 4637         excitation        anger
## 4638         excitation anticipation
## 4639         excitation         fear
## 4640         excitation          joy
## 4641         excitation     positive
## 4642         excitation     surprise
## 4643             excite        anger
## 4644             excite anticipation
## 4645             excite         fear
## 4646             excite          joy
## 4647             excite     positive
## 4648             excite     surprise
## 4649            excited anticipation
## 4650            excited          joy
## 4651            excited     positive
## 4652            excited     surprise
## 4653            excited        trust
## 4654         excitement anticipation
## 4655         excitement          joy
## 4656         excitement     positive
## 4657         excitement     surprise
## 4658           exciting anticipation
## 4659           exciting          joy
## 4660           exciting     positive
## 4661           exciting     surprise
## 4662            exclaim     surprise
## 4663           excluded      disgust
## 4664           excluded     negative
## 4665           excluded      sadness
## 4666          excluding     negative
## 4667          excluding      sadness
## 4668          exclusion      disgust
## 4669          exclusion         fear
## 4670          exclusion     negative
## 4671          exclusion      sadness
## 4672          excrement      disgust
## 4673          excrement     negative
## 4674          excretion      disgust
## 4675       excruciating         fear
## 4676       excruciating     negative
## 4677             excuse     negative
## 4678          execution        anger
## 4679          execution         fear
## 4680          execution     negative
## 4681          execution      sadness
## 4682          execution        trust
## 4683        executioner        anger
## 4684        executioner         fear
## 4685        executioner     negative
## 4686        executioner      sadness
## 4687           executor        trust
## 4688          exemplary     positive
## 4689          exemption     positive
## 4690            exhaust     negative
## 4691          exhausted     negative
## 4692          exhausted      sadness
## 4693         exhaustion anticipation
## 4694         exhaustion     negative
## 4695         exhaustion      sadness
## 4696         exhaustive        trust
## 4697       exhilaration          joy
## 4698       exhilaration     positive
## 4699       exhilaration     surprise
## 4700             exhort     positive
## 4701        exhortation     positive
## 4702            exigent anticipation
## 4703            exigent      disgust
## 4704            exigent         fear
## 4705            exigent     negative
## 4706            exigent     surprise
## 4707              exile        anger
## 4708              exile         fear
## 4709              exile     negative
## 4710              exile      sadness
## 4711          existence     positive
## 4712           exorcism         fear
## 4713           exorcism     negative
## 4714           exorcism      sadness
## 4715             exotic     positive
## 4716         expatriate     negative
## 4717             expect anticipation
## 4718             expect     positive
## 4719             expect     surprise
## 4720             expect        trust
## 4721         expectancy anticipation
## 4722          expectant anticipation
## 4723        expectation anticipation
## 4724        expectation     positive
## 4725           expected anticipation
## 4726          expecting anticipation
## 4727          expedient          joy
## 4728          expedient     positive
## 4729          expedient        trust
## 4730         expedition anticipation
## 4731         expedition     positive
## 4732              expel        anger
## 4733              expel      disgust
## 4734              expel         fear
## 4735              expel     negative
## 4736              expel      sadness
## 4737        expenditure     negative
## 4738           expenses     negative
## 4739        experienced     positive
## 4740        experienced        trust
## 4741         experiment anticipation
## 4742         experiment     surprise
## 4743             expert     positive
## 4744             expert        trust
## 4745          expertise     positive
## 4746          expertise        trust
## 4747             expire     negative
## 4748             expire      sadness
## 4749            expired     negative
## 4750            explain     positive
## 4751            explain        trust
## 4752          expletive        anger
## 4753          expletive     negative
## 4754            explode        anger
## 4755            explode         fear
## 4756            explode     negative
## 4757            explode      sadness
## 4758            explode     surprise
## 4759            explore anticipation
## 4760          explosion         fear
## 4761          explosion     negative
## 4762          explosion     surprise
## 4763          explosive        anger
## 4764          explosive anticipation
## 4765          explosive         fear
## 4766          explosive     negative
## 4767          explosive     surprise
## 4768             expose anticipation
## 4769             expose         fear
## 4770            exposed     negative
## 4771      expropriation     negative
## 4772          expulsion        anger
## 4773          expulsion      disgust
## 4774          expulsion         fear
## 4775          expulsion     negative
## 4776          expulsion      sadness
## 4777          exquisite          joy
## 4778          exquisite     positive
## 4779        exquisitely     positive
## 4780             extend     positive
## 4781          extensive     positive
## 4782        exterminate         fear
## 4783        exterminate     negative
## 4784        exterminate      sadness
## 4785      extermination        anger
## 4786      extermination         fear
## 4787      extermination     negative
## 4788            extinct     negative
## 4789            extinct      sadness
## 4790         extinguish        anger
## 4791         extinguish     negative
## 4792              extra     positive
## 4793      extrajudicial         fear
## 4794      extrajudicial     negative
## 4795      extraordinary     positive
## 4796          extremity     negative
## 4797          extricate anticipation
## 4798          extricate     positive
## 4799         exuberance          joy
## 4800         exuberance     positive
## 4801         eyewitness        trust
## 4802          fabricate     negative
## 4803        fabrication     negative
## 4804        fabrication        trust
## 4805         facilitate     positive
## 4806               fact        trust
## 4807              facts     positive
## 4808              facts        trust
## 4809            faculty     positive
## 4810            faculty        trust
## 4811               fade     negative
## 4812             faeces      disgust
## 4813             faeces     negative
## 4814            failing        anger
## 4815            failing anticipation
## 4816            failing         fear
## 4817            failing     negative
## 4818            failing      sadness
## 4819            failure      disgust
## 4820            failure         fear
## 4821            failure     negative
## 4822            failure      sadness
## 4823               fain anticipation
## 4824               fain          joy
## 4825               fain     positive
## 4826               fain        trust
## 4827           fainting         fear
## 4828           fainting     negative
## 4829           fainting      sadness
## 4830           fainting     surprise
## 4831               fair     positive
## 4832             fairly     positive
## 4833             fairly        trust
## 4834              faith anticipation
## 4835              faith          joy
## 4836              faith     positive
## 4837              faith        trust
## 4838           faithful     positive
## 4839           faithful        trust
## 4840          faithless     negative
## 4841          faithless      sadness
## 4842               fake     negative
## 4843               fall     negative
## 4844               fall      sadness
## 4845         fallacious        anger
## 4846         fallacious     negative
## 4847            fallacy     negative
## 4848           fallible     negative
## 4849            falling     negative
## 4850            falling      sadness
## 4851             fallow     negative
## 4852          falsehood        anger
## 4853          falsehood     negative
## 4854          falsehood        trust
## 4855            falsely     negative
## 4856      falsification        anger
## 4857      falsification     negative
## 4858            falsify      disgust
## 4859            falsify     negative
## 4860            falsity      disgust
## 4861            falsity     negative
## 4862             falter         fear
## 4863             falter     negative
## 4864               fame     positive
## 4865           familiar     positive
## 4866           familiar        trust
## 4867        familiarity anticipation
## 4868        familiarity          joy
## 4869        familiarity     positive
## 4870        familiarity        trust
## 4871             famine     negative
## 4872             famine      sadness
## 4873             famous     positive
## 4874           famously     positive
## 4875            fanatic     negative
## 4876         fanaticism         fear
## 4877              fancy anticipation
## 4878              fancy          joy
## 4879              fancy     positive
## 4880            fanfare anticipation
## 4881            fanfare          joy
## 4882            fanfare     positive
## 4883            fanfare     surprise
## 4884               fang         fear
## 4885              fangs         fear
## 4886              farce     negative
## 4887           farcical      disgust
## 4888           farcical     negative
## 4889               farm anticipation
## 4890        fascinating     positive
## 4891        fascination     positive
## 4892        fashionable     positive
## 4893            fasting     negative
## 4894            fasting      sadness
## 4895                fat      disgust
## 4896                fat     negative
## 4897                fat      sadness
## 4898              fatal        anger
## 4899              fatal         fear
## 4900              fatal     negative
## 4901              fatal      sadness
## 4902           fatality         fear
## 4903           fatality     negative
## 4904           fatality      sadness
## 4905               fate anticipation
## 4906               fate     negative
## 4907             father        trust
## 4908            fatigue     negative
## 4909           fatigued     negative
## 4910           fatigued      sadness
## 4911              fatty      disgust
## 4912              fatty     negative
## 4913              fatty      sadness
## 4914              fault     negative
## 4915              fault      sadness
## 4916          faultless     positive
## 4917          faultless        trust
## 4918             faulty     negative
## 4919          favorable anticipation
## 4920          favorable          joy
## 4921          favorable     positive
## 4922          favorable     surprise
## 4923          favorable        trust
## 4924           favorite          joy
## 4925           favorite     positive
## 4926           favorite        trust
## 4927         favoritism     positive
## 4928               fawn     negative
## 4929               fear        anger
## 4930               fear         fear
## 4931               fear     negative
## 4932            fearful         fear
## 4933            fearful     negative
## 4934            fearful      sadness
## 4935          fearfully         fear
## 4936          fearfully     negative
## 4937          fearfully      sadness
## 4938          fearfully     surprise
## 4939            fearing         fear
## 4940            fearing     negative
## 4941           fearless         fear
## 4942           fearless     positive
## 4943               feat anticipation
## 4944               feat          joy
## 4945               feat     positive
## 4946               feat     surprise
## 4947            feature     positive
## 4948            febrile     negative
## 4949              fecal      disgust
## 4950              fecal     negative
## 4951              feces      disgust
## 4952              feces     negative
## 4953                fee        anger
## 4954                fee     negative
## 4955             feeble     negative
## 4956             feeble      sadness
## 4957            feeling        anger
## 4958            feeling anticipation
## 4959            feeling      disgust
## 4960            feeling         fear
## 4961            feeling          joy
## 4962            feeling     negative
## 4963            feeling     positive
## 4964            feeling      sadness
## 4965            feeling     surprise
## 4966            feeling        trust
## 4967            feigned     negative
## 4968           felicity          joy
## 4969           felicity     positive
## 4970               fell     negative
## 4971               fell      sadness
## 4972             fellow     positive
## 4973             fellow        trust
## 4974         fellowship     positive
## 4975              felon         fear
## 4976              felon     negative
## 4977             felony     negative
## 4978             female     positive
## 4979             fenced        anger
## 4980             fender        trust
## 4981            ferment anticipation
## 4982            ferment     negative
## 4983       fermentation anticipation
## 4984          ferocious        anger
## 4985          ferocious      disgust
## 4986          ferocious         fear
## 4987          ferocious     negative
## 4988           ferocity        anger
## 4989           ferocity     negative
## 4990            fertile     positive
## 4991             fervor        anger
## 4992             fervor          joy
## 4993             fervor     positive
## 4994           festival anticipation
## 4995           festival          joy
## 4996           festival     positive
## 4997           festival     surprise
## 4998            festive          joy
## 4999            festive     positive
## 5000               fete anticipation
## 5001               fete          joy
## 5002               fete     positive
## 5003               fete     surprise
## 5004               feud        anger
## 5005               feud     negative
## 5006             feudal     negative
## 5007          feudalism        anger
## 5008          feudalism     negative
## 5009          feudalism      sadness
## 5010              fever         fear
## 5011           feverish     negative
## 5012             fiasco     negative
## 5013                fib        anger
## 5014                fib     negative
## 5015             fickle     negative
## 5016         fictitious     negative
## 5017           fidelity          joy
## 5018           fidelity     positive
## 5019           fidelity        trust
## 5020              fiend        anger
## 5021              fiend      disgust
## 5022              fiend         fear
## 5023              fiend     negative
## 5024             fierce        anger
## 5025             fierce      disgust
## 5026             fierce         fear
## 5027             fierce     negative
## 5028             fiesta anticipation
## 5029             fiesta          joy
## 5030             fiesta     positive
## 5031             fiesta     surprise
## 5032             fiesta        trust
## 5033              fight        anger
## 5034              fight         fear
## 5035              fight     negative
## 5036           fighting        anger
## 5037           fighting     negative
## 5038         filibuster     negative
## 5039               fill        trust
## 5040              filth      disgust
## 5041              filth     negative
## 5042             filthy      disgust
## 5043             filthy     negative
## 5044            finally anticipation
## 5045            finally      disgust
## 5046            finally          joy
## 5047            finally     positive
## 5048            finally     surprise
## 5049            finally        trust
## 5050             finery     positive
## 5051            finesse     positive
## 5052               fire         fear
## 5053           firearms        anger
## 5054           firearms         fear
## 5055           firearms     negative
## 5056           fireball     positive
## 5057            fireman        trust
## 5058          fireproof     positive
## 5059           firmness     positive
## 5060           firmness        trust
## 5061          firstborn anticipation
## 5062          firstborn          joy
## 5063          firstborn     positive
## 5064          firstborn        trust
## 5065               fits        anger
## 5066               fits     negative
## 5067            fitting anticipation
## 5068            fitting          joy
## 5069            fitting     positive
## 5070            fitting        trust
## 5071              fixed        trust
## 5072            fixture     positive
## 5073             flabby      disgust
## 5074             flabby     negative
## 5075            flaccid     negative
## 5076            flaccid      sadness
## 5077           flagging     negative
## 5078           flagrant        anger
## 5079           flagrant      disgust
## 5080           flagrant     negative
## 5081           flagship        trust
## 5082              flake     negative
## 5083             flange        trust
## 5084               flap     negative
## 5085         flattering          joy
## 5086         flattering     positive
## 5087         flatulence      disgust
## 5088         flatulence     negative
## 5089             flaunt     negative
## 5090               flaw     negative
## 5091               flaw      sadness
## 5092               flea      disgust
## 5093               flea     negative
## 5094               fled         fear
## 5095               flee         fear
## 5096               flee     negative
## 5097             fleece        anger
## 5098             fleece      disgust
## 5099             fleece     negative
## 5100             fleece      sadness
## 5101              fleet     positive
## 5102              flesh      disgust
## 5103             fleshy     negative
## 5104        flexibility     positive
## 5105             flinch anticipation
## 5106             flinch      disgust
## 5107             flinch         fear
## 5108             flinch     negative
## 5109             flinch      sadness
## 5110             flinch     surprise
## 5111              flirt anticipation
## 5112              flirt          joy
## 5113              flirt     negative
## 5114              flirt     positive
## 5115              flirt     surprise
## 5116              flirt        trust
## 5117               flog        anger
## 5118               flog      disgust
## 5119               flog         fear
## 5120               flog     negative
## 5121               flog      sadness
## 5122              flood         fear
## 5123               flop      disgust
## 5124               flop     negative
## 5125               flop      sadness
## 5126             floral     positive
## 5127           flounder         fear
## 5128           flounder     negative
## 5129           flounder      sadness
## 5130               flow     positive
## 5131            flowery     positive
## 5132                flu         fear
## 5133                flu     negative
## 5134        fluctuation        anger
## 5135        fluctuation         fear
## 5136        fluctuation     negative
## 5137              fluke     surprise
## 5138              flush     positive
## 5139             flying         fear
## 5140             flying     positive
## 5141              focus     positive
## 5142                foe        anger
## 5143                foe         fear
## 5144                foe     negative
## 5145             foiled     negative
## 5146           follower        trust
## 5147              folly     negative
## 5148           fondness          joy
## 5149           fondness     positive
## 5150               food          joy
## 5151               food     positive
## 5152               food        trust
## 5153               fool      disgust
## 5154               fool     negative
## 5155            foolish     negative
## 5156        foolishness     negative
## 5157           football anticipation
## 5158           football          joy
## 5159           football     positive
## 5160            footing        trust
## 5161             forage     negative
## 5162              foray        anger
## 5163              foray     negative
## 5164        forbearance     positive
## 5165             forbid     negative
## 5166             forbid      sadness
## 5167         forbidding        anger
## 5168         forbidding         fear
## 5169         forbidding     negative
## 5170              force        anger
## 5171              force         fear
## 5172              force     negative
## 5173             forced         fear
## 5174             forced     negative
## 5175           forcibly        anger
## 5176           forcibly         fear
## 5177           forcibly     negative
## 5178               fore     positive
## 5179            forearm        anger
## 5180            forearm anticipation
## 5181         foreboding anticipation
## 5182         foreboding         fear
## 5183         foreboding     negative
## 5184           forecast anticipation
## 5185           forecast        trust
## 5186          foreclose         fear
## 5187          foreclose     negative
## 5188          foreclose      sadness
## 5189        forefathers          joy
## 5190        forefathers     positive
## 5191        forefathers        trust
## 5192             forego     negative
## 5193          foregoing     positive
## 5194            foreign     negative
## 5195          foreigner         fear
## 5196          foreigner     negative
## 5197            foreman     positive
## 5198         forerunner     positive
## 5199            foresee anticipation
## 5200            foresee     positive
## 5201            foresee     surprise
## 5202            foresee        trust
## 5203           foreseen anticipation
## 5204           foreseen     positive
## 5205          foresight anticipation
## 5206          foresight     positive
## 5207          foresight        trust
## 5208         forewarned anticipation
## 5209         forewarned         fear
## 5210         forewarned     negative
## 5211            forfeit        anger
## 5212            forfeit     negative
## 5213            forfeit      sadness
## 5214          forfeited     negative
## 5215         forfeiture         fear
## 5216         forfeiture     negative
## 5217         forfeiture      sadness
## 5218              forge     positive
## 5219            forgery     negative
## 5220             forget     negative
## 5221            forgive     positive
## 5222           forgiven     positive
## 5223          forgiving     positive
## 5224          forgiving        trust
## 5225          forgotten         fear
## 5226          forgotten     negative
## 5227          forgotten      sadness
## 5228            forlorn     negative
## 5229            forlorn      sadness
## 5230          formality        trust
## 5231          formative     positive
## 5232          formative        trust
## 5233         formidable         fear
## 5234            forming anticipation
## 5235           formless     negative
## 5236            formula     positive
## 5237            formula        trust
## 5238        fornication     negative
## 5239            forsake     negative
## 5240            forsake      sadness
## 5241           forsaken        anger
## 5242           forsaken     negative
## 5243           forsaken      sadness
## 5244               fort        trust
## 5245              forte     positive
## 5246        forthcoming     positive
## 5247            fortify     positive
## 5248          fortitude          joy
## 5249          fortitude     positive
## 5250          fortitude        trust
## 5251           fortress         fear
## 5252           fortress     positive
## 5253           fortress      sadness
## 5254           fortress        trust
## 5255          fortunate     positive
## 5256            fortune anticipation
## 5257            fortune          joy
## 5258            fortune     positive
## 5259            fortune     surprise
## 5260            fortune        trust
## 5261            forward     positive
## 5262               foul        anger
## 5263               foul      disgust
## 5264               foul         fear
## 5265               foul     negative
## 5266              found          joy
## 5267              found     positive
## 5268              found        trust
## 5269         foundation     positive
## 5270           fracture     negative
## 5271            fragile         fear
## 5272            fragile     negative
## 5273            fragile      sadness
## 5274           fragrant     positive
## 5275            frailty     negative
## 5276            frailty      sadness
## 5277          framework        trust
## 5278              frank     positive
## 5279              frank        trust
## 5280          frankness     positive
## 5281          frankness        trust
## 5282            frantic anticipation
## 5283            frantic      disgust
## 5284            frantic         fear
## 5285            frantic     negative
## 5286            frantic     surprise
## 5287          fraternal          joy
## 5288          fraternal     positive
## 5289          fraternal        trust
## 5290              fraud        anger
## 5291              fraud     negative
## 5292         fraudulent        anger
## 5293         fraudulent      disgust
## 5294         fraudulent     negative
## 5295            fraught         fear
## 5296            fraught     negative
## 5297            fraught      sadness
## 5298               fray     negative
## 5299             frayed     negative
## 5300             frayed      sadness
## 5301           freakish      disgust
## 5302           freakish         fear
## 5303           freakish     negative
## 5304           freakish     surprise
## 5305            freedom          joy
## 5306            freedom     positive
## 5307            freedom        trust
## 5308             freely          joy
## 5309             freely     positive
## 5310             freely        trust
## 5311           freezing     negative
## 5312           frenetic        anger
## 5313           frenetic         fear
## 5314           frenetic     negative
## 5315           frenetic     surprise
## 5316           frenzied        anger
## 5317           frenzied         fear
## 5318           frenzied     negative
## 5319             frenzy     negative
## 5320               fret         fear
## 5321               fret     negative
## 5322           friction        anger
## 5323             friend          joy
## 5324             friend     positive
## 5325             friend        trust
## 5326       friendliness          joy
## 5327       friendliness     positive
## 5328       friendliness        trust
## 5329           friendly anticipation
## 5330           friendly          joy
## 5331           friendly     positive
## 5332           friendly        trust
## 5333         friendship          joy
## 5334         friendship     positive
## 5335         friendship        trust
## 5336            frigate         fear
## 5337             fright         fear
## 5338             fright     negative
## 5339             fright     surprise
## 5340           frighten         fear
## 5341           frighten     negative
## 5342           frighten      sadness
## 5343           frighten     surprise
## 5344         frightened         fear
## 5345         frightened     negative
## 5346         frightened     surprise
## 5347          frightful        anger
## 5348          frightful         fear
## 5349          frightful     negative
## 5350          frightful      sadness
## 5351             frigid     negative
## 5352             frisky anticipation
## 5353             frisky          joy
## 5354             frisky     positive
## 5355             frisky     surprise
## 5356          frivolous     negative
## 5357             frolic          joy
## 5358             frolic     positive
## 5359          frostbite     negative
## 5360              froth     negative
## 5361              frown     negative
## 5362              frown      sadness
## 5363           frowning        anger
## 5364           frowning      disgust
## 5365           frowning     negative
## 5366           frowning      sadness
## 5367             frugal     positive
## 5368           fruitful     positive
## 5369          fruitless     negative
## 5370          fruitless      sadness
## 5371          frustrate        anger
## 5372          frustrate      disgust
## 5373          frustrate     negative
## 5374          frustrate      sadness
## 5375         frustrated        anger
## 5376         frustrated     negative
## 5377        frustration        anger
## 5378        frustration     negative
## 5379              fudge     negative
## 5380           fugitive        anger
## 5381           fugitive      disgust
## 5382           fugitive         fear
## 5383           fugitive     negative
## 5384           fugitive      sadness
## 5385           fugitive        trust
## 5386            fulfill          joy
## 5387            fulfill     positive
## 5388        fulfillment anticipation
## 5389        fulfillment          joy
## 5390        fulfillment     positive
## 5391        fulfillment        trust
## 5392               full     positive
## 5393              fully     positive
## 5394              fully        trust
## 5395             fumble     negative
## 5396               fume     negative
## 5397             fuming        anger
## 5398             fuming     negative
## 5399                fun anticipation
## 5400                fun          joy
## 5401                fun     positive
## 5402        fundamental     positive
## 5403        fundamental        trust
## 5404            funeral      sadness
## 5405             fungus      disgust
## 5406             fungus     negative
## 5407               funk     negative
## 5408               funk      sadness
## 5409            furious        anger
## 5410            furious      disgust
## 5411            furious     negative
## 5412          furiously        anger
## 5413            furnace        anger
## 5414              furor        anger
## 5415              furor     negative
## 5416             furrow      sadness
## 5417               fury        anger
## 5418               fury         fear
## 5419               fury     negative
## 5420               fury      sadness
## 5421               fuse     positive
## 5422               fuse        trust
## 5423             fusion     positive
## 5424               fuss        anger
## 5425               fuss     negative
## 5426               fuss      sadness
## 5427              fussy      disgust
## 5428              fussy     negative
## 5429             futile     negative
## 5430             futile      sadness
## 5431           futility     negative
## 5432               gaby      disgust
## 5433               gaby     negative
## 5434                gag      disgust
## 5435                gag     negative
## 5436               gage        trust
## 5437               gain anticipation
## 5438               gain          joy
## 5439               gain     positive
## 5440            gaining     positive
## 5441               gall        anger
## 5442               gall      disgust
## 5443               gall     negative
## 5444            gallant     positive
## 5445          gallantry     positive
## 5446            gallows        anger
## 5447            gallows         fear
## 5448            gallows     negative
## 5449            gallows      sadness
## 5450             galore     positive
## 5451             gamble     negative
## 5452            gambler anticipation
## 5453            gambler     negative
## 5454            gambler     surprise
## 5455           gambling anticipation
## 5456           gambling     negative
## 5457           gambling     surprise
## 5458               gang        anger
## 5459               gang         fear
## 5460               gang     negative
## 5461               gaol     negative
## 5462                gap     negative
## 5463               gape     surprise
## 5464            garbage      disgust
## 5465            garbage     negative
## 5466             garden          joy
## 5467             garden     positive
## 5468             garish      disgust
## 5469             garish     negative
## 5470             garish     surprise
## 5471             garnet     positive
## 5472            garnish     negative
## 5473           garrison     positive
## 5474           garrison        trust
## 5475               gash         fear
## 5476               gash     negative
## 5477               gasp     surprise
## 5478            gasping         fear
## 5479            gasping     negative
## 5480               gate        trust
## 5481            gateway        trust
## 5482             gauche     negative
## 5483            gauging        trust
## 5484              gaunt     negative
## 5485               gawk     surprise
## 5486            gazette     positive
## 5487            gazette        trust
## 5488               gear     positive
## 5489            gelatin      disgust
## 5490                gem          joy
## 5491                gem     positive
## 5492            general     positive
## 5493            general        trust
## 5494         generosity anticipation
## 5495         generosity          joy
## 5496         generosity     positive
## 5497         generosity     surprise
## 5498         generosity        trust
## 5499           generous          joy
## 5500           generous     positive
## 5501           generous        trust
## 5502             genial          joy
## 5503             genial     positive
## 5504             genius     positive
## 5505               gent        anger
## 5506               gent      disgust
## 5507               gent         fear
## 5508               gent     negative
## 5509            genteel     positive
## 5510          gentleman     positive
## 5511          gentleman        trust
## 5512         gentleness     positive
## 5513             gentry     positive
## 5514             gentry        trust
## 5515            genuine     positive
## 5516            genuine        trust
## 5517           geranium     positive
## 5518          geriatric     negative
## 5519          geriatric      sadness
## 5520               germ anticipation
## 5521               germ      disgust
## 5522        germination anticipation
## 5523            ghastly      disgust
## 5524            ghastly         fear
## 5525            ghastly     negative
## 5526             ghetto      disgust
## 5527             ghetto         fear
## 5528             ghetto     negative
## 5529             ghetto      sadness
## 5530              ghost         fear
## 5531            ghostly         fear
## 5532            ghostly     negative
## 5533              giant         fear
## 5534          gibberish        anger
## 5535          gibberish     negative
## 5536               gift anticipation
## 5537               gift          joy
## 5538               gift     positive
## 5539               gift     surprise
## 5540             gifted     positive
## 5541           gigantic     positive
## 5542             giggle          joy
## 5543             giggle     positive
## 5544             girder     positive
## 5545             girder        trust
## 5546             giving     positive
## 5547            glacial     negative
## 5548               glad anticipation
## 5549               glad          joy
## 5550               glad     positive
## 5551          gladiator         fear
## 5552           gladness          joy
## 5553           gladness     positive
## 5554              glare        anger
## 5555              glare         fear
## 5556              glare     negative
## 5557            glaring        anger
## 5558            glaring     negative
## 5559               glee          joy
## 5560               glee     positive
## 5561               glib     negative
## 5562              glide anticipation
## 5563              glide          joy
## 5564              glide     positive
## 5565            glimmer anticipation
## 5566            glimmer          joy
## 5567            glimmer     positive
## 5568            glimmer     surprise
## 5569            glitter      disgust
## 5570            glitter          joy
## 5571         glittering     positive
## 5572              gloom     negative
## 5573              gloom      sadness
## 5574             gloomy     negative
## 5575             gloomy      sadness
## 5576      glorification          joy
## 5577      glorification     positive
## 5578            glorify anticipation
## 5579            glorify          joy
## 5580            glorify     positive
## 5581            glorify     surprise
## 5582            glorify        trust
## 5583              glory anticipation
## 5584              glory          joy
## 5585              glory     positive
## 5586              glory        trust
## 5587              gloss     positive
## 5588               glow anticipation
## 5589               glow          joy
## 5590               glow     positive
## 5591               glow        trust
## 5592            glowing     positive
## 5593               glum     negative
## 5594               glum      sadness
## 5595               glut      disgust
## 5596               glut     negative
## 5597           gluttony      disgust
## 5598           gluttony     negative
## 5599              gnome        anger
## 5600              gnome      disgust
## 5601              gnome         fear
## 5602              gnome     negative
## 5603                gob      disgust
## 5604             goblin      disgust
## 5605             goblin         fear
## 5606             goblin     negative
## 5607                god anticipation
## 5608                god         fear
## 5609                god          joy
## 5610                god     positive
## 5611                god        trust
## 5612            godless        anger
## 5613            godless     negative
## 5614              godly          joy
## 5615              godly     positive
## 5616              godly        trust
## 5617            godsend          joy
## 5618            godsend     positive
## 5619            godsend     surprise
## 5620               gold     positive
## 5621          gonorrhea        anger
## 5622          gonorrhea      disgust
## 5623          gonorrhea         fear
## 5624          gonorrhea     negative
## 5625          gonorrhea      sadness
## 5626                goo      disgust
## 5627                goo     negative
## 5628               good anticipation
## 5629               good          joy
## 5630               good     positive
## 5631               good     surprise
## 5632               good        trust
## 5633             goodly     positive
## 5634           goodness anticipation
## 5635           goodness          joy
## 5636           goodness     positive
## 5637           goodness     surprise
## 5638           goodness        trust
## 5639              goods     positive
## 5640           goodwill     positive
## 5641               gore        anger
## 5642               gore      disgust
## 5643               gore         fear
## 5644               gore     negative
## 5645               gore      sadness
## 5646              gorge      disgust
## 5647              gorge     negative
## 5648           gorgeous          joy
## 5649           gorgeous     positive
## 5650            gorilla     negative
## 5651               gory        anger
## 5652               gory      disgust
## 5653               gory         fear
## 5654               gory     negative
## 5655               gory      sadness
## 5656             gospel     positive
## 5657             gospel        trust
## 5658             gossip     negative
## 5659              gouge     negative
## 5660               gout     negative
## 5661             govern     positive
## 5662             govern        trust
## 5663          governess        trust
## 5664         government         fear
## 5665         government     negative
## 5666           governor        trust
## 5667               grab        anger
## 5668               grab     negative
## 5669              grace     positive
## 5670           graceful     positive
## 5671           gracious     positive
## 5672         graciously     positive
## 5673            gradual anticipation
## 5674         graduation anticipation
## 5675         graduation         fear
## 5676         graduation          joy
## 5677         graduation     positive
## 5678         graduation     surprise
## 5679         graduation        trust
## 5680            grammar        trust
## 5681      grandchildren anticipation
## 5682      grandchildren          joy
## 5683      grandchildren     positive
## 5684      grandchildren        trust
## 5685           grandeur     positive
## 5686        grandfather        trust
## 5687        grandmother     positive
## 5688              grant anticipation
## 5689              grant          joy
## 5690              grant     positive
## 5691              grant        trust
## 5692            granted     positive
## 5693           grasping anticipation
## 5694           grasping     negative
## 5695              grate     negative
## 5696             grated        anger
## 5697             grated     negative
## 5698           grateful     positive
## 5699            gratify          joy
## 5700            gratify     positive
## 5701            gratify     surprise
## 5702            grating        anger
## 5703            grating      disgust
## 5704            grating     negative
## 5705          gratitude          joy
## 5706          gratitude     positive
## 5707         gratuitous      disgust
## 5708              grave         fear
## 5709              grave     negative
## 5710              grave      sadness
## 5711          gravitate anticipation
## 5712               gray      disgust
## 5713               gray      sadness
## 5714             greasy      disgust
## 5715            greater     positive
## 5716          greatness          joy
## 5717          greatness     positive
## 5718          greatness     surprise
## 5719          greatness        trust
## 5720              greed        anger
## 5721              greed      disgust
## 5722              greed     negative
## 5723             greedy      disgust
## 5724             greedy     negative
## 5725              green          joy
## 5726              green     positive
## 5727              green        trust
## 5728           greeting     positive
## 5729           greeting     surprise
## 5730         gregarious     positive
## 5731            grenade         fear
## 5732            grenade     negative
## 5733              grief     negative
## 5734              grief      sadness
## 5735          grievance        anger
## 5736          grievance      disgust
## 5737          grievance     negative
## 5738          grievance      sadness
## 5739             grieve         fear
## 5740             grieve     negative
## 5741             grieve      sadness
## 5742           grievous        anger
## 5743           grievous         fear
## 5744           grievous     negative
## 5745           grievous      sadness
## 5746               grim        anger
## 5747               grim anticipation
## 5748               grim      disgust
## 5749               grim         fear
## 5750               grim     negative
## 5751               grim      sadness
## 5752              grime      disgust
## 5753              grime     negative
## 5754              grimy      disgust
## 5755              grimy     negative
## 5756               grin anticipation
## 5757               grin          joy
## 5758               grin     positive
## 5759               grin     surprise
## 5760               grin        trust
## 5761           grinding     negative
## 5762             grisly      disgust
## 5763             grisly         fear
## 5764             grisly     negative
## 5765              grist     positive
## 5766               grit     positive
## 5767               grit        trust
## 5768            grizzly         fear
## 5769            grizzly     negative
## 5770              groan      disgust
## 5771              groan     negative
## 5772              groan      sadness
## 5773              grope        anger
## 5774              grope      disgust
## 5775              grope         fear
## 5776              grope     negative
## 5777              gross      disgust
## 5778              gross     negative
## 5779          grotesque      disgust
## 5780          grotesque     negative
## 5781             ground        trust
## 5782           grounded         fear
## 5783           grounded     negative
## 5784           grounded      sadness
## 5785         groundless     negative
## 5786         groundwork     positive
## 5787               grow anticipation
## 5788               grow          joy
## 5789               grow     positive
## 5790               grow        trust
## 5791              growl        anger
## 5792              growl         fear
## 5793              growl     negative
## 5794           growling        anger
## 5795           growling      disgust
## 5796           growling         fear
## 5797           growling     negative
## 5798             growth     positive
## 5799             grudge        anger
## 5800             grudge     negative
## 5801         grudgingly     negative
## 5802           gruesome      disgust
## 5803           gruesome     negative
## 5804              gruff        anger
## 5805              gruff      disgust
## 5806              gruff     negative
## 5807            grumble        anger
## 5808            grumble      disgust
## 5809            grumble     negative
## 5810             grumpy        anger
## 5811             grumpy      disgust
## 5812             grumpy     negative
## 5813             grumpy      sadness
## 5814          guarantee     positive
## 5815          guarantee        trust
## 5816              guard         fear
## 5817              guard     positive
## 5818              guard        trust
## 5819            guarded        trust
## 5820           guardian     positive
## 5821           guardian        trust
## 5822       guardianship     positive
## 5823       guardianship        trust
## 5824      gubernatorial     positive
## 5825      gubernatorial        trust
## 5826           guerilla         fear
## 5827           guerilla     negative
## 5828              guess     surprise
## 5829           guidance     positive
## 5830           guidance        trust
## 5831              guide     positive
## 5832              guide        trust
## 5833          guidebook     positive
## 5834          guidebook        trust
## 5835              guile     negative
## 5836         guillotine        anger
## 5837         guillotine anticipation
## 5838         guillotine      disgust
## 5839         guillotine         fear
## 5840         guillotine     negative
## 5841         guillotine      sadness
## 5842              guilt      disgust
## 5843              guilt     negative
## 5844              guilt      sadness
## 5845             guilty        anger
## 5846             guilty     negative
## 5847             guilty      sadness
## 5848              guise     negative
## 5849               gull     negative
## 5850           gullible     negative
## 5851           gullible      sadness
## 5852           gullible        trust
## 5853               gulp         fear
## 5854               gulp     surprise
## 5855                gun        anger
## 5856                gun         fear
## 5857                gun     negative
## 5858          gunpowder         fear
## 5859               guru     positive
## 5860               guru        trust
## 5861               gush      disgust
## 5862               gush          joy
## 5863               gush     negative
## 5864             gusset        trust
## 5865                gut      disgust
## 5866               guts     positive
## 5867             gutter      disgust
## 5868           guzzling     negative
## 5869            gymnast     positive
## 5870              gypsy     negative
## 5871            habitat     positive
## 5872           habitual anticipation
## 5873                hag      disgust
## 5874                hag         fear
## 5875                hag     negative
## 5876            haggard     negative
## 5877            haggard      sadness
## 5878               hail     negative
## 5879               hail     positive
## 5880               hail        trust
## 5881              hairy      disgust
## 5882              hairy     negative
## 5883               hale     positive
## 5884            halfway     negative
## 5885      hallucination         fear
## 5886      hallucination     negative
## 5887             halter        anger
## 5888             halter         fear
## 5889             halter     negative
## 5890             halter      sadness
## 5891            halting         fear
## 5892            halting     negative
## 5893            halting      sadness
## 5894             hamper     negative
## 5895          hamstring        anger
## 5896          hamstring     negative
## 5897          hamstring      sadness
## 5898           handbook        trust
## 5899           handicap     negative
## 5900           handicap      sadness
## 5901              handy     positive
## 5902            hanging        anger
## 5903            hanging      disgust
## 5904            hanging         fear
## 5905            hanging     negative
## 5906            hanging      sadness
## 5907            hangman         fear
## 5908            hangman     negative
## 5909          hankering anticipation
## 5910                hap anticipation
## 5911                hap     surprise
## 5912             happen anticipation
## 5913            happily          joy
## 5914            happily     positive
## 5915          happiness anticipation
## 5916          happiness          joy
## 5917          happiness     positive
## 5918              happy anticipation
## 5919              happy          joy
## 5920              happy     positive
## 5921              happy        trust
## 5922             harass        anger
## 5923             harass      disgust
## 5924             harass     negative
## 5925          harassing        anger
## 5926          harbinger        anger
## 5927          harbinger anticipation
## 5928          harbinger         fear
## 5929          harbinger     negative
## 5930             harbor        trust
## 5931           hardened        anger
## 5932           hardened      disgust
## 5933           hardened         fear
## 5934           hardened     negative
## 5935           hardness     negative
## 5936           hardship     negative
## 5937           hardship      sadness
## 5938              hardy          joy
## 5939              hardy     positive
## 5940              hardy        trust
## 5941             harlot      disgust
## 5942             harlot     negative
## 5943               harm         fear
## 5944               harm     negative
## 5945            harmful        anger
## 5946            harmful      disgust
## 5947            harmful         fear
## 5948            harmful     negative
## 5949            harmful      sadness
## 5950       harmoniously          joy
## 5951       harmoniously     positive
## 5952       harmoniously        trust
## 5953            harmony          joy
## 5954            harmony     positive
## 5955            harmony        trust
## 5956          harrowing         fear
## 5957          harrowing     negative
## 5958              harry        anger
## 5959              harry     negative
## 5960              harry      sadness
## 5961          harshness        anger
## 5962          harshness         fear
## 5963          harshness     negative
## 5964            harvest anticipation
## 5965            harvest          joy
## 5966            harvest     positive
## 5967               hash     negative
## 5968            hashish     negative
## 5969              haste anticipation
## 5970              hasty     negative
## 5971               hate        anger
## 5972               hate      disgust
## 5973               hate         fear
## 5974               hate     negative
## 5975               hate      sadness
## 5976            hateful        anger
## 5977            hateful      disgust
## 5978            hateful         fear
## 5979            hateful     negative
## 5980            hateful      sadness
## 5981             hating        anger
## 5982             hating     negative
## 5983             hatred        anger
## 5984             hatred      disgust
## 5985             hatred         fear
## 5986             hatred     negative
## 5987             hatred      sadness
## 5988            haughty        anger
## 5989            haughty     negative
## 5990              haunt         fear
## 5991              haunt     negative
## 5992            haunted         fear
## 5993            haunted     negative
## 5994            haunted      sadness
## 5995              haven     positive
## 5996              haven        trust
## 5997              havoc        anger
## 5998              havoc         fear
## 5999              havoc     negative
## 6000               hawk         fear
## 6001             hazard         fear
## 6002             hazard     negative
## 6003          hazardous         fear
## 6004          hazardous     negative
## 6005               haze         fear
## 6006               haze     negative
## 6007           headache     negative
## 6008          headlight anticipation
## 6009            headway     positive
## 6010              heady     negative
## 6011               heal          joy
## 6012               heal     positive
## 6013               heal        trust
## 6014            healing anticipation
## 6015            healing          joy
## 6016            healing     positive
## 6017            healing        trust
## 6018          healthful          joy
## 6019          healthful     positive
## 6020            healthy     positive
## 6021            hearing         fear
## 6022            hearing     negative
## 6023            hearsay     negative
## 6024             hearse         fear
## 6025             hearse     negative
## 6026             hearse      sadness
## 6027          heartache     negative
## 6028          heartache      sadness
## 6029          heartburn     negative
## 6030          heartfelt          joy
## 6031          heartfelt     positive
## 6032          heartfelt      sadness
## 6033          heartfelt        trust
## 6034             hearth     positive
## 6035           heartily          joy
## 6036           heartily     positive
## 6037          heartless     negative
## 6038          heartless      sadness
## 6039          heartworm      disgust
## 6040            heathen         fear
## 6041            heathen     negative
## 6042           heavenly anticipation
## 6043           heavenly          joy
## 6044           heavenly     positive
## 6045           heavenly        trust
## 6046            heavens          joy
## 6047            heavens     positive
## 6048            heavens        trust
## 6049            heavily     negative
## 6050           hedonism          joy
## 6051           hedonism     negative
## 6052           hedonism     positive
## 6053               heel     negative
## 6054               heft anticipation
## 6055               heft         fear
## 6056               heft     positive
## 6057           heighten         fear
## 6058           heighten     negative
## 6059            heinous     negative
## 6060               hell        anger
## 6061               hell      disgust
## 6062               hell         fear
## 6063               hell     negative
## 6064               hell      sadness
## 6065            hellish        anger
## 6066            hellish      disgust
## 6067            hellish         fear
## 6068            hellish     negative
## 6069            hellish      sadness
## 6070             helmet         fear
## 6071             helmet     positive
## 6072             helper     positive
## 6073             helper        trust
## 6074            helpful          joy
## 6075            helpful     positive
## 6076            helpful        trust
## 6077           helpless         fear
## 6078           helpless     negative
## 6079           helpless      sadness
## 6080       helplessness         fear
## 6081       helplessness     negative
## 6082       helplessness      sadness
## 6083         hemorrhage      disgust
## 6084         hemorrhage         fear
## 6085         hemorrhage     negative
## 6086         hemorrhage      sadness
## 6087        hemorrhoids     negative
## 6088             herbal     positive
## 6089             heresy     negative
## 6090            heretic      disgust
## 6091            heretic     negative
## 6092           heritage        trust
## 6093      hermaphrodite     negative
## 6094      hermaphrodite     surprise
## 6095             hermit      sadness
## 6096             hermit        trust
## 6097               hero anticipation
## 6098               hero          joy
## 6099               hero     positive
## 6100               hero     surprise
## 6101               hero        trust
## 6102             heroic          joy
## 6103             heroic     positive
## 6104             heroic     surprise
## 6105             heroic        trust
## 6106            heroics     positive
## 6107             heroin     negative
## 6108            heroine     positive
## 6109            heroine        trust
## 6110            heroism anticipation
## 6111            heroism          joy
## 6112            heroism     positive
## 6113            heroism     surprise
## 6114            heroism        trust
## 6115             herpes      disgust
## 6116             herpes     negative
## 6117        herpesvirus      disgust
## 6118        herpesvirus     negative
## 6119         hesitation         fear
## 6120         hesitation     negative
## 6121             heyday anticipation
## 6122             heyday          joy
## 6123             heyday     positive
## 6124             heyday        trust
## 6125             hidden     negative
## 6126               hide         fear
## 6127            hideous      disgust
## 6128            hideous         fear
## 6129            hideous     negative
## 6130            hideous      sadness
## 6131             hiding         fear
## 6132            highest anticipation
## 6133            highest         fear
## 6134            highest          joy
## 6135            highest     negative
## 6136            highest     positive
## 6137            highest     surprise
## 6138          hilarious          joy
## 6139          hilarious     positive
## 6140          hilarious     surprise
## 6141           hilarity          joy
## 6142           hilarity     positive
## 6143          hindering     negative
## 6144          hindering      sadness
## 6145          hindrance     negative
## 6146             hippie     negative
## 6147               hire anticipation
## 6148               hire          joy
## 6149               hire     positive
## 6150               hire        trust
## 6151               hiss        anger
## 6152               hiss         fear
## 6153               hiss     negative
## 6154            hissing     negative
## 6155                hit        anger
## 6156                hit     negative
## 6157           hitherto     negative
## 6158               hive     negative
## 6159             hoarse     negative
## 6160              hoary     negative
## 6161              hoary      sadness
## 6162               hoax        anger
## 6163               hoax      disgust
## 6164               hoax     negative
## 6165               hoax      sadness
## 6166               hoax     surprise
## 6167              hobby          joy
## 6168              hobby     positive
## 6169               hobo     negative
## 6170               hobo      sadness
## 6171                hog      disgust
## 6172                hog     negative
## 6173            holiday anticipation
## 6174            holiday          joy
## 6175            holiday     positive
## 6176           holiness anticipation
## 6177           holiness         fear
## 6178           holiness          joy
## 6179           holiness     positive
## 6180           holiness     surprise
## 6181           holiness        trust
## 6182             hollow     negative
## 6183             hollow      sadness
## 6184          holocaust        anger
## 6185          holocaust      disgust
## 6186          holocaust         fear
## 6187          holocaust     negative
## 6188          holocaust      sadness
## 6189               holy     positive
## 6190             homage     positive
## 6191           homeless        anger
## 6192           homeless anticipation
## 6193           homeless      disgust
## 6194           homeless         fear
## 6195           homeless     negative
## 6196           homeless      sadness
## 6197           homesick     negative
## 6198           homesick      sadness
## 6199           homework         fear
## 6200          homicidal        anger
## 6201          homicidal         fear
## 6202          homicidal     negative
## 6203           homicide        anger
## 6204           homicide      disgust
## 6205           homicide         fear
## 6206           homicide     negative
## 6207           homicide      sadness
## 6208           homology     positive
## 6209      homosexuality     negative
## 6210             honest        anger
## 6211             honest      disgust
## 6212             honest         fear
## 6213             honest          joy
## 6214             honest     positive
## 6215             honest      sadness
## 6216             honest        trust
## 6217            honesty     positive
## 6218            honesty        trust
## 6219              honey     positive
## 6220          honeymoon anticipation
## 6221          honeymoon          joy
## 6222          honeymoon     positive
## 6223          honeymoon     surprise
## 6224          honeymoon        trust
## 6225              honor     positive
## 6226              honor        trust
## 6227          honorable     positive
## 6228          honorable        trust
## 6229               hood        anger
## 6230               hood      disgust
## 6231               hood         fear
## 6232               hood     negative
## 6233             hooded         fear
## 6234             hooked     negative
## 6235               hoot        anger
## 6236               hoot      disgust
## 6237               hoot     negative
## 6238               hope anticipation
## 6239               hope          joy
## 6240               hope     positive
## 6241               hope     surprise
## 6242               hope        trust
## 6243            hopeful anticipation
## 6244            hopeful          joy
## 6245            hopeful     positive
## 6246            hopeful     surprise
## 6247            hopeful        trust
## 6248           hopeless         fear
## 6249           hopeless     negative
## 6250           hopeless      sadness
## 6251       hopelessness        anger
## 6252       hopelessness      disgust
## 6253       hopelessness         fear
## 6254       hopelessness     negative
## 6255       hopelessness      sadness
## 6256              horde     negative
## 6257              horde     surprise
## 6258            horizon anticipation
## 6259            horizon     positive
## 6260          horoscope anticipation
## 6261           horrible        anger
## 6262           horrible      disgust
## 6263           horrible         fear
## 6264           horrible     negative
## 6265           horribly     negative
## 6266             horrid        anger
## 6267             horrid      disgust
## 6268             horrid         fear
## 6269             horrid     negative
## 6270             horrid      sadness
## 6271           horrific        anger
## 6272           horrific      disgust
## 6273           horrific         fear
## 6274           horrific     negative
## 6275           horrific      sadness
## 6276          horrified         fear
## 6277          horrified     negative
## 6278         horrifying      disgust
## 6279         horrifying         fear
## 6280         horrifying     negative
## 6281         horrifying      sadness
## 6282             horror        anger
## 6283             horror      disgust
## 6284             horror         fear
## 6285             horror     negative
## 6286             horror      sadness
## 6287             horror     surprise
## 6288            horrors         fear
## 6289            horrors     negative
## 6290            horrors      sadness
## 6291              horse        trust
## 6292            hospice      sadness
## 6293           hospital         fear
## 6294           hospital      sadness
## 6295           hospital        trust
## 6296        hospitality     positive
## 6297            hostage        anger
## 6298            hostage         fear
## 6299            hostage     negative
## 6300            hostile        anger
## 6301            hostile      disgust
## 6302            hostile         fear
## 6303            hostile     negative
## 6304        hostilities        anger
## 6305        hostilities         fear
## 6306        hostilities     negative
## 6307          hostility        anger
## 6308          hostility      disgust
## 6309          hostility     negative
## 6310                hot        anger
## 6311          household     positive
## 6312       housekeeping     positive
## 6313               howl        anger
## 6314               howl      disgust
## 6315               howl         fear
## 6316               howl     negative
## 6317               howl      sadness
## 6318               howl     surprise
## 6319               huff        anger
## 6320               huff      disgust
## 6321               huff     negative
## 6322                hug          joy
## 6323                hug     positive
## 6324                hug        trust
## 6325               hulk      disgust
## 6326             humane     positive
## 6327       humanitarian anticipation
## 6328       humanitarian          joy
## 6329       humanitarian     positive
## 6330       humanitarian     surprise
## 6331       humanitarian        trust
## 6332           humanity          joy
## 6333           humanity     positive
## 6334           humanity        trust
## 6335             humble      disgust
## 6336             humble     negative
## 6337             humble     positive
## 6338             humble      sadness
## 6339            humbled     positive
## 6340            humbled      sadness
## 6341             humbly     positive
## 6342             humbug        anger
## 6343             humbug      disgust
## 6344             humbug     negative
## 6345             humbug      sadness
## 6346          humiliate        anger
## 6347          humiliate     negative
## 6348          humiliate      sadness
## 6349        humiliating      disgust
## 6350        humiliating     negative
## 6351        humiliation      disgust
## 6352        humiliation     negative
## 6353        humiliation      sadness
## 6354           humility     positive
## 6355           humility        trust
## 6356           humorist     positive
## 6357           humorous          joy
## 6358           humorous     positive
## 6359              hunch     negative
## 6360             hungry anticipation
## 6361             hungry     negative
## 6362             hunter anticipation
## 6363             hunter         fear
## 6364             hunter     negative
## 6365             hunter      sadness
## 6366            hunting        anger
## 6367            hunting anticipation
## 6368            hunting         fear
## 6369            hunting     negative
## 6370             hurrah          joy
## 6371             hurrah     positive
## 6372          hurricane         fear
## 6373          hurricane     negative
## 6374            hurried anticipation
## 6375            hurried     negative
## 6376              hurry anticipation
## 6377               hurt        anger
## 6378               hurt         fear
## 6379               hurt     negative
## 6380               hurt      sadness
## 6381            hurtful        anger
## 6382            hurtful      disgust
## 6383            hurtful         fear
## 6384            hurtful     negative
## 6385            hurtful      sadness
## 6386            hurting        anger
## 6387            hurting         fear
## 6388            hurting     negative
## 6389            hurting      sadness
## 6390          husbandry     positive
## 6391          husbandry        trust
## 6392               hush     positive
## 6393            hustler     negative
## 6394                hut     positive
## 6395                hut      sadness
## 6396              hydra         fear
## 6397              hydra     negative
## 6398      hydrocephalus      disgust
## 6399      hydrocephalus         fear
## 6400      hydrocephalus     negative
## 6401      hydrocephalus      sadness
## 6402           hygienic     positive
## 6403               hymn anticipation
## 6404               hymn          joy
## 6405               hymn     positive
## 6406               hymn      sadness
## 6407               hymn        trust
## 6408               hype anticipation
## 6409               hype     negative
## 6410          hyperbole     negative
## 6411        hypertrophy      disgust
## 6412        hypertrophy         fear
## 6413        hypertrophy     surprise
## 6414          hypocrisy     negative
## 6415          hypocrite      disgust
## 6416          hypocrite     negative
## 6417       hypocritical      disgust
## 6418       hypocritical     negative
## 6419         hypothesis anticipation
## 6420         hypothesis     surprise
## 6421           hysteria         fear
## 6422           hysteria     negative
## 6423         hysterical        anger
## 6424         hysterical         fear
## 6425         hysterical     negative
## 6426           idealism     positive
## 6427             idiocy        anger
## 6428             idiocy      disgust
## 6429             idiocy     negative
## 6430             idiocy      sadness
## 6431              idiot      disgust
## 6432              idiot     negative
## 6433            idiotic        anger
## 6434            idiotic      disgust
## 6435            idiotic     negative
## 6436              idler     negative
## 6437               idol     positive
## 6438           idolatry      disgust
## 6439           idolatry         fear
## 6440           idolatry     negative
## 6441          ignorance     negative
## 6442           ignorant      disgust
## 6443           ignorant     negative
## 6444             ignore     negative
## 6445                ill        anger
## 6446                ill      disgust
## 6447                ill         fear
## 6448                ill     negative
## 6449                ill      sadness
## 6450            illegal        anger
## 6451            illegal      disgust
## 6452            illegal         fear
## 6453            illegal     negative
## 6454            illegal      sadness
## 6455         illegality        anger
## 6456         illegality      disgust
## 6457         illegality         fear
## 6458         illegality     negative
## 6459          illegible     negative
## 6460       illegitimate        anger
## 6461       illegitimate      disgust
## 6462       illegitimate         fear
## 6463       illegitimate     negative
## 6464       illegitimate      sadness
## 6465       illegitimate     surprise
## 6466            illicit        anger
## 6467            illicit      disgust
## 6468            illicit         fear
## 6469            illicit     negative
## 6470         illiterate      disgust
## 6471         illiterate     negative
## 6472            illness         fear
## 6473            illness     negative
## 6474            illness      sadness
## 6475          illogical     negative
## 6476         illuminate anticipation
## 6477         illuminate          joy
## 6478         illuminate     positive
## 6479         illuminate     surprise
## 6480       illumination          joy
## 6481       illumination     positive
## 6482       illumination     surprise
## 6483       illumination        trust
## 6484           illusion     negative
## 6485           illusion     surprise
## 6486         illustrate     positive
## 6487        illustrious     positive
## 6488        imaginative     positive
## 6489           imitated     negative
## 6490          imitation     negative
## 6491         immaculate          joy
## 6492         immaculate     positive
## 6493         immaculate        trust
## 6494           immature anticipation
## 6495           immature     negative
## 6496         immaturity        anger
## 6497         immaturity anticipation
## 6498         immaturity     negative
## 6499          immediacy     surprise
## 6500        immediately anticipation
## 6501        immediately     negative
## 6502        immediately     positive
## 6503            immense     positive
## 6504            immerse anticipation
## 6505            immerse         fear
## 6506            immerse          joy
## 6507            immerse     positive
## 6508            immerse     surprise
## 6509            immerse        trust
## 6510          immigrant         fear
## 6511           imminent anticipation
## 6512           imminent         fear
## 6513            immoral        anger
## 6514            immoral      disgust
## 6515            immoral         fear
## 6516            immoral     negative
## 6517            immoral      sadness
## 6518         immorality        anger
## 6519         immorality      disgust
## 6520         immorality     negative
## 6521           immortal     positive
## 6522        immortality anticipation
## 6523          immovable     negative
## 6524          immovable     positive
## 6525          immovable        trust
## 6526       immunization        trust
## 6527             impair     negative
## 6528         impairment     negative
## 6529             impart     positive
## 6530             impart        trust
## 6531          impartial     positive
## 6532          impartial        trust
## 6533       impartiality     positive
## 6534       impartiality        trust
## 6535         impassable     negative
## 6536         impatience     negative
## 6537          impatient anticipation
## 6538          impatient     negative
## 6539            impeach      disgust
## 6540            impeach         fear
## 6541            impeach     negative
## 6542        impeachment     negative
## 6543         impeccable     positive
## 6544         impeccable        trust
## 6545             impede     negative
## 6546          impending anticipation
## 6547          impending         fear
## 6548       impenetrable        trust
## 6549       imperfection     negative
## 6550        imperfectly     negative
## 6551        impermeable        anger
## 6552        impermeable         fear
## 6553        impersonate     negative
## 6554      impersonation     negative
## 6555         impervious     positive
## 6556         implacable     negative
## 6557          implicate        anger
## 6558          implicate     negative
## 6559           impolite      disgust
## 6560           impolite     negative
## 6561         importance anticipation
## 6562         importance     positive
## 6563          important     positive
## 6564          important        trust
## 6565         imposition     negative
## 6566         impossible     negative
## 6567         impossible      sadness
## 6568          impotence        anger
## 6569          impotence         fear
## 6570          impotence     negative
## 6571          impotence      sadness
## 6572           impotent     negative
## 6573            impound     negative
## 6574      impracticable     negative
## 6575            impress     positive
## 6576         impression     positive
## 6577     impressionable        trust
## 6578           imprison     negative
## 6579         imprisoned        anger
## 6580         imprisoned      disgust
## 6581         imprisoned         fear
## 6582         imprisoned     negative
## 6583         imprisoned      sadness
## 6584       imprisonment        anger
## 6585       imprisonment      disgust
## 6586       imprisonment         fear
## 6587       imprisonment     negative
## 6588       imprisonment      sadness
## 6589        impropriety     negative
## 6590            improve anticipation
## 6591            improve          joy
## 6592            improve     positive
## 6593            improve        trust
## 6594           improved     positive
## 6595        improvement          joy
## 6596        improvement     positive
## 6597        improvement        trust
## 6598          improving     positive
## 6599      improvisation     surprise
## 6600          improvise anticipation
## 6601          improvise     positive
## 6602          improvise     surprise
## 6603          imprudent     negative
## 6604          imprudent      sadness
## 6605             impure      disgust
## 6606             impure     negative
## 6607           impurity      disgust
## 6608           impurity     negative
## 6609         imputation     negative
## 6610          inability     negative
## 6611          inability      sadness
## 6612       inaccessible     negative
## 6613         inaccurate     negative
## 6614           inaction     negative
## 6615         inactivity     negative
## 6616         inadequacy     negative
## 6617         inadequate     negative
## 6618         inadequate      sadness
## 6619       inadmissible        anger
## 6620       inadmissible      disgust
## 6621       inadmissible     negative
## 6622        inalienable     positive
## 6623              inane     negative
## 6624       inapplicable     negative
## 6625      inappropriate        anger
## 6626      inappropriate      disgust
## 6627      inappropriate     negative
## 6628      inappropriate      sadness
## 6629        inattention        anger
## 6630        inattention     negative
## 6631          inaudible     negative
## 6632          inaugural anticipation
## 6633       inauguration anticipation
## 6634       inauguration          joy
## 6635       inauguration     positive
## 6636       inauguration        trust
## 6637       incalculable     negative
## 6638         incapacity     negative
## 6639      incarceration        anger
## 6640      incarceration      disgust
## 6641      incarceration         fear
## 6642      incarceration     negative
## 6643      incarceration      sadness
## 6644             incase        anger
## 6645             incase      disgust
## 6646             incase         fear
## 6647             incase     negative
## 6648             incase      sadness
## 6649         incendiary        anger
## 6650         incendiary         fear
## 6651         incendiary     negative
## 6652         incendiary     surprise
## 6653            incense        anger
## 6654            incense     negative
## 6655          incessant     negative
## 6656             incest        anger
## 6657             incest      disgust
## 6658             incest         fear
## 6659             incest     negative
## 6660             incest      sadness
## 6661         incestuous      disgust
## 6662         incestuous     negative
## 6663           incident     surprise
## 6664       incineration     negative
## 6665           incisive     positive
## 6666             incite        anger
## 6667             incite anticipation
## 6668             incite         fear
## 6669             incite     negative
## 6670          inclement     negative
## 6671            incline        trust
## 6672            include     positive
## 6673           included     positive
## 6674          including     positive
## 6675          inclusion        trust
## 6676          inclusive     positive
## 6677         incoherent     negative
## 6678             income anticipation
## 6679             income          joy
## 6680             income     negative
## 6681             income     positive
## 6682             income      sadness
## 6683             income        trust
## 6684       incompatible        anger
## 6685       incompatible      disgust
## 6686       incompatible     negative
## 6687       incompatible      sadness
## 6688       incompetence     negative
## 6689        incompetent        anger
## 6690        incompetent     negative
## 6691        incompetent      sadness
## 6692     incompleteness     negative
## 6693   incomprehensible     negative
## 6694        incongruous        anger
## 6695        incongruous     negative
## 6696    inconsequential     negative
## 6697    inconsequential      sadness
## 6698      inconsiderate        anger
## 6699      inconsiderate      disgust
## 6700      inconsiderate     negative
## 6701      inconsiderate      sadness
## 6702      inconsistency     negative
## 6703       incontinence     surprise
## 6704       inconvenient        anger
## 6705       inconvenient      disgust
## 6706       inconvenient     negative
## 6707       inconvenient      sadness
## 6708          incorrect     negative
## 6709           increase     positive
## 6710        incredulous        anger
## 6711        incredulous      disgust
## 6712        incredulous     negative
## 6713      incrimination         fear
## 6714      incrimination     negative
## 6715      incrimination      sadness
## 6716            incubus      disgust
## 6717            incubus         fear
## 6718            incubus     negative
## 6719              incur     negative
## 6720          incurable        anger
## 6721          incurable      disgust
## 6722          incurable         fear
## 6723          incurable     negative
## 6724          incurable      sadness
## 6725          incursion         fear
## 6726          incursion     negative
## 6727          indecency        anger
## 6728          indecency      disgust
## 6729           indecent      disgust
## 6730           indecent     negative
## 6731         indecision     negative
## 6732         indecisive     negative
## 6733       indefensible         fear
## 6734       indefensible     negative
## 6735          indelible     positive
## 6736          indelible        trust
## 6737          indemnify     negative
## 6738          indemnity     positive
## 6739          indemnity        trust
## 6740             indent        trust
## 6741          indenture        anger
## 6742          indenture     negative
## 6743       independence anticipation
## 6744       independence          joy
## 6745       independence     positive
## 6746       independence     surprise
## 6747       independence        trust
## 6748     indestructible     positive
## 6749     indestructible        trust
## 6750      indeterminate     negative
## 6751             indict        anger
## 6752             indict         fear
## 6753             indict     negative
## 6754         indictment         fear
## 6755         indictment     negative
## 6756       indifference        anger
## 6757       indifference      disgust
## 6758       indifference         fear
## 6759       indifference     negative
## 6760       indifference      sadness
## 6761           indigent     negative
## 6762           indigent      sadness
## 6763          indignant        anger
## 6764          indignant     negative
## 6765        indignation        anger
## 6766        indignation      disgust
## 6767        indignation     negative
## 6768         indistinct     negative
## 6769      individuality     positive
## 6770        indivisible        trust
## 6771     indoctrination        anger
## 6772     indoctrination         fear
## 6773     indoctrination     negative
## 6774           indolent     negative
## 6775        indomitable         fear
## 6776        indomitable     positive
## 6777          ineffable     positive
## 6778        ineffective     negative
## 6779        ineffectual      disgust
## 6780        ineffectual     negative
## 6781       inefficiency      disgust
## 6782       inefficiency     negative
## 6783       inefficiency      sadness
## 6784        inefficient     negative
## 6785        inefficient      sadness
## 6786              inept        anger
## 6787              inept      disgust
## 6788              inept     negative
## 6789         ineptitude      disgust
## 6790         ineptitude         fear
## 6791         ineptitude     negative
## 6792         ineptitude      sadness
## 6793         inequality        anger
## 6794         inequality         fear
## 6795         inequality     negative
## 6796         inequality      sadness
## 6797        inequitable     negative
## 6798              inert     negative
## 6799        inexcusable        anger
## 6800        inexcusable      disgust
## 6801        inexcusable     negative
## 6802        inexcusable      sadness
## 6803        inexpensive     positive
## 6804       inexperience     negative
## 6805      inexperienced     negative
## 6806       inexplicable     negative
## 6807       inexplicable     surprise
## 6808      infallibility        trust
## 6809         infallible     positive
## 6810           infamous        anger
## 6811           infamous      disgust
## 6812           infamous         fear
## 6813           infamous     negative
## 6814             infamy     negative
## 6815             infamy      sadness
## 6816             infant anticipation
## 6817             infant         fear
## 6818             infant          joy
## 6819             infant     positive
## 6820             infant     surprise
## 6821        infanticide        anger
## 6822        infanticide anticipation
## 6823        infanticide      disgust
## 6824        infanticide         fear
## 6825        infanticide     negative
## 6826        infanticide      sadness
## 6827          infantile        anger
## 6828          infantile      disgust
## 6829          infantile     negative
## 6830            infarct         fear
## 6831            infarct     negative
## 6832            infarct     surprise
## 6833             infect      disgust
## 6834             infect     negative
## 6835          infection         fear
## 6836          infection     negative
## 6837         infectious      disgust
## 6838         infectious         fear
## 6839         infectious     negative
## 6840         infectious      sadness
## 6841           inferior     negative
## 6842           inferior      sadness
## 6843        inferiority     negative
## 6844            inferno        anger
## 6845            inferno         fear
## 6846            inferno     negative
## 6847        infertility     negative
## 6848        infertility      sadness
## 6849        infestation      disgust
## 6850        infestation         fear
## 6851        infestation     negative
## 6852            infidel        anger
## 6853            infidel      disgust
## 6854            infidel         fear
## 6855            infidel     negative
## 6856         infidelity        anger
## 6857         infidelity      disgust
## 6858         infidelity         fear
## 6859         infidelity     negative
## 6860         infidelity      sadness
## 6861       infiltration     negative
## 6862       infiltration     positive
## 6863           infinite     positive
## 6864           infinity anticipation
## 6865           infinity          joy
## 6866           infinity     positive
## 6867           infinity        trust
## 6868             infirm     negative
## 6869          infirmity         fear
## 6870          infirmity     negative
## 6871       inflammation     negative
## 6872           inflated     negative
## 6873          inflation         fear
## 6874          inflation     negative
## 6875            inflict        anger
## 6876            inflict         fear
## 6877            inflict     negative
## 6878            inflict      sadness
## 6879         infliction         fear
## 6880         infliction     negative
## 6881         infliction      sadness
## 6882          influence     negative
## 6883          influence     positive
## 6884        influential     positive
## 6885        influential        trust
## 6886          influenza     negative
## 6887             inform        trust
## 6888        information     positive
## 6889           informer     negative
## 6890         infraction        anger
## 6891         infraction     negative
## 6892         infrequent     surprise
## 6893       infrequently     negative
## 6894       infringement     negative
## 6895          ingenious     positive
## 6896        inheritance anticipation
## 6897        inheritance          joy
## 6898        inheritance     positive
## 6899        inheritance     surprise
## 6900        inheritance        trust
## 6901            inhibit        anger
## 6902            inhibit      disgust
## 6903            inhibit     negative
## 6904            inhibit      sadness
## 6905       inhospitable     negative
## 6906       inhospitable      sadness
## 6907            inhuman        anger
## 6908            inhuman      disgust
## 6909            inhuman         fear
## 6910            inhuman     negative
## 6911            inhuman      sadness
## 6912         inhumanity     negative
## 6913         inhumanity      sadness
## 6914           inimical        anger
## 6915           inimical     negative
## 6916           inimical      sadness
## 6917         inimitable     positive
## 6918         inimitable        trust
## 6919           iniquity      disgust
## 6920           iniquity     negative
## 6921          injection         fear
## 6922         injunction     negative
## 6923             injure        anger
## 6924             injure         fear
## 6925             injure     negative
## 6926             injure      sadness
## 6927            injured         fear
## 6928            injured     negative
## 6929            injured      sadness
## 6930          injurious        anger
## 6931          injurious         fear
## 6932          injurious     negative
## 6933          injurious      sadness
## 6934             injury        anger
## 6935             injury         fear
## 6936             injury     negative
## 6937             injury      sadness
## 6938          injustice        anger
## 6939          injustice     negative
## 6940             inmate      disgust
## 6941             inmate         fear
## 6942             inmate     negative
## 6943          innocence     positive
## 6944           innocent     positive
## 6945           innocent        trust
## 6946         innocently     positive
## 6947          innocuous     positive
## 6948           innovate     positive
## 6949         innovation     positive
## 6950        inoculation anticipation
## 6951        inoculation        trust
## 6952        inoperative        anger
## 6953        inoperative     negative
## 6954           inquirer     positive
## 6955            inquiry anticipation
## 6956            inquiry     positive
## 6957        inquisitive     positive
## 6958             insane        anger
## 6959             insane         fear
## 6960             insane     negative
## 6961           insanity        anger
## 6962           insanity      disgust
## 6963           insanity         fear
## 6964           insanity     negative
## 6965           insanity      sadness
## 6966           insecure        anger
## 6967           insecure         fear
## 6968           insecure     negative
## 6969           insecure      sadness
## 6970         insecurity         fear
## 6971         insecurity     negative
## 6972        inseparable          joy
## 6973        inseparable     positive
## 6974        inseparable        trust
## 6975          insidious        anger
## 6976          insidious      disgust
## 6977          insidious         fear
## 6978          insidious     negative
## 6979           insignia     positive
## 6980     insignificance     negative
## 6981      insignificant        anger
## 6982      insignificant     negative
## 6983      insignificant      sadness
## 6984            insipid     negative
## 6985           insolent     negative
## 6986         insolvency         fear
## 6987         insolvency     negative
## 6988         insolvency      sadness
## 6989         insolvency     surprise
## 6990          insolvent         fear
## 6991          insolvent     negative
## 6992          insolvent      sadness
## 6993          insolvent        trust
## 6994          inspector     positive
## 6995        inspiration anticipation
## 6996        inspiration          joy
## 6997        inspiration     positive
## 6998            inspire anticipation
## 6999            inspire          joy
## 7000            inspire     positive
## 7001            inspire        trust
## 7002           inspired          joy
## 7003           inspired     positive
## 7004           inspired     surprise
## 7005           inspired        trust
## 7006        instability      disgust
## 7007        instability         fear
## 7008        instability     negative
## 7009            install anticipation
## 7010          instigate     negative
## 7011        instigation     negative
## 7012        instinctive        anger
## 7013        instinctive      disgust
## 7014        instinctive         fear
## 7015        instinctive     positive
## 7016          institute        trust
## 7017           instruct     positive
## 7018           instruct        trust
## 7019        instruction     positive
## 7020        instruction        trust
## 7021       instructions anticipation
## 7022       instructions        trust
## 7023         instructor anticipation
## 7024         instructor     positive
## 7025         instructor        trust
## 7026       instrumental     positive
## 7027      insufficiency        anger
## 7028      insufficiency     negative
## 7029       insufficient     negative
## 7030     insufficiently     negative
## 7031         insulation        trust
## 7032             insult        anger
## 7033             insult      disgust
## 7034             insult     negative
## 7035             insult      sadness
## 7036             insult     surprise
## 7037          insulting        anger
## 7038          insulting      disgust
## 7039          insulting         fear
## 7040          insulting     negative
## 7041          insulting      sadness
## 7042             insure     positive
## 7043             insure        trust
## 7044          insurgent     negative
## 7045     insurmountable         fear
## 7046     insurmountable     negative
## 7047     insurmountable      sadness
## 7048       insurrection        anger
## 7049       insurrection     negative
## 7050             intact     positive
## 7051             intact        trust
## 7052          integrity     positive
## 7053          integrity        trust
## 7054          intellect     positive
## 7055       intellectual     positive
## 7056       intelligence         fear
## 7057       intelligence          joy
## 7058       intelligence     positive
## 7059       intelligence        trust
## 7060        intelligent     positive
## 7061        intelligent        trust
## 7062             intend        trust
## 7063           intended anticipation
## 7064           intended     positive
## 7065            intense        anger
## 7066            intense      disgust
## 7067            intense         fear
## 7068            intense          joy
## 7069            intense     negative
## 7070            intense     positive
## 7071            intense     surprise
## 7072            intense        trust
## 7073              inter     negative
## 7074              inter      sadness
## 7075          intercede         fear
## 7076          intercede      sadness
## 7077       intercession        trust
## 7078        intercourse     positive
## 7079       interdiction     negative
## 7080           interest     positive
## 7081         interested      disgust
## 7082         interested     positive
## 7083         interested      sadness
## 7084        interesting     positive
## 7085       interference     negative
## 7086            interim anticipation
## 7087           interior      disgust
## 7088           interior     positive
## 7089           interior        trust
## 7090      interlocutory     positive
## 7091          interlude     positive
## 7092          interment     negative
## 7093          interment      sadness
## 7094       interminable        anger
## 7095       interminable anticipation
## 7096       interminable     negative
## 7097       interminable     positive
## 7098       intermission anticipation
## 7099        interrogate         fear
## 7100      interrogation         fear
## 7101          interrupt        anger
## 7102          interrupt     negative
## 7103          interrupt     surprise
## 7104        interrupted     negative
## 7105        interrupted      sadness
## 7106       intervention     negative
## 7107       intervention     positive
## 7108       intervention      sadness
## 7109        interviewer         fear
## 7110          intestate     negative
## 7111         intestinal      disgust
## 7112           intimate anticipation
## 7113           intimate          joy
## 7114           intimate     positive
## 7115           intimate        trust
## 7116         intimately anticipation
## 7117         intimately         fear
## 7118         intimately          joy
## 7119         intimidate         fear
## 7120         intimidate     negative
## 7121       intimidation        anger
## 7122       intimidation         fear
## 7123       intimidation     negative
## 7124        intolerable        anger
## 7125        intolerable     negative
## 7126        intolerance        anger
## 7127        intolerance      disgust
## 7128        intolerance         fear
## 7129        intolerance     negative
## 7130         intolerant        anger
## 7131         intolerant      disgust
## 7132         intolerant         fear
## 7133         intolerant     negative
## 7134         intolerant      sadness
## 7135         intonation     positive
## 7136        intoxicated      disgust
## 7137        intoxicated     negative
## 7138        intractable        anger
## 7139        intractable     negative
## 7140           intrepid     positive
## 7141           intrigue anticipation
## 7142           intrigue         fear
## 7143           intrigue     negative
## 7144           intrigue     surprise
## 7145           intruder        anger
## 7146           intruder         fear
## 7147           intruder     negative
## 7148           intruder     surprise
## 7149          intrusion         fear
## 7150          intrusion     negative
## 7151          intrusive        anger
## 7152          intrusive      disgust
## 7153          intrusive         fear
## 7154          intrusive     negative
## 7155          intrusive     surprise
## 7156          intuition     positive
## 7157          intuition        trust
## 7158          intuitive     positive
## 7159        intuitively anticipation
## 7160             invade        anger
## 7161             invade         fear
## 7162             invade     negative
## 7163             invade      sadness
## 7164             invade     surprise
## 7165            invader        anger
## 7166            invader         fear
## 7167            invader     negative
## 7168            invader      sadness
## 7169            invalid      sadness
## 7170         invalidate     negative
## 7171       invalidation     negative
## 7172         invalidity     negative
## 7173         invariably     positive
## 7174           invasion        anger
## 7175           invasion     negative
## 7176          inventive     positive
## 7177           inventor     positive
## 7178        investigate     positive
## 7179      investigation anticipation
## 7180         invigorate     positive
## 7181         invitation anticipation
## 7182         invitation     positive
## 7183             invite anticipation
## 7184             invite          joy
## 7185             invite     positive
## 7186             invite     surprise
## 7187             invite        trust
## 7188           inviting anticipation
## 7189           inviting          joy
## 7190           inviting     positive
## 7191           inviting     surprise
## 7192           inviting        trust
## 7193         invocation anticipation
## 7194         invocation        trust
## 7195             invoke anticipation
## 7196        involuntary     negative
## 7197         involution        anger
## 7198         involution     negative
## 7199        involvement        anger
## 7200              irate        anger
## 7201              irate     negative
## 7202                ire        anger
## 7203                ire     negative
## 7204               iris         fear
## 7205               iron     positive
## 7206               iron        trust
## 7207              irons     negative
## 7208         irrational      disgust
## 7209         irrational         fear
## 7210         irrational     negative
## 7211      irrationality     negative
## 7212     irreconcilable        anger
## 7213     irreconcilable         fear
## 7214     irreconcilable     negative
## 7215     irreconcilable      sadness
## 7216        irreducible     positive
## 7217        irrefutable     positive
## 7218        irrefutable        trust
## 7219          irregular     negative
## 7220       irregularity     negative
## 7221         irrelevant     negative
## 7222        irreparable         fear
## 7223        irreparable     negative
## 7224        irreparable      sadness
## 7225      irresponsible     negative
## 7226         irreverent     negative
## 7227        irrevocable     negative
## 7228       irritability        anger
## 7229       irritability     negative
## 7230          irritable        anger
## 7231          irritable     negative
## 7232         irritating        anger
## 7233         irritating      disgust
## 7234         irritating     negative
## 7235         irritation        anger
## 7236         irritation      disgust
## 7237         irritation     negative
## 7238         irritation      sadness
## 7239            isolate      sadness
## 7240           isolated         fear
## 7241           isolated     negative
## 7242           isolated      sadness
## 7243          isolation     negative
## 7244          isolation      sadness
## 7245                jab        anger
## 7246             jabber     negative
## 7247            jackpot anticipation
## 7248            jackpot          joy
## 7249            jackpot     positive
## 7250            jackpot     surprise
## 7251               jail         fear
## 7252               jail     negative
## 7253               jail      sadness
## 7254                jam     positive
## 7255            janitor      disgust
## 7256             jargon     negative
## 7257            jarring         fear
## 7258            jarring     negative
## 7259            jarring      sadness
## 7260           jaundice         fear
## 7261           jaundice     negative
## 7262               jaws         fear
## 7263            jealous        anger
## 7264            jealous      disgust
## 7265            jealous     negative
## 7266           jealousy        anger
## 7267           jealousy      disgust
## 7268           jealousy         fear
## 7269           jealousy     negative
## 7270           jealousy      sadness
## 7271         jeopardize        anger
## 7272         jeopardize         fear
## 7273         jeopardize     negative
## 7274           jeopardy anticipation
## 7275           jeopardy         fear
## 7276           jeopardy     negative
## 7277               jerk        anger
## 7278               jerk     surprise
## 7279               jest          joy
## 7280               jest     positive
## 7281               jest     surprise
## 7282                job     positive
## 7283               john      disgust
## 7284               john     negative
## 7285               join     positive
## 7286             joined     positive
## 7287               joke     negative
## 7288              joker          joy
## 7289              joker     positive
## 7290              joker     surprise
## 7291             joking     positive
## 7292               jolt     surprise
## 7293            jornada     negative
## 7294         journalism        trust
## 7295         journalist     positive
## 7296            journey anticipation
## 7297            journey         fear
## 7298            journey          joy
## 7299            journey     positive
## 7300         journeyman        trust
## 7301             jovial          joy
## 7302             jovial     positive
## 7303                joy          joy
## 7304                joy     positive
## 7305             joyful          joy
## 7306             joyful     positive
## 7307             joyful        trust
## 7308             joyous          joy
## 7309             joyous     positive
## 7310           jubilant          joy
## 7311           jubilant     positive
## 7312           jubilant     surprise
## 7313           jubilant        trust
## 7314            jubilee          joy
## 7315            jubilee     positive
## 7316            jubilee     surprise
## 7317           judgment     surprise
## 7318           judicial anticipation
## 7319           judicial     positive
## 7320           judicial        trust
## 7321          judiciary anticipation
## 7322          judiciary        trust
## 7323          judicious     positive
## 7324          judicious        trust
## 7325             jumble     negative
## 7326               jump          joy
## 7327               jump     positive
## 7328             jungle         fear
## 7329               junk     negative
## 7330              junta     negative
## 7331      jurisprudence      sadness
## 7332             jurist        trust
## 7333               jury        trust
## 7334            justice     positive
## 7335            justice        trust
## 7336        justifiable     positive
## 7337        justifiable        trust
## 7338      justification     positive
## 7339           juvenile     negative
## 7340           keepsake     positive
## 7341                ken     positive
## 7342             kennel      sadness
## 7343               kern     negative
## 7344           kerosene         fear
## 7345            keynote     positive
## 7346           keystone     positive
## 7347               khan         fear
## 7348               khan        trust
## 7349               kick        anger
## 7350               kick     negative
## 7351            kicking        anger
## 7352             kidnap        anger
## 7353             kidnap         fear
## 7354             kidnap     negative
## 7355             kidnap      sadness
## 7356             kidnap     surprise
## 7357               kill         fear
## 7358               kill     negative
## 7359               kill      sadness
## 7360            killing        anger
## 7361            killing         fear
## 7362            killing     negative
## 7363            killing      sadness
## 7364               kind          joy
## 7365               kind     positive
## 7366               kind        trust
## 7367           kindness     positive
## 7368            kindred anticipation
## 7369            kindred          joy
## 7370            kindred     positive
## 7371            kindred        trust
## 7372               king     positive
## 7373               kiss anticipation
## 7374               kiss          joy
## 7375               kiss     positive
## 7376               kiss     surprise
## 7377               kite      disgust
## 7378               kite     negative
## 7379             kitten          joy
## 7380             kitten     positive
## 7381             kitten        trust
## 7382              knack     positive
## 7383              knell         fear
## 7384              knell     negative
## 7385              knell      sadness
## 7386           knickers        trust
## 7387             knight     positive
## 7388            knotted     negative
## 7389            knowing     positive
## 7390          knowledge     positive
## 7391              kudos          joy
## 7392              kudos     positive
## 7393              label        trust
## 7394              labor anticipation
## 7395              labor          joy
## 7396              labor     positive
## 7397              labor     surprise
## 7398              labor        trust
## 7399            labored     negative
## 7400            labored      sadness
## 7401          laborious     negative
## 7402          labyrinth anticipation
## 7403          labyrinth     negative
## 7404               lace        anger
## 7405               lace         fear
## 7406               lace     negative
## 7407               lace     positive
## 7408               lace      sadness
## 7409               lace        trust
## 7410               lack     negative
## 7411            lacking     negative
## 7412         lackluster     negative
## 7413              laden     negative
## 7414                lag     negative
## 7415            lagging        anger
## 7416            lagging anticipation
## 7417            lagging      disgust
## 7418            lagging     negative
## 7419            lagging      sadness
## 7420               lair     negative
## 7421               lamb          joy
## 7422               lamb     positive
## 7423               lamb        trust
## 7424             lament      disgust
## 7425             lament         fear
## 7426             lament     negative
## 7427             lament      sadness
## 7428          lamenting      sadness
## 7429               land     positive
## 7430             landed     positive
## 7431           landmark        trust
## 7432          landslide         fear
## 7433          landslide     negative
## 7434          landslide      sadness
## 7435            languid     negative
## 7436           languish     negative
## 7437        languishing         fear
## 7438        languishing     negative
## 7439        languishing      sadness
## 7440              lapse     negative
## 7441            larceny      disgust
## 7442            larceny     negative
## 7443             larger      disgust
## 7444             larger     surprise
## 7445             larger        trust
## 7446              laser     positive
## 7447              laser        trust
## 7448               lash        anger
## 7449               lash         fear
## 7450               lash     negative
## 7451               late     negative
## 7452               late      sadness
## 7453           lateness     negative
## 7454             latent        anger
## 7455             latent anticipation
## 7456             latent      disgust
## 7457             latent     negative
## 7458             latent     surprise
## 7459           latrines      disgust
## 7460           latrines     negative
## 7461           laudable     positive
## 7462              laugh          joy
## 7463              laugh     positive
## 7464              laugh     surprise
## 7465          laughable      disgust
## 7466          laughable     negative
## 7467           laughing          joy
## 7468           laughing     positive
## 7469           laughter anticipation
## 7470           laughter          joy
## 7471           laughter     positive
## 7472           laughter     surprise
## 7473             launch anticipation
## 7474             launch     positive
## 7475           laureate     positive
## 7476           laureate        trust
## 7477             laurel     positive
## 7478            laurels          joy
## 7479            laurels     positive
## 7480               lava        anger
## 7481               lava         fear
## 7482               lava     negative
## 7483           lavatory      disgust
## 7484             lavish     positive
## 7485                law        trust
## 7486             lawful     positive
## 7487             lawful        trust
## 7488        lawlessness        anger
## 7489        lawlessness         fear
## 7490        lawlessness     negative
## 7491            lawsuit        anger
## 7492            lawsuit      disgust
## 7493            lawsuit         fear
## 7494            lawsuit     negative
## 7495            lawsuit      sadness
## 7496            lawsuit     surprise
## 7497             lawyer        anger
## 7498             lawyer      disgust
## 7499             lawyer         fear
## 7500             lawyer     negative
## 7501                lax     negative
## 7502                lax      sadness
## 7503           laxative      disgust
## 7504           laxative         fear
## 7505           laxative     negative
## 7506               lazy     negative
## 7507               lead     positive
## 7508             leader     positive
## 7509             leader        trust
## 7510            leading        trust
## 7511             league     positive
## 7512               leak     negative
## 7513            leakage     negative
## 7514              leaky     negative
## 7515            leaning        trust
## 7516              learn     positive
## 7517           learning     positive
## 7518              leave     negative
## 7519              leave      sadness
## 7520              leave     surprise
## 7521           lecturer     positive
## 7522              leech     negative
## 7523            leeches      disgust
## 7524            leeches         fear
## 7525            leeches     negative
## 7526               leer      disgust
## 7527               leer     negative
## 7528              leery     surprise
## 7529             leeway     positive
## 7530              legal     positive
## 7531              legal        trust
## 7532          legalized        anger
## 7533          legalized         fear
## 7534          legalized          joy
## 7535          legalized     positive
## 7536          legalized        trust
## 7537          legendary     positive
## 7538         legibility     positive
## 7539            legible     positive
## 7540         legislator        trust
## 7541        legislature        trust
## 7542         legitimacy        trust
## 7543            leisure anticipation
## 7544            leisure          joy
## 7545            leisure     positive
## 7546            leisure     surprise
## 7547            leisure        trust
## 7548          leisurely     positive
## 7549              lemma     positive
## 7550              lemon      disgust
## 7551              lemon     negative
## 7552             lender        trust
## 7553            lenient     positive
## 7554            leprosy      disgust
## 7555            leprosy         fear
## 7556            leprosy     negative
## 7557            leprosy      sadness
## 7558            lesbian      disgust
## 7559            lesbian     negative
## 7560            lesbian      sadness
## 7561             lessen anticipation
## 7562             lessen     negative
## 7563             lesser      disgust
## 7564             lesser     negative
## 7565             lesson anticipation
## 7566             lesson     positive
## 7567             lesson        trust
## 7568             lethal      disgust
## 7569             lethal         fear
## 7570             lethal     negative
## 7571             lethal      sadness
## 7572           lethargy     negative
## 7573           lethargy      sadness
## 7574             letter anticipation
## 7575           lettered anticipation
## 7576           lettered     positive
## 7577           lettered        trust
## 7578           leukemia        anger
## 7579           leukemia         fear
## 7580           leukemia     negative
## 7581           leukemia      sadness
## 7582              levee        trust
## 7583              level     positive
## 7584              level        trust
## 7585           leverage     positive
## 7586               levy     negative
## 7587               lewd      disgust
## 7588               lewd     negative
## 7589            liaison     negative
## 7590               liar      disgust
## 7591               liar     negative
## 7592              libel        anger
## 7593              libel         fear
## 7594              libel     negative
## 7595              libel        trust
## 7596            liberal     negative
## 7597            liberal     positive
## 7598           liberate        anger
## 7599           liberate anticipation
## 7600           liberate          joy
## 7601           liberate     positive
## 7602           liberate     surprise
## 7603           liberate        trust
## 7604         liberation anticipation
## 7605         liberation          joy
## 7606         liberation     positive
## 7607         liberation     surprise
## 7608            liberty anticipation
## 7609            liberty          joy
## 7610            liberty     positive
## 7611            liberty     surprise
## 7612            liberty        trust
## 7613            library     positive
## 7614               lick      disgust
## 7615               lick     negative
## 7616                lie        anger
## 7617                lie      disgust
## 7618                lie     negative
## 7619                lie      sadness
## 7620         lieutenant        trust
## 7621          lifeblood     positive
## 7622           lifeless         fear
## 7623           lifeless     negative
## 7624           lifeless      sadness
## 7625         lighthouse     positive
## 7626          lightning        anger
## 7627          lightning         fear
## 7628          lightning     surprise
## 7629             liking          joy
## 7630             liking     positive
## 7631             liking        trust
## 7632            limited        anger
## 7633            limited     negative
## 7634            limited      sadness
## 7635               limp     negative
## 7636              lines         fear
## 7637             linger anticipation
## 7638           linguist     positive
## 7639           linguist        trust
## 7640               lint     negative
## 7641               lion         fear
## 7642               lion     positive
## 7643             liquor        anger
## 7644             liquor          joy
## 7645             liquor     negative
## 7646             liquor      sadness
## 7647           listless     negative
## 7648           listless      sadness
## 7649              lithe     positive
## 7650           litigant     negative
## 7651           litigate        anger
## 7652           litigate anticipation
## 7653           litigate      disgust
## 7654           litigate         fear
## 7655           litigate     negative
## 7656           litigate      sadness
## 7657         litigation     negative
## 7658          litigious        anger
## 7659          litigious      disgust
## 7660          litigious     negative
## 7661             litter     negative
## 7662              livid        anger
## 7663              livid      disgust
## 7664              livid     negative
## 7665               loaf     negative
## 7666             loafer     negative
## 7667              loath        anger
## 7668              loath     negative
## 7669             loathe        anger
## 7670             loathe      disgust
## 7671             loathe     negative
## 7672           loathing      disgust
## 7673           loathing     negative
## 7674          loathsome        anger
## 7675          loathsome      disgust
## 7676          loathsome     negative
## 7677           lobbyist     negative
## 7678           localize anticipation
## 7679             lockup         fear
## 7680             lockup     negative
## 7681             lockup      sadness
## 7682             locust         fear
## 7683             locust     negative
## 7684            lodging        trust
## 7685              lofty     negative
## 7686            logical     positive
## 7687               lone      sadness
## 7688         loneliness         fear
## 7689         loneliness     negative
## 7690         loneliness      sadness
## 7691             lonely        anger
## 7692             lonely      disgust
## 7693             lonely         fear
## 7694             lonely     negative
## 7695             lonely      sadness
## 7696           lonesome     negative
## 7697           lonesome      sadness
## 7698               long anticipation
## 7699          longevity     positive
## 7700            longing anticipation
## 7701            longing      sadness
## 7702                loo      disgust
## 7703                loo     negative
## 7704               loom anticipation
## 7705               loom         fear
## 7706               loom     negative
## 7707               loon      disgust
## 7708               loon     negative
## 7709              loony     negative
## 7710               loot     negative
## 7711               lord      disgust
## 7712               lord     negative
## 7713               lord     positive
## 7714               lord        trust
## 7715           lordship     positive
## 7716               lose        anger
## 7717               lose      disgust
## 7718               lose         fear
## 7719               lose     negative
## 7720               lose      sadness
## 7721               lose     surprise
## 7722             losing        anger
## 7723             losing     negative
## 7724             losing      sadness
## 7725               loss        anger
## 7726               loss         fear
## 7727               loss     negative
## 7728               loss      sadness
## 7729               lost     negative
## 7730               lost      sadness
## 7731            lottery anticipation
## 7732           loudness        anger
## 7733           loudness     negative
## 7734             lounge     negative
## 7735              louse      disgust
## 7736              louse     negative
## 7737            lovable          joy
## 7738            lovable     positive
## 7739            lovable        trust
## 7740               love          joy
## 7741               love     positive
## 7742             lovely anticipation
## 7743             lovely          joy
## 7744             lovely     positive
## 7745             lovely      sadness
## 7746             lovely     surprise
## 7747             lovely        trust
## 7748         lovemaking          joy
## 7749         lovemaking     positive
## 7750         lovemaking        trust
## 7751              lover anticipation
## 7752              lover          joy
## 7753              lover     positive
## 7754              lover        trust
## 7755             loving          joy
## 7756             loving     positive
## 7757             loving        trust
## 7758              lower     negative
## 7759              lower      sadness
## 7760           lowering     negative
## 7761             lowest     negative
## 7762             lowest      sadness
## 7763           lowlands     negative
## 7764              lowly     negative
## 7765              lowly      sadness
## 7766              loyal         fear
## 7767              loyal          joy
## 7768              loyal     positive
## 7769              loyal     surprise
## 7770              loyal        trust
## 7771            loyalty     positive
## 7772            loyalty        trust
## 7773               luck anticipation
## 7774               luck          joy
## 7775               luck     positive
## 7776               luck     surprise
## 7777              lucky          joy
## 7778              lucky     positive
## 7779              lucky     surprise
## 7780          ludicrous     negative
## 7781               lull anticipation
## 7782          lumbering     negative
## 7783               lump     negative
## 7784              lumpy      disgust
## 7785              lumpy     negative
## 7786             lunacy        anger
## 7787             lunacy      disgust
## 7788             lunacy         fear
## 7789             lunacy     negative
## 7790             lunacy      sadness
## 7791            lunatic        anger
## 7792            lunatic      disgust
## 7793            lunatic         fear
## 7794            lunatic     negative
## 7795              lunge     surprise
## 7796              lurch     negative
## 7797               lure     negative
## 7798              lurid      disgust
## 7799              lurid     negative
## 7800               lurk     negative
## 7801            lurking     negative
## 7802           luscious anticipation
## 7803           luscious          joy
## 7804           luscious     positive
## 7805               lush      disgust
## 7806               lush     negative
## 7807               lush      sadness
## 7808               lust anticipation
## 7809               lust     negative
## 7810             luster          joy
## 7811             luster     positive
## 7812            lustful     negative
## 7813           lustrous     positive
## 7814              lusty      disgust
## 7815          luxuriant     positive
## 7816          luxurious          joy
## 7817          luxurious     positive
## 7818             luxury          joy
## 7819             luxury     positive
## 7820              lying        anger
## 7821              lying      disgust
## 7822              lying     negative
## 7823              lynch        anger
## 7824              lynch      disgust
## 7825              lynch         fear
## 7826              lynch     negative
## 7827              lynch      sadness
## 7828               lyre          joy
## 7829               lyre     positive
## 7830            lyrical          joy
## 7831            lyrical     positive
## 7832               mace         fear
## 7833               mace     negative
## 7834            machine        trust
## 7835                mad        anger
## 7836                mad      disgust
## 7837                mad         fear
## 7838                mad     negative
## 7839                mad      sadness
## 7840             madden        anger
## 7841             madden         fear
## 7842             madden     negative
## 7843             madman        anger
## 7844             madman         fear
## 7845             madman     negative
## 7846            madness        anger
## 7847            madness         fear
## 7848            madness     negative
## 7849              mafia         fear
## 7850              mafia     negative
## 7851               mage         fear
## 7852             maggot      disgust
## 7853             maggot     negative
## 7854            magical anticipation
## 7855            magical          joy
## 7856            magical     positive
## 7857            magical     surprise
## 7858           magician     surprise
## 7859             magnet     positive
## 7860             magnet        trust
## 7861          magnetism     positive
## 7862          magnetite     positive
## 7863       magnificence anticipation
## 7864       magnificence          joy
## 7865       magnificence     positive
## 7866       magnificence        trust
## 7867        magnificent anticipation
## 7868        magnificent          joy
## 7869        magnificent     positive
## 7870        magnificent     surprise
## 7871        magnificent        trust
## 7872             maiden     positive
## 7873               mail anticipation
## 7874               main     positive
## 7875           mainstay     positive
## 7876           mainstay        trust
## 7877        maintenance        trust
## 7878           majestic anticipation
## 7879           majestic          joy
## 7880           majestic     positive
## 7881           majestic     surprise
## 7882           majestic        trust
## 7883            majesty     positive
## 7884            majesty        trust
## 7885              major     positive
## 7886           majority          joy
## 7887           majority     positive
## 7888           majority        trust
## 7889          makeshift     negative
## 7890             malady     negative
## 7891            malaise     negative
## 7892            malaise      sadness
## 7893            malaria      disgust
## 7894            malaria         fear
## 7895            malaria     negative
## 7896            malaria      sadness
## 7897         malevolent        anger
## 7898         malevolent      disgust
## 7899         malevolent         fear
## 7900         malevolent     negative
## 7901         malevolent      sadness
## 7902        malfeasance      disgust
## 7903        malfeasance     negative
## 7904       malformation     negative
## 7905             malice        anger
## 7906             malice         fear
## 7907             malice     negative
## 7908          malicious        anger
## 7909          malicious      disgust
## 7910          malicious         fear
## 7911          malicious     negative
## 7912          malicious      sadness
## 7913             malign        anger
## 7914             malign      disgust
## 7915             malign     negative
## 7916         malignancy         fear
## 7917         malignancy     negative
## 7918         malignancy      sadness
## 7919          malignant        anger
## 7920          malignant         fear
## 7921          malignant     negative
## 7922        malpractice        anger
## 7923        malpractice     negative
## 7924              mamma        trust
## 7925             manage     positive
## 7926             manage        trust
## 7927         management     positive
## 7928         management        trust
## 7929           mandamus         fear
## 7930           mandamus     negative
## 7931           mandarin     positive
## 7932           mandarin        trust
## 7933              mange      disgust
## 7934              mange         fear
## 7935              mange     negative
## 7936             mangle        anger
## 7937             mangle      disgust
## 7938             mangle         fear
## 7939             mangle     negative
## 7940             mangle      sadness
## 7941            manhood     positive
## 7942              mania     negative
## 7943             maniac        anger
## 7944             maniac         fear
## 7945             maniac     negative
## 7946           maniacal     negative
## 7947      manifestation         fear
## 7948         manifested     positive
## 7949         manipulate     negative
## 7950       manipulation        anger
## 7951       manipulation         fear
## 7952       manipulation     negative
## 7953              manly     positive
## 7954              manna     positive
## 7955           mannered     positive
## 7956            manners     positive
## 7957       manslaughter        anger
## 7958       manslaughter      disgust
## 7959       manslaughter         fear
## 7960       manslaughter     negative
## 7961       manslaughter      sadness
## 7962       manslaughter     surprise
## 7963             manual        trust
## 7964       manufacturer     positive
## 7965             manure      disgust
## 7966             manure     negative
## 7967                mar     negative
## 7968              march     positive
## 7969             margin     negative
## 7970             margin      sadness
## 7971             marine        trust
## 7972             marked     positive
## 7973         marketable     positive
## 7974             maroon     negative
## 7975            marquis     positive
## 7976           marriage anticipation
## 7977           marriage          joy
## 7978           marriage     positive
## 7979           marriage        trust
## 7980             marrow          joy
## 7981             marrow     positive
## 7982             marrow        trust
## 7983              marry anticipation
## 7984              marry         fear
## 7985              marry          joy
## 7986              marry     positive
## 7987              marry     surprise
## 7988              marry        trust
## 7989            marshal     positive
## 7990            marshal        trust
## 7991            martial        anger
## 7992         martingale     negative
## 7993             martyr         fear
## 7994             martyr     negative
## 7995             martyr      sadness
## 7996          martyrdom         fear
## 7997          martyrdom     negative
## 7998          martyrdom      sadness
## 7999             marvel     positive
## 8000             marvel     surprise
## 8001          marvelous          joy
## 8002          marvelous     positive
## 8003        marvelously          joy
## 8004        marvelously     positive
## 8005          masculine     positive
## 8006          masochism        anger
## 8007          masochism      disgust
## 8008          masochism         fear
## 8009          masochism     negative
## 8010           massacre        anger
## 8011           massacre      disgust
## 8012           massacre         fear
## 8013           massacre     negative
## 8014           massacre      sadness
## 8015            massage          joy
## 8016            massage     positive
## 8017             master     positive
## 8018        masterpiece          joy
## 8019        masterpiece     positive
## 8020            mastery        anger
## 8021            mastery          joy
## 8022            mastery     positive
## 8023            mastery        trust
## 8024         matchmaker anticipation
## 8025               mate     positive
## 8026               mate        trust
## 8027        materialism     negative
## 8028        materialist      disgust
## 8029        materialist     negative
## 8030           maternal anticipation
## 8031           maternal     negative
## 8032           maternal     positive
## 8033       mathematical        trust
## 8034          matrimony anticipation
## 8035          matrimony          joy
## 8036          matrimony     positive
## 8037          matrimony        trust
## 8038             matron     positive
## 8039             matron        trust
## 8040          mausoleum      sadness
## 8041              maxim        trust
## 8042            maximum     positive
## 8043              mayor     positive
## 8044             meadow     positive
## 8045         meandering     negative
## 8046        meaningless     negative
## 8047        meaningless      sadness
## 8048            measles      disgust
## 8049            measles         fear
## 8050            measles     negative
## 8051            measles      sadness
## 8052            measure        trust
## 8053           measured     positive
## 8054           measured        trust
## 8055              medal anticipation
## 8056              medal          joy
## 8057              medal     positive
## 8058              medal     surprise
## 8059              medal        trust
## 8060             meddle        anger
## 8061             meddle     negative
## 8062            mediate anticipation
## 8063            mediate     positive
## 8064            mediate        trust
## 8065          mediation     positive
## 8066           mediator anticipation
## 8067           mediator     positive
## 8068           mediator        trust
## 8069            medical anticipation
## 8070            medical         fear
## 8071            medical     positive
## 8072            medical        trust
## 8073           mediocre     negative
## 8074         mediocrity     negative
## 8075           meditate anticipation
## 8076           meditate          joy
## 8077           meditate     positive
## 8078           meditate        trust
## 8079      mediterranean     positive
## 8080             medley     positive
## 8081               meek      sadness
## 8082        melancholic     negative
## 8083        melancholic      sadness
## 8084         melancholy     negative
## 8085         melancholy      sadness
## 8086              melee         fear
## 8087              melee     negative
## 8088          melodrama        anger
## 8089          melodrama     negative
## 8090          melodrama      sadness
## 8091           meltdown     negative
## 8092           meltdown      sadness
## 8093            memento     positive
## 8094          memorable          joy
## 8095          memorable     positive
## 8096          memorable     surprise
## 8097          memorable        trust
## 8098          memorials      sadness
## 8099             menace        anger
## 8100             menace         fear
## 8101             menace     negative
## 8102           menacing        anger
## 8103           menacing         fear
## 8104           menacing     negative
## 8105            mending     positive
## 8106             menial     negative
## 8107             menses     positive
## 8108             mentor     positive
## 8109             mentor        trust
## 8110          mercenary         fear
## 8111          mercenary     negative
## 8112           merchant        trust
## 8113           merciful     positive
## 8114          merciless         fear
## 8115          merciless     negative
## 8116              mercy     positive
## 8117              merge anticipation
## 8118              merge     positive
## 8119              merit     positive
## 8120              merit        trust
## 8121        meritorious          joy
## 8122        meritorious     positive
## 8123        meritorious        trust
## 8124          merriment          joy
## 8125          merriment     positive
## 8126          merriment     surprise
## 8127              merry          joy
## 8128              merry     positive
## 8129               mess      disgust
## 8130               mess     negative
## 8131          messenger        trust
## 8132              messy      disgust
## 8133              messy     negative
## 8134         metastasis     negative
## 8135           methanol     negative
## 8136       metropolitan     positive
## 8137             mettle     positive
## 8138         microscope        trust
## 8139         microscopy     positive
## 8140            midwife anticipation
## 8141            midwife          joy
## 8142            midwife     negative
## 8143            midwife     positive
## 8144            midwife        trust
## 8145          midwifery     positive
## 8146             mighty        anger
## 8147             mighty         fear
## 8148             mighty          joy
## 8149             mighty     positive
## 8150             mighty        trust
## 8151             mildew      disgust
## 8152             mildew     negative
## 8153           military         fear
## 8154            militia        anger
## 8155            militia         fear
## 8156            militia     negative
## 8157            militia      sadness
## 8158               mill anticipation
## 8159               mime     positive
## 8160            mimicry     negative
## 8161            mimicry     surprise
## 8162            mindful     positive
## 8163        mindfulness     positive
## 8164           minimize     negative
## 8165            minimum     negative
## 8166           ministry          joy
## 8167           ministry     positive
## 8168           ministry        trust
## 8169           minority     negative
## 8170            miracle anticipation
## 8171            miracle          joy
## 8172            miracle     positive
## 8173            miracle     surprise
## 8174            miracle        trust
## 8175         miraculous          joy
## 8176         miraculous     positive
## 8177         miraculous     surprise
## 8178               mire      disgust
## 8179               mire     negative
## 8180              mirth          joy
## 8181              mirth     positive
## 8182        misbehavior        anger
## 8183        misbehavior      disgust
## 8184        misbehavior     negative
## 8185        misbehavior     surprise
## 8186        miscarriage         fear
## 8187        miscarriage     negative
## 8188        miscarriage      sadness
## 8189           mischief     negative
## 8190        mischievous     negative
## 8191      misconception        anger
## 8192      misconception      disgust
## 8193      misconception         fear
## 8194      misconception     negative
## 8195         misconduct      disgust
## 8196         misconduct     negative
## 8197          miserable        anger
## 8198          miserable      disgust
## 8199          miserable     negative
## 8200          miserable      sadness
## 8201          miserably     negative
## 8202          miserably      sadness
## 8203             misery        anger
## 8204             misery      disgust
## 8205             misery         fear
## 8206             misery     negative
## 8207             misery      sadness
## 8208         misfortune         fear
## 8209         misfortune     negative
## 8210         misfortune      sadness
## 8211          misguided      disgust
## 8212          misguided     negative
## 8213             mishap      disgust
## 8214             mishap         fear
## 8215             mishap     negative
## 8216             mishap      sadness
## 8217             mishap     surprise
## 8218  misinterpretation     negative
## 8219            mislead        anger
## 8220            mislead         fear
## 8221            mislead     negative
## 8222            mislead        trust
## 8223         misleading        anger
## 8224         misleading      disgust
## 8225         misleading     negative
## 8226      mismanagement     negative
## 8227           mismatch     negative
## 8228           misnomer     negative
## 8229           misplace        anger
## 8230           misplace      disgust
## 8231           misplace     negative
## 8232          misplaced     negative
## 8233       misrepresent     negative
## 8234  misrepresentation     negative
## 8235  misrepresentation      sadness
## 8236     misrepresented        anger
## 8237     misrepresented     negative
## 8238            missile         fear
## 8239            missing         fear
## 8240            missing     negative
## 8241            missing      sadness
## 8242         missionary     positive
## 8243       misstatement        anger
## 8244       misstatement      disgust
## 8245       misstatement     negative
## 8246            mistake     negative
## 8247            mistake      sadness
## 8248           mistaken         fear
## 8249           mistaken     negative
## 8250           mistress        anger
## 8251           mistress      disgust
## 8252           mistress     negative
## 8253           mistrust      disgust
## 8254           mistrust         fear
## 8255           mistrust     negative
## 8256      misunderstand     negative
## 8257   misunderstanding        anger
## 8258   misunderstanding     negative
## 8259   misunderstanding      sadness
## 8260             misuse     negative
## 8261               mite      disgust
## 8262               mite     negative
## 8263               moan         fear
## 8264               moan      sadness
## 8265               moat        trust
## 8266                mob        anger
## 8267                mob         fear
## 8268                mob     negative
## 8269             mobile anticipation
## 8270            mockery      disgust
## 8271            mockery     negative
## 8272            mocking        anger
## 8273            mocking      disgust
## 8274            mocking     negative
## 8275            mocking      sadness
## 8276              model     positive
## 8277           moderate     positive
## 8278          moderator     positive
## 8279          moderator        trust
## 8280             modest     positive
## 8281             modest        trust
## 8282            modesty     positive
## 8283             modify     surprise
## 8284        molestation        anger
## 8285        molestation      disgust
## 8286        molestation         fear
## 8287        molestation     negative
## 8288        molestation      sadness
## 8289           momentum anticipation
## 8290           momentum     positive
## 8291           monetary anticipation
## 8292           monetary     positive
## 8293              money        anger
## 8294              money anticipation
## 8295              money          joy
## 8296              money     positive
## 8297              money     surprise
## 8298              money        trust
## 8299               monk     positive
## 8300               monk        trust
## 8301         monochrome      disgust
## 8302         monochrome     negative
## 8303           monogamy        trust
## 8304         monopolist     negative
## 8305            monsoon     negative
## 8306            monsoon      sadness
## 8307            monster         fear
## 8308            monster     negative
## 8309        monstrosity        anger
## 8310        monstrosity      disgust
## 8311        monstrosity         fear
## 8312        monstrosity     negative
## 8313        monstrosity     surprise
## 8314           monument     positive
## 8315              moody        anger
## 8316              moody     negative
## 8317              moody      sadness
## 8318           moorings        trust
## 8319               moot     negative
## 8320              moral        anger
## 8321              moral     positive
## 8322              moral        trust
## 8323           morality     positive
## 8324           morality        trust
## 8325             morals        anger
## 8326             morals anticipation
## 8327             morals      disgust
## 8328             morals          joy
## 8329             morals     positive
## 8330             morals     surprise
## 8331             morals        trust
## 8332             morbid     negative
## 8333             morbid      sadness
## 8334          morbidity        anger
## 8335          morbidity      disgust
## 8336          morbidity         fear
## 8337          morbidity     negative
## 8338          morbidity      sadness
## 8339             morgue      disgust
## 8340             morgue         fear
## 8341             morgue     negative
## 8342             morgue      sadness
## 8343           moribund     negative
## 8344           moribund      sadness
## 8345               morn anticipation
## 8346              moron     negative
## 8347            moronic     negative
## 8348             morrow anticipation
## 8349             morsel     negative
## 8350             mortal     negative
## 8351          mortality        anger
## 8352          mortality         fear
## 8353          mortality     negative
## 8354          mortality      sadness
## 8355             mortar     positive
## 8356           mortgage         fear
## 8357          mortgagee        trust
## 8358          mortgagor         fear
## 8359      mortification anticipation
## 8360      mortification      disgust
## 8361      mortification         fear
## 8362      mortification     negative
## 8363      mortification      sadness
## 8364           mortuary         fear
## 8365           mortuary     negative
## 8366           mortuary      sadness
## 8367             mosque        anger
## 8368           mosquito        anger
## 8369           mosquito      disgust
## 8370           mosquito     negative
## 8371             mother anticipation
## 8372             mother          joy
## 8373             mother     negative
## 8374             mother     positive
## 8375             mother      sadness
## 8376             mother        trust
## 8377         motherhood          joy
## 8378         motherhood     positive
## 8379         motherhood        trust
## 8380             motion anticipation
## 8381             motive     positive
## 8382           mountain anticipation
## 8383              mourn     negative
## 8384              mourn      sadness
## 8385           mournful        anger
## 8386           mournful         fear
## 8387           mournful     negative
## 8388           mournful      sadness
## 8389           mourning     negative
## 8390           mourning      sadness
## 8391              mouth     surprise
## 8392           mouthful      disgust
## 8393            movable     positive
## 8394              mover     positive
## 8395               muck      disgust
## 8396               muck     negative
## 8397             mucous      disgust
## 8398              mucus      disgust
## 8399                mud     negative
## 8400             muddle     negative
## 8401            muddled     negative
## 8402              muddy      disgust
## 8403              muddy     negative
## 8404               muff        anger
## 8405               muff      disgust
## 8406               muff     negative
## 8407                mug        anger
## 8408                mug         fear
## 8409                mug     negative
## 8410                mug     positive
## 8411                mug      sadness
## 8412               mule        anger
## 8413               mule     negative
## 8414               mule        trust
## 8415                mum         fear
## 8416                mum     negative
## 8417             mumble     negative
## 8418              mumps     negative
## 8419             murder        anger
## 8420             murder      disgust
## 8421             murder         fear
## 8422             murder     negative
## 8423             murder      sadness
## 8424             murder     surprise
## 8425           murderer        anger
## 8426           murderer      disgust
## 8427           murderer         fear
## 8428           murderer     negative
## 8429           murderer      sadness
## 8430          murderous        anger
## 8431          murderous      disgust
## 8432          murderous         fear
## 8433          murderous     negative
## 8434          murderous      sadness
## 8435          murderous     surprise
## 8436              murky      disgust
## 8437              murky     negative
## 8438              murky      sadness
## 8439           muscular     positive
## 8440              music          joy
## 8441              music     positive
## 8442              music      sadness
## 8443            musical        anger
## 8444            musical anticipation
## 8445            musical          joy
## 8446            musical     positive
## 8447            musical      sadness
## 8448            musical     surprise
## 8449            musical        trust
## 8450             musket         fear
## 8451               muss     negative
## 8452              musty      disgust
## 8453              musty     negative
## 8454            mutable anticipation
## 8455            mutable     positive
## 8456             mutant     negative
## 8457          mutilated      disgust
## 8458          mutilated     negative
## 8459         mutilation        anger
## 8460         mutilation      disgust
## 8461         mutilation         fear
## 8462         mutilation     negative
## 8463         mutilation      sadness
## 8464             mutiny        anger
## 8465             mutiny      disgust
## 8466             mutiny         fear
## 8467             mutiny     negative
## 8468             mutiny     surprise
## 8469             mutter        anger
## 8470             mutter     negative
## 8471             mutual     positive
## 8472             muzzle         fear
## 8473             muzzle     negative
## 8474             myopia        anger
## 8475             myopia     negative
## 8476             myopia      sadness
## 8477         mysterious anticipation
## 8478         mysterious         fear
## 8479         mysterious     surprise
## 8480            mystery anticipation
## 8481            mystery     surprise
## 8482             mystic     surprise
## 8483                nab     negative
## 8484                nab     surprise
## 8485              nadir     negative
## 8486                nag        anger
## 8487                nag     negative
## 8488              naive     negative
## 8489           nameless      disgust
## 8490           nameless     negative
## 8491                nap          joy
## 8492                nap     positive
## 8493             napkin      sadness
## 8494              nappy      disgust
## 8495              nappy     negative
## 8496           narcotic     negative
## 8497            nascent anticipation
## 8498              nasty        anger
## 8499              nasty      disgust
## 8500              nasty         fear
## 8501              nasty     negative
## 8502              nasty      sadness
## 8503             nation        trust
## 8504         naturalist     positive
## 8505            naughty     negative
## 8506             nausea      disgust
## 8507             nausea     negative
## 8508           nauseous      disgust
## 8509           nauseous     negative
## 8510           nauseous      sadness
## 8511          navigable anticipation
## 8512          navigable     positive
## 8513          navigator anticipation
## 8514          navigator        trust
## 8515                nay     negative
## 8516             neatly     positive
## 8517          necessity      sadness
## 8518             nectar     positive
## 8519            needful     negative
## 8520             needle     positive
## 8521              needy     negative
## 8522          nefarious      disgust
## 8523          nefarious         fear
## 8524          nefarious     negative
## 8525          nefarious      sadness
## 8526          nefarious     surprise
## 8527           negation        anger
## 8528           negation     negative
## 8529           negative     negative
## 8530           negative      sadness
## 8531            neglect     negative
## 8532          neglected        anger
## 8533          neglected      disgust
## 8534          neglected     negative
## 8535          neglected      sadness
## 8536         neglecting     negative
## 8537         negligence     negative
## 8538          negligent     negative
## 8539        negligently     negative
## 8540          negotiate     positive
## 8541          negotiate        trust
## 8542         negotiator     positive
## 8543              negro     negative
## 8544              negro      sadness
## 8545           neighbor anticipation
## 8546           neighbor     positive
## 8547           neighbor        trust
## 8548       neighborhood anticipation
## 8549           nepotism        anger
## 8550           nepotism      disgust
## 8551           nepotism     negative
## 8552           nepotism      sadness
## 8553              nerve     positive
## 8554            nervous anticipation
## 8555            nervous         fear
## 8556            nervous     negative
## 8557        nervousness         fear
## 8558               nest        trust
## 8559             nestle     positive
## 8560             nestle        trust
## 8561             nether        anger
## 8562             nether         fear
## 8563             nether     negative
## 8564             nether      sadness
## 8565             nettle        anger
## 8566             nettle      disgust
## 8567             nettle     negative
## 8568            network anticipation
## 8569          neuralgia         fear
## 8570          neuralgia     negative
## 8571          neuralgia      sadness
## 8572           neurosis         fear
## 8573           neurosis     negative
## 8574           neurosis      sadness
## 8575           neurotic      disgust
## 8576           neurotic         fear
## 8577           neurotic     negative
## 8578            neutral anticipation
## 8579            neutral        trust
## 8580         neutrality        trust
## 8581           newcomer         fear
## 8582           newcomer     surprise
## 8583           nicotine      disgust
## 8584           nicotine     negative
## 8585             nigger     negative
## 8586          nightmare         fear
## 8587          nightmare     negative
## 8588           nihilism     negative
## 8589           nobility anticipation
## 8590           nobility     positive
## 8591           nobility        trust
## 8592              noble     positive
## 8593              noble        trust
## 8594           nobleman     positive
## 8595           nobleman        trust
## 8596              noise     negative
## 8597              noisy        anger
## 8598              noisy     negative
## 8599         nomination     positive
## 8600      noncompliance        anger
## 8601      noncompliance anticipation
## 8602      noncompliance         fear
## 8603      noncompliance     negative
## 8604      noncompliance      sadness
## 8605           nonsense     negative
## 8606        nonsensical     negative
## 8607        nonsensical      sadness
## 8608              noose     negative
## 8609              noose      sadness
## 8610          normality     positive
## 8611               nose      disgust
## 8612            notable          joy
## 8613            notable     positive
## 8614            notable        trust
## 8615           notables     positive
## 8616             notary        trust
## 8617              noted     positive
## 8618        nothingness     negative
## 8619        nothingness      sadness
## 8620       notification anticipation
## 8621             notion     positive
## 8622          notoriety        anger
## 8623          notoriety      disgust
## 8624          notoriety         fear
## 8625          notoriety     negative
## 8626          notoriety     positive
## 8627        nourishment     positive
## 8628            noxious      disgust
## 8629            noxious         fear
## 8630            noxious     negative
## 8631           nuisance        anger
## 8632           nuisance     negative
## 8633                nul     negative
## 8634            nullify     negative
## 8635            nullify     surprise
## 8636               numb     negative
## 8637            numbers     positive
## 8638           numbness     negative
## 8639           numbness      sadness
## 8640                nun     negative
## 8641                nun        trust
## 8642              nurse     positive
## 8643              nurse        trust
## 8644            nursery          joy
## 8645            nursery     positive
## 8646            nursery        trust
## 8647            nurture        anger
## 8648            nurture anticipation
## 8649            nurture      disgust
## 8650            nurture         fear
## 8651            nurture          joy
## 8652            nurture     positive
## 8653            nurture        trust
## 8654         nutritious     positive
## 8655         nutritious      sadness
## 8656                oaf     negative
## 8657                oak     positive
## 8658              oasis anticipation
## 8659              oasis          joy
## 8660              oasis     positive
## 8661              oasis        trust
## 8662               oath     positive
## 8663               oath        trust
## 8664          obedience     positive
## 8665          obedience        trust
## 8666              obese      disgust
## 8667              obese     negative
## 8668            obesity      disgust
## 8669            obesity     negative
## 8670            obesity      sadness
## 8671               obey         fear
## 8672               obey        trust
## 8673                obi      disgust
## 8674                obi         fear
## 8675                obi     negative
## 8676               obit     negative
## 8677               obit      sadness
## 8678               obit     surprise
## 8679           obituary     negative
## 8680           obituary      sadness
## 8681          objection        anger
## 8682          objection     negative
## 8683      objectionable     negative
## 8684          objective anticipation
## 8685          objective     positive
## 8686          objective        trust
## 8687             oblige     negative
## 8688             oblige        trust
## 8689           obliging        anger
## 8690           obliging anticipation
## 8691           obliging      disgust
## 8692           obliging         fear
## 8693           obliging          joy
## 8694           obliging     positive
## 8695           obliging     surprise
## 8696           obliging        trust
## 8697            obligor         fear
## 8698            obligor     negative
## 8699         obliterate        anger
## 8700         obliterate         fear
## 8701         obliterate     negative
## 8702         obliterate      sadness
## 8703        obliterated        anger
## 8704        obliterated         fear
## 8705        obliterated     negative
## 8706       obliteration         fear
## 8707       obliteration     negative
## 8708       obliteration      sadness
## 8709           oblivion        anger
## 8710           oblivion         fear
## 8711           oblivion     negative
## 8712          obnoxious        anger
## 8713          obnoxious      disgust
## 8714          obnoxious     negative
## 8715          obnoxious      sadness
## 8716            obscene      disgust
## 8717            obscene     negative
## 8718          obscenity        anger
## 8719          obscenity      disgust
## 8720          obscenity     negative
## 8721          obscurity     negative
## 8722          observant     positive
## 8723           obstacle        anger
## 8724           obstacle         fear
## 8725           obstacle     negative
## 8726           obstacle      sadness
## 8727       obstetrician        trust
## 8728          obstinate     negative
## 8729           obstruct        anger
## 8730           obstruct         fear
## 8731           obstruct     negative
## 8732        obstruction     negative
## 8733        obstructive        anger
## 8734        obstructive     negative
## 8735         obtainable          joy
## 8736         obtainable     positive
## 8737             obtuse     negative
## 8738            obvious     positive
## 8739            obvious        trust
## 8740         occasional     surprise
## 8741             occult      disgust
## 8742             occult         fear
## 8743             occult     negative
## 8744           occupant     positive
## 8745           occupant        trust
## 8746         occupation     positive
## 8747             occupy     positive
## 8748            octopus      disgust
## 8749             oddity      disgust
## 8750             oddity     negative
## 8751             oddity      sadness
## 8752             oddity     surprise
## 8753             odious        anger
## 8754             odious      disgust
## 8755             odious         fear
## 8756             odious     negative
## 8757               odor     negative
## 8758             offend        anger
## 8759             offend      disgust
## 8760             offend     negative
## 8761           offended        anger
## 8762           offended     negative
## 8763           offended      sadness
## 8764           offender        anger
## 8765           offender      disgust
## 8766           offender         fear
## 8767           offender     negative
## 8768           offender      sadness
## 8769            offense        anger
## 8770            offense      disgust
## 8771            offense         fear
## 8772            offense     negative
## 8773            offense      sadness
## 8774          offensive        anger
## 8775          offensive      disgust
## 8776          offensive     negative
## 8777              offer     positive
## 8778           offering        trust
## 8779            offhand     negative
## 8780            officer     positive
## 8781            officer        trust
## 8782           official        trust
## 8783             offing     negative
## 8784             offset anticipation
## 8785             offset     positive
## 8786           offshoot     positive
## 8787               ogre      disgust
## 8788               ogre         fear
## 8789               ogre     negative
## 8790              older      sadness
## 8791          olfactory anticipation
## 8792          olfactory     negative
## 8793          oligarchy     negative
## 8794               omen anticipation
## 8795               omen         fear
## 8796               omen     negative
## 8797            ominous anticipation
## 8798            ominous         fear
## 8799            ominous     negative
## 8800               omit     negative
## 8801        omnipotence         fear
## 8802        omnipotence     negative
## 8803        omnipotence     positive
## 8804         omniscient     positive
## 8805         omniscient        trust
## 8806            onerous        anger
## 8807            onerous     negative
## 8808            onerous      sadness
## 8809            ongoing anticipation
## 8810              onset anticipation
## 8811               onus     negative
## 8812               ooze      disgust
## 8813               ooze     negative
## 8814             opaque     negative
## 8815           openness     positive
## 8816              opera        anger
## 8817              opera anticipation
## 8818              opera         fear
## 8819              opera          joy
## 8820              opera     positive
## 8821              opera      sadness
## 8822              opera     surprise
## 8823              opera        trust
## 8824           operatic     negative
## 8825          operation         fear
## 8826          operation        trust
## 8827             opiate     negative
## 8828        opinionated        anger
## 8829        opinionated     negative
## 8830              opium        anger
## 8831              opium      disgust
## 8832              opium         fear
## 8833              opium     negative
## 8834              opium      sadness
## 8835           opponent        anger
## 8836           opponent anticipation
## 8837           opponent      disgust
## 8838           opponent         fear
## 8839           opponent     negative
## 8840          opportune          joy
## 8841          opportune     positive
## 8842        opportunity anticipation
## 8843        opportunity     positive
## 8844             oppose     negative
## 8845            opposed        anger
## 8846            opposed         fear
## 8847            opposed     negative
## 8848         opposition        anger
## 8849         opposition     negative
## 8850            oppress        anger
## 8851            oppress      disgust
## 8852            oppress         fear
## 8853            oppress     negative
## 8854            oppress      sadness
## 8855         oppression        anger
## 8856         oppression      disgust
## 8857         oppression         fear
## 8858         oppression     negative
## 8859         oppression      sadness
## 8860         oppressive        anger
## 8861         oppressive      disgust
## 8862         oppressive         fear
## 8863         oppressive     negative
## 8864         oppressive      sadness
## 8865          oppressor        anger
## 8866          oppressor         fear
## 8867          oppressor     negative
## 8868          oppressor      sadness
## 8869           optimism anticipation
## 8870           optimism          joy
## 8871           optimism     positive
## 8872           optimism     surprise
## 8873           optimism        trust
## 8874           optimist     positive
## 8875           optimist        trust
## 8876             option     positive
## 8877           optional     positive
## 8878             oracle anticipation
## 8879             oracle     positive
## 8880             oracle        trust
## 8881            oration     positive
## 8882                orc        anger
## 8883                orc      disgust
## 8884                orc         fear
## 8885                orc     negative
## 8886          orchestra        anger
## 8887          orchestra          joy
## 8888          orchestra     positive
## 8889          orchestra      sadness
## 8890          orchestra        trust
## 8891           ordained     positive
## 8892           ordained        trust
## 8893             ordeal        anger
## 8894             ordeal     negative
## 8895             ordeal     surprise
## 8896            orderly     positive
## 8897          ordinance        trust
## 8898         ordination anticipation
## 8899         ordination          joy
## 8900         ordination     positive
## 8901         ordination        trust
## 8902           ordnance         fear
## 8903           ordnance     negative
## 8904              organ anticipation
## 8905              organ          joy
## 8906            organic     positive
## 8907       organization anticipation
## 8908       organization          joy
## 8909       organization     positive
## 8910       organization     surprise
## 8911       organization        trust
## 8912           organize     positive
## 8913          organized     positive
## 8914             orgasm anticipation
## 8915             orgasm          joy
## 8916             orgasm     positive
## 8917        originality     positive
## 8918        originality     surprise
## 8919         ornamented     positive
## 8920             ornate     positive
## 8921             orphan         fear
## 8922             orphan     negative
## 8923             orphan      sadness
## 8924          orthodoxy        trust
## 8925         ostensibly     negative
## 8926               oust        anger
## 8927               oust     negative
## 8928               oust      sadness
## 8929           outburst        anger
## 8930           outburst         fear
## 8931           outburst          joy
## 8932           outburst     negative
## 8933           outburst     positive
## 8934           outburst      sadness
## 8935           outburst     surprise
## 8936            outcast      disgust
## 8937            outcast         fear
## 8938            outcast     negative
## 8939            outcast      sadness
## 8940            outcome     positive
## 8941             outcry        anger
## 8942             outcry         fear
## 8943             outcry     negative
## 8944             outcry     surprise
## 8945              outdo anticipation
## 8946              outdo     positive
## 8947           outhouse      disgust
## 8948           outhouse     negative
## 8949         outlandish     negative
## 8950             outlaw     negative
## 8951            outpost         fear
## 8952            outrage        anger
## 8953            outrage      disgust
## 8954            outrage     negative
## 8955         outrageous     surprise
## 8956           outsider         fear
## 8957        outstanding          joy
## 8958        outstanding     negative
## 8959        outstanding     positive
## 8960            outward     positive
## 8961            ovation     negative
## 8962            ovation      sadness
## 8963        overbearing        anger
## 8964        overbearing     negative
## 8965         overburden     negative
## 8966           overcast     negative
## 8967             overdo     negative
## 8968           overdose     negative
## 8969            overdue anticipation
## 8970            overdue     negative
## 8971            overdue      sadness
## 8972            overdue     surprise
## 8973       overestimate     surprise
## 8974      overestimated     negative
## 8975           overflow     negative
## 8976          overgrown     negative
## 8977          overjoyed          joy
## 8978          overjoyed     positive
## 8979           overload     negative
## 8980           overload      sadness
## 8981           overpaid     negative
## 8982          overpower     negative
## 8983       overpowering        anger
## 8984       overpowering         fear
## 8985       overpowering     negative
## 8986         overpriced        anger
## 8987         overpriced      disgust
## 8988         overpriced     negative
## 8989         overpriced      sadness
## 8990          oversight     negative
## 8991              overt         fear
## 8992          overthrow anticipation
## 8993          overthrow         fear
## 8994          overthrow     negative
## 8995           overture anticipation
## 8996           overturn     negative
## 8997          overwhelm     negative
## 8998        overwhelmed     negative
## 8999        overwhelmed      sadness
## 9000       overwhelming     positive
## 9001              owing        anger
## 9002              owing anticipation
## 9003              owing      disgust
## 9004              owing         fear
## 9005              owing     negative
## 9006              owing      sadness
## 9007              owing        trust
## 9008          ownership     positive
## 9009          oxidation     negative
## 9010            pacific     positive
## 9011               pact        trust
## 9012                pad     positive
## 9013            padding     positive
## 9014             paddle anticipation
## 9015             paddle     positive
## 9016               pain         fear
## 9017               pain     negative
## 9018               pain      sadness
## 9019             pained         fear
## 9020             pained     negative
## 9021             pained      sadness
## 9022            painful        anger
## 9023            painful      disgust
## 9024            painful         fear
## 9025            painful     negative
## 9026            painful      sadness
## 9027          painfully     negative
## 9028          painfully      sadness
## 9029              pains     negative
## 9030          palatable     positive
## 9031         palliative     positive
## 9032           palpable     surprise
## 9033              palsy      disgust
## 9034              palsy         fear
## 9035              palsy     negative
## 9036              palsy      sadness
## 9037            panacea     positive
## 9038            panache     positive
## 9039           pandemic         fear
## 9040           pandemic     negative
## 9041           pandemic      sadness
## 9042               pang     negative
## 9043               pang     surprise
## 9044              panic         fear
## 9045              panic     negative
## 9046             panier     positive
## 9047            paprika     positive
## 9048          parachute         fear
## 9049             parade anticipation
## 9050             parade         fear
## 9051             parade          joy
## 9052             parade     negative
## 9053             parade     positive
## 9054             parade     surprise
## 9055            paragon anticipation
## 9056            paragon          joy
## 9057            paragon     positive
## 9058            paragon        trust
## 9059          paralysis        anger
## 9060          paralysis anticipation
## 9061          paralysis         fear
## 9062          paralysis     negative
## 9063          paralysis      sadness
## 9064          paralyzed        anger
## 9065          paralyzed         fear
## 9066          paralyzed     negative
## 9067          paralyzed      sadness
## 9068          paralyzed     surprise
## 9069          paramount     positive
## 9070           paranoia         fear
## 9071           paranoia     negative
## 9072         paraphrase     negative
## 9073         paraphrase     positive
## 9074           parasite      disgust
## 9075           parasite         fear
## 9076           parasite     negative
## 9077             pardon     positive
## 9078               pare        anger
## 9079               pare anticipation
## 9080               pare         fear
## 9081               pare     negative
## 9082               pare      sadness
## 9083          parentage     positive
## 9084           parietal     positive
## 9085           parietal        trust
## 9086             parish        trust
## 9087         parliament        trust
## 9088             parole anticipation
## 9089             parrot      disgust
## 9090             parrot     negative
## 9091       parsimonious     negative
## 9092            partake     positive
## 9093            partake        trust
## 9094      participation     positive
## 9095            parting      sadness
## 9096           partisan     negative
## 9097            partner     positive
## 9098        partnership     positive
## 9099        partnership        trust
## 9100              passe     negative
## 9101          passenger anticipation
## 9102            passion anticipation
## 9103            passion          joy
## 9104            passion     positive
## 9105            passion        trust
## 9106         passionate anticipation
## 9107         passionate          joy
## 9108         passionate     positive
## 9109         passionate        trust
## 9110            passive     negative
## 9111          passivity     negative
## 9112            pastime     positive
## 9113             pastor          joy
## 9114             pastor     positive
## 9115             pastor        trust
## 9116             pastry          joy
## 9117             pastry     positive
## 9118            pasture     positive
## 9119              patch     negative
## 9120             patent     positive
## 9121           pathetic      disgust
## 9122           pathetic     negative
## 9123           pathetic      sadness
## 9124           patience anticipation
## 9125           patience     positive
## 9126           patience        trust
## 9127            patient anticipation
## 9128            patient     positive
## 9129        patriarchal     positive
## 9130        patriarchal        trust
## 9131             patrol        trust
## 9132             patron     positive
## 9133             patron        trust
## 9134          patronage     positive
## 9135          patronage        trust
## 9136        patronizing     negative
## 9137             patter        anger
## 9138             patter     negative
## 9139            paucity        anger
## 9140            paucity      disgust
## 9141            paucity     negative
## 9142            paucity      sadness
## 9143             pauper     negative
## 9144             pauper      sadness
## 9145           pavement        trust
## 9146               pawn     negative
## 9147               pawn        trust
## 9148                pay anticipation
## 9149                pay          joy
## 9150                pay     positive
## 9151                pay        trust
## 9152            payback        anger
## 9153            payback     negative
## 9154            payment     negative
## 9155              peace anticipation
## 9156              peace          joy
## 9157              peace     positive
## 9158              peace        trust
## 9159          peaceable     positive
## 9160           peaceful anticipation
## 9161           peaceful          joy
## 9162           peaceful     positive
## 9163           peaceful     surprise
## 9164           peaceful        trust
## 9165            peacock     positive
## 9166               peck     positive
## 9167      peculiarities     negative
## 9168        peculiarity     positive
## 9169         pedestrian     negative
## 9170           pedigree     positive
## 9171           pedigree        trust
## 9172           peerless     positive
## 9173              penal         fear
## 9174              penal     negative
## 9175              penal      sadness
## 9176            penalty        anger
## 9177            penalty         fear
## 9178            penalty     negative
## 9179            penalty      sadness
## 9180            penance         fear
## 9181            penance      sadness
## 9182           penchant     positive
## 9183        penetration        anger
## 9184        penetration         fear
## 9185        penetration     negative
## 9186       penitentiary        anger
## 9187       penitentiary     negative
## 9188            pensive      sadness
## 9189           perceive     positive
## 9190           perceive        trust
## 9191        perceptible     positive
## 9192          perchance     surprise
## 9193          perdition        anger
## 9194          perdition      disgust
## 9195          perdition         fear
## 9196          perdition     negative
## 9197          perdition      sadness
## 9198          perennial     positive
## 9199          perennial        trust
## 9200            perfect anticipation
## 9201            perfect          joy
## 9202            perfect     positive
## 9203            perfect        trust
## 9204         perfection anticipation
## 9205         perfection          joy
## 9206         perfection     positive
## 9207         perfection     surprise
## 9208         perfection        trust
## 9209          performer     positive
## 9210               peri     surprise
## 9211              peril anticipation
## 9212              peril         fear
## 9213              peril     negative
## 9214              peril      sadness
## 9215           perilous anticipation
## 9216           perilous         fear
## 9217           perilous     negative
## 9218           perilous      sadness
## 9219        periodicity        trust
## 9220             perish         fear
## 9221             perish     negative
## 9222             perish      sadness
## 9223         perishable     negative
## 9224           perished     negative
## 9225           perished      sadness
## 9226          perishing         fear
## 9227          perishing     negative
## 9228          perishing      sadness
## 9229            perjury         fear
## 9230            perjury     negative
## 9231            perjury     surprise
## 9232               perk     positive
## 9233         permission     positive
## 9234         pernicious        anger
## 9235         pernicious         fear
## 9236         pernicious     negative
## 9237         pernicious      sadness
## 9238        perpetrator        anger
## 9239        perpetrator      disgust
## 9240        perpetrator         fear
## 9241        perpetrator     negative
## 9242        perpetrator      sadness
## 9243         perpetuate anticipation
## 9244       perpetuation     negative
## 9245         perpetuity anticipation
## 9246         perpetuity     positive
## 9247         perpetuity        trust
## 9248          perplexed     negative
## 9249         perplexity     negative
## 9250         perplexity      sadness
## 9251          persecute        anger
## 9252          persecute         fear
## 9253          persecute     negative
## 9254        persecution        anger
## 9255        persecution      disgust
## 9256        persecution         fear
## 9257        persecution     negative
## 9258        persecution      sadness
## 9259        persistence     positive
## 9260         persistent     positive
## 9261         personable     positive
## 9262           personal        trust
## 9263       perspiration      disgust
## 9264           persuade        trust
## 9265          pertinent     positive
## 9266          pertinent        trust
## 9267       perturbation         fear
## 9268       perturbation     negative
## 9269          pertussis     negative
## 9270           perverse        anger
## 9271           perverse      disgust
## 9272           perverse         fear
## 9273           perverse     negative
## 9274         perversion        anger
## 9275         perversion      disgust
## 9276         perversion     negative
## 9277         perversion      sadness
## 9278            pervert        anger
## 9279            pervert      disgust
## 9280            pervert     negative
## 9281          perverted      disgust
## 9282          perverted     negative
## 9283          pessimism        anger
## 9284          pessimism         fear
## 9285          pessimism     negative
## 9286          pessimism      sadness
## 9287          pessimist         fear
## 9288          pessimist     negative
## 9289          pessimist      sadness
## 9290               pest        anger
## 9291               pest      disgust
## 9292               pest         fear
## 9293               pest     negative
## 9294         pestilence      disgust
## 9295         pestilence         fear
## 9296         pestilence     negative
## 9297                pet     negative
## 9298          petroleum      disgust
## 9299          petroleum     negative
## 9300          petroleum     positive
## 9301              petty     negative
## 9302            phalanx         fear
## 9303            phalanx        trust
## 9304            phantom         fear
## 9305            phantom     negative
## 9306     pharmaceutical     positive
## 9307      philanthropic        trust
## 9308     philanthropist     positive
## 9309     philanthropist        trust
## 9310       philanthropy     positive
## 9311        philosopher     positive
## 9312        philosopher        trust
## 9313             phlegm      disgust
## 9314             phlegm     negative
## 9315            phoenix     positive
## 9316           phonetic     positive
## 9317              phony        anger
## 9318              phony      disgust
## 9319              phony     negative
## 9320          physician     positive
## 9321          physician        trust
## 9322          physicist        trust
## 9323            physics     positive
## 9324         physiology     positive
## 9325           physique     positive
## 9326               pick     positive
## 9327             picket        anger
## 9328             picket anticipation
## 9329             picket         fear
## 9330             picket     negative
## 9331          picketing        anger
## 9332          picketing     negative
## 9333             pickle     negative
## 9334             picnic anticipation
## 9335             picnic          joy
## 9336             picnic     positive
## 9337             picnic     surprise
## 9338             picnic        trust
## 9339        picturesque          joy
## 9340        picturesque     positive
## 9341              piety     positive
## 9342                pig      disgust
## 9343                pig     negative
## 9344             pigeon     negative
## 9345              piles      disgust
## 9346              piles     negative
## 9347               pill     positive
## 9348               pill        trust
## 9349            pillage        anger
## 9350            pillage      disgust
## 9351            pillage         fear
## 9352            pillage     negative
## 9353             pillow     positive
## 9354              pilot     positive
## 9355              pilot        trust
## 9356               pimp     negative
## 9357             pimple      disgust
## 9358             pimple     negative
## 9359               pine     negative
## 9360               pine      sadness
## 9361             pinion         fear
## 9362             pinion     negative
## 9363           pinnacle     positive
## 9364            pioneer     positive
## 9365              pious      disgust
## 9366              pious     positive
## 9367              pious      sadness
## 9368              pious        trust
## 9369              pique        anger
## 9370              pique     negative
## 9371             piracy     negative
## 9372             pirate        anger
## 9373             pirate     negative
## 9374             pistol     negative
## 9375            pitfall        anger
## 9376            pitfall      disgust
## 9377            pitfall         fear
## 9378            pitfall     negative
## 9379            pitfall      sadness
## 9380            pitfall     surprise
## 9381               pith     positive
## 9382               pith        trust
## 9383               pity      sadness
## 9384              pivot     positive
## 9385              pivot        trust
## 9386            placard     surprise
## 9387             placid     positive
## 9388         plagiarism      disgust
## 9389         plagiarism     negative
## 9390             plague      disgust
## 9391             plague         fear
## 9392             plague     negative
## 9393             plague      sadness
## 9394          plaintiff     negative
## 9395          plaintive      sadness
## 9396               plan anticipation
## 9397           planning anticipation
## 9398           planning     positive
## 9399           planning        trust
## 9400             plated     negative
## 9401             player     negative
## 9402            playful        anger
## 9403            playful          joy
## 9404            playful     positive
## 9405            playful     surprise
## 9406            playful        trust
## 9407         playground anticipation
## 9408         playground          joy
## 9409         playground     positive
## 9410         playground     surprise
## 9411         playground        trust
## 9412          playhouse          joy
## 9413          playhouse     positive
## 9414               plea anticipation
## 9415               plea         fear
## 9416               plea     negative
## 9417               plea      sadness
## 9418           pleasant anticipation
## 9419           pleasant          joy
## 9420           pleasant     positive
## 9421           pleasant     surprise
## 9422           pleasant        trust
## 9423            pleased          joy
## 9424            pleased     positive
## 9425        pleasurable          joy
## 9426        pleasurable     positive
## 9427             pledge          joy
## 9428             pledge     positive
## 9429             pledge        trust
## 9430            plenary     positive
## 9431          plentiful     positive
## 9432             plexus     positive
## 9433             plight anticipation
## 9434             plight      disgust
## 9435             plight         fear
## 9436             plight     negative
## 9437             plight      sadness
## 9438           plodding     negative
## 9439               plum     positive
## 9440              plumb     positive
## 9441            plummet         fear
## 9442            plummet     negative
## 9443              plump anticipation
## 9444            plunder        anger
## 9445            plunder      disgust
## 9446            plunder         fear
## 9447            plunder     negative
## 9448            plunder      sadness
## 9449            plunder     surprise
## 9450             plunge         fear
## 9451             plunge     negative
## 9452              plush     positive
## 9453                ply     positive
## 9454          pneumonia         fear
## 9455          pneumonia     negative
## 9456           poaching        anger
## 9457           poaching      disgust
## 9458           poaching         fear
## 9459           poaching     negative
## 9460           poaching      sadness
## 9461          pointedly     positive
## 9462          pointless     negative
## 9463          pointless      sadness
## 9464             poison        anger
## 9465             poison      disgust
## 9466             poison         fear
## 9467             poison     negative
## 9468             poison      sadness
## 9469           poisoned        anger
## 9470           poisoned      disgust
## 9471           poisoned         fear
## 9472           poisoned     negative
## 9473           poisoned      sadness
## 9474          poisoning      disgust
## 9475          poisoning     negative
## 9476          poisonous        anger
## 9477          poisonous      disgust
## 9478          poisonous         fear
## 9479          poisonous     negative
## 9480          poisonous      sadness
## 9481               poke anticipation
## 9482               poke     negative
## 9483           polarity     surprise
## 9484            polemic        anger
## 9485            polemic      disgust
## 9486            polemic     negative
## 9487             police         fear
## 9488             police     positive
## 9489             police        trust
## 9490          policeman         fear
## 9491          policeman     positive
## 9492          policeman        trust
## 9493             policy        trust
## 9494              polio         fear
## 9495              polio     negative
## 9496              polio      sadness
## 9497             polish     positive
## 9498           polished     positive
## 9499             polite     positive
## 9500         politeness     positive
## 9501            politic      disgust
## 9502            politic     positive
## 9503           politics        anger
## 9504               poll        trust
## 9505            pollute      disgust
## 9506            pollute     negative
## 9507          pollution      disgust
## 9508          pollution     negative
## 9509           polygamy      disgust
## 9510           polygamy     negative
## 9511               pomp     negative
## 9512            pompous      disgust
## 9513            pompous     negative
## 9514          ponderous     negative
## 9515            pontiff        trust
## 9516               pool     positive
## 9517             poorly     negative
## 9518                pop     negative
## 9519                pop     surprise
## 9520               pope     positive
## 9521         popularity     positive
## 9522        popularized     positive
## 9523         population     positive
## 9524          porcupine     negative
## 9525               porn      disgust
## 9526               porn     negative
## 9527              porno     negative
## 9528       pornographic     negative
## 9529        pornography      disgust
## 9530        pornography     negative
## 9531           portable     positive
## 9532               pose     negative
## 9533              posse         fear
## 9534            possess anticipation
## 9535            possess          joy
## 9536            possess     positive
## 9537            possess        trust
## 9538          possessed        anger
## 9539          possessed      disgust
## 9540          possessed         fear
## 9541          possessed     negative
## 9542         possession        anger
## 9543         possession      disgust
## 9544         possession         fear
## 9545         possession     negative
## 9546        possibility anticipation
## 9547         posthumous     negative
## 9548         posthumous      sadness
## 9549       postponement     negative
## 9550       postponement     surprise
## 9551            potable     positive
## 9552            potency     positive
## 9553              pound        anger
## 9554              pound     negative
## 9555            poverty        anger
## 9556            poverty      disgust
## 9557            poverty         fear
## 9558            poverty     negative
## 9559            poverty      sadness
## 9560                pow        anger
## 9561           powerful        anger
## 9562           powerful anticipation
## 9563           powerful      disgust
## 9564           powerful         fear
## 9565           powerful          joy
## 9566           powerful     positive
## 9567           powerful        trust
## 9568         powerfully         fear
## 9569         powerfully     positive
## 9570          powerless        anger
## 9571          powerless      disgust
## 9572          powerless         fear
## 9573          powerless     negative
## 9574          powerless      sadness
## 9575           practice     positive
## 9576          practiced          joy
## 9577          practiced     positive
## 9578          practiced     surprise
## 9579          practiced        trust
## 9580           practise anticipation
## 9581           practise     positive
## 9582             praise          joy
## 9583             praise     positive
## 9584             praise        trust
## 9585            praised          joy
## 9586            praised     positive
## 9587       praiseworthy anticipation
## 9588       praiseworthy          joy
## 9589       praiseworthy     positive
## 9590       praiseworthy     surprise
## 9591       praiseworthy        trust
## 9592              prank     negative
## 9593              prank     surprise
## 9594               pray anticipation
## 9595               pray         fear
## 9596               pray          joy
## 9597               pray     positive
## 9598               pray     surprise
## 9599               pray        trust
## 9600         precarious anticipation
## 9601         precarious         fear
## 9602         precarious     negative
## 9603         precarious      sadness
## 9604         precaution     positive
## 9605            precede     positive
## 9606         precedence     positive
## 9607         precedence        trust
## 9608           precinct     negative
## 9609           precious anticipation
## 9610           precious          joy
## 9611           precious     positive
## 9612           precious     surprise
## 9613          precipice         fear
## 9614            precise     positive
## 9615          precision     positive
## 9616           preclude        anger
## 9617          precursor anticipation
## 9618          predatory     negative
## 9619        predicament         fear
## 9620        predicament     negative
## 9621            predict anticipation
## 9622         prediction anticipation
## 9623       predilection anticipation
## 9624       predilection     positive
## 9625         predispose anticipation
## 9626        predominant     positive
## 9627        predominant        trust
## 9628         preeminent     positive
## 9629             prefer     positive
## 9630             prefer        trust
## 9631          pregnancy      disgust
## 9632          pregnancy     negative
## 9633          prejudice        anger
## 9634          prejudice     negative
## 9635         prejudiced      disgust
## 9636         prejudiced         fear
## 9637         prejudiced     negative
## 9638        prejudicial        anger
## 9639        prejudicial     negative
## 9640        preliminary anticipation
## 9641          premature     surprise
## 9642       premeditated         fear
## 9643       premeditated     negative
## 9644            premier     positive
## 9645           premises     positive
## 9646        preparation anticipation
## 9647        preparatory anticipation
## 9648            prepare anticipation
## 9649            prepare     positive
## 9650           prepared anticipation
## 9651           prepared     positive
## 9652           prepared        trust
## 9653       preparedness anticipation
## 9654      preponderance        trust
## 9655       prerequisite anticipation
## 9656          prescient anticipation
## 9657          prescient     positive
## 9658           presence     positive
## 9659            present anticipation
## 9660            present          joy
## 9661            present     positive
## 9662            present     surprise
## 9663            present        trust
## 9664        presentable     positive
## 9665        presentment     negative
## 9666        presentment     positive
## 9667       preservative anticipation
## 9668       preservative          joy
## 9669       preservative     positive
## 9670       preservative     surprise
## 9671       preservative        trust
## 9672           preserve     positive
## 9673          president     positive
## 9674          president        trust
## 9675           pressure     negative
## 9676           prestige          joy
## 9677           prestige     positive
## 9678           prestige        trust
## 9679             presto          joy
## 9680             presto     positive
## 9681             presto     surprise
## 9682        presumption        trust
## 9683       presumptuous        anger
## 9684       presumptuous      disgust
## 9685       presumptuous     negative
## 9686            pretend     negative
## 9687          pretended     negative
## 9688         pretending        anger
## 9689         pretending     negative
## 9690           pretense     negative
## 9691        pretensions     negative
## 9692             pretty anticipation
## 9693             pretty          joy
## 9694             pretty     positive
## 9695             pretty        trust
## 9696            prevail anticipation
## 9697            prevail          joy
## 9698            prevail     positive
## 9699          prevalent        trust
## 9700            prevent         fear
## 9701         prevention anticipation
## 9702         prevention     positive
## 9703         preventive     negative
## 9704               prey         fear
## 9705               prey     negative
## 9706          priceless     positive
## 9707              prick        anger
## 9708              prick      disgust
## 9709              prick         fear
## 9710              prick     negative
## 9711              prick     surprise
## 9712            prickly     negative
## 9713              pride          joy
## 9714              pride     positive
## 9715             priest     positive
## 9716             priest        trust
## 9717         priesthood anticipation
## 9718         priesthood          joy
## 9719         priesthood     positive
## 9720         priesthood      sadness
## 9721         priesthood        trust
## 9722           priestly     positive
## 9723            primacy     positive
## 9724            primary     positive
## 9725              prime     positive
## 9726             primer     positive
## 9727             primer        trust
## 9728             prince     positive
## 9729           princely anticipation
## 9730           princely          joy
## 9731           princely     positive
## 9732           princely     surprise
## 9733           princely        trust
## 9734           princess     positive
## 9735          principal     positive
## 9736          principal        trust
## 9737             prison        anger
## 9738             prison         fear
## 9739             prison     negative
## 9740             prison      sadness
## 9741           prisoner        anger
## 9742           prisoner      disgust
## 9743           prisoner         fear
## 9744           prisoner     negative
## 9745           prisoner      sadness
## 9746           pristine     positive
## 9747         privileged          joy
## 9748         privileged     positive
## 9749         privileged        trust
## 9750              privy     negative
## 9751              privy        trust
## 9752        probability anticipation
## 9753          probation anticipation
## 9754          probation         fear
## 9755          probation      sadness
## 9756            probity     positive
## 9757            probity        trust
## 9758            problem         fear
## 9759            problem     negative
## 9760            problem      sadness
## 9761          procedure         fear
## 9762          procedure     positive
## 9763         proceeding anticipation
## 9764         procession          joy
## 9765         procession     positive
## 9766         procession      sadness
## 9767         procession     surprise
## 9768      procrastinate     negative
## 9769    procrastination     negative
## 9770            proctor     positive
## 9771            proctor        trust
## 9772            procure     positive
## 9773           prodigal     negative
## 9774           prodigal     positive
## 9775         prodigious     positive
## 9776            prodigy     positive
## 9777           producer     positive
## 9778          producing     positive
## 9779         production anticipation
## 9780         production     positive
## 9781         productive     positive
## 9782       productivity     positive
## 9783            profane        anger
## 9784            profane     negative
## 9785          profanity        anger
## 9786          profanity     negative
## 9787         profession     positive
## 9788       professional     positive
## 9789       professional        trust
## 9790          professor     positive
## 9791          professor        trust
## 9792      professorship        trust
## 9793        proficiency anticipation
## 9794        proficiency          joy
## 9795        proficiency     positive
## 9796        proficiency     surprise
## 9797        proficiency        trust
## 9798         proficient     positive
## 9799         proficient        trust
## 9800            profuse     positive
## 9801          profusion     negative
## 9802          prognosis anticipation
## 9803          prognosis         fear
## 9804         prognostic anticipation
## 9805           progress anticipation
## 9806           progress          joy
## 9807           progress     positive
## 9808        progression anticipation
## 9809        progression          joy
## 9810        progression     positive
## 9811        progression      sadness
## 9812        progression        trust
## 9813        progressive     positive
## 9814         prohibited        anger
## 9815         prohibited      disgust
## 9816         prohibited         fear
## 9817         prohibited     negative
## 9818        prohibition     negative
## 9819         projectile         fear
## 9820        projectiles         fear
## 9821           prolific     positive
## 9822           prologue anticipation
## 9823            prolong      disgust
## 9824            prolong     negative
## 9825         prominence     positive
## 9826        prominently     positive
## 9827        promiscuous     negative
## 9828            promise          joy
## 9829            promise     positive
## 9830            promise        trust
## 9831          promising     positive
## 9832          promotion     positive
## 9833              proof        trust
## 9834               prop     positive
## 9835         propaganda     negative
## 9836             proper     positive
## 9837           prophecy anticipation
## 9838            prophet anticipation
## 9839            prophet     positive
## 9840            prophet        trust
## 9841          prophetic anticipation
## 9842       prophylactic anticipation
## 9843       prophylactic     positive
## 9844       prophylactic        trust
## 9845        proposition     positive
## 9846          prosecute        anger
## 9847          prosecute         fear
## 9848          prosecute     negative
## 9849          prosecute      sadness
## 9850        prosecution      disgust
## 9851        prosecution     negative
## 9852           prospect     positive
## 9853      prospectively anticipation
## 9854            prosper anticipation
## 9855            prosper          joy
## 9856            prosper     positive
## 9857         prosperity     positive
## 9858         prosperous          joy
## 9859         prosperous     positive
## 9860         prostitute      disgust
## 9861         prostitute     negative
## 9862       prostitution      disgust
## 9863       prostitution     negative
## 9864       prostitution      sadness
## 9865            protect     positive
## 9866          protected        trust
## 9867         protecting     positive
## 9868         protecting        trust
## 9869         protective     positive
## 9870          protector     positive
## 9871          protector        trust
## 9872         protestant         fear
## 9873              proud anticipation
## 9874              proud          joy
## 9875              proud     positive
## 9876              proud        trust
## 9877              prove     positive
## 9878             proven        trust
## 9879         proverbial     positive
## 9880            provide     positive
## 9881            provide        trust
## 9882          providing anticipation
## 9883          providing          joy
## 9884          providing     positive
## 9885          providing        trust
## 9886            proviso        trust
## 9887        provocation        anger
## 9888        provocation     negative
## 9889          provoking        anger
## 9890          provoking      disgust
## 9891          provoking     negative
## 9892              prowl         fear
## 9893              prowl     surprise
## 9894              proxy        trust
## 9895           prudence     positive
## 9896            prudent     positive
## 9897            prudent        trust
## 9898                pry        anger
## 9899                pry anticipation
## 9900                pry     negative
## 9901                pry        trust
## 9902             prying     negative
## 9903              psalm     positive
## 9904          psychosis        anger
## 9905          psychosis         fear
## 9906          psychosis     negative
## 9907          psychosis      sadness
## 9908             public anticipation
## 9909             public     positive
## 9910          publicist     negative
## 9911              puffy     negative
## 9912               puke      disgust
## 9913               pull     positive
## 9914             pulpit     positive
## 9915               puma         fear
## 9916               puma     surprise
## 9917              punch        anger
## 9918              punch         fear
## 9919              punch     negative
## 9920              punch      sadness
## 9921              punch     surprise
## 9922           punctual anticipation
## 9923           punctual     positive
## 9924           punctual        trust
## 9925        punctuality     positive
## 9926            pungent      disgust
## 9927            pungent     negative
## 9928             punish         fear
## 9929             punish     negative
## 9930           punished        anger
## 9931           punished anticipation
## 9932           punished      disgust
## 9933           punished         fear
## 9934           punished     negative
## 9935           punished      sadness
## 9936          punishing        anger
## 9937          punishing         fear
## 9938          punishing     negative
## 9939          punishing      sadness
## 9940         punishment        anger
## 9941         punishment      disgust
## 9942         punishment         fear
## 9943         punishment     negative
## 9944           punitive        anger
## 9945           punitive         fear
## 9946           punitive     negative
## 9947           punitive      sadness
## 9948               punt anticipation
## 9949              puppy anticipation
## 9950              puppy     positive
## 9951              puppy        trust
## 9952             purely     positive
## 9953             purely        trust
## 9954          purgatory      disgust
## 9955          purgatory         fear
## 9956          purgatory     negative
## 9957              purge         fear
## 9958              purge     negative
## 9959       purification     positive
## 9960       purification        trust
## 9961             purify          joy
## 9962             purify     positive
## 9963             purify        trust
## 9964             purist     positive
## 9965             purity     positive
## 9966             purity     surprise
## 9967               purr          joy
## 9968               purr     positive
## 9969               purr        trust
## 9970                pus      disgust
## 9971                pus     negative
## 9972           putative        trust
## 9973              quack      disgust
## 9974              quack     negative
## 9975           quagmire      disgust
## 9976           quagmire     negative
## 9977              quail         fear
## 9978              quail     negative
## 9979             quaint          joy
## 9980             quaint     positive
## 9981             quaint        trust
## 9982              quake         fear
## 9983          qualified     positive
## 9984          qualified        trust
## 9985         qualifying     positive
## 9986           quandary        anger
## 9987           quandary         fear
## 9988           quandary     negative
## 9989         quarantine         fear
## 9990            quarrel        anger
## 9991            quarrel     negative
## 9992              quash         fear
## 9993              quash     negative
## 9994              quell     negative
## 9995              quest anticipation
## 9996              quest     positive
## 9997           question     positive
## 9998       questionable      disgust
## 9999       questionable     negative
## 10000           quicken anticipation
## 10001         quickness     positive
## 10002         quickness     surprise
## 10003       quicksilver     negative
## 10004       quicksilver     surprise
## 10005         quiescent     positive
## 10006             quiet     positive
## 10007             quiet      sadness
## 10008           quinine     positive
## 10009              quit     negative
## 10010            quiver         fear
## 10011            quiver     negative
## 10012         quivering         fear
## 10013         quivering     negative
## 10014              quiz     negative
## 10015             quote anticipation
## 10016             quote     negative
## 10017             quote     positive
## 10018             quote     surprise
## 10019            rabble        anger
## 10020            rabble         fear
## 10021            rabble     negative
## 10022             rabid        anger
## 10023             rabid anticipation
## 10024             rabid      disgust
## 10025             rabid         fear
## 10026             rabid     negative
## 10027             rabid      sadness
## 10028            rabies     negative
## 10029              rack     negative
## 10030              rack      sadness
## 10031            racket     negative
## 10032             radar        trust
## 10033          radiance anticipation
## 10034          radiance          joy
## 10035          radiance     positive
## 10036          radiance        trust
## 10037           radiant          joy
## 10038           radiant     positive
## 10039           radiate     positive
## 10040         radiation         fear
## 10041         radiation     negative
## 10042             radio     positive
## 10043       radioactive         fear
## 10044       radioactive     negative
## 10045             radon         fear
## 10046             radon     negative
## 10047            raffle anticipation
## 10048            raffle     surprise
## 10049              rage        anger
## 10050              rage     negative
## 10051            raging        anger
## 10052            raging      disgust
## 10053            raging         fear
## 10054            raging     negative
## 10055              rags      disgust
## 10056              rags     negative
## 10057              raid        anger
## 10058              raid         fear
## 10059              raid     negative
## 10060              raid     surprise
## 10061              rail        anger
## 10062              rail anticipation
## 10063              rail     negative
## 10064             rainy      sadness
## 10065               ram        anger
## 10066               ram anticipation
## 10067               ram     negative
## 10068          rambling     negative
## 10069           rampage        anger
## 10070           rampage         fear
## 10071           rampage     negative
## 10072            rancid      disgust
## 10073            rancid     negative
## 10074          randomly     surprise
## 10075            ranger        trust
## 10076            ransom        anger
## 10077            ransom         fear
## 10078            ransom     negative
## 10079              rape        anger
## 10080              rape      disgust
## 10081              rape         fear
## 10082              rape     negative
## 10083              rape      sadness
## 10084             rapid     surprise
## 10085           rapping        anger
## 10086              rapt          joy
## 10087              rapt     positive
## 10088              rapt     surprise
## 10089              rapt        trust
## 10090           raptors         fear
## 10091           raptors     negative
## 10092           rapture anticipation
## 10093           rapture          joy
## 10094           rapture     positive
## 10095            rarity     surprise
## 10096            rascal        anger
## 10097            rascal      disgust
## 10098            rascal         fear
## 10099            rascal     negative
## 10100              rash      disgust
## 10101              rash     negative
## 10102               rat      disgust
## 10103               rat         fear
## 10104               rat     negative
## 10105            ratify        trust
## 10106            rating        anger
## 10107            rating         fear
## 10108            rating     negative
## 10109            rating      sadness
## 10110          rational     positive
## 10111          rational        trust
## 10112       rattlesnake         fear
## 10113           raucous     negative
## 10114              rave        anger
## 10115              rave      disgust
## 10116              rave          joy
## 10117              rave     negative
## 10118              rave     positive
## 10119              rave     surprise
## 10120              rave        trust
## 10121          ravenous        anger
## 10122          ravenous         fear
## 10123          ravenous     negative
## 10124          ravenous      sadness
## 10125            ravine         fear
## 10126            raving        anger
## 10127            raving anticipation
## 10128            raving         fear
## 10129            raving          joy
## 10130            raving     negative
## 10131            raving     surprise
## 10132             razor         fear
## 10133             react        anger
## 10134             react         fear
## 10135       reactionary     negative
## 10136            reader     positive
## 10137           readily     positive
## 10138         readiness anticipation
## 10139         readiness          joy
## 10140         readiness     positive
## 10141         readiness        trust
## 10142           reading     positive
## 10143             ready anticipation
## 10144          reaffirm     positive
## 10145              real     positive
## 10146              real        trust
## 10147          reappear     surprise
## 10148              rear     negative
## 10149            reason     positive
## 10150       reassurance     positive
## 10151       reassurance        trust
## 10152          reassure     positive
## 10153          reassure        trust
## 10154            rebate     positive
## 10155             rebel        anger
## 10156             rebel         fear
## 10157             rebel     negative
## 10158         rebellion        anger
## 10159         rebellion      disgust
## 10160         rebellion         fear
## 10161            rebuke     negative
## 10162             rebut     negative
## 10163      recalcitrant        anger
## 10164      recalcitrant      disgust
## 10165      recalcitrant     negative
## 10166            recast     positive
## 10167          received     positive
## 10168         receiving anticipation
## 10169         receiving          joy
## 10170         receiving     positive
## 10171         receiving     surprise
## 10172          recesses         fear
## 10173         recession        anger
## 10174         recession      disgust
## 10175         recession         fear
## 10176         recession     negative
## 10177         recession      sadness
## 10178         recherche     positive
## 10179        recidivism        anger
## 10180        recidivism      disgust
## 10181        recidivism     negative
## 10182        recidivism      sadness
## 10183         recipient anticipation
## 10184       reciprocate     positive
## 10185          reckless        anger
## 10186          reckless         fear
## 10187          reckless     negative
## 10188      recklessness        anger
## 10189      recklessness      disgust
## 10190      recklessness         fear
## 10191      recklessness     negative
## 10192      recklessness     surprise
## 10193       reclamation     positive
## 10194           recline     positive
## 10195           recline        trust
## 10196      recognizable anticipation
## 10197      recognizable     positive
## 10198     recombination anticipation
## 10199         recommend     positive
## 10200         recommend        trust
## 10201    reconciliation anticipation
## 10202    reconciliation          joy
## 10203    reconciliation     positive
## 10204    reconciliation        trust
## 10205   reconsideration     positive
## 10206   reconsideration        trust
## 10207       reconstruct anticipation
## 10208       reconstruct     positive
## 10209    reconstruction anticipation
## 10210    reconstruction     positive
## 10211          recorder     positive
## 10212            recoup     positive
## 10213          recovery     positive
## 10214        recreation anticipation
## 10215        recreation          joy
## 10216        recreation     positive
## 10217      recreational anticipation
## 10218      recreational          joy
## 10219      recreational     positive
## 10220          recruits        trust
## 10221           rectify     positive
## 10222         recurrent anticipation
## 10223        redemption     positive
## 10224           redress     positive
## 10225         redundant     negative
## 10226           referee        trust
## 10227            refine     positive
## 10228        refinement     positive
## 10229            reflex     surprise
## 10230            reflux      disgust
## 10231            reflux     negative
## 10232            reform     positive
## 10233       reformation     positive
## 10234          reformer     positive
## 10235        refractory     negative
## 10236        refreshing     positive
## 10237           refugee      sadness
## 10238         refurbish     positive
## 10239           refusal     negative
## 10240            refuse     negative
## 10241           refused     negative
## 10242           refused      sadness
## 10243        refutation         fear
## 10244             regal     positive
## 10245             regal        trust
## 10246           regatta anticipation
## 10247            regent     positive
## 10248            regent        trust
## 10249          regiment         fear
## 10250          registry        trust
## 10251           regress     negative
## 10252        regression     negative
## 10253        regressive     negative
## 10254        regressive     positive
## 10255            regret     negative
## 10256            regret      sadness
## 10257       regrettable     negative
## 10258       regrettable      sadness
## 10259         regretted     negative
## 10260         regretted      sadness
## 10261        regretting     negative
## 10262        regretting      sadness
## 10263        regularity anticipation
## 10264        regularity     positive
## 10265        regularity        trust
## 10266          regulate     positive
## 10267        regulatory         fear
## 10268        regulatory     negative
## 10269     regurgitation      disgust
## 10270      rehabilitate     positive
## 10271    rehabilitation anticipation
## 10272    rehabilitation     positive
## 10273         reimburse     positive
## 10274     reimbursement     positive
## 10275     reimbursement        trust
## 10276              rein     negative
## 10277     reinforcement     positive
## 10278     reinforcement        trust
## 10279    reinforcements        trust
## 10280         reinstate     positive
## 10281            reject        anger
## 10282            reject         fear
## 10283            reject     negative
## 10284            reject      sadness
## 10285          rejected     negative
## 10286         rejection        anger
## 10287         rejection      disgust
## 10288         rejection         fear
## 10289         rejection     negative
## 10290         rejection      sadness
## 10291           rejects        anger
## 10292           rejects         fear
## 10293           rejects     negative
## 10294           rejects      sadness
## 10295           rejoice anticipation
## 10296           rejoice          joy
## 10297           rejoice     positive
## 10298           rejoice     surprise
## 10299           rejoice        trust
## 10300         rejoicing anticipation
## 10301         rejoicing          joy
## 10302         rejoicing     positive
## 10303         rejoicing     surprise
## 10304        rejuvenate     positive
## 10305       rejuvenated     positive
## 10306          rekindle anticipation
## 10307          rekindle         fear
## 10308          rekindle          joy
## 10309          rekindle     negative
## 10310          rekindle     positive
## 10311          rekindle     surprise
## 10312           relapse         fear
## 10313           relapse     negative
## 10314           relapse      sadness
## 10315           related        trust
## 10316          relative        trust
## 10317        relaxation     positive
## 10318        relegation     negative
## 10319          relevant     positive
## 10320          relevant        trust
## 10321       reliability     positive
## 10322       reliability        trust
## 10323          reliable     positive
## 10324          reliable        trust
## 10325          reliance     positive
## 10326          reliance        trust
## 10327            relics      sadness
## 10328            relief     positive
## 10329         relieving     positive
## 10330          religion        trust
## 10331        relinquish     negative
## 10332         reluctant         fear
## 10333         reluctant     negative
## 10334           remains      disgust
## 10335           remains         fear
## 10336           remains     negative
## 10337           remains     positive
## 10338           remains        trust
## 10339            remake     positive
## 10340            remand        anger
## 10341            remand     negative
## 10342        remarkable          joy
## 10343        remarkable     positive
## 10344        remarkable     surprise
## 10345        remarkable        trust
## 10346        remarkably     positive
## 10347          remedial     negative
## 10348            remedy anticipation
## 10349            remedy          joy
## 10350            remedy     positive
## 10351            remedy        trust
## 10352            remiss        anger
## 10353            remiss      disgust
## 10354            remiss     negative
## 10355            remiss      sadness
## 10356         remission     positive
## 10357           remodel     positive
## 10358           remorse     negative
## 10359           remorse      sadness
## 10360           removal     negative
## 10361            remove        anger
## 10362            remove         fear
## 10363            remove     negative
## 10364            remove      sadness
## 10365       renaissance     positive
## 10366         rencontre     negative
## 10367              rend     negative
## 10368            render     positive
## 10369          renegade        anger
## 10370          renegade     negative
## 10371           renewal     positive
## 10372          renounce        anger
## 10373          renounce     negative
## 10374          renovate anticipation
## 10375          renovate     positive
## 10376        renovation anticipation
## 10377        renovation          joy
## 10378        renovation     positive
## 10379            renown     positive
## 10380          renowned     positive
## 10381      renunciation     negative
## 10382        reorganize     positive
## 10383        reparation     positive
## 10384        reparation        trust
## 10385             repay        anger
## 10386             repay anticipation
## 10387             repay          joy
## 10388             repay     positive
## 10389             repay        trust
## 10390         repellant      disgust
## 10391         repellant         fear
## 10392         repellant     negative
## 10393         repellent        anger
## 10394         repellent      disgust
## 10395         repellent         fear
## 10396         repellent     negative
## 10397         repelling      disgust
## 10398         repelling     negative
## 10399            repent         fear
## 10400            repent     positive
## 10401         replenish     positive
## 10402           replete     positive
## 10403          reporter     positive
## 10404          reporter        trust
## 10405            repose     positive
## 10406       represented     positive
## 10407      representing anticipation
## 10408           repress     negative
## 10409           repress      sadness
## 10410        repression         fear
## 10411        repression     negative
## 10412         reprimand        anger
## 10413         reprimand     negative
## 10414           reprint     negative
## 10415          reprisal        anger
## 10416          reprisal         fear
## 10417          reprisal     negative
## 10418          reprisal      sadness
## 10419          reproach        anger
## 10420          reproach      disgust
## 10421          reproach     negative
## 10422          reproach      sadness
## 10423      reproductive          joy
## 10424      reproductive     positive
## 10425          republic     negative
## 10426       repudiation        anger
## 10427       repudiation      disgust
## 10428       repudiation     negative
## 10429         repulsion      disgust
## 10430         repulsion         fear
## 10431         repulsion     negative
## 10432         reputable     positive
## 10433         reputable        trust
## 10434           requiem      sadness
## 10435           rescind     negative
## 10436        rescission     negative
## 10437            rescue anticipation
## 10438            rescue          joy
## 10439            rescue     positive
## 10440            rescue     surprise
## 10441            rescue        trust
## 10442         resection         fear
## 10443            resent        anger
## 10444            resent     negative
## 10445         resentful        anger
## 10446         resentful     negative
## 10447        resentment        anger
## 10448        resentment      disgust
## 10449        resentment     negative
## 10450        resentment      sadness
## 10451           reserve     positive
## 10452          resident     positive
## 10453            resign        anger
## 10454            resign      disgust
## 10455            resign         fear
## 10456            resign     negative
## 10457            resign      sadness
## 10458       resignation     negative
## 10459       resignation      sadness
## 10460       resignation     surprise
## 10461          resigned     negative
## 10462          resigned      sadness
## 10463         resilient     positive
## 10464            resist     negative
## 10465        resistance        anger
## 10466        resistance     negative
## 10467         resistant         fear
## 10468         resistant     negative
## 10469         resisting        anger
## 10470         resisting         fear
## 10471         resisting     negative
## 10472         resisting      sadness
## 10473         resistive     positive
## 10474        resolutely     positive
## 10475         resources          joy
## 10476         resources     positive
## 10477         resources        trust
## 10478           respect anticipation
## 10479           respect          joy
## 10480           respect     positive
## 10481           respect        trust
## 10482    respectability     positive
## 10483       respectable     positive
## 10484       respectable        trust
## 10485        respectful     positive
## 10486        respectful        trust
## 10487        respecting     positive
## 10488          respects     positive
## 10489          respects        trust
## 10490           respite          joy
## 10491           respite     positive
## 10492           respite        trust
## 10493       resplendent          joy
## 10494       resplendent     positive
## 10495       responsible     positive
## 10496       responsible        trust
## 10497        responsive anticipation
## 10498        responsive     positive
## 10499        responsive        trust
## 10500              rest     positive
## 10501           restful     positive
## 10502       restitution        anger
## 10503       restitution     positive
## 10504      restlessness anticipation
## 10505       restorative anticipation
## 10506       restorative          joy
## 10507       restorative     positive
## 10508       restorative        trust
## 10509         restoring     positive
## 10510          restrain        anger
## 10511          restrain         fear
## 10512          restrain     negative
## 10513        restrained         fear
## 10514         restraint     positive
## 10515          restrict     negative
## 10516          restrict      sadness
## 10517       restriction        anger
## 10518       restriction         fear
## 10519       restriction     negative
## 10520       restriction      sadness
## 10521       restrictive     negative
## 10522            result anticipation
## 10523         resultant anticipation
## 10524        resumption     positive
## 10525            retain        trust
## 10526         retaliate        anger
## 10527         retaliate     negative
## 10528       retaliation        anger
## 10529       retaliation         fear
## 10530       retaliation     negative
## 10531       retaliatory        anger
## 10532       retaliatory     negative
## 10533            retard      disgust
## 10534            retard         fear
## 10535            retard     negative
## 10536            retard      sadness
## 10537       retardation     negative
## 10538         retention     positive
## 10539          reticent         fear
## 10540          reticent     negative
## 10541        retirement anticipation
## 10542        retirement         fear
## 10543        retirement          joy
## 10544        retirement     negative
## 10545        retirement     positive
## 10546        retirement      sadness
## 10547        retirement        trust
## 10548            retort     negative
## 10549           retract        anger
## 10550           retract     negative
## 10551        retraction     negative
## 10552      retrenchment         fear
## 10553      retrenchment     negative
## 10554       retribution        anger
## 10555       retribution         fear
## 10556       retribution     negative
## 10557       retribution      sadness
## 10558        retrograde     negative
## 10559           reunion anticipation
## 10560           reunion     positive
## 10561           reunion        trust
## 10562             revel          joy
## 10563             revel     positive
## 10564            revels          joy
## 10565            revels     positive
## 10566           revenge        anger
## 10567           revenge anticipation
## 10568           revenge         fear
## 10569           revenge     negative
## 10570           revenge     surprise
## 10571            revere anticipation
## 10572            revere          joy
## 10573            revere     positive
## 10574            revere        trust
## 10575         reverence          joy
## 10576         reverence     positive
## 10577         reverence        trust
## 10578          reverend          joy
## 10579          reverend     positive
## 10580           reverie          joy
## 10581           reverie     positive
## 10582           reverie        trust
## 10583          reversal        anger
## 10584          reversal      disgust
## 10585          reversal     negative
## 10586          reversal     surprise
## 10587            revise     positive
## 10588           revival anticipation
## 10589           revival          joy
## 10590           revival     positive
## 10591           revival        trust
## 10592            revive anticipation
## 10593            revive     negative
## 10594            revive     positive
## 10595        revocation     negative
## 10596            revoke        anger
## 10597            revoke      disgust
## 10598            revoke         fear
## 10599            revoke     negative
## 10600            revoke      sadness
## 10601            revolt        anger
## 10602            revolt     negative
## 10603            revolt     surprise
## 10604         revolting        anger
## 10605         revolting      disgust
## 10606         revolting         fear
## 10607         revolting     negative
## 10608        revolution        anger
## 10609        revolution anticipation
## 10610        revolution         fear
## 10611        revolution     negative
## 10612        revolution     positive
## 10613        revolution      sadness
## 10614        revolution     surprise
## 10615     revolutionary     positive
## 10616          revolver        anger
## 10617          revolver         fear
## 10618          revolver     negative
## 10619          revolver      sadness
## 10620         revulsion        anger
## 10621         revulsion      disgust
## 10622         revulsion         fear
## 10623         revulsion     negative
## 10624            reward anticipation
## 10625            reward          joy
## 10626            reward     positive
## 10627            reward     surprise
## 10628            reward        trust
## 10629        rheumatism        anger
## 10630        rheumatism         fear
## 10631        rheumatism     negative
## 10632        rheumatism      sadness
## 10633            rhythm     positive
## 10634        rhythmical          joy
## 10635        rhythmical     positive
## 10636        rhythmical     surprise
## 10637            ribbon        anger
## 10638            ribbon anticipation
## 10639            ribbon          joy
## 10640            ribbon     positive
## 10641          richness     positive
## 10642           rickety     negative
## 10643            riddle     surprise
## 10644           riddled     negative
## 10645             rider     positive
## 10646          ridicule        anger
## 10647          ridicule      disgust
## 10648          ridicule     negative
## 10649          ridicule      sadness
## 10650        ridiculous        anger
## 10651        ridiculous      disgust
## 10652        ridiculous     negative
## 10653              rife     negative
## 10654             rifle        anger
## 10655             rifle         fear
## 10656             rifle     negative
## 10657              rift     negative
## 10658         righteous     positive
## 10659          rightful     positive
## 10660           rightly     positive
## 10661             rigid     negative
## 10662          rigidity     negative
## 10663             rigor      disgust
## 10664             rigor         fear
## 10665             rigor     negative
## 10666          rigorous     negative
## 10667            ringer        anger
## 10668            ringer     negative
## 10669              riot        anger
## 10670              riot         fear
## 10671              riot     negative
## 10672           riotous        anger
## 10673           riotous         fear
## 10674           riotous     negative
## 10675           riotous     surprise
## 10676              ripe     positive
## 10677             ripen anticipation
## 10678             ripen     positive
## 10679            rising anticipation
## 10680            rising          joy
## 10681            rising     positive
## 10682              risk anticipation
## 10683              risk         fear
## 10684              risk     negative
## 10685             risky anticipation
## 10686             risky         fear
## 10687             risky     negative
## 10688           rivalry        anger
## 10689           rivalry     negative
## 10690          riveting     positive
## 10691          roadster          joy
## 10692          roadster     positive
## 10693          roadster        trust
## 10694               rob        anger
## 10695               rob      disgust
## 10696               rob         fear
## 10697               rob     negative
## 10698               rob      sadness
## 10699            robber      disgust
## 10700            robber         fear
## 10701            robber     negative
## 10702           robbery        anger
## 10703           robbery      disgust
## 10704           robbery         fear
## 10705           robbery     negative
## 10706           robbery      sadness
## 10707            robust     positive
## 10708              rock     positive
## 10709            rocket        anger
## 10710               rod         fear
## 10711               rod     positive
## 10712               rod        trust
## 10713             rogue      disgust
## 10714             rogue     negative
## 10715        rollicking          joy
## 10716        rollicking     positive
## 10717           romance anticipation
## 10718           romance         fear
## 10719           romance          joy
## 10720           romance     positive
## 10721           romance      sadness
## 10722           romance     surprise
## 10723           romance        trust
## 10724          romantic anticipation
## 10725          romantic          joy
## 10726          romantic     positive
## 10727          romantic        trust
## 10728       romanticism          joy
## 10729       romanticism     positive
## 10730              romp          joy
## 10731              romp     positive
## 10732              rook        anger
## 10733              rook      disgust
## 10734              rook     negative
## 10735            rooted     positive
## 10736            rooted        trust
## 10737              rosy     positive
## 10738               rot      disgust
## 10739               rot         fear
## 10740               rot     negative
## 10741               rot      sadness
## 10742              rota     positive
## 10743              rota        trust
## 10744           rotting      disgust
## 10745           rotting     negative
## 10746         roughness     negative
## 10747          roulette anticipation
## 10748              rout     negative
## 10749           routine     positive
## 10750           routine        trust
## 10751               row        anger
## 10752               row     negative
## 10753             rowdy     negative
## 10754           royalty     positive
## 10755           rubbish      disgust
## 10756           rubbish     negative
## 10757            rubble         fear
## 10758            rubble     negative
## 10759            rubble      sadness
## 10760            rubric     positive
## 10761               rue     negative
## 10762               rue      sadness
## 10763            ruffle     negative
## 10764            rugged     negative
## 10765              ruin         fear
## 10766              ruin     negative
## 10767              ruin      sadness
## 10768            ruined        anger
## 10769            ruined      disgust
## 10770            ruined         fear
## 10771            ruined     negative
## 10772            ruined      sadness
## 10773           ruinous        anger
## 10774           ruinous      disgust
## 10775           ruinous         fear
## 10776           ruinous     negative
## 10777           ruinous      sadness
## 10778              rule         fear
## 10779              rule        trust
## 10780             rumor     negative
## 10781             rumor      sadness
## 10782           runaway     negative
## 10783           runaway      sadness
## 10784           rupture         fear
## 10785           rupture     negative
## 10786           rupture      sadness
## 10787           rupture     surprise
## 10788              ruse     negative
## 10789              rust     negative
## 10790             rusty     negative
## 10791              ruth     positive
## 10792          ruthless        anger
## 10793          ruthless      disgust
## 10794          ruthless         fear
## 10795          ruthless     negative
## 10796             saber        anger
## 10797             saber         fear
## 10798             saber     negative
## 10799          sabotage        anger
## 10800          sabotage      disgust
## 10801          sabotage         fear
## 10802          sabotage     negative
## 10803          sabotage      sadness
## 10804          sabotage     surprise
## 10805        sacrifices      disgust
## 10806        sacrifices         fear
## 10807        sacrifices     negative
## 10808        sacrifices      sadness
## 10809             sadly     negative
## 10810             sadly      sadness
## 10811           sadness     negative
## 10812           sadness      sadness
## 10813           sadness        trust
## 10814              safe          joy
## 10815              safe     positive
## 10816              safe        trust
## 10817         safeguard     positive
## 10818         safeguard        trust
## 10819       safekeeping        trust
## 10820               sag         fear
## 10821               sag     negative
## 10822              sage     positive
## 10823              sage        trust
## 10824             saint anticipation
## 10825             saint          joy
## 10826             saint     positive
## 10827             saint     surprise
## 10828             saint        trust
## 10829           saintly anticipation
## 10830           saintly          joy
## 10831           saintly     positive
## 10832           saintly     surprise
## 10833           saintly        trust
## 10834            salary anticipation
## 10835            salary          joy
## 10836            salary     positive
## 10837            salary        trust
## 10838           salient     positive
## 10839            saliva anticipation
## 10840             sally     surprise
## 10841            saloon        anger
## 10842          salutary          joy
## 10843          salutary     positive
## 10844          salutary        trust
## 10845            salute          joy
## 10846            salute     positive
## 10847         salvation anticipation
## 10848         salvation          joy
## 10849         salvation     positive
## 10850         salvation        trust
## 10851             salve     positive
## 10852           samurai         fear
## 10853           samurai     positive
## 10854    sanctification          joy
## 10855    sanctification     positive
## 10856    sanctification        trust
## 10857          sanctify anticipation
## 10858          sanctify          joy
## 10859          sanctify     positive
## 10860          sanctify      sadness
## 10861          sanctify     surprise
## 10862          sanctify        trust
## 10863         sanctuary anticipation
## 10864         sanctuary          joy
## 10865         sanctuary     positive
## 10866         sanctuary        trust
## 10867          sanguine     positive
## 10868          sanitary     positive
## 10869               sap     negative
## 10870               sap      sadness
## 10871             sappy        trust
## 10872           sarcasm        anger
## 10873           sarcasm      disgust
## 10874           sarcasm     negative
## 10875           sarcasm      sadness
## 10876           sarcoma         fear
## 10877           sarcoma     negative
## 10878           sarcoma      sadness
## 10879          sardonic     negative
## 10880           satanic        anger
## 10881           satanic     negative
## 10882             satin     positive
## 10883    satisfactorily     positive
## 10884         satisfied          joy
## 10885         satisfied     positive
## 10886         saturated      disgust
## 10887         saturated     negative
## 10888            savage        anger
## 10889            savage         fear
## 10890            savage     negative
## 10891          savagery        anger
## 10892          savagery         fear
## 10893          savagery     negative
## 10894              save          joy
## 10895              save     positive
## 10896              save        trust
## 10897           savings     positive
## 10898             savor anticipation
## 10899             savor      disgust
## 10900             savor          joy
## 10901             savor     positive
## 10902             savor      sadness
## 10903             savor        trust
## 10904            savory     positive
## 10905             savvy     positive
## 10906              scab     negative
## 10907          scaffold         fear
## 10908          scaffold     negative
## 10909           scalpel         fear
## 10910           scalpel     negative
## 10911             scaly     negative
## 10912           scandal         fear
## 10913           scandal     negative
## 10914        scandalous        anger
## 10915        scandalous     negative
## 10916            scanty     negative
## 10917         scapegoat        anger
## 10918         scapegoat         fear
## 10919         scapegoat     negative
## 10920              scar        anger
## 10921              scar      disgust
## 10922              scar         fear
## 10923              scar     negative
## 10924              scar      sadness
## 10925            scarce         fear
## 10926            scarce     negative
## 10927            scarce      sadness
## 10928          scarcely     negative
## 10929          scarcely      sadness
## 10930          scarcity        anger
## 10931          scarcity         fear
## 10932          scarcity     negative
## 10933          scarcity      sadness
## 10934             scare        anger
## 10935             scare anticipation
## 10936             scare         fear
## 10937             scare     negative
## 10938             scare     surprise
## 10939         scarecrow         fear
## 10940         scarecrow     negative
## 10941         scarecrow     positive
## 10942         scavenger     negative
## 10943         sceptical        trust
## 10944            scheme     negative
## 10945            schism        anger
## 10946            schism     negative
## 10947     schizophrenia        anger
## 10948     schizophrenia      disgust
## 10949     schizophrenia         fear
## 10950     schizophrenia     negative
## 10951     schizophrenia      sadness
## 10952           scholar     positive
## 10953       scholarship          joy
## 10954       scholarship     positive
## 10955            school        trust
## 10956          sciatica     negative
## 10957        scientific     positive
## 10958        scientific        trust
## 10959         scientist anticipation
## 10960         scientist     positive
## 10961         scientist        trust
## 10962         scintilla     positive
## 10963             scoff        anger
## 10964             scoff      disgust
## 10965             scoff     negative
## 10966             scold        anger
## 10967             scold      disgust
## 10968             scold         fear
## 10969             scold     negative
## 10970             scold      sadness
## 10971          scolding        anger
## 10972          scolding     negative
## 10973         scorching        anger
## 10974         scorching     negative
## 10975             score anticipation
## 10976             score          joy
## 10977             score     positive
## 10978             score     surprise
## 10979             scorn        anger
## 10980             scorn     negative
## 10981          scorpion        anger
## 10982          scorpion      disgust
## 10983          scorpion         fear
## 10984          scorpion     negative
## 10985          scorpion     surprise
## 10986            scotch     negative
## 10987         scoundrel        anger
## 10988         scoundrel      disgust
## 10989         scoundrel         fear
## 10990         scoundrel     negative
## 10991         scoundrel        trust
## 10992           scourge        anger
## 10993           scourge         fear
## 10994           scourge     negative
## 10995           scourge      sadness
## 10996        scrambling     negative
## 10997           scrapie        anger
## 10998           scrapie         fear
## 10999           scrapie     negative
## 11000           scrapie      sadness
## 11001            scream        anger
## 11002            scream      disgust
## 11003            scream         fear
## 11004            scream     negative
## 11005            scream     surprise
## 11006         screaming        anger
## 11007         screaming      disgust
## 11008         screaming         fear
## 11009         screaming     negative
## 11010           screech         fear
## 11011           screech     negative
## 11012           screech     surprise
## 11013           screwed        anger
## 11014           screwed     negative
## 11015            scribe     positive
## 11016         scrimmage     negative
## 11017         scrimmage     surprise
## 11018            script     positive
## 11019         scripture        trust
## 11020             scrub      disgust
## 11021             scrub     negative
## 11022       scrumptious     positive
## 11023        scrutinize anticipation
## 11024        scrutinize     negative
## 11025          scrutiny     negative
## 11026         sculpture     positive
## 11027              scum      disgust
## 11028              scum     negative
## 11029               sea     positive
## 11030              seal     positive
## 11031              seal        trust
## 11032             seals        trust
## 11033              sear     negative
## 11034          seasoned     positive
## 11035         secession     negative
## 11036          secluded     negative
## 11037          secluded      sadness
## 11038         seclusion         fear
## 11039         seclusion     negative
## 11040         seclusion     positive
## 11041        secondhand     negative
## 11042           secrecy     surprise
## 11043           secrecy        trust
## 11044            secret        trust
## 11045       secretariat     positive
## 11046           secrete      disgust
## 11047         secretion      disgust
## 11048         secretion     negative
## 11049         secretive     negative
## 11050         sectarian        anger
## 11051         sectarian         fear
## 11052         sectarian     negative
## 11053           secular anticipation
## 11054        securities        trust
## 11055          sedition        anger
## 11056          sedition     negative
## 11057          sedition      sadness
## 11058            seduce     negative
## 11059         seduction     negative
## 11060         seductive anticipation
## 11061              seek anticipation
## 11062         segregate        anger
## 11063         segregate      disgust
## 11064         segregate     negative
## 11065         segregate      sadness
## 11066        segregated     negative
## 11067             seize         fear
## 11068             seize     negative
## 11069           seizure         fear
## 11070           selfish        anger
## 11071           selfish      disgust
## 11072           selfish     negative
## 11073       selfishness     negative
## 11074            senate        trust
## 11075            senile         fear
## 11076            senile     negative
## 11077            senile      sadness
## 11078         seniority     positive
## 11079         seniority        trust
## 11080       sensational          joy
## 11081       sensational     positive
## 11082             sense     positive
## 11083         senseless        anger
## 11084         senseless      disgust
## 11085         senseless         fear
## 11086         senseless     negative
## 11087         senseless      sadness
## 11088         senseless     surprise
## 11089       sensibility     positive
## 11090          sensibly     positive
## 11091           sensual anticipation
## 11092           sensual          joy
## 11093           sensual     negative
## 11094           sensual     positive
## 11095           sensual     surprise
## 11096           sensual        trust
## 11097        sensuality anticipation
## 11098        sensuality          joy
## 11099        sensuality     positive
## 11100          sensuous          joy
## 11101          sensuous     positive
## 11102          sentence        anger
## 11103          sentence anticipation
## 11104          sentence      disgust
## 11105          sentence         fear
## 11106          sentence     negative
## 11107          sentence      sadness
## 11108       sentimental     positive
## 11109    sentimentality     positive
## 11110          sentinel     positive
## 11111          sentinel        trust
## 11112            sentry        trust
## 11113        separatist        anger
## 11114        separatist      disgust
## 11115        separatist     negative
## 11116            sepsis         fear
## 11117            sepsis     negative
## 11118            sepsis      sadness
## 11119            septic      disgust
## 11120            septic     negative
## 11121            sequel anticipation
## 11122     sequestration     negative
## 11123     sequestration      sadness
## 11124            serene     negative
## 11125            serene        trust
## 11126          serenity anticipation
## 11127          serenity          joy
## 11128          serenity     positive
## 11129          serenity        trust
## 11130            serial anticipation
## 11131            series        trust
## 11132       seriousness         fear
## 11133       seriousness      sadness
## 11134            sermon     positive
## 11135            sermon        trust
## 11136           serpent      disgust
## 11137           serpent         fear
## 11138           serpent     negative
## 11139             serum     positive
## 11140           servant     negative
## 11141           servant        trust
## 11142             serve     negative
## 11143             serve        trust
## 11144           servile      disgust
## 11145           servile         fear
## 11146           servile     negative
## 11147           servile      sadness
## 11148         servitude     negative
## 11149           setback     negative
## 11150           setback      sadness
## 11151           settlor         fear
## 11152           settlor     positive
## 11153             sever     negative
## 11154         severance      sadness
## 11155            sewage      disgust
## 11156            sewage     negative
## 11157             sewer      disgust
## 11158          sewerage      disgust
## 11159          sewerage     negative
## 11160               sex anticipation
## 11161               sex          joy
## 11162               sex     positive
## 11163               sex        trust
## 11164            shabby      disgust
## 11165            shabby     negative
## 11166             shack      disgust
## 11167             shack     negative
## 11168             shack      sadness
## 11169           shackle        anger
## 11170           shackle anticipation
## 11171           shackle      disgust
## 11172           shackle         fear
## 11173           shackle     negative
## 11174           shackle      sadness
## 11175             shady         fear
## 11176             shady     negative
## 11177           shaking         fear
## 11178           shaking     negative
## 11179             shaky        anger
## 11180             shaky anticipation
## 11181             shaky         fear
## 11182             shaky     negative
## 11183              sham        anger
## 11184              sham      disgust
## 11185              sham     negative
## 11186          shambles     negative
## 11187             shame      disgust
## 11188             shame         fear
## 11189             shame     negative
## 11190             shame      sadness
## 11191          shameful     negative
## 11192          shameful      sadness
## 11193         shameless      disgust
## 11194         shameless     negative
## 11195          shanghai      disgust
## 11196          shanghai         fear
## 11197          shanghai     negative
## 11198             shank         fear
## 11199             shape     positive
## 11200           shapely     positive
## 11201             share anticipation
## 11202             share          joy
## 11203             share     positive
## 11204             share        trust
## 11205             shark     negative
## 11206           sharpen        anger
## 11207           sharpen anticipation
## 11208           shatter        anger
## 11209           shatter         fear
## 11210           shatter     negative
## 11211           shatter      sadness
## 11212           shatter     surprise
## 11213         shattered     negative
## 11214         shattered      sadness
## 11215              shed     negative
## 11216             shell        anger
## 11217             shell         fear
## 11218             shell     negative
## 11219             shell      sadness
## 11220             shell     surprise
## 11221           shelter     positive
## 11222           shelter        trust
## 11223           shelved     negative
## 11224          shepherd     positive
## 11225          shepherd        trust
## 11226           sheriff        trust
## 11227             shine     positive
## 11228           shining anticipation
## 11229           shining          joy
## 11230           shining     positive
## 11231              ship anticipation
## 11232         shipwreck         fear
## 11233         shipwreck     negative
## 11234         shipwreck      sadness
## 11235              shit        anger
## 11236              shit      disgust
## 11237              shit     negative
## 11238            shiver        anger
## 11239            shiver anticipation
## 11240            shiver         fear
## 11241            shiver     negative
## 11242            shiver      sadness
## 11243             shock        anger
## 11244             shock         fear
## 11245             shock     negative
## 11246             shock     surprise
## 11247        shockingly     surprise
## 11248            shoddy        anger
## 11249            shoddy      disgust
## 11250            shoddy     negative
## 11251             shoot        anger
## 11252             shoot         fear
## 11253             shoot     negative
## 11254           shooter         fear
## 11255          shooting        anger
## 11256          shooting         fear
## 11257          shooting     negative
## 11258        shopkeeper        trust
## 11259       shoplifting        anger
## 11260       shoplifting      disgust
## 11261       shoplifting     negative
## 11262          shopping anticipation
## 11263          shopping          joy
## 11264          shopping     positive
## 11265          shopping     surprise
## 11266          shopping        trust
## 11267          shortage        anger
## 11268          shortage         fear
## 11269          shortage     negative
## 11270          shortage      sadness
## 11271       shortcoming     negative
## 11272           shortly anticipation
## 11273              shot        anger
## 11274              shot         fear
## 11275              shot     negative
## 11276              shot      sadness
## 11277              shot     surprise
## 11278          shoulder     positive
## 11279          shoulder        trust
## 11280             shout        anger
## 11281             shout     surprise
## 11282             shove        anger
## 11283             shove     negative
## 11284              show        trust
## 11285             showy     negative
## 11286          shrapnel         fear
## 11287            shrewd     positive
## 11288            shriek        anger
## 11289            shriek         fear
## 11290            shriek     negative
## 11291            shriek      sadness
## 11292            shriek     surprise
## 11293            shrill        anger
## 11294            shrill         fear
## 11295            shrill     negative
## 11296            shrill     surprise
## 11297            shrink         fear
## 11298            shrink     negative
## 11299            shrink      sadness
## 11300            shroud      sadness
## 11301            shrunk     negative
## 11302           shudder         fear
## 11303           shudder     negative
## 11304              shun        anger
## 11305              shun      disgust
## 11306              shun     negative
## 11307              shun      sadness
## 11308               sib        trust
## 11309              sick      disgust
## 11310              sick     negative
## 11311              sick      sadness
## 11312         sickening        anger
## 11313         sickening      disgust
## 11314         sickening         fear
## 11315         sickening     negative
## 11316         sickening      sadness
## 11317            sickly      disgust
## 11318            sickly     negative
## 11319            sickly      sadness
## 11320          sickness      disgust
## 11321          sickness         fear
## 11322          sickness     negative
## 11323          sickness      sadness
## 11324         signature        trust
## 11325           signify anticipation
## 11326              silk     positive
## 11327             silly          joy
## 11328             silly     negative
## 11329            simmer        anger
## 11330            simmer anticipation
## 11331         simmering anticipation
## 11332          simplify anticipation
## 11333          simplify          joy
## 11334          simplify     positive
## 11335          simplify     surprise
## 11336          simplify        trust
## 11337               sin        anger
## 11338               sin      disgust
## 11339               sin         fear
## 11340               sin     negative
## 11341               sin      sadness
## 11342           sincere     positive
## 11343           sincere        trust
## 11344         sincerity     positive
## 11345            sinful        anger
## 11346            sinful      disgust
## 11347            sinful         fear
## 11348            sinful     negative
## 11349            sinful      sadness
## 11350              sing anticipation
## 11351              sing          joy
## 11352              sing     positive
## 11353              sing      sadness
## 11354              sing        trust
## 11355            singly     positive
## 11356        singularly     surprise
## 11357          sinister        anger
## 11358          sinister      disgust
## 11359          sinister         fear
## 11360          sinister     negative
## 11361            sinner        anger
## 11362            sinner      disgust
## 11363            sinner         fear
## 11364            sinner     negative
## 11365            sinner      sadness
## 11366           sinning      disgust
## 11367           sinning     negative
## 11368               sir     positive
## 11369               sir        trust
## 11370             siren         fear
## 11371             siren     negative
## 11372             sissy     negative
## 11373        sisterhood        anger
## 11374        sisterhood     positive
## 11375        sisterhood      sadness
## 11376        sisterhood     surprise
## 11377        sisterhood        trust
## 11378            sizzle        anger
## 11379         skeptical     negative
## 11380           sketchy     negative
## 11381            skewed        anger
## 11382            skewed anticipation
## 11383            skewed     negative
## 11384              skid        anger
## 11385              skid         fear
## 11386              skid     negative
## 11387              skid      sadness
## 11388           skilled     positive
## 11389          skillful     positive
## 11390          skillful        trust
## 11391              skip     negative
## 11392          skirmish        anger
## 11393          skirmish     negative
## 11394               sky     positive
## 11395             slack     negative
## 11396              slag     negative
## 11397              slam        anger
## 11398              slam         fear
## 11399              slam     negative
## 11400              slam     surprise
## 11401           slander        anger
## 11402           slander      disgust
## 11403           slander     negative
## 11404        slanderous     negative
## 11405              slap        anger
## 11406              slap     negative
## 11407              slap     surprise
## 11408             slash        anger
## 11409             slate     positive
## 11410         slaughter        anger
## 11411         slaughter      disgust
## 11412         slaughter         fear
## 11413         slaughter     negative
## 11414         slaughter      sadness
## 11415         slaughter     surprise
## 11416    slaughterhouse        anger
## 11417    slaughterhouse      disgust
## 11418    slaughterhouse         fear
## 11419    slaughterhouse     negative
## 11420    slaughterhouse      sadness
## 11421      slaughtering        anger
## 11422      slaughtering      disgust
## 11423      slaughtering         fear
## 11424      slaughtering     negative
## 11425      slaughtering      sadness
## 11426      slaughtering     surprise
## 11427             slave        anger
## 11428             slave         fear
## 11429             slave     negative
## 11430             slave      sadness
## 11431           slavery        anger
## 11432           slavery      disgust
## 11433           slavery         fear
## 11434           slavery     negative
## 11435           slavery      sadness
## 11436              slay        anger
## 11437              slay     negative
## 11438            slayer        anger
## 11439            slayer      disgust
## 11440            slayer         fear
## 11441            slayer     negative
## 11442            slayer      sadness
## 11443            slayer     surprise
## 11444             sleek     positive
## 11445             sleet     negative
## 11446           slender     positive
## 11447              slim     positive
## 11448             slime      disgust
## 11449             slimy      disgust
## 11450             slimy     negative
## 11451             slink     negative
## 11452              slip     negative
## 11453              slip     surprise
## 11454              slop      disgust
## 11455              slop     negative
## 11456            sloppy      disgust
## 11457            sloppy     negative
## 11458             sloth      disgust
## 11459             sloth     negative
## 11460            slouch     negative
## 11461            slough     negative
## 11462          slowness     negative
## 11463            sludge      disgust
## 11464            sludge     negative
## 11465              slug      disgust
## 11466              slug     negative
## 11467          sluggish     negative
## 11468          sluggish      sadness
## 11469              slum      disgust
## 11470              slum     negative
## 11471             slump     negative
## 11472             slump      sadness
## 11473              slur        anger
## 11474              slur      disgust
## 11475              slur     negative
## 11476              slur      sadness
## 11477             slush      disgust
## 11478             slush     negative
## 11479             slush     surprise
## 11480              slut        anger
## 11481              slut      disgust
## 11482              slut     negative
## 11483               sly        anger
## 11484               sly      disgust
## 11485               sly         fear
## 11486               sly     negative
## 11487             smack        anger
## 11488             smack     negative
## 11489             small     negative
## 11490             smash        anger
## 11491             smash         fear
## 11492             smash     negative
## 11493           smashed     negative
## 11494        smattering     negative
## 11495             smell        anger
## 11496             smell      disgust
## 11497             smell     negative
## 11498          smelling      disgust
## 11499          smelling     negative
## 11500             smile          joy
## 11501             smile     positive
## 11502             smile     surprise
## 11503             smile        trust
## 11504           smiling          joy
## 11505           smiling     positive
## 11506             smirk     negative
## 11507             smite        anger
## 11508             smite         fear
## 11509             smite     negative
## 11510             smite      sadness
## 11511             smith        trust
## 11512           smitten     positive
## 11513            smoker     negative
## 11514        smoothness     positive
## 11515           smother        anger
## 11516           smother     negative
## 11517            smudge     negative
## 11518              smug     negative
## 11519           smuggle         fear
## 11520           smuggle     negative
## 11521          smuggler        anger
## 11522          smuggler      disgust
## 11523          smuggler         fear
## 11524          smuggler     negative
## 11525         smuggling     negative
## 11526              smut      disgust
## 11527              smut         fear
## 11528              smut     negative
## 11529              snag     negative
## 11530              snag     surprise
## 11531             snags     negative
## 11532             snake      disgust
## 11533             snake         fear
## 11534             snake     negative
## 11535             snare         fear
## 11536             snare     negative
## 11537             snarl        anger
## 11538             snarl      disgust
## 11539             snarl     negative
## 11540          snarling        anger
## 11541          snarling     negative
## 11542             sneak        anger
## 11543             sneak         fear
## 11544             sneak     negative
## 11545             sneak     surprise
## 11546          sneaking anticipation
## 11547          sneaking         fear
## 11548          sneaking     negative
## 11549          sneaking        trust
## 11550             sneer        anger
## 11551             sneer      disgust
## 11552             sneer     negative
## 11553            sneeze      disgust
## 11554            sneeze     negative
## 11555            sneeze     surprise
## 11556           snicker     positive
## 11557             snide     negative
## 11558              snob     negative
## 11559             snort      sadness
## 11560              soak     negative
## 11561               sob     negative
## 11562               sob      sadness
## 11563          sobriety     positive
## 11564          sobriety        trust
## 11565          sociable     positive
## 11566         socialism      disgust
## 11567         socialism         fear
## 11568         socialist        anger
## 11569         socialist      disgust
## 11570         socialist         fear
## 11571         socialist     negative
## 11572         socialist      sadness
## 11573              soil      disgust
## 11574              soil     negative
## 11575            soiled      disgust
## 11576            soiled     negative
## 11577            solace     positive
## 11578           soldier        anger
## 11579           soldier     positive
## 11580           soldier      sadness
## 11581             solid     positive
## 11582        solidarity        trust
## 11583          solidity     positive
## 11584          solidity        trust
## 11585          solution     positive
## 11586          solvency     positive
## 11587           somatic     negative
## 11588           somatic     surprise
## 11589            somber     negative
## 11590            somber      sadness
## 11591             sonar anticipation
## 11592             sonar     positive
## 11593            sonata     positive
## 11594            sonnet          joy
## 11595            sonnet     positive
## 11596            sonnet      sadness
## 11597          sonorous          joy
## 11598          sonorous     positive
## 11599              soot      disgust
## 11600              soot     negative
## 11601            soothe     positive
## 11602          soothing          joy
## 11603          soothing     positive
## 11604          soothing        trust
## 11605           sorcery anticipation
## 11606           sorcery         fear
## 11607           sorcery     negative
## 11608           sorcery     surprise
## 11609            sordid        anger
## 11610            sordid      disgust
## 11611            sordid         fear
## 11612            sordid     negative
## 11613            sordid      sadness
## 11614              sore        anger
## 11615              sore     negative
## 11616              sore      sadness
## 11617            sorely     negative
## 11618            sorely      sadness
## 11619          soreness      disgust
## 11620          soreness     negative
## 11621          soreness      sadness
## 11622            sorrow         fear
## 11623            sorrow     negative
## 11624            sorrow      sadness
## 11625         sorrowful     negative
## 11626         sorrowful      sadness
## 11627            sorter     positive
## 11628            sortie         fear
## 11629            sortie     negative
## 11630          soulless      disgust
## 11631          soulless         fear
## 11632          soulless     negative
## 11633          soulless      sadness
## 11634          soulmate         fear
## 11635          soulmate     negative
## 11636         soundness anticipation
## 11637         soundness          joy
## 11638         soundness     positive
## 11639         soundness        trust
## 11640              soup     positive
## 11641              sour      disgust
## 11642              sour     negative
## 11643         sovereign        trust
## 11644               spa anticipation
## 11645               spa          joy
## 11646               spa     positive
## 11647               spa     surprise
## 11648               spa        trust
## 11649          spacious     positive
## 11650           spaniel          joy
## 11651           spaniel     positive
## 11652           spaniel        trust
## 11653             spank        anger
## 11654             spank         fear
## 11655             spank     negative
## 11656             spank      sadness
## 11657          spanking        anger
## 11658           sparkle anticipation
## 11659           sparkle          joy
## 11660           sparkle     positive
## 11661           sparkle     surprise
## 11662             spasm         fear
## 11663             spasm     negative
## 11664              spat        anger
## 11665              spat     negative
## 11666             spear        anger
## 11667             spear anticipation
## 11668             spear         fear
## 11669             spear     negative
## 11670           special          joy
## 11671           special     positive
## 11672        specialist        trust
## 11673        specialize        trust
## 11674            specie     positive
## 11675             speck      disgust
## 11676             speck     negative
## 11677         spectacle     negative
## 11678         spectacle     positive
## 11679       spectacular anticipation
## 11680       spectacular     surprise
## 11681           specter         fear
## 11682           specter     negative
## 11683           specter      sadness
## 11684          spectral     negative
## 11685       speculation         fear
## 11686       speculation     negative
## 11687       speculation      sadness
## 11688       speculative anticipation
## 11689            speech     positive
## 11690            speedy     positive
## 11691          spelling     positive
## 11692             spent     negative
## 11693              spew      disgust
## 11694             spice     positive
## 11695            spider      disgust
## 11696            spider         fear
## 11697             spike         fear
## 11698             spine        anger
## 11699             spine     negative
## 11700             spine     positive
## 11701          spinster         fear
## 11702          spinster     negative
## 11703          spinster      sadness
## 11704            spirit     positive
## 11705           spirits anticipation
## 11706           spirits          joy
## 11707           spirits     positive
## 11708           spirits     surprise
## 11709              spit      disgust
## 11710             spite        anger
## 11711             spite     negative
## 11712          spiteful        anger
## 11713          spiteful     negative
## 11714            splash     surprise
## 11715          splendid          joy
## 11716          splendid     positive
## 11717          splendid     surprise
## 11718          splendor anticipation
## 11719          splendor          joy
## 11720          splendor     positive
## 11721          splendor     surprise
## 11722          splinter     negative
## 11723             split     negative
## 11724         splitting     negative
## 11725         splitting      sadness
## 11726             spoil      disgust
## 11727             spoil     negative
## 11728           spoiler     negative
## 11729           spoiler      sadness
## 11730             spoke     negative
## 11731         spokesman        trust
## 11732            sponge     negative
## 11733           sponsor     positive
## 11734           sponsor        trust
## 11735             spook         fear
## 11736             spook     negative
## 11737          spotless     positive
## 11738          spotless        trust
## 11739            spouse          joy
## 11740            spouse     positive
## 11741            spouse        trust
## 11742            sprain     negative
## 11743            sprain      sadness
## 11744             spree     negative
## 11745            sprite         fear
## 11746            sprite     negative
## 11747            spruce     positive
## 11748              spur         fear
## 11749          spurious      disgust
## 11750          spurious     negative
## 11751            squall         fear
## 11752            squall     negative
## 11753            squall      sadness
## 11754          squatter     negative
## 11755         squeamish      disgust
## 11756         squeamish         fear
## 11757         squeamish     negative
## 11758           squelch        anger
## 11759           squelch      disgust
## 11760           squelch     negative
## 11761            squirm      disgust
## 11762            squirm     negative
## 11763              stab        anger
## 11764              stab         fear
## 11765              stab     negative
## 11766              stab      sadness
## 11767              stab     surprise
## 11768            stable     positive
## 11769            stable        trust
## 11770          staccato     positive
## 11771           stagger     surprise
## 11772        staggering     negative
## 11773          stagnant     negative
## 11774          stagnant      sadness
## 11775             stain      disgust
## 11776             stain     negative
## 11777         stainless     positive
## 11778             stale     negative
## 11779         stalemate        anger
## 11780         stalemate      disgust
## 11781             stalk         fear
## 11782             stalk     negative
## 11783             stall      disgust
## 11784          stallion     positive
## 11785          stalwart     positive
## 11786           stamina     positive
## 11787           stamina        trust
## 11788          standing     positive
## 11789          standoff        anger
## 11790          standoff         fear
## 11791          standoff     negative
## 11792        standstill        anger
## 11793        standstill     negative
## 11794              star anticipation
## 11795              star          joy
## 11796              star     positive
## 11797              star        trust
## 11798           staring     negative
## 11799             stark     negative
## 11800             stark        trust
## 11801         starlight     positive
## 11802            starry anticipation
## 11803            starry          joy
## 11804            starry     positive
## 11805             start anticipation
## 11806           startle         fear
## 11807           startle     negative
## 11808           startle     surprise
## 11809         startling     surprise
## 11810        starvation         fear
## 11811        starvation     negative
## 11812        starvation      sadness
## 11813           starved     negative
## 11814          starving     negative
## 11815           stately     positive
## 11816         statement     positive
## 11817         statement        trust
## 11818        stationary     negative
## 11819       statistical        trust
## 11820            statue     positive
## 11821            status     positive
## 11822           staunch     positive
## 11823             stave     negative
## 11824         steadfast     positive
## 11825         steadfast        trust
## 11826            steady     surprise
## 11827            steady        trust
## 11828             steal        anger
## 11829             steal         fear
## 11830             steal     negative
## 11831             steal      sadness
## 11832          stealing      disgust
## 11833          stealing         fear
## 11834          stealing     negative
## 11835           stealth     surprise
## 11836        stealthily     surprise
## 11837          stealthy anticipation
## 11838          stealthy         fear
## 11839          stealthy     negative
## 11840          stealthy     surprise
## 11841           stellar     positive
## 11842        stereotype     negative
## 11843       stereotyped     negative
## 11844           sterile     negative
## 11845           sterile      sadness
## 11846         sterility     negative
## 11847          sterling        anger
## 11848          sterling anticipation
## 11849          sterling          joy
## 11850          sterling     negative
## 11851          sterling     positive
## 11852          sterling        trust
## 11853             stern     negative
## 11854           steward     positive
## 11855           steward        trust
## 11856            sticky      disgust
## 11857             stiff     negative
## 11858         stiffness     negative
## 11859            stifle     negative
## 11860           stifled        anger
## 11861           stifled         fear
## 11862           stifled     negative
## 11863           stifled      sadness
## 11864            stigma        anger
## 11865            stigma      disgust
## 11866            stigma         fear
## 11867            stigma     negative
## 11868            stigma      sadness
## 11869         stillborn     negative
## 11870         stillborn      sadness
## 11871         stillness         fear
## 11872         stillness     positive
## 11873         stillness      sadness
## 11874             sting        anger
## 11875             sting         fear
## 11876             sting     negative
## 11877          stinging     negative
## 11878            stingy        anger
## 11879            stingy      disgust
## 11880            stingy         fear
## 11881            stingy     negative
## 11882            stingy      sadness
## 11883             stink      disgust
## 11884             stink     negative
## 11885          stinking      disgust
## 11886          stinking     negative
## 11887             stint         fear
## 11888             stint     negative
## 11889             stint      sadness
## 11890            stocks     negative
## 11891            stolen        anger
## 11892            stolen     negative
## 11893           stomach      disgust
## 11894             stone        anger
## 11895             stone     negative
## 11896            stoned     negative
## 11897            stools      disgust
## 11898            stools     negative
## 11899          stoppage     negative
## 11900             store anticipation
## 11901             store     positive
## 11902             storm        anger
## 11903             storm     negative
## 11904          storming        anger
## 11905            stormy         fear
## 11906            stormy     negative
## 11907   straightforward     positive
## 11908   straightforward        trust
## 11909          strained        anger
## 11910          strained     negative
## 11911           straits         fear
## 11912           straits     negative
## 11913          stranded     negative
## 11914          stranger         fear
## 11915          stranger     negative
## 11916          strangle        anger
## 11917          strangle      disgust
## 11918          strangle         fear
## 11919          strangle     negative
## 11920          strangle      sadness
## 11921          strangle     surprise
## 11922         strategic     positive
## 11923        strategist anticipation
## 11924        strategist     positive
## 11925        strategist        trust
## 11926             stray     negative
## 11927          strength     positive
## 11928          strength        trust
## 11929        strengthen     positive
## 11930     strengthening          joy
## 11931     strengthening     positive
## 11932     strengthening        trust
## 11933            stress     negative
## 11934         stretcher         fear
## 11935         stretcher      sadness
## 11936          stricken      sadness
## 11937            strife        anger
## 11938            strife     negative
## 11939            strike        anger
## 11940            strike     negative
## 11941          striking     positive
## 11942        strikingly     positive
## 11943             strip     negative
## 11944             strip      sadness
## 11945            stripe     negative
## 11946          stripped        anger
## 11947          stripped anticipation
## 11948          stripped      disgust
## 11949          stripped         fear
## 11950          stripped     negative
## 11951          stripped      sadness
## 11952            strive anticipation
## 11953            stroke         fear
## 11954            stroke     negative
## 11955            stroke      sadness
## 11956          strongly     positive
## 11957        structural        trust
## 11958         structure     positive
## 11959         structure        trust
## 11960          struggle        anger
## 11961          struggle         fear
## 11962          struggle     negative
## 11963          struggle      sadness
## 11964             strut     negative
## 11965              stud     positive
## 11966             study     positive
## 11967            stuffy     negative
## 11968           stumble     negative
## 11969           stunned         fear
## 11970           stunned     negative
## 11971           stunned     surprise
## 11972           stunted     negative
## 11973            stupid     negative
## 11974         stupidity     negative
## 11975            stupor     negative
## 11976            sturdy     positive
## 11977               sty      disgust
## 11978               sty     negative
## 11979            subdue     negative
## 11980            subito     surprise
## 11981           subject     negative
## 11982         subjected     negative
## 11983         subjected      sadness
## 11984        subjection     negative
## 11985       subjugation        anger
## 11986       subjugation      disgust
## 11987       subjugation         fear
## 11988       subjugation     negative
## 11989       subjugation      sadness
## 11990       sublimation          joy
## 11991       sublimation     positive
## 11992            submit anticipation
## 11993       subordinate         fear
## 11994       subordinate     negative
## 11995          subpoena     negative
## 11996         subscribe anticipation
## 11997        subsidence     negative
## 11998        subsidence      sadness
## 11999           subsidy        anger
## 12000           subsidy      disgust
## 12001           subsidy     negative
## 12002           subsist     negative
## 12003         substance     positive
## 12004      substantiate        trust
## 12005       substantive     positive
## 12006          subtract     negative
## 12007        subversion        anger
## 12008        subversion         fear
## 12009        subversion     negative
## 12010        subversive        anger
## 12011        subversive     negative
## 12012        subversive     surprise
## 12013           subvert      disgust
## 12014           subvert         fear
## 12015           subvert     negative
## 12016           subvert      sadness
## 12017           succeed anticipation
## 12018           succeed          joy
## 12019           succeed     positive
## 12020           succeed     surprise
## 12021           succeed        trust
## 12022        succeeding anticipation
## 12023        succeeding          joy
## 12024        succeeding     positive
## 12025        succeeding        trust
## 12026           success anticipation
## 12027           success          joy
## 12028           success     positive
## 12029        successful anticipation
## 12030        successful          joy
## 12031        successful     positive
## 12032        successful        trust
## 12033          succinct     positive
## 12034         succulent     negative
## 12035         succulent     positive
## 12036           succumb     negative
## 12037              suck     negative
## 12038            sucker        anger
## 12039            sucker     negative
## 12040            sudden     surprise
## 12041          suddenly     surprise
## 12042               sue        anger
## 12043               sue     negative
## 12044               sue      sadness
## 12045            suffer     negative
## 12046          sufferer         fear
## 12047          sufferer     negative
## 12048          sufferer      sadness
## 12049         suffering      disgust
## 12050         suffering         fear
## 12051         suffering     negative
## 12052         suffering      sadness
## 12053       sufficiency     positive
## 12054       suffocating      disgust
## 12055       suffocating         fear
## 12056       suffocating     negative
## 12057       suffocating      sadness
## 12058       suffocation        anger
## 12059       suffocation         fear
## 12060       suffocation     negative
## 12061             sugar     positive
## 12062           suggest        trust
## 12063          suicidal        anger
## 12064          suicidal      disgust
## 12065          suicidal         fear
## 12066          suicidal     negative
## 12067          suicidal      sadness
## 12068           suicide        anger
## 12069           suicide         fear
## 12070           suicide     negative
## 12071           suicide      sadness
## 12072          suitable     positive
## 12073            sullen        anger
## 12074            sullen     negative
## 12075            sullen      sadness
## 12076            sultan         fear
## 12077            sultry     positive
## 12078           summons     negative
## 12079              sump      disgust
## 12080               sun anticipation
## 12081               sun          joy
## 12082               sun     positive
## 12083               sun     surprise
## 12084               sun        trust
## 12085           sundial anticipation
## 12086           sundial        trust
## 12087              sunk      disgust
## 12088              sunk         fear
## 12089              sunk     negative
## 12090              sunk      sadness
## 12091             sunny anticipation
## 12092             sunny          joy
## 12093             sunny     positive
## 12094             sunny     surprise
## 12095            sunset anticipation
## 12096            sunset     positive
## 12097          sunshine          joy
## 12098          sunshine     positive
## 12099            superb     positive
## 12100       superficial     negative
## 12101       superfluous     negative
## 12102        superhuman     positive
## 12103          superior     positive
## 12104       superiority     positive
## 12105          superman          joy
## 12106          superman     positive
## 12107          superman        trust
## 12108         superstar          joy
## 12109         superstar     positive
## 12110         superstar        trust
## 12111      superstition         fear
## 12112      superstition     negative
## 12113      superstition     positive
## 12114     superstitious anticipation
## 12115     superstitious         fear
## 12116     superstitious     negative
## 12117      supplication     positive
## 12118      supplication        trust
## 12119          supplies     positive
## 12120            supply     positive
## 12121         supported     positive
## 12122         supporter          joy
## 12123         supporter     positive
## 12124         supporter        trust
## 12125        supporting     positive
## 12126        supporting        trust
## 12127          suppress        anger
## 12128          suppress         fear
## 12129          suppress     negative
## 12130          suppress      sadness
## 12131       suppression        anger
## 12132       suppression      disgust
## 12133       suppression         fear
## 12134       suppression     negative
## 12135         supremacy        anger
## 12136         supremacy anticipation
## 12137         supremacy         fear
## 12138         supremacy          joy
## 12139         supremacy     negative
## 12140         supremacy     positive
## 12141         supremacy     surprise
## 12142         supremacy        trust
## 12143           supreme     positive
## 12144         supremely     positive
## 12145         surcharge        anger
## 12146         surcharge     negative
## 12147            surety     positive
## 12148            surety        trust
## 12149             surge     surprise
## 12150           surgery         fear
## 12151           surgery      sadness
## 12152             surly        anger
## 12153             surly      disgust
## 12154             surly     negative
## 12155           surmise     positive
## 12156        surpassing     positive
## 12157          surprise         fear
## 12158          surprise          joy
## 12159          surprise     positive
## 12160          surprise     surprise
## 12161         surprised     surprise
## 12162        surprising     surprise
## 12163      surprisingly anticipation
## 12164      surprisingly     surprise
## 12165         surrender         fear
## 12166         surrender     negative
## 12167         surrender      sadness
## 12168      surrendering     negative
## 12169      surrendering      sadness
## 12170         surrogate        trust
## 12171          surround anticipation
## 12172          surround     negative
## 12173          surround     positive
## 12174      surveillance         fear
## 12175         surveying     positive
## 12176           survive     positive
## 12177       susceptible     negative
## 12178           suspect         fear
## 12179           suspect     negative
## 12180          suspense anticipation
## 12181          suspense         fear
## 12182          suspense     surprise
## 12183        suspension         fear
## 12184        suspension     negative
## 12185         suspicion         fear
## 12186         suspicion     negative
## 12187        suspicious        anger
## 12188        suspicious anticipation
## 12189        suspicious     negative
## 12190              swab     negative
## 12191             swamp      disgust
## 12192             swamp         fear
## 12193             swamp     negative
## 12194            swampy      disgust
## 12195            swampy         fear
## 12196            swampy     negative
## 12197             swarm      disgust
## 12198          swastika        anger
## 12199          swastika         fear
## 12200          swastika     negative
## 12201             swear     positive
## 12202             swear        trust
## 12203             sweat         fear
## 12204             sweet anticipation
## 12205             sweet          joy
## 12206             sweet     positive
## 12207             sweet     surprise
## 12208             sweet        trust
## 12209        sweetheart anticipation
## 12210        sweetheart          joy
## 12211        sweetheart     positive
## 12212        sweetheart      sadness
## 12213        sweetheart        trust
## 12214           sweetie     positive
## 12215         sweetness     positive
## 12216            sweets anticipation
## 12217            sweets          joy
## 12218            sweets     positive
## 12219          swelling         fear
## 12220          swelling     negative
## 12221            swerve         fear
## 12222            swerve     surprise
## 12223             swift     positive
## 12224              swig      disgust
## 12225              swig     negative
## 12226              swim anticipation
## 12227              swim         fear
## 12228              swim          joy
## 12229              swim     positive
## 12230             swine      disgust
## 12231             swine     negative
## 12232           swollen     negative
## 12233          symbolic     positive
## 12234       symmetrical     positive
## 12235          symmetry          joy
## 12236          symmetry     positive
## 12237          symmetry        trust
## 12238       sympathetic         fear
## 12239       sympathetic          joy
## 12240       sympathetic     positive
## 12241       sympathetic      sadness
## 12242       sympathetic        trust
## 12243        sympathize      sadness
## 12244          sympathy     positive
## 12245          sympathy      sadness
## 12246          symphony anticipation
## 12247          symphony          joy
## 12248          symphony     positive
## 12249           symptom     negative
## 12250       synchronize anticipation
## 12251       synchronize          joy
## 12252       synchronize     positive
## 12253       synchronize     surprise
## 12254       synchronize        trust
## 12255           syncope         fear
## 12256           syncope     negative
## 12257           syncope      sadness
## 12258           syncope     surprise
## 12259       synergistic     positive
## 12260       synergistic        trust
## 12261             synod     positive
## 12262             synod        trust
## 12263        synonymous         fear
## 12264        synonymous     negative
## 12265        synonymous     positive
## 12266        synonymous        trust
## 12267           syringe         fear
## 12268            system        trust
## 12269             taboo      disgust
## 12270             taboo         fear
## 12271             taboo     negative
## 12272          tabulate anticipation
## 12273            tackle        anger
## 12274            tackle     surprise
## 12275              tact     positive
## 12276           tactics         fear
## 12277           tactics        trust
## 12278             taint     negative
## 12279             taint      sadness
## 12280              tale     positive
## 12281            talent     positive
## 12282          talisman     positive
## 12283              talk     positive
## 12284            talons        anger
## 12285            talons         fear
## 12286            talons     negative
## 12287            tandem        trust
## 12288           tangled     negative
## 12289            tanned     positive
## 12290       tantalizing anticipation
## 12291       tantalizing          joy
## 12292       tantalizing     negative
## 12293       tantalizing     positive
## 12294       tantalizing     surprise
## 12295        tantamount        trust
## 12296         tardiness     negative
## 12297             tardy     negative
## 12298            tariff        anger
## 12299            tariff      disgust
## 12300            tariff     negative
## 12301           tarnish      disgust
## 12302           tarnish     negative
## 12303           tarnish      sadness
## 12304             tarry     negative
## 12305              task     positive
## 12306          tasteful     positive
## 12307         tasteless      disgust
## 12308         tasteless     negative
## 12309             tasty     positive
## 12310            taught        trust
## 12311             taunt        anger
## 12312             taunt         fear
## 12313             taunt     negative
## 12314             taunt      sadness
## 12315             tawny      disgust
## 12316               tax     negative
## 12317               tax      sadness
## 12318             teach          joy
## 12319             teach     positive
## 12320             teach     surprise
## 12321             teach        trust
## 12322           teacher     positive
## 12323           teacher        trust
## 12324              team        trust
## 12325           tearful      disgust
## 12326           tearful         fear
## 12327           tearful      sadness
## 12328             tease        anger
## 12329             tease anticipation
## 12330             tease     negative
## 12331             tease      sadness
## 12332           teasing        anger
## 12333           teasing         fear
## 12334           teasing     negative
## 12335        technology     positive
## 12336           tedious     negative
## 12337            tedium     negative
## 12338           teeming      disgust
## 12339             teens     negative
## 12340             teens     positive
## 12341        temperance     positive
## 12342         temperate        trust
## 12343          tempered     positive
## 12344           tempest        anger
## 12345           tempest anticipation
## 12346           tempest         fear
## 12347           tempest     negative
## 12348           tempest      sadness
## 12349           tempest     surprise
## 12350        temptation     negative
## 12351           tenable     positive
## 12352         tenacious     positive
## 12353          tenacity     positive
## 12354           tenancy     positive
## 12355            tenant     positive
## 12356            tender          joy
## 12357            tender     positive
## 12358            tender        trust
## 12359        tenderness          joy
## 12360        tenderness     positive
## 12361          tenement     negative
## 12362           tension        anger
## 12363          terminal         fear
## 12364          terminal     negative
## 12365          terminal      sadness
## 12366         terminate      sadness
## 12367       termination     negative
## 12368       termination      sadness
## 12369           termite      disgust
## 12370           termite     negative
## 12371          terrible        anger
## 12372          terrible      disgust
## 12373          terrible         fear
## 12374          terrible     negative
## 12375          terrible      sadness
## 12376          terribly      sadness
## 12377          terrific      sadness
## 12378            terror         fear
## 12379            terror     negative
## 12380         terrorism        anger
## 12381         terrorism      disgust
## 12382         terrorism         fear
## 12383         terrorism     negative
## 12384         terrorism      sadness
## 12385         terrorist        anger
## 12386         terrorist      disgust
## 12387         terrorist         fear
## 12388         terrorist     negative
## 12389         terrorist      sadness
## 12390         terrorist     surprise
## 12391         terrorize        anger
## 12392         terrorize         fear
## 12393         terrorize     negative
## 12394         terrorize      sadness
## 12395         testament anticipation
## 12396         testament        trust
## 12397         testimony        trust
## 12398           tetanus      disgust
## 12399           tetanus     negative
## 12400            tether     negative
## 12401          thankful          joy
## 12402          thankful     positive
## 12403      thanksgiving          joy
## 12404      thanksgiving     positive
## 12405             theft        anger
## 12406             theft      disgust
## 12407             theft         fear
## 12408             theft     negative
## 12409             theft      sadness
## 12410            theism      disgust
## 12411            theism     negative
## 12412        theocratic        anger
## 12413        theocratic         fear
## 12414        theocratic     negative
## 12415        theocratic      sadness
## 12416        theocratic        trust
## 12417       theological        trust
## 12418          theology anticipation
## 12419           theorem        trust
## 12420       theoretical     positive
## 12421            theory anticipation
## 12422            theory        trust
## 12423       therapeutic          joy
## 12424       therapeutic     positive
## 12425       therapeutic        trust
## 12426      therapeutics     positive
## 12427      thermocouple anticipation
## 12428       thermometer        trust
## 12429             thief        anger
## 12430             thief      disgust
## 12431             thief         fear
## 12432             thief     negative
## 12433             thief      sadness
## 12434             thief     surprise
## 12435           thinker     positive
## 12436            thirst anticipation
## 12437            thirst      sadness
## 12438            thirst     surprise
## 12439           thirsty     negative
## 12440        thirteenth         fear
## 12441             thorn     negative
## 12442            thorny         fear
## 12443            thorny     negative
## 12444      thoroughbred     positive
## 12445           thought anticipation
## 12446        thoughtful     positive
## 12447        thoughtful        trust
## 12448    thoughtfulness     positive
## 12449       thoughtless        anger
## 12450       thoughtless      disgust
## 12451       thoughtless     negative
## 12452            thrash        anger
## 12453            thrash      disgust
## 12454            thrash         fear
## 12455            thrash     negative
## 12456            thrash      sadness
## 12457            threat        anger
## 12458            threat         fear
## 12459            threat     negative
## 12460          threaten        anger
## 12461          threaten anticipation
## 12462          threaten         fear
## 12463          threaten     negative
## 12464       threatening        anger
## 12465       threatening      disgust
## 12466       threatening         fear
## 12467       threatening     negative
## 12468            thresh        anger
## 12469            thresh         fear
## 12470            thresh     negative
## 12471            thresh      sadness
## 12472            thrift      disgust
## 12473            thrift     positive
## 12474            thrift        trust
## 12475            thrill anticipation
## 12476            thrill         fear
## 12477            thrill          joy
## 12478            thrill     positive
## 12479            thrill     surprise
## 12480         thrilling anticipation
## 12481         thrilling          joy
## 12482         thrilling     positive
## 12483         thrilling     surprise
## 12484          thriving anticipation
## 12485          thriving          joy
## 12486          thriving     positive
## 12487             throb         fear
## 12488             throb     negative
## 12489             throb      sadness
## 12490            throne     positive
## 12491            throne        trust
## 12492          throttle        anger
## 12493          throttle     negative
## 12494              thug        anger
## 12495              thug      disgust
## 12496              thug         fear
## 12497              thug     negative
## 12498             thump        anger
## 12499             thump     negative
## 12500          thumping         fear
## 12501        thundering        anger
## 12502        thundering         fear
## 12503        thundering     negative
## 12504            thwart     negative
## 12505            thwart     surprise
## 12506            tickle anticipation
## 12507            tickle          joy
## 12508            tickle     positive
## 12509            tickle     surprise
## 12510            tickle        trust
## 12511              tiff        anger
## 12512              tiff     negative
## 12513           tighten        anger
## 12514            tiling     positive
## 12515              time anticipation
## 12516            timely     positive
## 12517             timid         fear
## 12518             timid     negative
## 12519             timid      sadness
## 12520          timidity anticipation
## 12521          timidity         fear
## 12522          timidity     negative
## 12523            tinsel          joy
## 12524            tinsel     positive
## 12525             tipsy     negative
## 12526            tirade        anger
## 12527            tirade      disgust
## 12528            tirade     negative
## 12529             tired     negative
## 12530         tiredness     negative
## 12531          tiresome     negative
## 12532               tit     negative
## 12533             title     positive
## 12534             title        trust
## 12535              toad      disgust
## 12536              toad     negative
## 12537             toast          joy
## 12538             toast     positive
## 12539           tobacco     negative
## 12540            toilet      disgust
## 12541            toilet     negative
## 12542             toils     negative
## 12543          tolerant     positive
## 12544          tolerate        anger
## 12545          tolerate     negative
## 12546          tolerate      sadness
## 12547        toleration     positive
## 12548              tomb      sadness
## 12549          tomorrow anticipation
## 12550         toothache         fear
## 12551         toothache     negative
## 12552               top anticipation
## 12553               top     positive
## 12554               top        trust
## 12555            topple     surprise
## 12556           torment        anger
## 12557           torment         fear
## 12558           torment     negative
## 12559           torment      sadness
## 12560              torn     negative
## 12561           tornado         fear
## 12562           torpedo        anger
## 12563           torpedo     negative
## 12564           torrent         fear
## 12565            torrid     negative
## 12566              tort     negative
## 12567          tortious        anger
## 12568          tortious      disgust
## 12569          tortious     negative
## 12570           torture        anger
## 12571           torture anticipation
## 12572           torture      disgust
## 12573           torture         fear
## 12574           torture     negative
## 12575           torture      sadness
## 12576           touched     negative
## 12577            touchy        anger
## 12578            touchy     negative
## 12579            touchy      sadness
## 12580             tough     negative
## 12581             tough      sadness
## 12582         toughness        anger
## 12583         toughness         fear
## 12584         toughness     positive
## 12585         toughness        trust
## 12586             tower     positive
## 12587          towering anticipation
## 12588          towering         fear
## 12589          towering     positive
## 12590             toxic      disgust
## 12591             toxic     negative
## 12592             toxin         fear
## 12593             toxin     negative
## 12594             track anticipation
## 12595             tract         fear
## 12596             trade        trust
## 12597       traditional     positive
## 12598           tragedy         fear
## 12599           tragedy     negative
## 12600           tragedy      sadness
## 12601            tragic     negative
## 12602           trainer        trust
## 12603           traitor        anger
## 12604           traitor      disgust
## 12605           traitor         fear
## 12606           traitor     negative
## 12607           traitor      sadness
## 12608             tramp      disgust
## 12609             tramp         fear
## 12610             tramp     negative
## 12611             tramp      sadness
## 12612            trance     negative
## 12613          tranquil          joy
## 12614          tranquil     positive
## 12615       tranquility          joy
## 12616       tranquility     positive
## 12617       tranquility        trust
## 12618       transaction        trust
## 12619     transcendence anticipation
## 12620     transcendence          joy
## 12621     transcendence     positive
## 12622     transcendence     surprise
## 12623     transcendence        trust
## 12624    transcendental     positive
## 12625        transcript        trust
## 12626     transgression     negative
## 12627      transitional anticipation
## 12628       translation        trust
## 12629         trappings     negative
## 12630             traps     negative
## 12631             trash      disgust
## 12632             trash     negative
## 12633             trash      sadness
## 12634            trashy      disgust
## 12635            trashy     negative
## 12636         traumatic        anger
## 12637         traumatic         fear
## 12638         traumatic     negative
## 12639         traumatic      sadness
## 12640           travail     negative
## 12641         traveling     positive
## 12642          travesty      disgust
## 12643          travesty         fear
## 12644          travesty     negative
## 12645          travesty      sadness
## 12646       treacherous        anger
## 12647       treacherous      disgust
## 12648       treacherous         fear
## 12649       treacherous     negative
## 12650         treachery        anger
## 12651         treachery         fear
## 12652         treachery     negative
## 12653         treachery      sadness
## 12654         treachery     surprise
## 12655         treadmill anticipation
## 12656           treason        anger
## 12657           treason      disgust
## 12658           treason         fear
## 12659           treason     negative
## 12660           treason     surprise
## 12661          treasure anticipation
## 12662          treasure          joy
## 12663          treasure     positive
## 12664          treasure        trust
## 12665         treasurer        trust
## 12666             treat        anger
## 12667             treat anticipation
## 12668             treat      disgust
## 12669             treat         fear
## 12670             treat          joy
## 12671             treat     negative
## 12672             treat     positive
## 12673             treat      sadness
## 12674             treat     surprise
## 12675             treat        trust
## 12676              tree        anger
## 12677              tree anticipation
## 12678              tree      disgust
## 12679              tree          joy
## 12680              tree     positive
## 12681              tree     surprise
## 12682              tree        trust
## 12683         trembling         fear
## 12684         trembling     negative
## 12685      tremendously     positive
## 12686            tremor        anger
## 12687            tremor anticipation
## 12688            tremor         fear
## 12689            tremor     negative
## 12690            tremor      sadness
## 12691             trend     positive
## 12692            trendy     positive
## 12693       trepidation anticipation
## 12694       trepidation         fear
## 12695       trepidation     negative
## 12696       trepidation     surprise
## 12697          trespass        anger
## 12698          trespass     negative
## 12699             tribe        trust
## 12700       tribulation         fear
## 12701       tribulation     negative
## 12702       tribulation      sadness
## 12703          tribunal anticipation
## 12704          tribunal      disgust
## 12705          tribunal         fear
## 12706          tribunal     negative
## 12707          tribunal        trust
## 12708           tribune        trust
## 12709         tributary anticipation
## 12710         tributary     positive
## 12711           tribute     positive
## 12712             trick     negative
## 12713             trick     surprise
## 12714          trickery        anger
## 12715          trickery      disgust
## 12716          trickery         fear
## 12717          trickery     negative
## 12718          trickery      sadness
## 12719          trickery     surprise
## 12720            trifle     negative
## 12721              trig     positive
## 12722              trip     surprise
## 12723          tripping        anger
## 12724          tripping     negative
## 12725          tripping      sadness
## 12726           triumph anticipation
## 12727           triumph          joy
## 12728           triumph     positive
## 12729        triumphant anticipation
## 12730        triumphant          joy
## 12731        triumphant     positive
## 12732        triumphant        trust
## 12733             troll        anger
## 12734             troll         fear
## 12735             troll     negative
## 12736            trophy anticipation
## 12737            trophy          joy
## 12738            trophy     positive
## 12739            trophy     surprise
## 12740            trophy        trust
## 12741       troublesome        anger
## 12742       troublesome         fear
## 12743       troublesome     negative
## 12744             truce          joy
## 12745             truce     positive
## 12746             truce        trust
## 12747             truck        trust
## 12748              true          joy
## 12749              true     positive
## 12750              true        trust
## 12751             trump     surprise
## 12752           trumpet     negative
## 12753             truss        trust
## 12754             trust        trust
## 12755           trustee        trust
## 12756            trusty     positive
## 12757             truth     positive
## 12758             truth        trust
## 12759          truthful        trust
## 12760      truthfulness     positive
## 12761      truthfulness        trust
## 12762            tumble     negative
## 12763             tumor         fear
## 12764             tumor     negative
## 12765            tumour         fear
## 12766            tumour     negative
## 12767            tumour      sadness
## 12768            tumult        anger
## 12769            tumult         fear
## 12770            tumult     negative
## 12771            tumult     surprise
## 12772        tumultuous        anger
## 12773        tumultuous         fear
## 12774        tumultuous     negative
## 12775        turbulence        anger
## 12776        turbulence         fear
## 12777        turbulence     negative
## 12778         turbulent         fear
## 12779         turbulent     negative
## 12780           turmoil        anger
## 12781           turmoil         fear
## 12782           turmoil     negative
## 12783           turmoil      sadness
## 12784            tussle        anger
## 12785          tutelage     positive
## 12786          tutelage        trust
## 12787             tutor     positive
## 12788              twin     positive
## 12789           twinkle anticipation
## 12790           twinkle          joy
## 12791           twinkle     positive
## 12792            twitch     negative
## 12793           typhoon         fear
## 12794           typhoon     negative
## 12795        tyrannical        anger
## 12796        tyrannical      disgust
## 12797        tyrannical         fear
## 12798        tyrannical     negative
## 12799           tyranny         fear
## 12800           tyranny     negative
## 12801           tyranny      sadness
## 12802            tyrant        anger
## 12803            tyrant      disgust
## 12804            tyrant         fear
## 12805            tyrant     negative
## 12806            tyrant      sadness
## 12807          ugliness      disgust
## 12808          ugliness         fear
## 12809          ugliness     negative
## 12810          ugliness      sadness
## 12811              ugly      disgust
## 12812              ugly     negative
## 12813             ulcer        anger
## 12814             ulcer      disgust
## 12815             ulcer         fear
## 12816             ulcer     negative
## 12817             ulcer      sadness
## 12818          ulterior     negative
## 12819          ultimate anticipation
## 12820          ultimate      sadness
## 12821        ultimately anticipation
## 12822        ultimately     positive
## 12823         ultimatum        anger
## 12824         ultimatum         fear
## 12825         ultimatum     negative
## 12826            umpire     positive
## 12827            umpire        trust
## 12828            unable     negative
## 12829            unable      sadness
## 12830      unacceptable     negative
## 12831      unacceptable      sadness
## 12832     unaccountable anticipation
## 12833     unaccountable      disgust
## 12834     unaccountable     negative
## 12835     unaccountable      sadness
## 12836     unaccountable        trust
## 12837    unacknowledged      sadness
## 12838         unanimity     positive
## 12839         unanimous     positive
## 12840     unanticipated     surprise
## 12841        unapproved     negative
## 12842        unassuming     positive
## 12843        unattached     negative
## 12844      unattainable        anger
## 12845      unattainable     negative
## 12846      unattainable      sadness
## 12847      unattractive      disgust
## 12848      unattractive     negative
## 12849      unattractive      sadness
## 12850      unauthorized     negative
## 12851       unavoidable     negative
## 12852           unaware     negative
## 12853        unbearable      disgust
## 12854        unbearable     negative
## 12855        unbearable      sadness
## 12856          unbeaten anticipation
## 12857          unbeaten          joy
## 12858          unbeaten     negative
## 12859          unbeaten     positive
## 12860          unbeaten      sadness
## 12861          unbeaten     surprise
## 12862          unbelief     negative
## 12863      unbelievable     negative
## 12864          unbiased     positive
## 12865            unborn     negative
## 12866       unbreakable     positive
## 12867         unbridled        anger
## 12868         unbridled anticipation
## 12869         unbridled         fear
## 12870         unbridled     negative
## 12871         unbridled     positive
## 12872         unbridled     surprise
## 12873          unbroken     positive
## 12874          unbroken        trust
## 12875           uncanny         fear
## 12876           uncanny     negative
## 12877           uncanny     surprise
## 12878          uncaring        anger
## 12879          uncaring      disgust
## 12880          uncaring     negative
## 12881          uncaring      sadness
## 12882         uncertain        anger
## 12883         uncertain      disgust
## 12884         uncertain         fear
## 12885         uncertain     negative
## 12886         uncertain     surprise
## 12887      unchangeable     negative
## 12888           unclean      disgust
## 12889           unclean     negative
## 12890     uncomfortable     negative
## 12891    unconscionable      disgust
## 12892    unconscionable     negative
## 12893       unconscious     negative
## 12894  unconstitutional     negative
## 12895     unconstrained          joy
## 12896     unconstrained     positive
## 12897    uncontrollable        anger
## 12898    uncontrollable anticipation
## 12899    uncontrollable     negative
## 12900    uncontrollable     surprise
## 12901      uncontrolled     negative
## 12902           uncover     surprise
## 12903         undecided anticipation
## 12904         undecided         fear
## 12905         undecided     negative
## 12906     underestimate     surprise
## 12907         underline     positive
## 12908        undermined     negative
## 12909         underpaid        anger
## 12910         underpaid     negative
## 12911         underpaid      sadness
## 12912        undersized     negative
## 12913     understanding     positive
## 12914     understanding        trust
## 12915        undertaker      sadness
## 12916       undertaking anticipation
## 12917        underwrite     positive
## 12918        underwrite        trust
## 12919       undesirable        anger
## 12920       undesirable      disgust
## 12921       undesirable         fear
## 12922       undesirable     negative
## 12923       undesirable      sadness
## 12924         undesired     negative
## 12925         undesired      sadness
## 12926       undisclosed anticipation
## 12927      undiscovered     surprise
## 12928         undivided     positive
## 12929              undo     negative
## 12930         undoubted anticipation
## 12931         undoubted      disgust
## 12932           undying anticipation
## 12933           undying          joy
## 12934           undying     positive
## 12935           undying      sadness
## 12936           undying        trust
## 12937        uneasiness anticipation
## 12938        uneasiness     negative
## 12939        uneasiness      sadness
## 12940            uneasy      disgust
## 12941            uneasy         fear
## 12942            uneasy     negative
## 12943        uneducated     negative
## 12944        uneducated      sadness
## 12945        unemployed         fear
## 12946        unemployed     negative
## 12947        unemployed      sadness
## 12948           unequal        anger
## 12949           unequal      disgust
## 12950           unequal         fear
## 12951           unequal     negative
## 12952           unequal      sadness
## 12953       unequivocal        trust
## 12954     unequivocally     positive
## 12955            uneven     negative
## 12956        unexpected anticipation
## 12957        unexpected         fear
## 12958        unexpected          joy
## 12959        unexpected     negative
## 12960        unexpected     positive
## 12961        unexpected     surprise
## 12962      unexpectedly     surprise
## 12963       unexplained anticipation
## 12964       unexplained     negative
## 12965       unexplained      sadness
## 12966            unfair        anger
## 12967            unfair      disgust
## 12968            unfair     negative
## 12969            unfair      sadness
## 12970        unfairness        anger
## 12971        unfairness     negative
## 12972        unfairness      sadness
## 12973        unfaithful      disgust
## 12974        unfaithful     negative
## 12975       unfavorable      disgust
## 12976       unfavorable     negative
## 12977       unfavorable      sadness
## 12978        unfinished     negative
## 12979            unfold anticipation
## 12980            unfold     positive
## 12981        unforeseen     surprise
## 12982       unforgiving        anger
## 12983       unforgiving     negative
## 12984       unforgiving      sadness
## 12985       unfortunate     negative
## 12986       unfortunate      sadness
## 12987        unfriendly        anger
## 12988        unfriendly      disgust
## 12989        unfriendly         fear
## 12990        unfriendly     negative
## 12991        unfriendly      sadness
## 12992       unfulfilled        anger
## 12993       unfulfilled anticipation
## 12994       unfulfilled     negative
## 12995       unfulfilled      sadness
## 12996       unfulfilled     surprise
## 12997       unfurnished     negative
## 12998           ungodly     negative
## 12999           ungodly      sadness
## 13000        ungrateful        anger
## 13001        ungrateful      disgust
## 13002        ungrateful     negative
## 13003         unguarded     surprise
## 13004       unhappiness     negative
## 13005       unhappiness      sadness
## 13006           unhappy        anger
## 13007           unhappy      disgust
## 13008           unhappy     negative
## 13009           unhappy      sadness
## 13010         unhealthy      disgust
## 13011         unhealthy         fear
## 13012         unhealthy     negative
## 13013         unhealthy      sadness
## 13014            unholy         fear
## 13015            unholy     negative
## 13016       unification anticipation
## 13017       unification          joy
## 13018       unification     positive
## 13019       unification        trust
## 13020         uniformly     positive
## 13021      unimaginable     negative
## 13022      unimaginable     positive
## 13023      unimaginable     surprise
## 13024       unimportant     negative
## 13025       unimportant      sadness
## 13026       unimpressed     negative
## 13027        unimproved     negative
## 13028        uninfected     positive
## 13029        uninformed     negative
## 13030       uninitiated     negative
## 13031        uninspired     negative
## 13032        uninspired      sadness
## 13033    unintelligible     negative
## 13034        unintended     surprise
## 13035     unintentional     surprise
## 13036   unintentionally     negative
## 13037   unintentionally     surprise
## 13038      uninterested     negative
## 13039      uninterested      sadness
## 13040     uninteresting     negative
## 13041     uninteresting      sadness
## 13042         uninvited      sadness
## 13043            unique     positive
## 13044            unique     surprise
## 13045            unison     positive
## 13046           unitary     positive
## 13047            united     positive
## 13048            united        trust
## 13049             unity     positive
## 13050             unity        trust
## 13051        university anticipation
## 13052        university     positive
## 13053            unjust        anger
## 13054            unjust     negative
## 13055     unjustifiable        anger
## 13056     unjustifiable      disgust
## 13057     unjustifiable         fear
## 13058     unjustifiable     negative
## 13059       unjustified     negative
## 13060            unkind        anger
## 13061            unkind      disgust
## 13062            unkind         fear
## 13063            unkind     negative
## 13064            unkind      sadness
## 13065           unknown anticipation
## 13066           unknown         fear
## 13067           unknown     negative
## 13068          unlawful        anger
## 13069          unlawful      disgust
## 13070          unlawful         fear
## 13071          unlawful     negative
## 13072          unlawful      sadness
## 13073        unlicensed     negative
## 13074         unlimited     positive
## 13075           unlucky        anger
## 13076           unlucky      disgust
## 13077           unlucky         fear
## 13078           unlucky     negative
## 13079           unlucky      sadness
## 13080      unmanageable      disgust
## 13081      unmanageable     negative
## 13082         unnatural      disgust
## 13083         unnatural         fear
## 13084         unnatural     negative
## 13085        unofficial     negative
## 13086            unpaid        anger
## 13087            unpaid     negative
## 13088            unpaid      sadness
## 13089        unpleasant      disgust
## 13090        unpleasant     negative
## 13091        unpleasant      sadness
## 13092         unpopular      disgust
## 13093         unpopular     negative
## 13094         unpopular      sadness
## 13095     unprecedented     surprise
## 13096     unpredictable     negative
## 13097     unpredictable     surprise
## 13098        unprepared     negative
## 13099     unpretentious     positive
## 13100      unproductive     negative
## 13101      unprofitable     negative
## 13102       unprotected     negative
## 13103       unpublished anticipation
## 13104       unpublished     negative
## 13105       unpublished      sadness
## 13106    unquestionable     positive
## 13107    unquestionable        trust
## 13108    unquestionably     positive
## 13109    unquestionably        trust
## 13110      unquestioned     positive
## 13111      unquestioned        trust
## 13112        unreliable     negative
## 13113        unreliable        trust
## 13114        unrequited     negative
## 13115        unrequited      sadness
## 13116        unresolved anticipation
## 13117            unrest         fear
## 13118            unrest      sadness
## 13119            unruly        anger
## 13120            unruly      disgust
## 13121            unruly         fear
## 13122            unruly     negative
## 13123            unsafe         fear
## 13124            unsafe     negative
## 13125    unsatisfactory      disgust
## 13126    unsatisfactory     negative
## 13127       unsatisfied      disgust
## 13128       unsatisfied     negative
## 13129       unsatisfied      sadness
## 13130          unsavory     negative
## 13131         unscathed     positive
## 13132      unscrupulous     negative
## 13133            unseat      sadness
## 13134         unselfish     positive
## 13135         unsettled        anger
## 13136         unsettled      disgust
## 13137         unsettled         fear
## 13138         unsettled     negative
## 13139         unsightly      disgust
## 13140         unsightly     negative
## 13141   unsophisticated     negative
## 13142       unspeakable         fear
## 13143       unspeakable     negative
## 13144          unstable         fear
## 13145          unstable     negative
## 13146          unstable     surprise
## 13147          unsteady         fear
## 13148      unsuccessful     negative
## 13149      unsuccessful      sadness
## 13150        unsuitable     negative
## 13151            unsung     negative
## 13152       unsupported     negative
## 13153       unsurpassed anticipation
## 13154       unsurpassed         fear
## 13155       unsurpassed          joy
## 13156       unsurpassed     positive
## 13157       unsurpassed        trust
## 13158      unsuspecting     surprise
## 13159     unsustainable     negative
## 13160     unsympathetic        anger
## 13161     unsympathetic     negative
## 13162           untamed     negative
## 13163         untenable     negative
## 13164       unthinkable        anger
## 13165       unthinkable      disgust
## 13166       unthinkable         fear
## 13167       unthinkable     negative
## 13168            untidy      disgust
## 13169            untidy     negative
## 13170             untie          joy
## 13171             untie     negative
## 13172             untie     positive
## 13173          untimely     negative
## 13174          untitled     negative
## 13175          untitled      sadness
## 13176            untold anticipation
## 13177            untold     negative
## 13178          untoward        anger
## 13179          untoward      disgust
## 13180          untoward     negative
## 13181         untrained     negative
## 13182            untrue     negative
## 13183     untrustworthy        anger
## 13184     untrustworthy     negative
## 13185        unverified anticipation
## 13186       unwarranted     negative
## 13187          unwashed      disgust
## 13188          unwashed     negative
## 13189        unwavering     positive
## 13190        unwavering        trust
## 13191         unwelcome     negative
## 13192         unwelcome      sadness
## 13193            unwell     negative
## 13194            unwell      sadness
## 13195     unwillingness     negative
## 13196            unwise     negative
## 13197         unwitting     negative
## 13198          unworthy      disgust
## 13199          unworthy     negative
## 13200        unyielding     negative
## 13201          upheaval        anger
## 13202          upheaval         fear
## 13203          upheaval     negative
## 13204          upheaval      sadness
## 13205            uphill anticipation
## 13206            uphill         fear
## 13207            uphill     negative
## 13208            uphill     positive
## 13209            uplift anticipation
## 13210            uplift          joy
## 13211            uplift     positive
## 13212            uplift        trust
## 13213           upright     positive
## 13214           upright        trust
## 13215          uprising        anger
## 13216          uprising anticipation
## 13217          uprising         fear
## 13218          uprising     negative
## 13219            uproar     negative
## 13220             upset        anger
## 13221             upset     negative
## 13222             upset      sadness
## 13223            urchin     negative
## 13224           urgency anticipation
## 13225           urgency         fear
## 13226           urgency     surprise
## 13227            urgent anticipation
## 13228            urgent         fear
## 13229            urgent     negative
## 13230            urgent     surprise
## 13231               urn      sadness
## 13232        usefulness     positive
## 13233           useless     negative
## 13234             usher     positive
## 13235             usher        trust
## 13236             usual     positive
## 13237             usual        trust
## 13238             usurp        anger
## 13239             usurp     negative
## 13240           usurped        anger
## 13241           usurped         fear
## 13242           usurped     negative
## 13243             usury     negative
## 13244           utility     positive
## 13245           utopian anticipation
## 13246           utopian          joy
## 13247           utopian     positive
## 13248           utopian        trust
## 13249           vacancy     negative
## 13250          vacation anticipation
## 13251          vacation          joy
## 13252          vacation     positive
## 13253           vaccine     positive
## 13254           vacuous      disgust
## 13255           vacuous     negative
## 13256             vague     negative
## 13257         vagueness     negative
## 13258            vainly      disgust
## 13259            vainly     negative
## 13260            vainly      sadness
## 13261           valiant     positive
## 13262          validity         fear
## 13263             valor     positive
## 13264             valor        trust
## 13265          valuable     positive
## 13266           vampire        anger
## 13267           vampire      disgust
## 13268           vampire         fear
## 13269           vampire     negative
## 13270          vanguard     positive
## 13271            vanish     surprise
## 13272          vanished         fear
## 13273          vanished     negative
## 13274          vanished      sadness
## 13275          vanished     surprise
## 13276            vanity     negative
## 13277          vanquish     positive
## 13278          variable     surprise
## 13279         varicella      disgust
## 13280         varicella         fear
## 13281         varicella     negative
## 13282         varicella      sadness
## 13283          varicose     negative
## 13284              veal      sadness
## 13285              veal        trust
## 13286              veer         fear
## 13287              veer     surprise
## 13288        vegetative      disgust
## 13289        vegetative     negative
## 13290        vegetative      sadness
## 13291          vehement        anger
## 13292          vehement         fear
## 13293          vehement     negative
## 13294            velvet     positive
## 13295           velvety     positive
## 13296          vendetta        anger
## 13297          vendetta         fear
## 13298          vendetta     negative
## 13299          vendetta      sadness
## 13300         venerable anticipation
## 13301         venerable          joy
## 13302         venerable     positive
## 13303         venerable        trust
## 13304        veneration     positive
## 13305         vengeance        anger
## 13306         vengeance     negative
## 13307          vengeful        anger
## 13308          vengeful         fear
## 13309          vengeful     negative
## 13310             venom        anger
## 13311             venom      disgust
## 13312             venom         fear
## 13313             venom     negative
## 13314          venomous        anger
## 13315          venomous      disgust
## 13316          venomous         fear
## 13317          venomous     negative
## 13318              vent        anger
## 13319          veracity anticipation
## 13320          veracity          joy
## 13321          veracity     positive
## 13322          veracity     surprise
## 13323          veracity        trust
## 13324         verbosity     negative
## 13325           verdant     positive
## 13326           verdict         fear
## 13327             verge anticipation
## 13328             verge         fear
## 13329             verge     negative
## 13330      verification     positive
## 13331      verification        trust
## 13332          verified     positive
## 13333          verified        trust
## 13334            verily     positive
## 13335            verily        trust
## 13336         veritable     positive
## 13337            vermin        anger
## 13338            vermin      disgust
## 13339            vermin         fear
## 13340            vermin     negative
## 13341            vernal          joy
## 13342            vernal     positive
## 13343            versus        anger
## 13344            versus     negative
## 13345           vertigo         fear
## 13346           vertigo     negative
## 13347             verve     positive
## 13348         vesicular      disgust
## 13349           veteran     positive
## 13350           veteran        trust
## 13351              veto        anger
## 13352              veto     negative
## 13353             vicar     positive
## 13354             vicar        trust
## 13355              vice     negative
## 13356           vicious        anger
## 13357           vicious      disgust
## 13358           vicious     negative
## 13359            victim        anger
## 13360            victim         fear
## 13361            victim     negative
## 13362            victim      sadness
## 13363        victimized        anger
## 13364        victimized      disgust
## 13365        victimized         fear
## 13366        victimized     negative
## 13367        victimized      sadness
## 13368        victimized     surprise
## 13369            victor          joy
## 13370            victor     positive
## 13371        victorious          joy
## 13372        victorious     positive
## 13373           victory anticipation
## 13374           victory          joy
## 13375           victory     positive
## 13376           victory        trust
## 13377             vigil anticipation
## 13378         vigilance anticipation
## 13379         vigilance     positive
## 13380         vigilance        trust
## 13381          vigilant         fear
## 13382          vigilant     positive
## 13383          vigilant        trust
## 13384             vigor     positive
## 13385          vigorous     positive
## 13386          vigorous        trust
## 13387          villager     positive
## 13388          villager        trust
## 13389           villain         fear
## 13390           villain     negative
## 13391        villainous        anger
## 13392        villainous      disgust
## 13393        villainous         fear
## 13394        villainous     negative
## 13395         vindicate        anger
## 13396        vindicated     positive
## 13397       vindication anticipation
## 13398       vindication          joy
## 13399       vindication     positive
## 13400       vindication        trust
## 13401        vindictive        anger
## 13402        vindictive      disgust
## 13403        vindictive     negative
## 13404         violation        anger
## 13405         violation         fear
## 13406         violation     negative
## 13407         violation      sadness
## 13408         violation     surprise
## 13409          violence        anger
## 13410          violence         fear
## 13411          violence     negative
## 13412          violence      sadness
## 13413           violent        anger
## 13414           violent      disgust
## 13415           violent         fear
## 13416           violent     negative
## 13417           violent     surprise
## 13418         violently        anger
## 13419         violently      disgust
## 13420         violently         fear
## 13421         violently     negative
## 13422         violently      sadness
## 13423             viper         fear
## 13424             viper     negative
## 13425            virgin     positive
## 13426            virgin        trust
## 13427         virginity anticipation
## 13428         virginity     positive
## 13429            virtue     positive
## 13430            virtue        trust
## 13431          virtuous          joy
## 13432          virtuous     positive
## 13433          virtuous        trust
## 13434         virulence        anger
## 13435         virulence         fear
## 13436         virulence     negative
## 13437             virus     negative
## 13438            vision anticipation
## 13439            vision     positive
## 13440         visionary anticipation
## 13441         visionary          joy
## 13442         visionary     positive
## 13443         visionary        trust
## 13444             visit     positive
## 13445        visitation     negative
## 13446           visitor anticipation
## 13447           visitor          joy
## 13448           visitor     positive
## 13449             visor anticipation
## 13450             visor     surprise
## 13451             vital     positive
## 13452          vitality          joy
## 13453          vitality     positive
## 13454          vitality        trust
## 13455         vivacious          joy
## 13456         vivacious     positive
## 13457             vivid          joy
## 13458             vivid     positive
## 13459             vixen     negative
## 13460        vocabulary     positive
## 13461        volatility        anger
## 13462        volatility anticipation
## 13463        volatility         fear
## 13464        volatility     negative
## 13465        volatility     surprise
## 13466           volcano         fear
## 13467           volcano     negative
## 13468           volcano     surprise
## 13469         volunteer anticipation
## 13470         volunteer         fear
## 13471         volunteer          joy
## 13472         volunteer     positive
## 13473         volunteer        trust
## 13474        volunteers        trust
## 13475        voluptuous anticipation
## 13476        voluptuous          joy
## 13477        voluptuous     positive
## 13478             vomit      disgust
## 13479          vomiting     negative
## 13480            voodoo     negative
## 13481              vote        anger
## 13482              vote anticipation
## 13483              vote          joy
## 13484              vote     negative
## 13485              vote     positive
## 13486              vote      sadness
## 13487              vote     surprise
## 13488              vote        trust
## 13489            votive        trust
## 13490             vouch     positive
## 13491             vouch        trust
## 13492           voucher        trust
## 13493               vow anticipation
## 13494               vow          joy
## 13495               vow     positive
## 13496               vow        trust
## 13497            voyage anticipation
## 13498            vulgar      disgust
## 13499            vulgar     negative
## 13500         vulgarity        anger
## 13501         vulgarity      disgust
## 13502         vulgarity     negative
## 13503         vulgarity      sadness
## 13504     vulnerability         fear
## 13505     vulnerability     negative
## 13506     vulnerability      sadness
## 13507           vulture      disgust
## 13508           vulture         fear
## 13509           vulture     negative
## 13510            waffle        anger
## 13511            waffle     negative
## 13512            waffle      sadness
## 13513             wages          joy
## 13514             wages     positive
## 13515              wail         fear
## 13516              wail     negative
## 13517              wail      sadness
## 13518              wait anticipation
## 13519              wait     negative
## 13520            wallow      disgust
## 13521            wallow     negative
## 13522            wallow      sadness
## 13523               wan         fear
## 13524               wan     negative
## 13525               wan      sadness
## 13526              wane     negative
## 13527              wane      sadness
## 13528           wanting     negative
## 13529           wanting      sadness
## 13530               war         fear
## 13531               war     negative
## 13532            warden        anger
## 13533            warden         fear
## 13534            warden     negative
## 13535            warden        trust
## 13536              ware         fear
## 13537              ware     negative
## 13538           warfare        anger
## 13539           warfare         fear
## 13540           warfare     negative
## 13541           warfare      sadness
## 13542           warlike        anger
## 13543           warlike         fear
## 13544           warlike     negative
## 13545           warlock         fear
## 13546              warn anticipation
## 13547              warn         fear
## 13548              warn     negative
## 13549              warn     surprise
## 13550              warn        trust
## 13551            warned anticipation
## 13552            warned         fear
## 13553            warned     surprise
## 13554           warning         fear
## 13555              warp        anger
## 13556              warp     negative
## 13557              warp      sadness
## 13558            warped     negative
## 13559          warranty     positive
## 13560          warranty        trust
## 13561           warrior        anger
## 13562           warrior         fear
## 13563           warrior     positive
## 13564              wart      disgust
## 13565              wart     negative
## 13566              wary         fear
## 13567             waste      disgust
## 13568             waste     negative
## 13569            wasted        anger
## 13570            wasted      disgust
## 13571            wasted     negative
## 13572          wasteful        anger
## 13573          wasteful      disgust
## 13574          wasteful     negative
## 13575          wasteful      sadness
## 13576           wasting      disgust
## 13577           wasting         fear
## 13578           wasting     negative
## 13579           wasting      sadness
## 13580             watch anticipation
## 13581             watch         fear
## 13582          watchdog     positive
## 13583          watchdog        trust
## 13584          watchful     positive
## 13585          watchful        trust
## 13586          watchman     positive
## 13587          watchman        trust
## 13588        waterproof     positive
## 13589            watery     negative
## 13590             waver         fear
## 13591             waver     negative
## 13592          weakened     negative
## 13593            weakly         fear
## 13594            weakly     negative
## 13595            weakly      sadness
## 13596          weakness     negative
## 13597            wealth          joy
## 13598            wealth     positive
## 13599            wealth        trust
## 13600              wear     negative
## 13601              wear        trust
## 13602           wearily     negative
## 13603           wearily      sadness
## 13604         weariness     negative
## 13605         weariness      sadness
## 13606             weary     negative
## 13607             weary      sadness
## 13608      weatherproof     positive
## 13609             weeds     negative
## 13610             weeds      sadness
## 13611              weep     negative
## 13612              weep      sadness
## 13613           weeping      sadness
## 13614             weigh anticipation
## 13615             weigh        trust
## 13616            weight anticipation
## 13617            weight      disgust
## 13618            weight         fear
## 13619            weight          joy
## 13620            weight     negative
## 13621            weight     positive
## 13622            weight      sadness
## 13623            weight     surprise
## 13624            weight        trust
## 13625           weighty         fear
## 13626             weird      disgust
## 13627             weird     negative
## 13628            weirdo         fear
## 13629            weirdo     negative
## 13630          welcomed          joy
## 13631          welcomed     positive
## 13632               wen     negative
## 13633             wench        anger
## 13634             wench      disgust
## 13635             wench     negative
## 13636             whack     negative
## 13637              whim anticipation
## 13638              whim          joy
## 13639              whim     negative
## 13640              whim     surprise
## 13641           whimper         fear
## 13642           whimper      sadness
## 13643         whimsical          joy
## 13644             whine      disgust
## 13645             whine     negative
## 13646             whine      sadness
## 13647              whip        anger
## 13648              whip     negative
## 13649         whirlpool         fear
## 13650         whirlwind         fear
## 13651         whirlwind     negative
## 13652            whisky     negative
## 13653             white anticipation
## 13654             white          joy
## 13655             white     positive
## 13656             white        trust
## 13657         whiteness          joy
## 13658         whiteness     positive
## 13659         wholesome     positive
## 13660         wholesome        trust
## 13661             whore      disgust
## 13662             whore     negative
## 13663            wicked         fear
## 13664            wicked     negative
## 13665        wickedness      disgust
## 13666        wickedness     negative
## 13667            wicket     positive
## 13668        widespread     positive
## 13669             widow      sadness
## 13670           widower      sadness
## 13671              wild     negative
## 13672              wild     surprise
## 13673           wildcat     negative
## 13674        wilderness anticipation
## 13675        wilderness         fear
## 13676        wilderness      sadness
## 13677          wildfire         fear
## 13678          wildfire     negative
## 13679          wildfire      sadness
## 13680          wildfire     surprise
## 13681           willful        anger
## 13682           willful     negative
## 13683           willful      sadness
## 13684         willingly     positive
## 13685       willingness     positive
## 13686              wimp      disgust
## 13687              wimp         fear
## 13688              wimp     negative
## 13689             wimpy        anger
## 13690             wimpy      disgust
## 13691             wimpy         fear
## 13692             wimpy     negative
## 13693             wimpy      sadness
## 13694             wince        anger
## 13695             wince      disgust
## 13696             wince         fear
## 13697             wince     negative
## 13698             wince      sadness
## 13699          windfall     positive
## 13700            winner anticipation
## 13701            winner          joy
## 13702            winner     positive
## 13703            winner     surprise
## 13704           winning anticipation
## 13705           winning      disgust
## 13706           winning          joy
## 13707           winning     positive
## 13708           winning      sadness
## 13709           winning     surprise
## 13710           winning        trust
## 13711          winnings anticipation
## 13712          winnings          joy
## 13713          winnings     positive
## 13714          wireless        anger
## 13715          wireless anticipation
## 13716          wireless     positive
## 13717          wireless     surprise
## 13718               wis     positive
## 13719            wisdom     positive
## 13720            wisdom        trust
## 13721              wise     positive
## 13722           wishful anticipation
## 13723               wit     positive
## 13724             witch        anger
## 13725             witch      disgust
## 13726             witch         fear
## 13727             witch     negative
## 13728        witchcraft        anger
## 13729        witchcraft         fear
## 13730        witchcraft     negative
## 13731        witchcraft      sadness
## 13732          withdraw     negative
## 13733          withdraw      sadness
## 13734            wither     negative
## 13735            wither      sadness
## 13736          withered      disgust
## 13737          withered     negative
## 13738         withstand anticipation
## 13739         withstand         fear
## 13740         withstand     positive
## 13741           witness        trust
## 13742              wits     positive
## 13743             witty          joy
## 13744             witty     positive
## 13745            wizard anticipation
## 13746            wizard     positive
## 13747            wizard     surprise
## 13748               woe      disgust
## 13749               woe         fear
## 13750               woe     negative
## 13751               woe      sadness
## 13752            woeful     negative
## 13753            woeful      sadness
## 13754          woefully      disgust
## 13755          woefully     negative
## 13756          woefully      sadness
## 13757              womb     positive
## 13758         wonderful          joy
## 13759         wonderful     positive
## 13760         wonderful     surprise
## 13761         wonderful        trust
## 13762       wonderfully          joy
## 13763       wonderfully     positive
## 13764       wonderfully     surprise
## 13765          wondrous     positive
## 13766              wont anticipation
## 13767               wop        anger
## 13768              word     positive
## 13769              word        trust
## 13770             words        anger
## 13771             words     negative
## 13772           working     positive
## 13773              worm anticipation
## 13774              worm     negative
## 13775              worm     surprise
## 13776              worn     negative
## 13777              worn      sadness
## 13778           worried     negative
## 13779           worried      sadness
## 13780             worry anticipation
## 13781             worry         fear
## 13782             worry     negative
## 13783             worry      sadness
## 13784          worrying anticipation
## 13785          worrying         fear
## 13786          worrying     negative
## 13787          worrying      sadness
## 13788             worse         fear
## 13789             worse     negative
## 13790             worse      sadness
## 13791         worsening      disgust
## 13792         worsening     negative
## 13793         worsening      sadness
## 13794           worship anticipation
## 13795           worship         fear
## 13796           worship          joy
## 13797           worship     positive
## 13798           worship        trust
## 13799             worth     positive
## 13800         worthless        anger
## 13801         worthless      disgust
## 13802         worthless     negative
## 13803         worthless      sadness
## 13804            worthy     positive
## 13805            worthy        trust
## 13806               wot     positive
## 13807               wot        trust
## 13808             wound        anger
## 13809             wound         fear
## 13810             wound     negative
## 13811             wound      sadness
## 13812         wrangling        anger
## 13813         wrangling      disgust
## 13814         wrangling         fear
## 13815         wrangling     negative
## 13816         wrangling      sadness
## 13817             wrath        anger
## 13818             wrath         fear
## 13819             wrath     negative
## 13820             wreak        anger
## 13821             wreak     negative
## 13822             wreck        anger
## 13823             wreck      disgust
## 13824             wreck         fear
## 13825             wreck     negative
## 13826             wreck      sadness
## 13827             wreck     surprise
## 13828           wrecked        anger
## 13829           wrecked         fear
## 13830           wrecked     negative
## 13831           wrecked      sadness
## 13832            wrench     negative
## 13833         wrestling     negative
## 13834            wretch        anger
## 13835            wretch      disgust
## 13836            wretch     negative
## 13837            wretch      sadness
## 13838          wretched      disgust
## 13839          wretched     negative
## 13840          wretched      sadness
## 13841             wring        anger
## 13842          wrinkled      sadness
## 13843            writer     positive
## 13844             wrong     negative
## 13845        wrongdoing        anger
## 13846        wrongdoing      disgust
## 13847        wrongdoing     negative
## 13848        wrongdoing      sadness
## 13849          wrongful        anger
## 13850          wrongful      disgust
## 13851          wrongful     negative
## 13852          wrongful      sadness
## 13853           wrongly        anger
## 13854           wrongly         fear
## 13855           wrongly     negative
## 13856           wrongly      sadness
## 13857           wrought     negative
## 13858               wry     negative
## 13859        xenophobia         fear
## 13860        xenophobia     negative
## 13861              yawn     negative
## 13862           yawning     negative
## 13863          yearning anticipation
## 13864          yearning          joy
## 13865          yearning     negative
## 13866          yearning     positive
## 13867          yearning        trust
## 13868              yell        anger
## 13869              yell         fear
## 13870              yell     negative
## 13871              yell     surprise
## 13872           yellows     negative
## 13873              yelp        anger
## 13874              yelp         fear
## 13875              yelp     negative
## 13876              yelp     surprise
## 13877             young anticipation
## 13878             young          joy
## 13879             young     positive
## 13880             young     surprise
## 13881           younger     positive
## 13882             youth        anger
## 13883             youth anticipation
## 13884             youth         fear
## 13885             youth          joy
## 13886             youth     positive
## 13887             youth     surprise
## 13888              zany     surprise
## 13889              zeal anticipation
## 13890              zeal          joy
## 13891              zeal     positive
## 13892              zeal     surprise
## 13893              zeal        trust
## 13894           zealous          joy
## 13895           zealous     positive
## 13896           zealous        trust
## 13897              zest anticipation
## 13898              zest          joy
## 13899              zest     positive
## 13900              zest        trust
## 13901               zip     negative
loughran
##                     word    sentiment
## 1                abandon     negative
## 2              abandoned     negative
## 3             abandoning     negative
## 4            abandonment     negative
## 5           abandonments     negative
## 6               abandons     negative
## 7              abdicated     negative
## 8              abdicates     negative
## 9             abdicating     negative
## 10            abdication     negative
## 11           abdications     negative
## 12              aberrant     negative
## 13            aberration     negative
## 14          aberrational     negative
## 15           aberrations     negative
## 16              abetting     negative
## 17              abnormal     negative
## 18         abnormalities     negative
## 19           abnormality     negative
## 20            abnormally     negative
## 21               abolish     negative
## 22             abolished     negative
## 23             abolishes     negative
## 24            abolishing     negative
## 25              abrogate     negative
## 26             abrogated     negative
## 27             abrogates     negative
## 28            abrogating     negative
## 29            abrogation     negative
## 30           abrogations     negative
## 31                abrupt     negative
## 32              abruptly     negative
## 33            abruptness     negative
## 34               absence     negative
## 35              absences     negative
## 36           absenteeism     negative
## 37                 abuse     negative
## 38                abused     negative
## 39                abuses     negative
## 40               abusing     negative
## 41               abusive     negative
## 42             abusively     negative
## 43           abusiveness     negative
## 44              accident     negative
## 45            accidental     negative
## 46          accidentally     negative
## 47             accidents     negative
## 48            accusation     negative
## 49           accusations     negative
## 50                accuse     negative
## 51               accused     negative
## 52               accuses     negative
## 53              accusing     negative
## 54             acquiesce     negative
## 55            acquiesced     negative
## 56            acquiesces     negative
## 57           acquiescing     negative
## 58                acquit     negative
## 59               acquits     negative
## 60             acquittal     negative
## 61            acquittals     negative
## 62             acquitted     negative
## 63            acquitting     negative
## 64            adulterate     negative
## 65           adulterated     negative
## 66          adulterating     negative
## 67          adulteration     negative
## 68         adulterations     negative
## 69           adversarial     negative
## 70           adversaries     negative
## 71             adversary     negative
## 72               adverse     negative
## 73             adversely     negative
## 74           adversities     negative
## 75             adversity     negative
## 76             aftermath     negative
## 77            aftermaths     negative
## 78               against     negative
## 79             aggravate     negative
## 80            aggravated     negative
## 81            aggravates     negative
## 82           aggravating     negative
## 83           aggravation     negative
## 84          aggravations     negative
## 85               alerted     negative
## 86              alerting     negative
## 87              alienate     negative
## 88             alienated     negative
## 89             alienates     negative
## 90            alienating     negative
## 91            alienation     negative
## 92           alienations     negative
## 93            allegation     negative
## 94           allegations     negative
## 95                allege     negative
## 96               alleged     negative
## 97             allegedly     negative
## 98               alleges     negative
## 99              alleging     negative
## 100                annoy     negative
## 101            annoyance     negative
## 102           annoyances     negative
## 103              annoyed     negative
## 104             annoying     negative
## 105               annoys     negative
## 106                annul     negative
## 107             annulled     negative
## 108            annulling     negative
## 109            annulment     negative
## 110           annulments     negative
## 111               annuls     negative
## 112            anomalies     negative
## 113            anomalous     negative
## 114          anomalously     negative
## 115              anomaly     negative
## 116      anticompetitive     negative
## 117            antitrust     negative
## 118                argue     negative
## 119               argued     negative
## 120              arguing     negative
## 121             argument     negative
## 122        argumentative     negative
## 123            arguments     negative
## 124            arrearage     negative
## 125           arrearages     negative
## 126              arrears     negative
## 127               arrest     negative
## 128             arrested     negative
## 129              arrests     negative
## 130         artificially     negative
## 131              assault     negative
## 132            assaulted     negative
## 133           assaulting     negative
## 134             assaults     negative
## 135           assertions     negative
## 136            attrition     negative
## 137             aversely     negative
## 138           backdating     negative
## 139                  bad     negative
## 140                 bail     negative
## 141              bailout     negative
## 142                 balk     negative
## 143               balked     negative
## 144             bankrupt     negative
## 145         bankruptcies     negative
## 146           bankruptcy     negative
## 147           bankrupted     negative
## 148          bankrupting     negative
## 149            bankrupts     negative
## 150                 bans     negative
## 151               barred     negative
## 152              barrier     negative
## 153             barriers     negative
## 154           bottleneck     negative
## 155          bottlenecks     negative
## 156              boycott     negative
## 157            boycotted     negative
## 158           boycotting     negative
## 159             boycotts     negative
## 160               breach     negative
## 161             breached     negative
## 162             breaches     negative
## 163            breaching     negative
## 164                break     negative
## 165             breakage     negative
## 166            breakages     negative
## 167            breakdown     negative
## 168           breakdowns     negative
## 169             breaking     negative
## 170               breaks     negative
## 171                bribe     negative
## 172               bribed     negative
## 173            briberies     negative
## 174              bribery     negative
## 175               bribes     negative
## 176              bribing     negative
## 177               bridge     negative
## 178               broken     negative
## 179               burden     negative
## 180             burdened     negative
## 181            burdening     negative
## 182              burdens     negative
## 183           burdensome     negative
## 184               burned     negative
## 185           calamities     negative
## 186           calamitous     negative
## 187             calamity     negative
## 188               cancel     negative
## 189             canceled     negative
## 190            canceling     negative
## 191         cancellation     negative
## 192        cancellations     negative
## 193            cancelled     negative
## 194           cancelling     negative
## 195              cancels     negative
## 196             careless     negative
## 197           carelessly     negative
## 198         carelessness     negative
## 199          catastrophe     negative
## 200         catastrophes     negative
## 201         catastrophic     negative
## 202     catastrophically     negative
## 203              caution     negative
## 204           cautionary     negative
## 205            cautioned     negative
## 206           cautioning     negative
## 207             cautions     negative
## 208                cease     negative
## 209               ceased     negative
## 210               ceases     negative
## 211              ceasing     negative
## 212              censure     negative
## 213             censured     negative
## 214             censures     negative
## 215            censuring     negative
## 216            challenge     negative
## 217           challenged     negative
## 218           challenges     negative
## 219          challenging     negative
## 220           chargeoffs     negative
## 221           circumvent     negative
## 222         circumvented     negative
## 223        circumventing     negative
## 224        circumvention     negative
## 225       circumventions     negative
## 226          circumvents     negative
## 227             claiming     negative
## 228               claims     negative
## 229             clawback     negative
## 230               closed     negative
## 231             closeout     negative
## 232            closeouts     negative
## 233              closing     negative
## 234             closings     negative
## 235              closure     negative
## 236             closures     negative
## 237               coerce     negative
## 238              coerced     negative
## 239              coerces     negative
## 240             coercing     negative
## 241             coercion     negative
## 242             coercive     negative
## 243             collapse     negative
## 244            collapsed     negative
## 245            collapses     negative
## 246           collapsing     negative
## 247            collision     negative
## 248           collisions     negative
## 249              collude     negative
## 250             colluded     negative
## 251             colludes     negative
## 252            colluding     negative
## 253            collusion     negative
## 254           collusions     negative
## 255            collusive     negative
## 256             complain     negative
## 257           complained     negative
## 258          complaining     negative
## 259            complains     negative
## 260            complaint     negative
## 261           complaints     negative
## 262           complicate     negative
## 263          complicated     negative
## 264          complicates     negative
## 265         complicating     negative
## 266         complication     negative
## 267        complications     negative
## 268           compulsion     negative
## 269            concealed     negative
## 270           concealing     negative
## 271              concede     negative
## 272             conceded     negative
## 273             concedes     negative
## 274            conceding     negative
## 275              concern     negative
## 276            concerned     negative
## 277             concerns     negative
## 278         conciliating     negative
## 279         conciliation     negative
## 280        conciliations     negative
## 281              condemn     negative
## 282         condemnation     negative
## 283        condemnations     negative
## 284            condemned     negative
## 285           condemning     negative
## 286             condemns     negative
## 287              condone     negative
## 288             condoned     negative
## 289              confess     negative
## 290            confessed     negative
## 291            confesses     negative
## 292           confessing     negative
## 293           confession     negative
## 294              confine     negative
## 295             confined     negative
## 296          confinement     negative
## 297         confinements     negative
## 298             confines     negative
## 299            confining     negative
## 300           confiscate     negative
## 301          confiscated     negative
## 302          confiscates     negative
## 303         confiscating     negative
## 304         confiscation     negative
## 305        confiscations     negative
## 306             conflict     negative
## 307           conflicted     negative
## 308          conflicting     negative
## 309            conflicts     negative
## 310             confront     negative
## 311        confrontation     negative
## 312      confrontational     negative
## 313       confrontations     negative
## 314           confronted     negative
## 315          confronting     negative
## 316            confronts     negative
## 317              confuse     negative
## 318             confused     negative
## 319             confuses     negative
## 320            confusing     negative
## 321          confusingly     negative
## 322            confusion     negative
## 323         conspiracies     negative
## 324           conspiracy     negative
## 325          conspirator     negative
## 326       conspiratorial     negative
## 327         conspirators     negative
## 328             conspire     negative
## 329            conspired     negative
## 330            conspires     negative
## 331           conspiring     negative
## 332             contempt     negative
## 333              contend     negative
## 334            contended     negative
## 335           contending     negative
## 336             contends     negative
## 337           contention     negative
## 338          contentions     negative
## 339          contentious     negative
## 340        contentiously     negative
## 341            contested     negative
## 342           contesting     negative
## 343          contraction     negative
## 344         contractions     negative
## 345           contradict     negative
## 346         contradicted     negative
## 347        contradicting     negative
## 348        contradiction     negative
## 349       contradictions     negative
## 350        contradictory     negative
## 351          contradicts     negative
## 352             contrary     negative
## 353        controversial     negative
## 354        controversies     negative
## 355          controversy     negative
## 356              convict     negative
## 357            convicted     negative
## 358           convicting     negative
## 359           conviction     negative
## 360          convictions     negative
## 361            corrected     negative
## 362           correcting     negative
## 363           correction     negative
## 364          corrections     negative
## 365             corrects     negative
## 366              corrupt     negative
## 367            corrupted     negative
## 368           corrupting     negative
## 369           corruption     negative
## 370          corruptions     negative
## 371            corruptly     negative
## 372          corruptness     negative
## 373               costly     negative
## 374         counterclaim     negative
## 375       counterclaimed     negative
## 376      counterclaiming     negative
## 377        counterclaims     negative
## 378          counterfeit     negative
## 379        counterfeited     negative
## 380        counterfeiter     negative
## 381       counterfeiters     negative
## 382       counterfeiting     negative
## 383         counterfeits     negative
## 384       countermeasure     negative
## 385      countermeasures     negative
## 386                crime     negative
## 387               crimes     negative
## 388             criminal     negative
## 389           criminally     negative
## 390            criminals     negative
## 391               crises     negative
## 392               crisis     negative
## 393             critical     negative
## 394           critically     negative
## 395            criticism     negative
## 396           criticisms     negative
## 397            criticize     negative
## 398           criticized     negative
## 399           criticizes     negative
## 400          criticizing     negative
## 401              crucial     negative
## 402            crucially     negative
## 403          culpability     negative
## 404             culpable     negative
## 405             culpably     negative
## 406           cumbersome     negative
## 407              curtail     negative
## 408            curtailed     negative
## 409           curtailing     negative
## 410          curtailment     negative
## 411         curtailments     negative
## 412             curtails     negative
## 413                  cut     negative
## 414              cutback     negative
## 415             cutbacks     negative
## 416          cyberattack     negative
## 417         cyberattacks     negative
## 418        cyberbullying     negative
## 419           cybercrime     negative
## 420          cybercrimes     negative
## 421        cybercriminal     negative
## 422       cybercriminals     negative
## 423               damage     negative
## 424              damaged     negative
## 425              damages     negative
## 426             damaging     negative
## 427               dampen     negative
## 428             dampened     negative
## 429               danger     negative
## 430            dangerous     negative
## 431          dangerously     negative
## 432              dangers     negative
## 433             deadlock     negative
## 434           deadlocked     negative
## 435          deadlocking     negative
## 436            deadlocks     negative
## 437           deadweight     negative
## 438          deadweights     negative
## 439            debarment     negative
## 440           debarments     negative
## 441             debarred     negative
## 442             deceased     negative
## 443               deceit     negative
## 444            deceitful     negative
## 445        deceitfulness     negative
## 446              deceive     negative
## 447             deceived     negative
## 448             deceives     negative
## 449            deceiving     negative
## 450            deception     negative
## 451           deceptions     negative
## 452            deceptive     negative
## 453          deceptively     negative
## 454              decline     negative
## 455             declined     negative
## 456             declines     negative
## 457            declining     negative
## 458               deface     negative
## 459              defaced     negative
## 460           defacement     negative
## 461           defamation     negative
## 462          defamations     negative
## 463           defamatory     negative
## 464               defame     negative
## 465              defamed     negative
## 466              defames     negative
## 467             defaming     negative
## 468              default     negative
## 469            defaulted     negative
## 470           defaulting     negative
## 471             defaults     negative
## 472               defeat     negative
## 473             defeated     negative
## 474            defeating     negative
## 475              defeats     negative
## 476               defect     negative
## 477            defective     negative
## 478              defects     negative
## 479               defend     negative
## 480            defendant     negative
## 481           defendants     negative
## 482             defended     negative
## 483            defending     negative
## 484              defends     negative
## 485            defensive     negative
## 486                defer     negative
## 487         deficiencies     negative
## 488           deficiency     negative
## 489            deficient     negative
## 490              deficit     negative
## 491             deficits     negative
## 492              defraud     negative
## 493            defrauded     negative
## 494           defrauding     negative
## 495             defrauds     negative
## 496              defunct     negative
## 497          degradation     negative
## 498         degradations     negative
## 499              degrade     negative
## 500             degraded     negative
## 501             degrades     negative
## 502            degrading     negative
## 503                delay     negative
## 504              delayed     negative
## 505             delaying     negative
## 506               delays     negative
## 507          deleterious     negative
## 508           deliberate     negative
## 509          deliberated     negative
## 510         deliberately     negative
## 511        delinquencies     negative
## 512          delinquency     negative
## 513           delinquent     negative
## 514         delinquently     negative
## 515          delinquents     negative
## 516               delist     negative
## 517             delisted     negative
## 518            delisting     negative
## 519              delists     negative
## 520               demise     negative
## 521              demised     negative
## 522              demises     negative
## 523             demising     negative
## 524             demolish     negative
## 525           demolished     negative
## 526           demolishes     negative
## 527          demolishing     negative
## 528           demolition     negative
## 529          demolitions     negative
## 530               demote     negative
## 531              demoted     negative
## 532              demotes     negative
## 533             demoting     negative
## 534             demotion     negative
## 535            demotions     negative
## 536               denial     negative
## 537              denials     negative
## 538               denied     negative
## 539               denies     negative
## 540            denigrate     negative
## 541           denigrated     negative
## 542           denigrates     negative
## 543          denigrating     negative
## 544          denigration     negative
## 545                 deny     negative
## 546              denying     negative
## 547              deplete     negative
## 548             depleted     negative
## 549             depletes     negative
## 550            depleting     negative
## 551            depletion     negative
## 552           depletions     negative
## 553          deprecation     negative
## 554              depress     negative
## 555            depressed     negative
## 556            depresses     negative
## 557           depressing     negative
## 558          deprivation     negative
## 559              deprive     negative
## 560             deprived     negative
## 561             deprives     negative
## 562            depriving     negative
## 563             derelict     negative
## 564          dereliction     negative
## 565           derogatory     negative
## 566      destabilization     negative
## 567          destabilize     negative
## 568         destabilized     negative
## 569        destabilizing     negative
## 570              destroy     negative
## 571            destroyed     negative
## 572           destroying     negative
## 573             destroys     negative
## 574          destruction     negative
## 575          destructive     negative
## 576               detain     negative
## 577             detained     negative
## 578            detention     negative
## 579           detentions     negative
## 580                deter     negative
## 581          deteriorate     negative
## 582         deteriorated     negative
## 583         deteriorates     negative
## 584        deteriorating     negative
## 585        deterioration     negative
## 586       deteriorations     negative
## 587             deterred     negative
## 588           deterrence     negative
## 589          deterrences     negative
## 590            deterrent     negative
## 591           deterrents     negative
## 592            deterring     negative
## 593               deters     negative
## 594              detract     negative
## 595            detracted     negative
## 596           detracting     negative
## 597            detriment     negative
## 598          detrimental     negative
## 599        detrimentally     negative
## 600           detriments     negative
## 601              devalue     negative
## 602             devalued     negative
## 603             devalues     negative
## 604            devaluing     negative
## 605            devastate     negative
## 606           devastated     negative
## 607          devastating     negative
## 608          devastation     negative
## 609              deviate     negative
## 610             deviated     negative
## 611             deviates     negative
## 612            deviating     negative
## 613            deviation     negative
## 614           deviations     negative
## 615              devolve     negative
## 616             devolved     negative
## 617             devolves     negative
## 618            devolving     negative
## 619            difficult     negative
## 620         difficulties     negative
## 621          difficultly     negative
## 622           difficulty     negative
## 623             diminish     negative
## 624           diminished     negative
## 625           diminishes     negative
## 626          diminishing     negative
## 627           diminution     negative
## 628         disadvantage     negative
## 629        disadvantaged     negative
## 630      disadvantageous     negative
## 631        disadvantages     negative
## 632       disaffiliation     negative
## 633             disagree     negative
## 634         disagreeable     negative
## 635            disagreed     negative
## 636          disagreeing     negative
## 637         disagreement     negative
## 638        disagreements     negative
## 639            disagrees     negative
## 640             disallow     negative
## 641         disallowance     negative
## 642        disallowances     negative
## 643           disallowed     negative
## 644          disallowing     negative
## 645            disallows     negative
## 646            disappear     negative
## 647        disappearance     negative
## 648       disappearances     negative
## 649          disappeared     negative
## 650         disappearing     negative
## 651           disappears     negative
## 652           disappoint     negative
## 653         disappointed     negative
## 654        disappointing     negative
## 655      disappointingly     negative
## 656       disappointment     negative
## 657      disappointments     negative
## 658          disappoints     negative
## 659          disapproval     negative
## 660         disapprovals     negative
## 661           disapprove     negative
## 662          disapproved     negative
## 663          disapproves     negative
## 664         disapproving     negative
## 665        disassociates     negative
## 666       disassociating     negative
## 667       disassociation     negative
## 668      disassociations     negative
## 669             disaster     negative
## 670            disasters     negative
## 671           disastrous     negative
## 672         disastrously     negative
## 673              disavow     negative
## 674            disavowal     negative
## 675            disavowed     negative
## 676           disavowing     negative
## 677             disavows     negative
## 678         disciplinary     negative
## 679             disclaim     negative
## 680           disclaimed     negative
## 681           disclaimer     negative
## 682          disclaimers     negative
## 683          disclaiming     negative
## 684            disclaims     negative
## 685             disclose     negative
## 686            disclosed     negative
## 687            discloses     negative
## 688           disclosing     negative
## 689       discontinuance     negative
## 690      discontinuances     negative
## 691      discontinuation     negative
## 692     discontinuations     negative
## 693          discontinue     negative
## 694         discontinued     negative
## 695         discontinues     negative
## 696        discontinuing     negative
## 697           discourage     negative
## 698          discouraged     negative
## 699          discourages     negative
## 700         discouraging     negative
## 701            discredit     negative
## 702          discredited     negative
## 703         discrediting     negative
## 704           discredits     negative
## 705        discrepancies     negative
## 706          discrepancy     negative
## 707             disfavor     negative
## 708           disfavored     negative
## 709          disfavoring     negative
## 710            disfavors     negative
## 711             disgorge     negative
## 712            disgorged     negative
## 713         disgorgement     negative
## 714        disgorgements     negative
## 715            disgorges     negative
## 716           disgorging     negative
## 717             disgrace     negative
## 718          disgraceful     negative
## 719        disgracefully     negative
## 720            dishonest     negative
## 721          dishonestly     negative
## 722           dishonesty     negative
## 723             dishonor     negative
## 724         dishonorable     negative
## 725         dishonorably     negative
## 726           dishonored     negative
## 727          dishonoring     negative
## 728            dishonors     negative
## 729        disincentives     negative
## 730        disinterested     negative
## 731      disinterestedly     negative
## 732    disinterestedness     negative
## 733             disloyal     negative
## 734           disloyally     negative
## 735           disloyalty     negative
## 736               dismal     negative
## 737             dismally     negative
## 738              dismiss     negative
## 739            dismissal     negative
## 740           dismissals     negative
## 741            dismissed     negative
## 742            dismisses     negative
## 743           dismissing     negative
## 744           disorderly     negative
## 745            disparage     negative
## 746           disparaged     negative
## 747        disparagement     negative
## 748       disparagements     negative
## 749           disparages     negative
## 750          disparaging     negative
## 751        disparagingly     negative
## 752          disparities     negative
## 753            disparity     negative
## 754             displace     negative
## 755            displaced     negative
## 756         displacement     negative
## 757        displacements     negative
## 758            displaces     negative
## 759           displacing     negative
## 760              dispose     negative
## 761           dispossess     negative
## 762         dispossessed     negative
## 763         dispossesses     negative
## 764        dispossessing     negative
## 765        disproportion     negative
## 766      disproportional     negative
## 767     disproportionate     negative
## 768   disproportionately     negative
## 769              dispute     negative
## 770             disputed     negative
## 771             disputes     negative
## 772            disputing     negative
## 773     disqualification     negative
## 774    disqualifications     negative
## 775         disqualified     negative
## 776         disqualifies     negative
## 777           disqualify     negative
## 778        disqualifying     negative
## 779            disregard     negative
## 780          disregarded     negative
## 781         disregarding     negative
## 782           disregards     negative
## 783         disreputable     negative
## 784            disrepute     negative
## 785              disrupt     negative
## 786            disrupted     negative
## 787           disrupting     negative
## 788           disruption     negative
## 789          disruptions     negative
## 790           disruptive     negative
## 791             disrupts     negative
## 792      dissatisfaction     negative
## 793         dissatisfied     negative
## 794              dissent     negative
## 795            dissented     negative
## 796            dissenter     negative
## 797           dissenters     negative
## 798           dissenting     negative
## 799             dissents     negative
## 800            dissident     negative
## 801           dissidents     negative
## 802          dissolution     negative
## 803         dissolutions     negative
## 804              distort     negative
## 805            distorted     negative
## 806           distorting     negative
## 807           distortion     negative
## 808          distortions     negative
## 809             distorts     negative
## 810             distract     negative
## 811           distracted     negative
## 812          distracting     negative
## 813          distraction     negative
## 814         distractions     negative
## 815            distracts     negative
## 816             distress     negative
## 817           distressed     negative
## 818              disturb     negative
## 819          disturbance     negative
## 820         disturbances     negative
## 821            disturbed     negative
## 822           disturbing     negative
## 823             disturbs     negative
## 824            diversion     negative
## 825               divert     negative
## 826             diverted     negative
## 827            diverting     negative
## 828              diverts     negative
## 829               divest     negative
## 830             divested     negative
## 831            divesting     negative
## 832          divestiture     negative
## 833         divestitures     negative
## 834           divestment     negative
## 835          divestments     negative
## 836              divests     negative
## 837              divorce     negative
## 838             divorced     negative
## 839              divulge     negative
## 840             divulged     negative
## 841             divulges     negative
## 842            divulging     negative
## 843                doubt     negative
## 844              doubted     negative
## 845             doubtful     negative
## 846               doubts     negative
## 847            downgrade     negative
## 848           downgraded     negative
## 849           downgrades     negative
## 850          downgrading     negative
## 851             downsize     negative
## 852            downsized     negative
## 853            downsizes     negative
## 854           downsizing     negative
## 855          downsizings     negative
## 856             downtime     negative
## 857            downtimes     negative
## 858             downturn     negative
## 859            downturns     negative
## 860             downward     negative
## 861            downwards     negative
## 862                 drag     negative
## 863              drastic     negative
## 864          drastically     negative
## 865             drawback     negative
## 866            drawbacks     negative
## 867              dropped     negative
## 868              drought     negative
## 869             droughts     negative
## 870               duress     negative
## 871          dysfunction     negative
## 872        dysfunctional     negative
## 873         dysfunctions     negative
## 874               easing     negative
## 875            egregious     negative
## 876          egregiously     negative
## 877              embargo     negative
## 878            embargoed     negative
## 879            embargoes     negative
## 880           embargoing     negative
## 881            embarrass     negative
## 882          embarrassed     negative
## 883          embarrasses     negative
## 884         embarrassing     negative
## 885        embarrassment     negative
## 886       embarrassments     negative
## 887             embezzle     negative
## 888            embezzled     negative
## 889         embezzlement     negative
## 890        embezzlements     negative
## 891            embezzler     negative
## 892            embezzles     negative
## 893           embezzling     negative
## 894             encroach     negative
## 895           encroached     negative
## 896           encroaches     negative
## 897          encroaching     negative
## 898         encroachment     negative
## 899        encroachments     negative
## 900             encumber     negative
## 901           encumbered     negative
## 902          encumbering     negative
## 903            encumbers     negative
## 904          encumbrance     negative
## 905         encumbrances     negative
## 906             endanger     negative
## 907           endangered     negative
## 908          endangering     negative
## 909         endangerment     negative
## 910            endangers     negative
## 911               enjoin     negative
## 912             enjoined     negative
## 913            enjoining     negative
## 914              enjoins     negative
## 915                erode     negative
## 916               eroded     negative
## 917               erodes     negative
## 918              eroding     negative
## 919              erosion     negative
## 920              erratic     negative
## 921          erratically     negative
## 922                erred     negative
## 923               erring     negative
## 924            erroneous     negative
## 925          erroneously     negative
## 926                error     negative
## 927               errors     negative
## 928                 errs     negative
## 929             escalate     negative
## 930            escalated     negative
## 931            escalates     negative
## 932           escalating     negative
## 933                evade     negative
## 934               evaded     negative
## 935               evades     negative
## 936              evading     negative
## 937              evasion     negative
## 938             evasions     negative
## 939              evasive     negative
## 940                evict     negative
## 941              evicted     negative
## 942             evicting     negative
## 943             eviction     negative
## 944            evictions     negative
## 945               evicts     negative
## 946           exacerbate     negative
## 947          exacerbated     negative
## 948          exacerbates     negative
## 949         exacerbating     negative
## 950         exacerbation     negative
## 951        exacerbations     negative
## 952           exaggerate     negative
## 953          exaggerated     negative
## 954          exaggerates     negative
## 955         exaggerating     negative
## 956         exaggeration     negative
## 957            excessive     negative
## 958          excessively     negative
## 959            exculpate     negative
## 960           exculpated     negative
## 961           exculpates     negative
## 962          exculpating     negative
## 963          exculpation     negative
## 964         exculpations     negative
## 965          exculpatory     negative
## 966            exonerate     negative
## 967           exonerated     negative
## 968           exonerates     negative
## 969          exonerating     negative
## 970          exoneration     negative
## 971         exonerations     negative
## 972              exploit     negative
## 973         exploitation     negative
## 974        exploitations     negative
## 975         exploitative     negative
## 976            exploited     negative
## 977           exploiting     negative
## 978             exploits     negative
## 979               expose     negative
## 980              exposed     negative
## 981              exposes     negative
## 982             exposing     negative
## 983          expropriate     negative
## 984         expropriated     negative
## 985         expropriates     negative
## 986        expropriating     negative
## 987        expropriation     negative
## 988       expropriations     negative
## 989            expulsion     negative
## 990           expulsions     negative
## 991          extenuating     negative
## 992                 fail     negative
## 993               failed     negative
## 994              failing     negative
## 995             failings     negative
## 996                fails     negative
## 997              failure     negative
## 998             failures     negative
## 999              fallout     negative
## 1000               false     negative
## 1001             falsely     negative
## 1002       falsification     negative
## 1003      falsifications     negative
## 1004           falsified     negative
## 1005           falsifies     negative
## 1006             falsify     negative
## 1007          falsifying     negative
## 1008             falsity     negative
## 1009          fatalities     negative
## 1010            fatality     negative
## 1011             fatally     negative
## 1012               fault     negative
## 1013             faulted     negative
## 1014              faults     negative
## 1015              faulty     negative
## 1016                fear     negative
## 1017               fears     negative
## 1018            felonies     negative
## 1019           felonious     negative
## 1020              felony     negative
## 1021          fictitious     negative
## 1022               fined     negative
## 1023               fines     negative
## 1024               fired     negative
## 1025              firing     negative
## 1026                flaw     negative
## 1027              flawed     negative
## 1028               flaws     negative
## 1029              forbid     negative
## 1030           forbidden     negative
## 1031          forbidding     negative
## 1032             forbids     negative
## 1033               force     negative
## 1034              forced     negative
## 1035             forcing     negative
## 1036           foreclose     negative
## 1037          foreclosed     negative
## 1038          forecloses     negative
## 1039         foreclosing     negative
## 1040         foreclosure     negative
## 1041        foreclosures     negative
## 1042              forego     negative
## 1043            foregoes     negative
## 1044            foregone     negative
## 1045           forestall     negative
## 1046         forestalled     negative
## 1047        forestalling     negative
## 1048          forestalls     negative
## 1049             forfeit     negative
## 1050           forfeited     negative
## 1051          forfeiting     negative
## 1052            forfeits     negative
## 1053          forfeiture     negative
## 1054         forfeitures     negative
## 1055             forgers     negative
## 1056             forgery     negative
## 1057               fraud     negative
## 1058              frauds     negative
## 1059         fraudulence     negative
## 1060          fraudulent     negative
## 1061        fraudulently     negative
## 1062           frivolous     negative
## 1063         frivolously     negative
## 1064           frustrate     negative
## 1065          frustrated     negative
## 1066          frustrates     negative
## 1067         frustrating     negative
## 1068       frustratingly     negative
## 1069         frustration     negative
## 1070        frustrations     negative
## 1071            fugitive     negative
## 1072           fugitives     negative
## 1073          gratuitous     negative
## 1074        gratuitously     negative
## 1075           grievance     negative
## 1076          grievances     negative
## 1077             grossly     negative
## 1078          groundless     negative
## 1079              guilty     negative
## 1080                halt     negative
## 1081              halted     negative
## 1082              hamper     negative
## 1083            hampered     negative
## 1084           hampering     negative
## 1085             hampers     negative
## 1086              harass     negative
## 1087            harassed     negative
## 1088           harassing     negative
## 1089          harassment     negative
## 1090            hardship     negative
## 1091           hardships     negative
## 1092                harm     negative
## 1093              harmed     negative
## 1094             harmful     negative
## 1095           harmfully     negative
## 1096             harming     negative
## 1097               harms     negative
## 1098               harsh     negative
## 1099             harsher     negative
## 1100            harshest     negative
## 1101             harshly     negative
## 1102           harshness     negative
## 1103              hazard     negative
## 1104           hazardous     negative
## 1105             hazards     negative
## 1106              hinder     negative
## 1107            hindered     negative
## 1108           hindering     negative
## 1109             hinders     negative
## 1110           hindrance     negative
## 1111          hindrances     negative
## 1112             hostile     negative
## 1113           hostility     negative
## 1114                hurt     negative
## 1115             hurting     negative
## 1116                idle     negative
## 1117               idled     negative
## 1118              idling     negative
## 1119              ignore     negative
## 1120             ignored     negative
## 1121             ignores     negative
## 1122            ignoring     negative
## 1123                 ill     negative
## 1124             illegal     negative
## 1125        illegalities     negative
## 1126          illegality     negative
## 1127           illegally     negative
## 1128           illegible     negative
## 1129             illicit     negative
## 1130           illicitly     negative
## 1131            illiquid     negative
## 1132         illiquidity     negative
## 1133           imbalance     negative
## 1134          imbalances     negative
## 1135            immature     negative
## 1136             immoral     negative
## 1137              impair     negative
## 1138            impaired     negative
## 1139           impairing     negative
## 1140          impairment     negative
## 1141         impairments     negative
## 1142             impairs     negative
## 1143             impasse     negative
## 1144            impasses     negative
## 1145              impede     negative
## 1146             impeded     negative
## 1147             impedes     negative
## 1148          impediment     negative
## 1149         impediments     negative
## 1150            impeding     negative
## 1151           impending     negative
## 1152          imperative     negative
## 1153        imperfection     negative
## 1154       imperfections     negative
## 1155             imperil     negative
## 1156       impermissible     negative
## 1157           implicate     negative
## 1158          implicated     negative
## 1159          implicates     negative
## 1160         implicating     negative
## 1161       impossibility     negative
## 1162          impossible     negative
## 1163             impound     negative
## 1164           impounded     negative
## 1165          impounding     negative
## 1166            impounds     negative
## 1167       impracticable     negative
## 1168         impractical     negative
## 1169    impracticalities     negative
## 1170      impracticality     negative
## 1171        imprisonment     negative
## 1172            improper     negative
## 1173          improperly     negative
## 1174       improprieties     negative
## 1175         impropriety     negative
## 1176           imprudent     negative
## 1177         imprudently     negative
## 1178           inability     negative
## 1179        inaccessible     negative
## 1180        inaccuracies     negative
## 1181          inaccuracy     negative
## 1182          inaccurate     negative
## 1183        inaccurately     negative
## 1184            inaction     negative
## 1185           inactions     negative
## 1186          inactivate     negative
## 1187         inactivated     negative
## 1188         inactivates     negative
## 1189        inactivating     negative
## 1190        inactivation     negative
## 1191       inactivations     negative
## 1192          inactivity     negative
## 1193        inadequacies     negative
## 1194          inadequacy     negative
## 1195          inadequate     negative
## 1196        inadequately     negative
## 1197         inadvertent     negative
## 1198       inadvertently     negative
## 1199      inadvisability     negative
## 1200         inadvisable     negative
## 1201       inappropriate     negative
## 1202     inappropriately     negative
## 1203         inattention     negative
## 1204           incapable     negative
## 1205       incapacitated     negative
## 1206          incapacity     negative
## 1207         incarcerate     negative
## 1208        incarcerated     negative
## 1209        incarcerates     negative
## 1210       incarcerating     negative
## 1211       incarceration     negative
## 1212      incarcerations     negative
## 1213           incidence     negative
## 1214          incidences     negative
## 1215            incident     negative
## 1216           incidents     negative
## 1217   incompatibilities     negative
## 1218     incompatibility     negative
## 1219        incompatible     negative
## 1220        incompetence     negative
## 1221        incompetency     negative
## 1222         incompetent     negative
## 1223       incompetently     negative
## 1224        incompetents     negative
## 1225          incomplete     negative
## 1226        incompletely     negative
## 1227      incompleteness     negative
## 1228        inconclusive     negative
## 1229     inconsistencies     negative
## 1230       inconsistency     negative
## 1231        inconsistent     negative
## 1232      inconsistently     negative
## 1233       inconvenience     negative
## 1234      inconveniences     negative
## 1235        inconvenient     negative
## 1236           incorrect     negative
## 1237         incorrectly     negative
## 1238       incorrectness     negative
## 1239           indecency     negative
## 1240            indecent     negative
## 1241        indefeasible     negative
## 1242        indefeasibly     negative
## 1243              indict     negative
## 1244          indictable     negative
## 1245            indicted     negative
## 1246           indicting     negative
## 1247          indictment     negative
## 1248         indictments     negative
## 1249         ineffective     negative
## 1250       ineffectively     negative
## 1251     ineffectiveness     negative
## 1252      inefficiencies     negative
## 1253        inefficiency     negative
## 1254         inefficient     negative
## 1255       inefficiently     negative
## 1256       ineligibility     negative
## 1257          ineligible     negative
## 1258         inequitable     negative
## 1259         inequitably     negative
## 1260          inequities     negative
## 1261            inequity     negative
## 1262          inevitable     negative
## 1263        inexperience     negative
## 1264       inexperienced     negative
## 1265            inferior     negative
## 1266           inflicted     negative
## 1267          infraction     negative
## 1268         infractions     negative
## 1269            infringe     negative
## 1270           infringed     negative
## 1271        infringement     negative
## 1272       infringements     negative
## 1273           infringes     negative
## 1274          infringing     negative
## 1275           inhibited     negative
## 1276            inimical     negative
## 1277          injunction     negative
## 1278         injunctions     negative
## 1279              injure     negative
## 1280             injured     negative
## 1281             injures     negative
## 1282            injuries     negative
## 1283            injuring     negative
## 1284           injurious     negative
## 1285              injury     negative
## 1286          inordinate     negative
## 1287        inordinately     negative
## 1288             inquiry     negative
## 1289            insecure     negative
## 1290         insensitive     negative
## 1291        insolvencies     negative
## 1292          insolvency     negative
## 1293           insolvent     negative
## 1294         instability     negative
## 1295     insubordination     negative
## 1296       insufficiency     negative
## 1297        insufficient     negative
## 1298      insufficiently     negative
## 1299        insurrection     negative
## 1300       insurrections     negative
## 1301         intentional     negative
## 1302           interfere     negative
## 1303          interfered     negative
## 1304        interference     negative
## 1305       interferences     negative
## 1306          interferes     negative
## 1307         interfering     negative
## 1308        intermittent     negative
## 1309      intermittently     negative
## 1310           interrupt     negative
## 1311         interrupted     negative
## 1312        interrupting     negative
## 1313        interruption     negative
## 1314       interruptions     negative
## 1315          interrupts     negative
## 1316        intimidation     negative
## 1317           intrusion     negative
## 1318             invalid     negative
## 1319          invalidate     negative
## 1320         invalidated     negative
## 1321         invalidates     negative
## 1322        invalidating     negative
## 1323        invalidation     negative
## 1324          invalidity     negative
## 1325         investigate     negative
## 1326        investigated     negative
## 1327        investigates     negative
## 1328       investigating     negative
## 1329       investigation     negative
## 1330      investigations     negative
## 1331       involuntarily     negative
## 1332         involuntary     negative
## 1333      irreconcilable     negative
## 1334      irreconcilably     negative
## 1335       irrecoverable     negative
## 1336       irrecoverably     negative
## 1337           irregular     negative
## 1338      irregularities     negative
## 1339        irregularity     negative
## 1340         irregularly     negative
## 1341         irreparable     negative
## 1342         irreparably     negative
## 1343        irreversible     negative
## 1344          jeopardize     negative
## 1345         jeopardized     negative
## 1346         justifiable     negative
## 1347            kickback     negative
## 1348           kickbacks     negative
## 1349           knowingly     negative
## 1350                lack     negative
## 1351              lacked     negative
## 1352             lacking     negative
## 1353          lackluster     negative
## 1354               lacks     negative
## 1355                 lag     negative
## 1356              lagged     negative
## 1357             lagging     negative
## 1358                lags     negative
## 1359               lapse     negative
## 1360              lapsed     negative
## 1361              lapses     negative
## 1362             lapsing     negative
## 1363                late     negative
## 1364          laundering     negative
## 1365              layoff     negative
## 1366             layoffs     negative
## 1367                 lie     negative
## 1368          limitation     negative
## 1369         limitations     negative
## 1370           lingering     negative
## 1371           liquidate     negative
## 1372          liquidated     negative
## 1373          liquidates     negative
## 1374         liquidating     negative
## 1375         liquidation     negative
## 1376        liquidations     negative
## 1377          liquidator     negative
## 1378         liquidators     negative
## 1379            litigant     negative
## 1380           litigants     negative
## 1381            litigate     negative
## 1382           litigated     negative
## 1383           litigates     negative
## 1384          litigating     negative
## 1385          litigation     negative
## 1386         litigations     negative
## 1387             lockout     negative
## 1388            lockouts     negative
## 1389                lose     negative
## 1390               loses     negative
## 1391              losing     negative
## 1392                loss     negative
## 1393              losses     negative
## 1394                lost     negative
## 1395               lying     negative
## 1396         malfeasance     negative
## 1397         malfunction     negative
## 1398       malfunctioned     negative
## 1399      malfunctioning     negative
## 1400        malfunctions     negative
## 1401              malice     negative
## 1402           malicious     negative
## 1403         maliciously     negative
## 1404         malpractice     negative
## 1405          manipulate     negative
## 1406         manipulated     negative
## 1407         manipulates     negative
## 1408        manipulating     negative
## 1409        manipulation     negative
## 1410       manipulations     negative
## 1411        manipulative     negative
## 1412            markdown     negative
## 1413           markdowns     negative
## 1414      misapplication     negative
## 1415     misapplications     negative
## 1416          misapplied     negative
## 1417          misapplies     negative
## 1418            misapply     negative
## 1419         misapplying     negative
## 1420      misappropriate     negative
## 1421     misappropriated     negative
## 1422     misappropriates     negative
## 1423    misappropriating     negative
## 1424    misappropriation     negative
## 1425   misappropriations     negative
## 1426          misbranded     negative
## 1427        miscalculate     negative
## 1428       miscalculated     negative
## 1429       miscalculates     negative
## 1430      miscalculating     negative
## 1431      miscalculation     negative
## 1432     miscalculations     negative
## 1433 mischaracterization     negative
## 1434            mischief     negative
## 1435   misclassification     negative
## 1436  misclassifications     negative
## 1437       misclassified     negative
## 1438         misclassify     negative
## 1439    miscommunication     negative
## 1440          misconduct     negative
## 1441            misdated     negative
## 1442         misdemeanor     negative
## 1443        misdemeanors     negative
## 1444         misdirected     negative
## 1445           mishandle     negative
## 1446          mishandled     negative
## 1447          mishandles     negative
## 1448         mishandling     negative
## 1449           misinform     negative
## 1450      misinformation     negative
## 1451         misinformed     negative
## 1452        misinforming     negative
## 1453          misinforms     negative
## 1454        misinterpret     negative
## 1455   misinterpretation     negative
## 1456  misinterpretations     negative
## 1457      misinterpreted     negative
## 1458     misinterpreting     negative
## 1459       misinterprets     negative
## 1460            misjudge     negative
## 1461           misjudged     negative
## 1462           misjudges     negative
## 1463          misjudging     negative
## 1464         misjudgment     negative
## 1465        misjudgments     negative
## 1466            mislabel     negative
## 1467          mislabeled     negative
## 1468         mislabeling     negative
## 1469         mislabelled     negative
## 1470           mislabels     negative
## 1471             mislead     negative
## 1472          misleading     negative
## 1473        misleadingly     negative
## 1474            misleads     negative
## 1475              misled     negative
## 1476           mismanage     negative
## 1477          mismanaged     negative
## 1478       mismanagement     negative
## 1479          mismanages     negative
## 1480         mismanaging     negative
## 1481            mismatch     negative
## 1482          mismatched     negative
## 1483          mismatches     negative
## 1484         mismatching     negative
## 1485           misplaced     negative
## 1486            misprice     negative
## 1487          mispricing     negative
## 1488         mispricings     negative
## 1489        misrepresent     negative
## 1490   misrepresentation     negative
## 1491  misrepresentations     negative
## 1492      misrepresented     negative
## 1493     misrepresenting     negative
## 1494       misrepresents     negative
## 1495                miss     negative
## 1496              missed     negative
## 1497              misses     negative
## 1498            misstate     negative
## 1499           misstated     negative
## 1500        misstatement     negative
## 1501       misstatements     negative
## 1502           misstates     negative
## 1503          misstating     negative
## 1504             misstep     negative
## 1505            missteps     negative
## 1506             mistake     negative
## 1507            mistaken     negative
## 1508          mistakenly     negative
## 1509            mistakes     negative
## 1510           mistaking     negative
## 1511            mistrial     negative
## 1512           mistrials     negative
## 1513       misunderstand     negative
## 1514    misunderstanding     negative
## 1515   misunderstandings     negative
## 1516       misunderstood     negative
## 1517              misuse     negative
## 1518             misused     negative
## 1519             misuses     negative
## 1520            misusing     negative
## 1521        monopolistic     negative
## 1522         monopolists     negative
## 1523      monopolization     negative
## 1524          monopolize     negative
## 1525         monopolized     negative
## 1526         monopolizes     negative
## 1527        monopolizing     negative
## 1528            monopoly     negative
## 1529           moratoria     negative
## 1530          moratorium     negative
## 1531         moratoriums     negative
## 1532          mothballed     negative
## 1533         mothballing     negative
## 1534            negative     negative
## 1535          negatively     negative
## 1536           negatives     negative
## 1537             neglect     negative
## 1538           neglected     negative
## 1539          neglectful     negative
## 1540          neglecting     negative
## 1541            neglects     negative
## 1542          negligence     negative
## 1543         negligences     negative
## 1544           negligent     negative
## 1545         negligently     negative
## 1546       nonattainment     negative
## 1547      noncompetitive     negative
## 1548       noncompliance     negative
## 1549      noncompliances     negative
## 1550        noncompliant     negative
## 1551        noncomplying     negative
## 1552       nonconforming     negative
## 1553     nonconformities     negative
## 1554       nonconformity     negative
## 1555       nondisclosure     negative
## 1556       nonfunctional     negative
## 1557          nonpayment     negative
## 1558         nonpayments     negative
## 1559      nonperformance     negative
## 1560     nonperformances     negative
## 1561       nonperforming     negative
## 1562        nonproducing     negative
## 1563       nonproductive     negative
## 1564      nonrecoverable     negative
## 1565          nonrenewal     negative
## 1566            nuisance     negative
## 1567           nuisances     negative
## 1568       nullification     negative
## 1569      nullifications     negative
## 1570           nullified     negative
## 1571           nullifies     negative
## 1572             nullify     negative
## 1573          nullifying     negative
## 1574            objected     negative
## 1575           objecting     negative
## 1576           objection     negative
## 1577       objectionable     negative
## 1578       objectionably     negative
## 1579          objections     negative
## 1580             obscene     negative
## 1581           obscenity     negative
## 1582        obsolescence     negative
## 1583            obsolete     negative
## 1584            obstacle     negative
## 1585           obstacles     negative
## 1586            obstruct     negative
## 1587          obstructed     negative
## 1588         obstructing     negative
## 1589         obstruction     negative
## 1590        obstructions     negative
## 1591             offence     negative
## 1592            offences     negative
## 1593              offend     negative
## 1594            offended     negative
## 1595            offender     negative
## 1596           offenders     negative
## 1597           offending     negative
## 1598             offends     negative
## 1599            omission     negative
## 1600           omissions     negative
## 1601                omit     negative
## 1602               omits     negative
## 1603             omitted     negative
## 1604            omitting     negative
## 1605             onerous     negative
## 1606       opportunistic     negative
## 1607   opportunistically     negative
## 1608              oppose     negative
## 1609             opposed     negative
## 1610             opposes     negative
## 1611            opposing     negative
## 1612          opposition     negative
## 1613         oppositions     negative
## 1614              outage     negative
## 1615             outages     negative
## 1616            outdated     negative
## 1617            outmoded     negative
## 1618             overage     negative
## 1619            overages     negative
## 1620           overbuild     negative
## 1621        overbuilding     negative
## 1622          overbuilds     negative
## 1623           overbuilt     negative
## 1624          overburden     negative
## 1625        overburdened     negative
## 1626       overburdening     negative
## 1627      overcapacities     negative
## 1628        overcapacity     negative
## 1629          overcharge     negative
## 1630         overcharged     negative
## 1631         overcharges     negative
## 1632        overcharging     negative
## 1633            overcome     negative
## 1634           overcomes     negative
## 1635          overcoming     negative
## 1636             overdue     negative
## 1637        overestimate     negative
## 1638       overestimated     negative
## 1639       overestimates     negative
## 1640      overestimating     negative
## 1641      overestimation     negative
## 1642     overestimations     negative
## 1643            overload     negative
## 1644          overloaded     negative
## 1645         overloading     negative
## 1646           overloads     negative
## 1647            overlook     negative
## 1648          overlooked     negative
## 1649         overlooking     negative
## 1650           overlooks     negative
## 1651            overpaid     negative
## 1652         overpayment     negative
## 1653        overpayments     negative
## 1654        overproduced     negative
## 1655        overproduces     negative
## 1656       overproducing     negative
## 1657      overproduction     negative
## 1658             overrun     negative
## 1659         overrunning     negative
## 1660            overruns     negative
## 1661          overshadow     negative
## 1662        overshadowed     negative
## 1663       overshadowing     negative
## 1664         overshadows     negative
## 1665           overstate     negative
## 1666          overstated     negative
## 1667       overstatement     negative
## 1668      overstatements     negative
## 1669          overstates     negative
## 1670         overstating     negative
## 1671        oversupplied     negative
## 1672        oversupplies     negative
## 1673          oversupply     negative
## 1674       oversupplying     negative
## 1675             overtly     negative
## 1676            overturn     negative
## 1677          overturned     negative
## 1678         overturning     negative
## 1679           overturns     negative
## 1680           overvalue     negative
## 1681          overvalued     negative
## 1682         overvaluing     negative
## 1683               panic     negative
## 1684              panics     negative
## 1685            penalize     negative
## 1686           penalized     negative
## 1687           penalizes     negative
## 1688          penalizing     negative
## 1689           penalties     negative
## 1690             penalty     negative
## 1691               peril     negative
## 1692              perils     negative
## 1693             perjury     negative
## 1694          perpetrate     negative
## 1695         perpetrated     negative
## 1696         perpetrates     negative
## 1697        perpetrating     negative
## 1698        perpetration     negative
## 1699             persist     negative
## 1700           persisted     negative
## 1701         persistence     negative
## 1702          persistent     negative
## 1703        persistently     negative
## 1704          persisting     negative
## 1705            persists     negative
## 1706           pervasive     negative
## 1707         pervasively     negative
## 1708       pervasiveness     negative
## 1709               petty     negative
## 1710              picket     negative
## 1711            picketed     negative
## 1712           picketing     negative
## 1713           plaintiff     negative
## 1714          plaintiffs     negative
## 1715                plea     negative
## 1716               plead     negative
## 1717             pleaded     negative
## 1718            pleading     negative
## 1719           pleadings     negative
## 1720              pleads     negative
## 1721               pleas     negative
## 1722                pled     negative
## 1723                poor     negative
## 1724              poorly     negative
## 1725               poses     negative
## 1726              posing     negative
## 1727            postpone     negative
## 1728           postponed     negative
## 1729        postponement     negative
## 1730       postponements     negative
## 1731           postpones     negative
## 1732          postponing     negative
## 1733        precipitated     negative
## 1734         precipitous     negative
## 1735       precipitously     negative
## 1736            preclude     negative
## 1737           precluded     negative
## 1738           precludes     negative
## 1739          precluding     negative
## 1740           predatory     negative
## 1741           prejudice     negative
## 1742          prejudiced     negative
## 1743          prejudices     negative
## 1744         prejudicial     negative
## 1745         prejudicing     negative
## 1746           premature     negative
## 1747         prematurely     negative
## 1748            pressing     negative
## 1749            pretrial     negative
## 1750          preventing     negative
## 1751          prevention     negative
## 1752            prevents     negative
## 1753             problem     negative
## 1754         problematic     negative
## 1755       problematical     negative
## 1756            problems     negative
## 1757             prolong     negative
## 1758        prolongation     negative
## 1759       prolongations     negative
## 1760           prolonged     negative
## 1761          prolonging     negative
## 1762            prolongs     negative
## 1763               prone     negative
## 1764           prosecute     negative
## 1765          prosecuted     negative
## 1766          prosecutes     negative
## 1767         prosecuting     negative
## 1768         prosecution     negative
## 1769        prosecutions     negative
## 1770             protest     negative
## 1771           protested     negative
## 1772           protester     negative
## 1773          protesters     negative
## 1774          protesting     negative
## 1775           protestor     negative
## 1776          protestors     negative
## 1777            protests     negative
## 1778          protracted     negative
## 1779         protraction     negative
## 1780             provoke     negative
## 1781            provoked     negative
## 1782            provokes     negative
## 1783           provoking     negative
## 1784            punished     negative
## 1785            punishes     negative
## 1786           punishing     negative
## 1787          punishment     negative
## 1788         punishments     negative
## 1789            punitive     negative
## 1790             purport     negative
## 1791           purported     negative
## 1792         purportedly     negative
## 1793          purporting     negative
## 1794            purports     negative
## 1795            question     negative
## 1796        questionable     negative
## 1797        questionably     negative
## 1798          questioned     negative
## 1799         questioning     negative
## 1800           questions     negative
## 1801                quit     negative
## 1802            quitting     negative
## 1803           racketeer     negative
## 1804        racketeering     negative
## 1805     rationalization     negative
## 1806    rationalizations     negative
## 1807         rationalize     negative
## 1808        rationalized     negative
## 1809        rationalizes     negative
## 1810       rationalizing     negative
## 1811        reassessment     negative
## 1812       reassessments     negative
## 1813            reassign     negative
## 1814          reassigned     negative
## 1815         reassigning     negative
## 1816        reassignment     negative
## 1817       reassignments     negative
## 1818           reassigns     negative
## 1819              recall     negative
## 1820            recalled     negative
## 1821           recalling     negative
## 1822             recalls     negative
## 1823           recession     negative
## 1824        recessionary     negative
## 1825          recessions     negative
## 1826            reckless     negative
## 1827          recklessly     negative
## 1828        recklessness     negative
## 1829              redact     negative
## 1830            redacted     negative
## 1831           redacting     negative
## 1832           redaction     negative
## 1833          redactions     negative
## 1834           redefault     negative
## 1835         redefaulted     negative
## 1836          redefaults     negative
## 1837             redress     negative
## 1838           redressed     negative
## 1839           redresses     negative
## 1840          redressing     negative
## 1841             refusal     negative
## 1842            refusals     negative
## 1843              refuse     negative
## 1844             refused     negative
## 1845             refuses     negative
## 1846            refusing     negative
## 1847              reject     negative
## 1848            rejected     negative
## 1849           rejecting     negative
## 1850           rejection     negative
## 1851          rejections     negative
## 1852             rejects     negative
## 1853          relinquish     negative
## 1854        relinquished     negative
## 1855        relinquishes     negative
## 1856       relinquishing     negative
## 1857      relinquishment     negative
## 1858     relinquishments     negative
## 1859          reluctance     negative
## 1860           reluctant     negative
## 1861         renegotiate     negative
## 1862        renegotiated     negative
## 1863        renegotiates     negative
## 1864       renegotiating     negative
## 1865       renegotiation     negative
## 1866      renegotiations     negative
## 1867            renounce     negative
## 1868           renounced     negative
## 1869        renouncement     negative
## 1870       renouncements     negative
## 1871           renounces     negative
## 1872          renouncing     negative
## 1873          reparation     negative
## 1874         reparations     negative
## 1875         repossessed     negative
## 1876         repossesses     negative
## 1877        repossessing     negative
## 1878        repossession     negative
## 1879       repossessions     negative
## 1880           repudiate     negative
## 1881          repudiated     negative
## 1882          repudiates     negative
## 1883         repudiating     negative
## 1884         repudiation     negative
## 1885        repudiations     negative
## 1886              resign     negative
## 1887         resignation     negative
## 1888        resignations     negative
## 1889            resigned     negative
## 1890           resigning     negative
## 1891             resigns     negative
## 1892             restate     negative
## 1893            restated     negative
## 1894         restatement     negative
## 1895        restatements     negative
## 1896            restates     negative
## 1897           restating     negative
## 1898         restructure     negative
## 1899        restructured     negative
## 1900        restructures     negative
## 1901       restructuring     negative
## 1902      restructurings     negative
## 1903           retaliate     negative
## 1904          retaliated     negative
## 1905          retaliates     negative
## 1906         retaliating     negative
## 1907         retaliation     negative
## 1908        retaliations     negative
## 1909         retaliatory     negative
## 1910         retribution     negative
## 1911        retributions     negative
## 1912          revocation     negative
## 1913         revocations     negative
## 1914              revoke     negative
## 1915             revoked     negative
## 1916             revokes     negative
## 1917            revoking     negative
## 1918            ridicule     negative
## 1919           ridiculed     negative
## 1920           ridicules     negative
## 1921          ridiculing     negative
## 1922             riskier     negative
## 1923            riskiest     negative
## 1924               risky     negative
## 1925            sabotage     negative
## 1926           sacrifice     negative
## 1927          sacrificed     negative
## 1928          sacrifices     negative
## 1929         sacrificial     negative
## 1930         sacrificing     negative
## 1931          scandalous     negative
## 1932            scandals     negative
## 1933          scrutinize     negative
## 1934         scrutinized     negative
## 1935         scrutinizes     negative
## 1936        scrutinizing     negative
## 1937            scrutiny     negative
## 1938             secrecy     negative
## 1939               seize     negative
## 1940              seized     negative
## 1941              seizes     negative
## 1942             seizing     negative
## 1943           sentenced     negative
## 1944          sentencing     negative
## 1945             serious     negative
## 1946           seriously     negative
## 1947         seriousness     negative
## 1948             setback     negative
## 1949            setbacks     negative
## 1950               sever     negative
## 1951              severe     negative
## 1952             severed     negative
## 1953            severely     negative
## 1954          severities     negative
## 1955            severity     negative
## 1956             sharply     negative
## 1957             shocked     negative
## 1958            shortage     negative
## 1959           shortages     negative
## 1960           shortfall     negative
## 1961          shortfalls     negative
## 1962           shrinkage     negative
## 1963          shrinkages     negative
## 1964                shut     negative
## 1965            shutdown     negative
## 1966           shutdowns     negative
## 1967               shuts     negative
## 1968            shutting     negative
## 1969             slander     negative
## 1970           slandered     negative
## 1971          slanderous     negative
## 1972            slanders     negative
## 1973            slippage     negative
## 1974           slippages     negative
## 1975                slow     negative
## 1976            slowdown     negative
## 1977           slowdowns     negative
## 1978              slowed     negative
## 1979              slower     negative
## 1980             slowest     negative
## 1981             slowing     negative
## 1982              slowly     negative
## 1983            slowness     negative
## 1984            sluggish     negative
## 1985          sluggishly     negative
## 1986        sluggishness     negative
## 1987          solvencies     negative
## 1988            solvency     negative
## 1989                spam     negative
## 1990            spammers     negative
## 1991            spamming     negative
## 1992          staggering     negative
## 1993            stagnant     negative
## 1994            stagnate     negative
## 1995           stagnated     negative
## 1996           stagnates     negative
## 1997          stagnating     negative
## 1998          stagnation     negative
## 1999          standstill     negative
## 2000         standstills     negative
## 2001              stolen     negative
## 2002            stoppage     negative
## 2003           stoppages     negative
## 2004             stopped     negative
## 2005            stopping     negative
## 2006               stops     negative
## 2007              strain     negative
## 2008            strained     negative
## 2009           straining     negative
## 2010             strains     negative
## 2011              stress     negative
## 2012            stressed     negative
## 2013            stresses     negative
## 2014           stressful     negative
## 2015           stressing     negative
## 2016           stringent     negative
## 2017           subjected     negative
## 2018          subjecting     negative
## 2019          subjection     negative
## 2020            subpoena     negative
## 2021          subpoenaed     negative
## 2022           subpoenas     negative
## 2023         substandard     negative
## 2024                 sue     negative
## 2025                sued     negative
## 2026                sues     negative
## 2027              suffer     negative
## 2028            suffered     negative
## 2029           suffering     negative
## 2030             suffers     negative
## 2031               suing     negative
## 2032            summoned     negative
## 2033           summoning     negative
## 2034             summons     negative
## 2035           summonses     negative
## 2036      susceptibility     negative
## 2037         susceptible     negative
## 2038             suspect     negative
## 2039           suspected     negative
## 2040            suspects     negative
## 2041             suspend     negative
## 2042           suspended     negative
## 2043          suspending     negative
## 2044            suspends     negative
## 2045          suspension     negative
## 2046         suspensions     negative
## 2047           suspicion     negative
## 2048          suspicions     negative
## 2049          suspicious     negative
## 2050        suspiciously     negative
## 2051               taint     negative
## 2052             tainted     negative
## 2053            tainting     negative
## 2054              taints     negative
## 2055            tampered     negative
## 2056               tense     negative
## 2057           terminate     negative
## 2058          terminated     negative
## 2059          terminates     negative
## 2060         terminating     negative
## 2061         termination     negative
## 2062        terminations     negative
## 2063             testify     negative
## 2064          testifying     negative
## 2065              threat     negative
## 2066            threaten     negative
## 2067          threatened     negative
## 2068         threatening     negative
## 2069           threatens     negative
## 2070             threats     negative
## 2071          tightening     negative
## 2072            tolerate     negative
## 2073           tolerated     negative
## 2074           tolerates     negative
## 2075          tolerating     negative
## 2076          toleration     negative
## 2077            tortuous     negative
## 2078          tortuously     negative
## 2079           tragedies     negative
## 2080             tragedy     negative
## 2081              tragic     negative
## 2082          tragically     negative
## 2083           traumatic     negative
## 2084             trouble     negative
## 2085            troubled     negative
## 2086            troubles     negative
## 2087          turbulence     negative
## 2088             turmoil     negative
## 2089              unable     negative
## 2090        unacceptable     negative
## 2091        unacceptably     negative
## 2092         unaccounted     negative
## 2093         unannounced     negative
## 2094       unanticipated     negative
## 2095          unapproved     negative
## 2096        unattractive     negative
## 2097        unauthorized     negative
## 2098      unavailability     negative
## 2099         unavailable     negative
## 2100         unavoidable     negative
## 2101         unavoidably     negative
## 2102             unaware     negative
## 2103       uncollectable     negative
## 2104         uncollected     negative
## 2105    uncollectibility     negative
## 2106       uncollectible     negative
## 2107      uncollectibles     negative
## 2108       uncompetitive     negative
## 2109         uncompleted     negative
## 2110      unconscionable     negative
## 2111      unconscionably     negative
## 2112      uncontrollable     negative
## 2113      uncontrollably     negative
## 2114        uncontrolled     negative
## 2115         uncorrected     negative
## 2116             uncover     negative
## 2117           uncovered     negative
## 2118          uncovering     negative
## 2119            uncovers     negative
## 2120       undeliverable     negative
## 2121         undelivered     negative
## 2122    undercapitalized     negative
## 2123            undercut     negative
## 2124           undercuts     negative
## 2125        undercutting     negative
## 2126       underestimate     negative
## 2127      underestimated     negative
## 2128      underestimates     negative
## 2129     underestimating     negative
## 2130     underestimation     negative
## 2131         underfunded     negative
## 2132        underinsured     negative
## 2133           undermine     negative
## 2134          undermined     negative
## 2135          undermines     negative
## 2136         undermining     negative
## 2137           underpaid     negative
## 2138        underpayment     negative
## 2139       underpayments     negative
## 2140           underpays     negative
## 2141        underperform     negative
## 2142    underperformance     negative
## 2143      underperformed     negative
## 2144     underperforming     negative
## 2145       underperforms     negative
## 2146       underproduced     negative
## 2147     underproduction     negative
## 2148      underreporting     negative
## 2149          understate     negative
## 2150         understated     negative
## 2151      understatement     negative
## 2152     understatements     negative
## 2153         understates     negative
## 2154        understating     negative
## 2155    underutilization     negative
## 2156       underutilized     negative
## 2157         undesirable     negative
## 2158           undesired     negative
## 2159          undetected     negative
## 2160        undetermined     negative
## 2161         undisclosed     negative
## 2162        undocumented     negative
## 2163               undue     negative
## 2164              unduly     negative
## 2165          uneconomic     negative
## 2166        uneconomical     negative
## 2167      uneconomically     negative
## 2168          unemployed     negative
## 2169        unemployment     negative
## 2170           unethical     negative
## 2171         unethically     negative
## 2172           unexcused     negative
## 2173          unexpected     negative
## 2174        unexpectedly     negative
## 2175              unfair     negative
## 2176            unfairly     negative
## 2177      unfavorability     negative
## 2178         unfavorable     negative
## 2179         unfavorably     negative
## 2180        unfavourable     negative
## 2181          unfeasible     negative
## 2182               unfit     negative
## 2183           unfitness     negative
## 2184       unforeseeable     negative
## 2185          unforeseen     negative
## 2186           unforseen     negative
## 2187         unfortunate     negative
## 2188       unfortunately     negative
## 2189           unfounded     negative
## 2190          unfriendly     negative
## 2191         unfulfilled     negative
## 2192            unfunded     negative
## 2193           uninsured     negative
## 2194          unintended     negative
## 2195       unintentional     negative
## 2196     unintentionally     negative
## 2197              unjust     negative
## 2198       unjustifiable     negative
## 2199       unjustifiably     negative
## 2200         unjustified     negative
## 2201            unjustly     negative
## 2202           unknowing     negative
## 2203         unknowingly     negative
## 2204            unlawful     negative
## 2205          unlawfully     negative
## 2206          unlicensed     negative
## 2207        unliquidated     negative
## 2208        unmarketable     negative
## 2209      unmerchantable     negative
## 2210       unmeritorious     negative
## 2211       unnecessarily     negative
## 2212         unnecessary     negative
## 2213            unneeded     negative
## 2214        unobtainable     negative
## 2215          unoccupied     negative
## 2216              unpaid     negative
## 2217         unperformed     negative
## 2218           unplanned     negative
## 2219           unpopular     negative
## 2220    unpredictability     negative
## 2221       unpredictable     negative
## 2222       unpredictably     negative
## 2223         unpredicted     negative
## 2224        unproductive     negative
## 2225     unprofitability     negative
## 2226        unprofitable     negative
## 2227         unqualified     negative
## 2228         unrealistic     negative
## 2229        unreasonable     negative
## 2230    unreasonableness     negative
## 2231        unreasonably     negative
## 2232         unreceptive     negative
## 2233       unrecoverable     negative
## 2234         unrecovered     negative
## 2235        unreimbursed     negative
## 2236          unreliable     negative
## 2237          unremedied     negative
## 2238          unreported     negative
## 2239          unresolved     negative
## 2240              unrest     negative
## 2241              unsafe     negative
## 2242           unsalable     negative
## 2243          unsaleable     negative
## 2244      unsatisfactory     negative
## 2245         unsatisfied     negative
## 2246            unsavory     negative
## 2247         unscheduled     negative
## 2248          unsellable     negative
## 2249              unsold     negative
## 2250             unsound     negative
## 2251        unstabilized     negative
## 2252            unstable     negative
## 2253     unsubstantiated     negative
## 2254        unsuccessful     negative
## 2255      unsuccessfully     negative
## 2256       unsuitability     negative
## 2257          unsuitable     negative
## 2258          unsuitably     negative
## 2259            unsuited     negative
## 2260              unsure     negative
## 2261         unsuspected     negative
## 2262        unsuspecting     negative
## 2263       unsustainable     negative
## 2264           untenable     negative
## 2265            untimely     negative
## 2266           untrusted     negative
## 2267             untruth     negative
## 2268          untruthful     negative
## 2269        untruthfully     negative
## 2270      untruthfulness     negative
## 2271            untruths     negative
## 2272            unusable     negative
## 2273            unwanted     negative
## 2274         unwarranted     negative
## 2275           unwelcome     negative
## 2276           unwilling     negative
## 2277       unwillingness     negative
## 2278               upset     negative
## 2279             urgency     negative
## 2280              urgent     negative
## 2281            usurious     negative
## 2282               usurp     negative
## 2283             usurped     negative
## 2284            usurping     negative
## 2285              usurps     negative
## 2286               usury     negative
## 2287           vandalism     negative
## 2288             verdict     negative
## 2289            verdicts     negative
## 2290              vetoed     negative
## 2291             victims     negative
## 2292             violate     negative
## 2293            violated     negative
## 2294            violates     negative
## 2295           violating     negative
## 2296           violation     negative
## 2297          violations     negative
## 2298           violative     negative
## 2299            violator     negative
## 2300           violators     negative
## 2301            violence     negative
## 2302             violent     negative
## 2303           violently     negative
## 2304             vitiate     negative
## 2305            vitiated     negative
## 2306            vitiates     negative
## 2307           vitiating     negative
## 2308           vitiation     negative
## 2309              voided     negative
## 2310             voiding     negative
## 2311            volatile     negative
## 2312          volatility     negative
## 2313     vulnerabilities     negative
## 2314       vulnerability     negative
## 2315          vulnerable     negative
## 2316          vulnerably     negative
## 2317                warn     negative
## 2318              warned     negative
## 2319             warning     negative
## 2320            warnings     negative
## 2321               warns     negative
## 2322              wasted     negative
## 2323            wasteful     negative
## 2324             wasting     negative
## 2325                weak     negative
## 2326              weaken     negative
## 2327            weakened     negative
## 2328           weakening     negative
## 2329             weakens     negative
## 2330              weaker     negative
## 2331             weakest     negative
## 2332              weakly     negative
## 2333            weakness     negative
## 2334          weaknesses     negative
## 2335           willfully     negative
## 2336             worries     negative
## 2337               worry     negative
## 2338            worrying     negative
## 2339               worse     negative
## 2340              worsen     negative
## 2341            worsened     negative
## 2342           worsening     negative
## 2343             worsens     negative
## 2344               worst     negative
## 2345           worthless     negative
## 2346           writedown     negative
## 2347          writedowns     negative
## 2348            writeoff     negative
## 2349           writeoffs     negative
## 2350               wrong     negative
## 2351          wrongdoing     negative
## 2352         wrongdoings     negative
## 2353            wrongful     negative
## 2354          wrongfully     negative
## 2355             wrongly     negative
## 2356                able     positive
## 2357           abundance     positive
## 2358            abundant     positive
## 2359           acclaimed     positive
## 2360          accomplish     positive
## 2361        accomplished     positive
## 2362        accomplishes     positive
## 2363       accomplishing     positive
## 2364      accomplishment     positive
## 2365     accomplishments     positive
## 2366             achieve     positive
## 2367            achieved     positive
## 2368         achievement     positive
## 2369        achievements     positive
## 2370            achieves     positive
## 2371           achieving     positive
## 2372          adequately     positive
## 2373         advancement     positive
## 2374        advancements     positive
## 2375            advances     positive
## 2376           advancing     positive
## 2377           advantage     positive
## 2378          advantaged     positive
## 2379        advantageous     positive
## 2380      advantageously     positive
## 2381          advantages     positive
## 2382            alliance     positive
## 2383           alliances     positive
## 2384              assure     positive
## 2385             assured     positive
## 2386             assures     positive
## 2387            assuring     positive
## 2388              attain     positive
## 2389            attained     positive
## 2390           attaining     positive
## 2391          attainment     positive
## 2392         attainments     positive
## 2393             attains     positive
## 2394          attractive     positive
## 2395      attractiveness     positive
## 2396           beautiful     positive
## 2397         beautifully     positive
## 2398          beneficial     positive
## 2399        beneficially     positive
## 2400             benefit     positive
## 2401           benefited     positive
## 2402          benefiting     positive
## 2403          benefitted     positive
## 2404         benefitting     positive
## 2405                best     positive
## 2406              better     positive
## 2407           bolstered     positive
## 2408          bolstering     positive
## 2409            bolsters     positive
## 2410                boom     positive
## 2411             booming     positive
## 2412               boost     positive
## 2413             boosted     positive
## 2414        breakthrough     positive
## 2415       breakthroughs     positive
## 2416           brilliant     positive
## 2417          charitable     positive
## 2418         collaborate     positive
## 2419        collaborated     positive
## 2420        collaborates     positive
## 2421       collaborating     positive
## 2422       collaboration     positive
## 2423      collaborations     positive
## 2424       collaborative     positive
## 2425        collaborator     positive
## 2426       collaborators     positive
## 2427          compliment     positive
## 2428       complimentary     positive
## 2429        complimented     positive
## 2430       complimenting     positive
## 2431         compliments     positive
## 2432          conclusive     positive
## 2433        conclusively     positive
## 2434           conducive     positive
## 2435           confident     positive
## 2436        constructive     positive
## 2437      constructively     positive
## 2438           courteous     positive
## 2439            creative     positive
## 2440          creatively     positive
## 2441        creativeness     positive
## 2442          creativity     positive
## 2443             delight     positive
## 2444           delighted     positive
## 2445          delightful     positive
## 2446        delightfully     positive
## 2447          delighting     positive
## 2448            delights     positive
## 2449       dependability     positive
## 2450          dependable     positive
## 2451           desirable     positive
## 2452             desired     positive
## 2453             despite     positive
## 2454            destined     positive
## 2455            diligent     positive
## 2456          diligently     positive
## 2457         distinction     positive
## 2458        distinctions     positive
## 2459         distinctive     positive
## 2460       distinctively     positive
## 2461     distinctiveness     positive
## 2462               dream     positive
## 2463              easier     positive
## 2464              easily     positive
## 2465                easy     positive
## 2466           effective     positive
## 2467        efficiencies     positive
## 2468          efficiency     positive
## 2469           efficient     positive
## 2470         efficiently     positive
## 2471             empower     positive
## 2472           empowered     positive
## 2473          empowering     positive
## 2474            empowers     positive
## 2475              enable     positive
## 2476             enabled     positive
## 2477             enables     positive
## 2478            enabling     positive
## 2479          encouraged     positive
## 2480       encouragement     positive
## 2481          encourages     positive
## 2482         encouraging     positive
## 2483             enhance     positive
## 2484            enhanced     positive
## 2485         enhancement     positive
## 2486        enhancements     positive
## 2487            enhances     positive
## 2488           enhancing     positive
## 2489               enjoy     positive
## 2490           enjoyable     positive
## 2491           enjoyably     positive
## 2492             enjoyed     positive
## 2493            enjoying     positive
## 2494           enjoyment     positive
## 2495              enjoys     positive
## 2496          enthusiasm     positive
## 2497        enthusiastic     positive
## 2498    enthusiastically     positive
## 2499          excellence     positive
## 2500           excellent     positive
## 2501           excelling     positive
## 2502              excels     positive
## 2503         exceptional     positive
## 2504       exceptionally     positive
## 2505             excited     positive
## 2506          excitement     positive
## 2507            exciting     positive
## 2508           exclusive     positive
## 2509         exclusively     positive
## 2510       exclusiveness     positive
## 2511          exclusives     positive
## 2512         exclusivity     positive
## 2513           exemplary     positive
## 2514           fantastic     positive
## 2515           favorable     positive
## 2516           favorably     positive
## 2517             favored     positive
## 2518            favoring     positive
## 2519            favorite     positive
## 2520           favorites     positive
## 2521            friendly     positive
## 2522                gain     positive
## 2523              gained     positive
## 2524             gaining     positive
## 2525               gains     positive
## 2526                good     positive
## 2527               great     positive
## 2528             greater     positive
## 2529            greatest     positive
## 2530             greatly     positive
## 2531           greatness     positive
## 2532            happiest     positive
## 2533             happily     positive
## 2534           happiness     positive
## 2535               happy     positive
## 2536             highest     positive
## 2537               honor     positive
## 2538           honorable     positive
## 2539             honored     positive
## 2540            honoring     positive
## 2541              honors     positive
## 2542               ideal     positive
## 2543             impress     positive
## 2544           impressed     positive
## 2545           impresses     positive
## 2546          impressing     positive
## 2547          impressive     positive
## 2548        impressively     positive
## 2549             improve     positive
## 2550            improved     positive
## 2551         improvement     positive
## 2552        improvements     positive
## 2553            improves     positive
## 2554           improving     positive
## 2555          incredible     positive
## 2556          incredibly     positive
## 2557         influential     positive
## 2558         informative     positive
## 2559           ingenuity     positive
## 2560            innovate     positive
## 2561           innovated     positive
## 2562           innovates     positive
## 2563          innovating     positive
## 2564          innovation     positive
## 2565         innovations     positive
## 2566          innovative     positive
## 2567      innovativeness     positive
## 2568           innovator     positive
## 2569          innovators     positive
## 2570          insightful     positive
## 2571         inspiration     positive
## 2572       inspirational     positive
## 2573           integrity     positive
## 2574              invent     positive
## 2575            invented     positive
## 2576           inventing     positive
## 2577           invention     positive
## 2578          inventions     positive
## 2579           inventive     positive
## 2580       inventiveness     positive
## 2581            inventor     positive
## 2582           inventors     positive
## 2583          leadership     positive
## 2584             leading     positive
## 2585               loyal     positive
## 2586           lucrative     positive
## 2587         meritorious     positive
## 2588       opportunities     positive
## 2589         opportunity     positive
## 2590          optimistic     positive
## 2591          outperform     positive
## 2592        outperformed     positive
## 2593       outperforming     positive
## 2594         outperforms     positive
## 2595             perfect     positive
## 2596           perfected     positive
## 2597           perfectly     positive
## 2598            perfects     positive
## 2599            pleasant     positive
## 2600          pleasantly     positive
## 2601             pleased     positive
## 2602            pleasure     positive
## 2603           plentiful     positive
## 2604             popular     positive
## 2605          popularity     positive
## 2606            positive     positive
## 2607          positively     positive
## 2608         preeminence     positive
## 2609          preeminent     positive
## 2610             premier     positive
## 2611            premiere     positive
## 2612            prestige     positive
## 2613         prestigious     positive
## 2614           proactive     positive
## 2615         proactively     positive
## 2616         proficiency     positive
## 2617          proficient     positive
## 2618        proficiently     positive
## 2619       profitability     positive
## 2620          profitable     positive
## 2621          profitably     positive
## 2622            progress     positive
## 2623          progressed     positive
## 2624          progresses     positive
## 2625         progressing     positive
## 2626           prospered     positive
## 2627          prospering     positive
## 2628          prosperity     positive
## 2629          prosperous     positive
## 2630            prospers     positive
## 2631             rebound     positive
## 2632           rebounded     positive
## 2633          rebounding     positive
## 2634           receptive     positive
## 2635              regain     positive
## 2636            regained     positive
## 2637           regaining     positive
## 2638             resolve     positive
## 2639       revolutionize     positive
## 2640      revolutionized     positive
## 2641      revolutionizes     positive
## 2642     revolutionizing     positive
## 2643              reward     positive
## 2644            rewarded     positive
## 2645           rewarding     positive
## 2646             rewards     positive
## 2647        satisfaction     positive
## 2648      satisfactorily     positive
## 2649        satisfactory     positive
## 2650           satisfied     positive
## 2651           satisfies     positive
## 2652             satisfy     positive
## 2653          satisfying     positive
## 2654              smooth     positive
## 2655           smoothing     positive
## 2656            smoothly     positive
## 2657             smooths     positive
## 2658              solves     positive
## 2659             solving     positive
## 2660         spectacular     positive
## 2661       spectacularly     positive
## 2662           stability     positive
## 2663       stabilization     positive
## 2664      stabilizations     positive
## 2665           stabilize     positive
## 2666          stabilized     positive
## 2667          stabilizes     positive
## 2668         stabilizing     positive
## 2669              stable     positive
## 2670            strength     positive
## 2671          strengthen     positive
## 2672        strengthened     positive
## 2673       strengthening     positive
## 2674         strengthens     positive
## 2675           strengths     positive
## 2676              strong     positive
## 2677            stronger     positive
## 2678           strongest     positive
## 2679             succeed     positive
## 2680           succeeded     positive
## 2681          succeeding     positive
## 2682            succeeds     positive
## 2683             success     positive
## 2684           successes     positive
## 2685          successful     positive
## 2686        successfully     positive
## 2687            superior     positive
## 2688             surpass     positive
## 2689           surpassed     positive
## 2690           surpasses     positive
## 2691          surpassing     positive
## 2692        transparency     positive
## 2693          tremendous     positive
## 2694        tremendously     positive
## 2695           unmatched     positive
## 2696        unparalleled     positive
## 2697         unsurpassed     positive
## 2698              upturn     positive
## 2699             upturns     positive
## 2700            valuable     positive
## 2701           versatile     positive
## 2702         versatility     positive
## 2703            vibrancy     positive
## 2704             vibrant     positive
## 2705                 win     positive
## 2706              winner     positive
## 2707             winners     positive
## 2708             winning     positive
## 2709              worthy     positive
## 2710            abeyance  uncertainty
## 2711           abeyances  uncertainty
## 2712              almost  uncertainty
## 2713          alteration  uncertainty
## 2714         alterations  uncertainty
## 2715         ambiguities  uncertainty
## 2716           ambiguity  uncertainty
## 2717           ambiguous  uncertainty
## 2718           anomalies  uncertainty
## 2719           anomalous  uncertainty
## 2720         anomalously  uncertainty
## 2721             anomaly  uncertainty
## 2722          anticipate  uncertainty
## 2723         anticipated  uncertainty
## 2724         anticipates  uncertainty
## 2725        anticipating  uncertainty
## 2726        anticipation  uncertainty
## 2727       anticipations  uncertainty
## 2728            apparent  uncertainty
## 2729          apparently  uncertainty
## 2730              appear  uncertainty
## 2731            appeared  uncertainty
## 2732           appearing  uncertainty
## 2733             appears  uncertainty
## 2734         approximate  uncertainty
## 2735        approximated  uncertainty
## 2736       approximately  uncertainty
## 2737        approximates  uncertainty
## 2738       approximating  uncertainty
## 2739       approximation  uncertainty
## 2740      approximations  uncertainty
## 2741         arbitrarily  uncertainty
## 2742       arbitrariness  uncertainty
## 2743           arbitrary  uncertainty
## 2744              assume  uncertainty
## 2745             assumed  uncertainty
## 2746             assumes  uncertainty
## 2747            assuming  uncertainty
## 2748          assumption  uncertainty
## 2749         assumptions  uncertainty
## 2750             believe  uncertainty
## 2751            believed  uncertainty
## 2752            believes  uncertainty
## 2753           believing  uncertainty
## 2754            cautious  uncertainty
## 2755          cautiously  uncertainty
## 2756        cautiousness  uncertainty
## 2757       clarification  uncertainty
## 2758      clarifications  uncertainty
## 2759         conceivable  uncertainty
## 2760         conceivably  uncertainty
## 2761         conditional  uncertainty
## 2762       conditionally  uncertainty
## 2763            confuses  uncertainty
## 2764           confusing  uncertainty
## 2765         confusingly  uncertainty
## 2766           confusion  uncertainty
## 2767       contingencies  uncertainty
## 2768         contingency  uncertainty
## 2769          contingent  uncertainty
## 2770        contingently  uncertainty
## 2771         contingents  uncertainty
## 2772               could  uncertainty
## 2773           crossroad  uncertainty
## 2774          crossroads  uncertainty
## 2775              depend  uncertainty
## 2776            depended  uncertainty
## 2777          dependence  uncertainty
## 2778        dependencies  uncertainty
## 2779          dependency  uncertainty
## 2780           dependent  uncertainty
## 2781           depending  uncertainty
## 2782             depends  uncertainty
## 2783       destabilizing  uncertainty
## 2784             deviate  uncertainty
## 2785            deviated  uncertainty
## 2786            deviates  uncertainty
## 2787           deviating  uncertainty
## 2788           deviation  uncertainty
## 2789          deviations  uncertainty
## 2790              differ  uncertainty
## 2791            differed  uncertainty
## 2792           differing  uncertainty
## 2793             differs  uncertainty
## 2794               doubt  uncertainty
## 2795             doubted  uncertainty
## 2796            doubtful  uncertainty
## 2797              doubts  uncertainty
## 2798            exposure  uncertainty
## 2799           exposures  uncertainty
## 2800           fluctuate  uncertainty
## 2801          fluctuated  uncertainty
## 2802          fluctuates  uncertainty
## 2803         fluctuating  uncertainty
## 2804         fluctuation  uncertainty
## 2805        fluctuations  uncertainty
## 2806              hidden  uncertainty
## 2807              hinges  uncertainty
## 2808           imprecise  uncertainty
## 2809         imprecision  uncertainty
## 2810        imprecisions  uncertainty
## 2811       improbability  uncertainty
## 2812          improbable  uncertainty
## 2813      incompleteness  uncertainty
## 2814          indefinite  uncertainty
## 2815        indefinitely  uncertainty
## 2816      indefiniteness  uncertainty
## 2817      indeterminable  uncertainty
## 2818       indeterminate  uncertainty
## 2819             inexact  uncertainty
## 2820         inexactness  uncertainty
## 2821       instabilities  uncertainty
## 2822         instability  uncertainty
## 2823          intangible  uncertainty
## 2824         intangibles  uncertainty
## 2825          likelihood  uncertainty
## 2826                 may  uncertainty
## 2827               maybe  uncertainty
## 2828               might  uncertainty
## 2829              nearly  uncertainty
## 2830       nonassessable  uncertainty
## 2831        occasionally  uncertainty
## 2832          ordinarily  uncertainty
## 2833             pending  uncertainty
## 2834             perhaps  uncertainty
## 2835       possibilities  uncertainty
## 2836         possibility  uncertainty
## 2837            possible  uncertainty
## 2838            possibly  uncertainty
## 2839          precaution  uncertainty
## 2840       precautionary  uncertainty
## 2841         precautions  uncertainty
## 2842             predict  uncertainty
## 2843      predictability  uncertainty
## 2844           predicted  uncertainty
## 2845          predicting  uncertainty
## 2846          prediction  uncertainty
## 2847         predictions  uncertainty
## 2848          predictive  uncertainty
## 2849           predictor  uncertainty
## 2850          predictors  uncertainty
## 2851            predicts  uncertainty
## 2852       preliminarily  uncertainty
## 2853         preliminary  uncertainty
## 2854          presumably  uncertainty
## 2855             presume  uncertainty
## 2856            presumed  uncertainty
## 2857            presumes  uncertainty
## 2858           presuming  uncertainty
## 2859         presumption  uncertainty
## 2860        presumptions  uncertainty
## 2861       probabilistic  uncertainty
## 2862       probabilities  uncertainty
## 2863         probability  uncertainty
## 2864            probable  uncertainty
## 2865            probably  uncertainty
## 2866              random  uncertainty
## 2867           randomize  uncertainty
## 2868          randomized  uncertainty
## 2869          randomizes  uncertainty
## 2870         randomizing  uncertainty
## 2871            randomly  uncertainty
## 2872          randomness  uncertainty
## 2873            reassess  uncertainty
## 2874          reassessed  uncertainty
## 2875          reassesses  uncertainty
## 2876         reassessing  uncertainty
## 2877        reassessment  uncertainty
## 2878       reassessments  uncertainty
## 2879         recalculate  uncertainty
## 2880        recalculated  uncertainty
## 2881        recalculates  uncertainty
## 2882       recalculating  uncertainty
## 2883       recalculation  uncertainty
## 2884      recalculations  uncertainty
## 2885          reconsider  uncertainty
## 2886        reconsidered  uncertainty
## 2887       reconsidering  uncertainty
## 2888         reconsiders  uncertainty
## 2889       reexamination  uncertainty
## 2890           reexamine  uncertainty
## 2891         reexamining  uncertainty
## 2892         reinterpret  uncertainty
## 2893    reinterpretation  uncertainty
## 2894   reinterpretations  uncertainty
## 2895       reinterpreted  uncertainty
## 2896      reinterpreting  uncertainty
## 2897        reinterprets  uncertainty
## 2898              revise  uncertainty
## 2899             revised  uncertainty
## 2900                risk  uncertainty
## 2901              risked  uncertainty
## 2902             riskier  uncertainty
## 2903            riskiest  uncertainty
## 2904           riskiness  uncertainty
## 2905             risking  uncertainty
## 2906               risks  uncertainty
## 2907               risky  uncertainty
## 2908             roughly  uncertainty
## 2909              rumors  uncertainty
## 2910               seems  uncertainty
## 2911              seldom  uncertainty
## 2912            seldomly  uncertainty
## 2913            sometime  uncertainty
## 2914           sometimes  uncertainty
## 2915            somewhat  uncertainty
## 2916           somewhere  uncertainty
## 2917           speculate  uncertainty
## 2918          speculated  uncertainty
## 2919          speculates  uncertainty
## 2920         speculating  uncertainty
## 2921         speculation  uncertainty
## 2922        speculations  uncertainty
## 2923         speculative  uncertainty
## 2924       speculatively  uncertainty
## 2925            sporadic  uncertainty
## 2926        sporadically  uncertainty
## 2927              sudden  uncertainty
## 2928            suddenly  uncertainty
## 2929             suggest  uncertainty
## 2930           suggested  uncertainty
## 2931          suggesting  uncertainty
## 2932            suggests  uncertainty
## 2933      susceptibility  uncertainty
## 2934             tending  uncertainty
## 2935           tentative  uncertainty
## 2936         tentatively  uncertainty
## 2937          turbulence  uncertainty
## 2938           uncertain  uncertainty
## 2939         uncertainly  uncertainty
## 2940       uncertainties  uncertainty
## 2941         uncertainty  uncertainty
## 2942             unclear  uncertainty
## 2943         unconfirmed  uncertainty
## 2944           undecided  uncertainty
## 2945           undefined  uncertainty
## 2946        undesignated  uncertainty
## 2947        undetectable  uncertainty
## 2948      undeterminable  uncertainty
## 2949        undetermined  uncertainty
## 2950        undocumented  uncertainty
## 2951          unexpected  uncertainty
## 2952        unexpectedly  uncertainty
## 2953          unfamiliar  uncertainty
## 2954       unfamiliarity  uncertainty
## 2955        unforecasted  uncertainty
## 2956           unforseen  uncertainty
## 2957        unguaranteed  uncertainty
## 2958            unhedged  uncertainty
## 2959      unidentifiable  uncertainty
## 2960        unidentified  uncertainty
## 2961             unknown  uncertainty
## 2962            unknowns  uncertainty
## 2963        unobservable  uncertainty
## 2964           unplanned  uncertainty
## 2965    unpredictability  uncertainty
## 2966       unpredictable  uncertainty
## 2967       unpredictably  uncertainty
## 2968         unpredicted  uncertainty
## 2969            unproved  uncertainty
## 2970            unproven  uncertainty
## 2971      unquantifiable  uncertainty
## 2972        unquantified  uncertainty
## 2973        unreconciled  uncertainty
## 2974        unseasonable  uncertainty
## 2975        unseasonably  uncertainty
## 2976           unsettled  uncertainty
## 2977          unspecific  uncertainty
## 2978         unspecified  uncertainty
## 2979            untested  uncertainty
## 2980             unusual  uncertainty
## 2981           unusually  uncertainty
## 2982           unwritten  uncertainty
## 2983            vagaries  uncertainty
## 2984               vague  uncertainty
## 2985             vaguely  uncertainty
## 2986           vagueness  uncertainty
## 2987         vaguenesses  uncertainty
## 2988              vaguer  uncertainty
## 2989             vaguest  uncertainty
## 2990         variability  uncertainty
## 2991            variable  uncertainty
## 2992           variables  uncertainty
## 2993            variably  uncertainty
## 2994            variance  uncertainty
## 2995           variances  uncertainty
## 2996             variant  uncertainty
## 2997            variants  uncertainty
## 2998           variation  uncertainty
## 2999          variations  uncertainty
## 3000              varied  uncertainty
## 3001              varies  uncertainty
## 3002                vary  uncertainty
## 3003             varying  uncertainty
## 3004            volatile  uncertainty
## 3005        volatilities  uncertainty
## 3006          volatility  uncertainty
## 3007      abovementioned    litigious
## 3008            abrogate    litigious
## 3009           abrogated    litigious
## 3010           abrogates    litigious
## 3011          abrogating    litigious
## 3012          abrogation    litigious
## 3013         abrogations    litigious
## 3014             absolve    litigious
## 3015            absolved    litigious
## 3016            absolves    litigious
## 3017           absolving    litigious
## 3018           accession    litigious
## 3019          accessions    litigious
## 3020           acquirees    litigious
## 3021           acquirors    litigious
## 3022              acquit    litigious
## 3023             acquits    litigious
## 3024           acquittal    litigious
## 3025          acquittals    litigious
## 3026         acquittance    litigious
## 3027        acquittances    litigious
## 3028           acquitted    litigious
## 3029          acquitting    litigious
## 3030           addendums    litigious
## 3031             adjourn    litigious
## 3032           adjourned    litigious
## 3033          adjourning    litigious
## 3034         adjournment    litigious
## 3035        adjournments    litigious
## 3036            adjourns    litigious
## 3037             adjudge    litigious
## 3038            adjudged    litigious
## 3039            adjudges    litigious
## 3040           adjudging    litigious
## 3041          adjudicate    litigious
## 3042         adjudicated    litigious
## 3043         adjudicates    litigious
## 3044        adjudicating    litigious
## 3045        adjudication    litigious
## 3046       adjudications    litigious
## 3047        adjudicative    litigious
## 3048         adjudicator    litigious
## 3049        adjudicators    litigious
## 3050        adjudicatory    litigious
## 3051       admissibility    litigious
## 3052          admissible    litigious
## 3053          admissibly    litigious
## 3054           admission    litigious
## 3055          admissions    litigious
## 3056           affidavit    litigious
## 3057          affidavits    litigious
## 3058          affirmance    litigious
## 3059       affreightment    litigious
## 3060      aforedescribed    litigious
## 3061      aforementioned    litigious
## 3062           aforesaid    litigious
## 3063         aforestated    litigious
## 3064           aggrieved    litigious
## 3065          allegation    litigious
## 3066         allegations    litigious
## 3067              allege    litigious
## 3068             alleged    litigious
## 3069           allegedly    litigious
## 3070             alleges    litigious
## 3071            alleging    litigious
## 3072               amend    litigious
## 3073           amendable    litigious
## 3074          amendatory    litigious
## 3075             amended    litigious
## 3076            amending    litigious
## 3077           amendment    litigious
## 3078          amendments    litigious
## 3079              amends    litigious
## 3080          antecedent    litigious
## 3081         antecedents    litigious
## 3082      anticorruption    litigious
## 3083           antitrust    litigious
## 3084             anywise    litigious
## 3085              appeal    litigious
## 3086          appealable    litigious
## 3087            appealed    litigious
## 3088           appealing    litigious
## 3089             appeals    litigious
## 3090           appellant    litigious
## 3091          appellants    litigious
## 3092           appellate    litigious
## 3093           appellees    litigious
## 3094           appointor    litigious
## 3095        appurtenance    litigious
## 3096       appurtenances    litigious
## 3097         appurtenant    litigious
## 3098       arbitrability    litigious
## 3099            arbitral    litigious
## 3100           arbitrate    litigious
## 3101          arbitrated    litigious
## 3102          arbitrates    litigious
## 3103         arbitrating    litigious
## 3104         arbitration    litigious
## 3105       arbitrational    litigious
## 3106        arbitrations    litigious
## 3107         arbitrative    litigious
## 3108          arbitrator    litigious
## 3109         arbitrators    litigious
## 3110           arrearage    litigious
## 3111          arrearages    litigious
## 3112          ascendancy    litigious
## 3113           ascendant    litigious
## 3114          ascendants    litigious
## 3115          assertable    litigious
## 3116         assignation    litigious
## 3117        assignations    litigious
## 3118           assumable    litigious
## 3119              attest    litigious
## 3120         attestation    litigious
## 3121        attestations    litigious
## 3122            attested    litigious
## 3123           attesting    litigious
## 3124              attorn    litigious
## 3125            attorney    litigious
## 3126           attorneys    litigious
## 3127          attornment    litigious
## 3128             attorns    litigious
## 3129                bail    litigious
## 3130              bailed    litigious
## 3131              bailee    litigious
## 3132             bailees    litigious
## 3133             bailiff    litigious
## 3134            bailiffs    litigious
## 3135            bailment    litigious
## 3136        beneficiated    litigious
## 3137       beneficiation    litigious
## 3138                bona    litigious
## 3139            bonafide    litigious
## 3140              breach    litigious
## 3141            breached    litigious
## 3142            breaches    litigious
## 3143           breaching    litigious
## 3144              cedant    litigious
## 3145             cedants    litigious
## 3146          certiorari    litigious
## 3147             cession    litigious
## 3148             chattel    litigious
## 3149            chattels    litigious
## 3150              choate    litigious
## 3151               claim    litigious
## 3152           claimable    litigious
## 3153            claimant    litigious
## 3154           claimants    litigious
## 3155         claimholder    litigious
## 3156              claims    litigious
## 3157           clawbacks    litigious
## 3158         codefendant    litigious
## 3159        codefendants    litigious
## 3160             codicil    litigious
## 3161            codicils    litigious
## 3162        codification    litigious
## 3163       codifications    litigious
## 3164            codified    litigious
## 3165            codifies    litigious
## 3166              codify    litigious
## 3167           codifying    litigious
## 3168           collusion    litigious
## 3169        compensatory    litigious
## 3170         complainant    litigious
## 3171        complainants    litigious
## 3172           condemnor    litigious
## 3173        confiscatory    litigious
## 3174             consent    litigious
## 3175           consented    litigious
## 3176          consenting    litigious
## 3177            consents    litigious
## 3178    conservatorships    litigious
## 3179        constitution    litigious
## 3180      constitutional    litigious
## 3181   constitutionality    litigious
## 3182    constitutionally    litigious
## 3183       constitutions    litigious
## 3184        constitutive    litigious
## 3185            construe    litigious
## 3186           construed    litigious
## 3187           construes    litigious
## 3188          construing    litigious
## 3189      contestability    litigious
## 3190        contestation    litigious
## 3191            contract    litigious
## 3192          contracted    litigious
## 3193      contractholder    litigious
## 3194     contractholders    litigious
## 3195        contractible    litigious
## 3196         contractile    litigious
## 3197         contracting    litigious
## 3198           contracts    litigious
## 3199         contractual    litigious
## 3200       contractually    litigious
## 3201          contravene    litigious
## 3202         contravened    litigious
## 3203         contravenes    litigious
## 3204        contravening    litigious
## 3205       contravention    litigious
## 3206      contraventions    litigious
## 3207          controvert    litigious
## 3208        controverted    litigious
## 3209       controverting    litigious
## 3210          conveniens    litigious
## 3211          conveyance    litigious
## 3212         conveyances    litigious
## 3213             convict    litigious
## 3214           convicted    litigious
## 3215          convicting    litigious
## 3216          conviction    litigious
## 3217         convictions    litigious
## 3218         coterminous    litigious
## 3219             counsel    litigious
## 3220           counseled    litigious
## 3221          counselled    litigious
## 3222            counsels    litigious
## 3223       countersignor    litigious
## 3224         countersued    litigious
## 3225         countersuit    litigious
## 3226        countersuits    litigious
## 3227               court    litigious
## 3228           courtroom    litigious
## 3229              courts    litigious
## 3230               crime    litigious
## 3231              crimes    litigious
## 3232            criminal    litigious
## 3233         criminality    litigious
## 3234         criminalize    litigious
## 3235       criminalizing    litigious
## 3236          criminally    litigious
## 3237           criminals    litigious
## 3238          crossclaim    litigious
## 3239         crossclaims    litigious
## 3240            decedent    litigious
## 3241           decedents    litigious
## 3242           declarant    litigious
## 3243              decree    litigious
## 3244             decreed    litigious
## 3245           decreeing    litigious
## 3246             decrees    litigious
## 3247         defalcation    litigious
## 3248        defalcations    litigious
## 3249          defeasance    litigious
## 3250         defeasances    litigious
## 3251             defease    litigious
## 3252            defeased    litigious
## 3253         defeasement    litigious
## 3254            defeases    litigious
## 3255           defeasing    litigious
## 3256         defectively    litigious
## 3257          defendable    litigious
## 3258           defendant    litigious
## 3259          defendants    litigious
## 3260           deference    litigious
## 3261           delegable    litigious
## 3262         delegatable    litigious
## 3263           delegatee    litigious
## 3264            delegees    litigious
## 3265            demurred    litigious
## 3266            demurrer    litigious
## 3267           demurrers    litigious
## 3268           demurring    litigious
## 3269              demurs    litigious
## 3270              depose    litigious
## 3271             deposed    litigious
## 3272             deposes    litigious
## 3273            deposing    litigious
## 3274          deposition    litigious
## 3275        depositional    litigious
## 3276         depositions    litigious
## 3277            derogate    litigious
## 3278           derogated    litigious
## 3279           derogates    litigious
## 3280          derogating    litigious
## 3281          derogation    litigious
## 3282         derogations    litigious
## 3283          designator    litigious
## 3284              desist    litigious
## 3285            detainer    litigious
## 3286            devisees    litigious
## 3287      disaffiliation    litigious
## 3288           disaffirm    litigious
## 3289       disaffirmance    litigious
## 3290         disaffirmed    litigious
## 3291          disaffirms    litigious
## 3292         dispositive    litigious
## 3293       dispossession    litigious
## 3294       dispossessory    litigious
## 3295           distraint    litigious
## 3296         distributee    litigious
## 3297        distributees    litigious
## 3298              docket    litigious
## 3299            docketed    litigious
## 3300           docketing    litigious
## 3301             dockets    litigious
## 3302              donees    litigious
## 3303                duly    litigious
## 3304           ejectment    litigious
## 3305            encumber    litigious
## 3306          encumbered    litigious
## 3307         encumbering    litigious
## 3308           encumbers    litigious
## 3309         encumbrance    litigious
## 3310        encumbrancer    litigious
## 3311       encumbrancers    litigious
## 3312        encumbrances    litigious
## 3313            endorsee    litigious
## 3314      enforceability    litigious
## 3315         enforceable    litigious
## 3316         enforceably    litigious
## 3317             escheat    litigious
## 3318           escheated    litigious
## 3319         escheatment    litigious
## 3320           escrowing    litigious
## 3321            estoppel    litigious
## 3322          evidential    litigious
## 3323         evidentiary    litigious
## 3324          exceedance    litigious
## 3325         exceedances    litigious
## 3326         exceedences    litigious
## 3327             excised    litigious
## 3328           exculpate    litigious
## 3329          exculpated    litigious
## 3330          exculpates    litigious
## 3331         exculpating    litigious
## 3332         exculpation    litigious
## 3333        exculpations    litigious
## 3334         exculpatory    litigious
## 3335            executor    litigious
## 3336           executors    litigious
## 3337           executory    litigious
## 3338         executrices    litigious
## 3339           executrix    litigious
## 3340         executrixes    litigious
## 3341    extracontractual    litigious
## 3342      extracorporeal    litigious
## 3343       extrajudicial    litigious
## 3344               facie    litigious
## 3345               facto    litigious
## 3346            felonies    litigious
## 3347           felonious    litigious
## 3348              felony    litigious
## 3349                fide    litigious
## 3350             forbade    litigious
## 3351             forbear    litigious
## 3352         forbearance    litigious
## 3353        forbearances    litigious
## 3354          forbearing    litigious
## 3355            forbears    litigious
## 3356            forebear    litigious
## 3357        forebearance    litigious
## 3358           forebears    litigious
## 3359      forfeitability    litigious
## 3360         forfeitable    litigious
## 3361           forthwith    litigious
## 3362            forwhich    litigious
## 3363            fugitive    litigious
## 3364           fugitives    litigious
## 3365         furtherance    litigious
## 3366             grantor    litigious
## 3367            grantors    litigious
## 3368          henceforth    litigious
## 3369        henceforward    litigious
## 3370           hereafter    litigious
## 3371              hereby    litigious
## 3372       hereditaments    litigious
## 3373             herefor    litigious
## 3374            herefore    litigious
## 3375            herefrom    litigious
## 3376              herein    litigious
## 3377         hereinabove    litigious
## 3378         hereinafter    litigious
## 3379        hereinbefore    litigious
## 3380         hereinbelow    litigious
## 3381              hereof    litigious
## 3382              hereon    litigious
## 3383              hereto    litigious
## 3384          heretofore    litigious
## 3385           hereunder    litigious
## 3386            hereunto    litigious
## 3387            hereupon    litigious
## 3388            herewith    litigious
## 3389          herewithin    litigious
## 3390       immateriality    litigious
## 3391           impleaded    litigious
## 3392            inasmuch    litigious
## 3393          incapacity    litigious
## 3394         incarcerate    litigious
## 3395        incarcerated    litigious
## 3396        incarcerates    litigious
## 3397       incarcerating    litigious
## 3398       incarceration    litigious
## 3399      incarcerations    litigious
## 3400            inchoate    litigious
## 3401    incontestability    litigious
## 3402       incontestable    litigious
## 3403       indemnifiable    litigious
## 3404     indemnification    litigious
## 3405    indemnifications    litigious
## 3406         indemnified    litigious
## 3407         indemnifies    litigious
## 3408           indemnify    litigious
## 3409        indemnifying    litigious
## 3410          indemnitee    litigious
## 3411         indemnitees    litigious
## 3412         indemnities    litigious
## 3413          indemnitor    litigious
## 3414         indemnitors    litigious
## 3415           indemnity    litigious
## 3416              indict    litigious
## 3417          indictable    litigious
## 3418            indicted    litigious
## 3419           indicting    litigious
## 3420          indictment    litigious
## 3421         indictments    litigious
## 3422           indorsees    litigious
## 3423             inforce    litigious
## 3424          infraction    litigious
## 3425         infractions    litigious
## 3426           infringer    litigious
## 3427          injunction    litigious
## 3428         injunctions    litigious
## 3429          injunctive    litigious
## 3430             insofar    litigious
## 3431       interlocutory    litigious
## 3432        interpleader    litigious
## 3433           interpose    litigious
## 3434          interposed    litigious
## 3435          interposes    litigious
## 3436         interposing    litigious
## 3437       interposition    litigious
## 3438      interpositions    litigious
## 3439         interrogate    litigious
## 3440        interrogated    litigious
## 3441        interrogates    litigious
## 3442       interrogating    litigious
## 3443       interrogation    litigious
## 3444      interrogations    litigious
## 3445        interrogator    litigious
## 3446     interrogatories    litigious
## 3447       interrogators    litigious
## 3448       interrogatory    litigious
## 3449           intestacy    litigious
## 3450           intestate    litigious
## 3451      irrevocability    litigious
## 3452         irrevocable    litigious
## 3453         irrevocably    litigious
## 3454             joinder    litigious
## 3455            judicial    litigious
## 3456          judicially    litigious
## 3457         judiciaries    litigious
## 3458           judiciary    litigious
## 3459              juries    litigious
## 3460               juris    litigious
## 3461        jurisdiction    litigious
## 3462      jurisdictional    litigious
## 3463    jurisdictionally    litigious
## 3464       jurisdictions    litigious
## 3465       jurisprudence    litigious
## 3466              jurist    litigious
## 3467             jurists    litigious
## 3468               juror    litigious
## 3469              jurors    litigious
## 3470                jury    litigious
## 3471             juryman    litigious
## 3472             justice    litigious
## 3473            justices    litigious
## 3474                 law    litigious
## 3475              lawful    litigious
## 3476            lawfully    litigious
## 3477          lawfulness    litigious
## 3478           lawmakers    litigious
## 3479           lawmaking    litigious
## 3480                laws    litigious
## 3481             lawsuit    litigious
## 3482            lawsuits    litigious
## 3483              lawyer    litigious
## 3484             lawyers    litigious
## 3485               legal    litigious
## 3486            legalese    litigious
## 3487            legality    litigious
## 3488        legalization    litigious
## 3489       legalizations    litigious
## 3490            legalize    litigious
## 3491           legalized    litigious
## 3492           legalizes    litigious
## 3493          legalizing    litigious
## 3494             legally    litigious
## 3495              legals    litigious
## 3496             legatee    litigious
## 3497            legatees    litigious
## 3498           legislate    litigious
## 3499          legislated    litigious
## 3500          legislates    litigious
## 3501         legislating    litigious
## 3502         legislation    litigious
## 3503        legislations    litigious
## 3504         legislative    litigious
## 3505       legislatively    litigious
## 3506          legislator    litigious
## 3507         legislators    litigious
## 3508         legislature    litigious
## 3509        legislatures    litigious
## 3510               libel    litigious
## 3511             libeled    litigious
## 3512            libelous    litigious
## 3513              libels    litigious
## 3514          licensable    litigious
## 3515         lienholders    litigious
## 3516            litigant    litigious
## 3517           litigants    litigious
## 3518            litigate    litigious
## 3519           litigated    litigious
## 3520           litigates    litigious
## 3521          litigating    litigious
## 3522          litigation    litigious
## 3523         litigations    litigious
## 3524           litigator    litigious
## 3525          litigators    litigious
## 3526           litigious    litigious
## 3527       litigiousness    litigious
## 3528             majeure    litigious
## 3529            mandamus    litigious
## 3530             mediate    litigious
## 3531            mediated    litigious
## 3532            mediates    litigious
## 3533           mediating    litigious
## 3534           mediation    litigious
## 3535          mediations    litigious
## 3536            mediator    litigious
## 3537           mediators    litigious
## 3538         misdemeanor    litigious
## 3539         misfeasance    litigious
## 3540            mistrial    litigious
## 3541           mistrials    litigious
## 3542            moreover    litigious
## 3543             motions    litigious
## 3544            mutandis    litigious
## 3545                nolo    litigious
## 3546       nonappealable    litigious
## 3547        nonbreaching    litigious
## 3548       noncontingent    litigious
## 3549         noncontract    litigious
## 3550      noncontractual    litigious
## 3551     noncontributory    litigious
## 3552         nonfeasance    litigious
## 3553        nonfiduciary    litigious
## 3554   nonforfeitability    litigious
## 3555      nonforfeitable    litigious
## 3556       nonforfeiture    litigious
## 3557        nonguarantor    litigious
## 3558     noninfringement    litigious
## 3559       noninfringing    litigious
## 3560         nonjudicial    litigious
## 3561       nonjudicially    litigious
## 3562   nonjurisdictional    litigious
## 3563        nonseverable    litigious
## 3564       nonterminable    litigious
## 3565         nonusurious    litigious
## 3566            notarial    litigious
## 3567            notaries    litigious
## 3568        notarization    litigious
## 3569       notarizations    litigious
## 3570            notarize    litigious
## 3571           notarized    litigious
## 3572          notarizing    litigious
## 3573              notary    litigious
## 3574     notwithstanding    litigious
## 3575                novo    litigious
## 3576       nullification    litigious
## 3577      nullifications    litigious
## 3578           nullified    litigious
## 3579           nullifies    litigious
## 3580             nullify    litigious
## 3581          nullifying    litigious
## 3582           nullities    litigious
## 3583             nullity    litigious
## 3584             obligee    litigious
## 3585            obligees    litigious
## 3586             obligor    litigious
## 3587            obligors    litigious
## 3588             offense    litigious
## 3589             offeree    litigious
## 3590            offerees    litigious
## 3591             offeror    litigious
## 3592            offerors    litigious
## 3593            optionee    litigious
## 3594           optionees    litigious
## 3595            overrule    litigious
## 3596           overruled    litigious
## 3597           overrules    litigious
## 3598          overruling    litigious
## 3599                para    litigious
## 3600                pari    litigious
## 3601               passu    litigious
## 3602            patentee    litigious
## 3603         pecuniarily    litigious
## 3604             perjury    litigious
## 3605           permittee    litigious
## 3606          permittees    litigious
## 3607          perpetrate    litigious
## 3608         perpetrated    litigious
## 3609         perpetrates    litigious
## 3610        perpetrating    litigious
## 3611        perpetration    litigious
## 3612            personam    litigious
## 3613            petition    litigious
## 3614          petitioned    litigious
## 3615          petitioner    litigious
## 3616         petitioners    litigious
## 3617         petitioning    litigious
## 3618           petitions    litigious
## 3619           plaintiff    litigious
## 3620          plaintiffs    litigious
## 3621            pleading    litigious
## 3622           pleadings    litigious
## 3623              pleads    litigious
## 3624               pleas    litigious
## 3625             pledgee    litigious
## 3626            pledgees    litigious
## 3627             pledgor    litigious
## 3628            pledgors    litigious
## 3629          possessory    litigious
## 3630         postclosing    litigious
## 3631         postclosure    litigious
## 3632        postcontract    litigious
## 3633        postjudgment    litigious
## 3634        preamendment    litigious
## 3635          predecease    litigious
## 3636         predeceased    litigious
## 3637         predeceases    litigious
## 3638        predeceasing    litigious
## 3639          prehearing    litigious
## 3640           prejudice    litigious
## 3641          prejudiced    litigious
## 3642          prejudices    litigious
## 3643         prejudicial    litigious
## 3644         prejudicing    litigious
## 3645         prepetition    litigious
## 3646       presumptively    litigious
## 3647            pretrial    litigious
## 3648               prima    litigious
## 3649             privity    litigious
## 3650             probate    litigious
## 3651            probated    litigious
## 3652            probates    litigious
## 3653           probating    litigious
## 3654           probation    litigious
## 3655         probational    litigious
## 3656        probationary    litigious
## 3657         probationer    litigious
## 3658        probationers    litigious
## 3659          probations    litigious
## 3660          promulgate    litigious
## 3661         promulgated    litigious
## 3662         promulgates    litigious
## 3663        promulgating    litigious
## 3664        promulgation    litigious
## 3665       promulgations    litigious
## 3666         promulgator    litigious
## 3667        promulgators    litigious
## 3668             prorata    litigious
## 3669           proration    litigious
## 3670           prosecute    litigious
## 3671          prosecuted    litigious
## 3672          prosecutes    litigious
## 3673         prosecuting    litigious
## 3674         prosecution    litigious
## 3675        prosecutions    litigious
## 3676          prosecutor    litigious
## 3677       prosecutorial    litigious
## 3678         prosecutors    litigious
## 3679             proviso    litigious
## 3680           provisoes    litigious
## 3681            provisos    litigious
## 3682          punishable    litigious
## 3683           quitclaim    litigious
## 3684          quitclaims    litigious
## 3685                rata    litigious
## 3686             ratable    litigious
## 3687             ratably    litigious
## 3688          reargument    litigious
## 3689               rebut    litigious
## 3690              rebuts    litigious
## 3691          rebuttable    litigious
## 3692          rebuttably    litigious
## 3693            rebuttal    litigious
## 3694           rebuttals    litigious
## 3695            rebutted    litigious
## 3696           rebutting    litigious
## 3697         recordation    litigious
## 3698          recoupable    litigious
## 3699          recoupment    litigious
## 3700         recoupments    litigious
## 3701            recourse    litigious
## 3702           recourses    litigious
## 3703       rectification    litigious
## 3704      rectifications    litigious
## 3705             recusal    litigious
## 3706              recuse    litigious
## 3707             recused    litigious
## 3708             recuses    litigious
## 3709            recusing    litigious
## 3710              redact    litigious
## 3711            redacted    litigious
## 3712           redacting    litigious
## 3713           redaction    litigious
## 3714          redactions    litigious
## 3715           referenda    litigious
## 3716          referendum    litigious
## 3717         referendums    litigious
## 3718              refile    litigious
## 3719             refiled    litigious
## 3720             refiles    litigious
## 3721            refiling    litigious
## 3722            regulate    litigious
## 3723           regulated    litigious
## 3724           regulates    litigious
## 3725          regulating    litigious
## 3726          regulation    litigious
## 3727         regulations    litigious
## 3728          regulative    litigious
## 3729           regulator    litigious
## 3730          regulators    litigious
## 3731          regulatory    litigious
## 3732              rehear    litigious
## 3733             reheard    litigious
## 3734           rehearing    litigious
## 3735          rehearings    litigious
## 3736           releasees    litigious
## 3737              remand    litigious
## 3738            remanded    litigious
## 3739           remanding    litigious
## 3740             remands    litigious
## 3741           remediate    litigious
## 3742          remediated    litigious
## 3743         remediating    litigious
## 3744         remediation    litigious
## 3745        remediations    litigious
## 3746            remedied    litigious
## 3747             remised    litigious
## 3748           repledged    litigious
## 3749            replevin    litigious
## 3750          reprorated    litigious
## 3751           requester    litigious
## 3752           requestor    litigious
## 3753        reregulation    litigious
## 3754             rescind    litigious
## 3755           rescinded    litigious
## 3756          rescinding    litigious
## 3757            rescinds    litigious
## 3758          rescission    litigious
## 3759         rescissions    litigious
## 3760      restitutionary    litigious
## 3761         retendering    litigious
## 3762           retrocede    litigious
## 3763          retroceded    litigious
## 3764   retrocessionaires    litigious
## 3765        revocability    litigious
## 3766          revocation    litigious
## 3767         revocations    litigious
## 3768              ruling    litigious
## 3769             rulings    litigious
## 3770           sentenced    litigious
## 3771          sentencing    litigious
## 3772        sequestrator    litigious
## 3773          settlement    litigious
## 3774         settlements    litigious
## 3775        severability    litigious
## 3776           severable    litigious
## 3777           severally    litigious
## 3778           severance    litigious
## 3779          severances    litigious
## 3780               shall    litigious
## 3781             statute    litigious
## 3782            statutes    litigious
## 3783         statutorily    litigious
## 3784           statutory    litigious
## 3785           subclause    litigious
## 3786          subclauses    litigious
## 3787           subdocket    litigious
## 3788           subleasee    litigious
## 3789        subleasehold    litigious
## 3790          sublessors    litigious
## 3791         sublicensee    litigious
## 3792         sublicensor    litigious
## 3793        subparagraph    litigious
## 3794       subparagraphs    litigious
## 3795            subpoena    litigious
## 3796          subpoenaed    litigious
## 3797           subpoenas    litigious
## 3798          subrogated    litigious
## 3799         subrogation    litigious
## 3800            subtrust    litigious
## 3801           subtrusts    litigious
## 3802                 sue    litigious
## 3803                sued    litigious
## 3804                sues    litigious
## 3805               suing    litigious
## 3806            summoned    litigious
## 3807           summoning    litigious
## 3808             summons    litigious
## 3809           summonses    litigious
## 3810           supersede    litigious
## 3811         supersedeas    litigious
## 3812          superseded    litigious
## 3813          supersedes    litigious
## 3814         superseding    litigious
## 3815            sureties    litigious
## 3816              surety    litigious
## 3817       tenantability    litigious
## 3818          terminable    litigious
## 3819            terminus    litigious
## 3820        testamentary    litigious
## 3821             testify    litigious
## 3822          testifying    litigious
## 3823           testimony    litigious
## 3824              thence    litigious
## 3825         thenceforth    litigious
## 3826       thenceforward    litigious
## 3827          thereafter    litigious
## 3828             thereat    litigious
## 3829           therefrom    litigious
## 3830             therein    litigious
## 3831        thereinafter    litigious
## 3832             thereof    litigious
## 3833             thereon    litigious
## 3834           thereover    litigious
## 3835             thereto    litigious
## 3836          theretofor    litigious
## 3837         theretofore    litigious
## 3838          thereunder    litigious
## 3839           thereunto    litigious
## 3840           thereupon    litigious
## 3841           therewith    litigious
## 3842                tort    litigious
## 3843            tortious    litigious
## 3844          tortiously    litigious
## 3845               torts    litigious
## 3846          transferor    litigious
## 3847         transferors    litigious
## 3848        unappealable    litigious
## 3849          unappealed    litigious
## 3850    unconstitutional    litigious
## 3851 unconstitutionality    litigious
## 3852  unconstitutionally    litigious
## 3853        uncontracted    litigious
## 3854          undefeased    litigious
## 3855        undischarged    litigious
## 3856          unencumber    litigious
## 3857        unencumbered    litigious
## 3858    unenforceability    litigious
## 3859       unenforceable    litigious
## 3860            unlawful    litigious
## 3861          unlawfully    litigious
## 3862        unlawfulness    litigious
## 3863        unremediated    litigious
## 3864            unstayed    litigious
## 3865                unto    litigious
## 3866            usurious    litigious
## 3867               usurp    litigious
## 3868          usurpation    litigious
## 3869             usurped    litigious
## 3870            usurping    litigious
## 3871              usurps    litigious
## 3872               usury    litigious
## 3873              vendee    litigious
## 3874             vendees    litigious
## 3875             verdict    litigious
## 3876            verdicts    litigious
## 3877            viatical    litigious
## 3878           violative    litigious
## 3879            voidable    litigious
## 3880              voided    litigious
## 3881             voiding    litigious
## 3882          warrantees    litigious
## 3883           warrantor    litigious
## 3884            whatever    litigious
## 3885          whatsoever    litigious
## 3886          whensoever    litigious
## 3887         whereabouts    litigious
## 3888             whereas    litigious
## 3889             whereat    litigious
## 3890             whereby    litigious
## 3891           wherefore    litigious
## 3892             wherein    litigious
## 3893             whereof    litigious
## 3894             whereon    litigious
## 3895             whereto    litigious
## 3896          whereunder    litigious
## 3897           whereupon    litigious
## 3898           wherewith    litigious
## 3899      whistleblowers    litigious
## 3900            whomever    litigious
## 3901          whomsoever    litigious
## 3902           whosoever    litigious
## 3903              wilful    litigious
## 3904             willful    litigious
## 3905           willfully    litigious
## 3906         willfulness    litigious
## 3907             witness    litigious
## 3908           witnesses    litigious
## 3909                writ    litigious
## 3910               writs    litigious
## 3911               abide constraining
## 3912             abiding constraining
## 3913               bound constraining
## 3914             bounded constraining
## 3915              commit constraining
## 3916          commitment constraining
## 3917         commitments constraining
## 3918             commits constraining
## 3919           committed constraining
## 3920          committing constraining
## 3921              compel constraining
## 3922           compelled constraining
## 3923          compelling constraining
## 3924             compels constraining
## 3925              comply constraining
## 3926          compulsion constraining
## 3927          compulsory constraining
## 3928             confine constraining
## 3929            confined constraining
## 3930         confinement constraining
## 3931            confines constraining
## 3932           confining constraining
## 3933           constrain constraining
## 3934         constrained constraining
## 3935        constraining constraining
## 3936          constrains constraining
## 3937          constraint constraining
## 3938         constraints constraining
## 3939            covenant constraining
## 3940          covenanted constraining
## 3941         covenanting constraining
## 3942           covenants constraining
## 3943              depend constraining
## 3944          dependance constraining
## 3945         dependances constraining
## 3946           dependant constraining
## 3947        dependencies constraining
## 3948           dependent constraining
## 3949           depending constraining
## 3950             depends constraining
## 3951             dictate constraining
## 3952            dictated constraining
## 3953            dictates constraining
## 3954           dictating constraining
## 3955           directive constraining
## 3956          directives constraining
## 3957             earmark constraining
## 3958           earmarked constraining
## 3959          earmarking constraining
## 3960            earmarks constraining
## 3961            encumber constraining
## 3962          encumbered constraining
## 3963         encumbering constraining
## 3964           encumbers constraining
## 3965         encumbrance constraining
## 3966        encumbrances constraining
## 3967              entail constraining
## 3968            entailed constraining
## 3969           entailing constraining
## 3970             entails constraining
## 3971            entrench constraining
## 3972          entrenched constraining
## 3973              escrow constraining
## 3974            escrowed constraining
## 3975             escrows constraining
## 3976             forbade constraining
## 3977              forbid constraining
## 3978           forbidden constraining
## 3979          forbidding constraining
## 3980             forbids constraining
## 3981              impair constraining
## 3982            impaired constraining
## 3983           impairing constraining
## 3984          impairment constraining
## 3985         impairments constraining
## 3986             impairs constraining
## 3987              impose constraining
## 3988             imposed constraining
## 3989             imposes constraining
## 3990            imposing constraining
## 3991          imposition constraining
## 3992         impositions constraining
## 3993            indebted constraining
## 3994             inhibit constraining
## 3995           inhibited constraining
## 3996          inhibiting constraining
## 3997            inhibits constraining
## 3998              insist constraining
## 3999            insisted constraining
## 4000          insistence constraining
## 4001           insisting constraining
## 4002             insists constraining
## 4003         irrevocable constraining
## 4004         irrevocably constraining
## 4005               limit constraining
## 4006            limiting constraining
## 4007              limits constraining
## 4008             mandate constraining
## 4009            mandated constraining
## 4010            mandates constraining
## 4011           mandating constraining
## 4012           mandatory constraining
## 4013         manditorily constraining
## 4014         necessitate constraining
## 4015        necessitated constraining
## 4016        necessitates constraining
## 4017       necessitating constraining
## 4018       noncancelable constraining
## 4019      noncancellable constraining
## 4020            obligate constraining
## 4021           obligated constraining
## 4022           obligates constraining
## 4023          obligating constraining
## 4024          obligation constraining
## 4025         obligations constraining
## 4026          obligatory constraining
## 4027              oblige constraining
## 4028             obliged constraining
## 4029             obliges constraining
## 4030         permissible constraining
## 4031          permission constraining
## 4032         permissions constraining
## 4033           permitted constraining
## 4034          permitting constraining
## 4035              pledge constraining
## 4036             pledged constraining
## 4037             pledges constraining
## 4038            pledging constraining
## 4039            preclude constraining
## 4040           precluded constraining
## 4041           precludes constraining
## 4042          precluding constraining
## 4043        precondition constraining
## 4044       preconditions constraining
## 4045              preset constraining
## 4046             prevent constraining
## 4047           prevented constraining
## 4048          preventing constraining
## 4049            prevents constraining
## 4050            prohibit constraining
## 4051          prohibited constraining
## 4052         prohibiting constraining
## 4053         prohibition constraining
## 4054        prohibitions constraining
## 4055         prohibitive constraining
## 4056       prohibitively constraining
## 4057         prohibitory constraining
## 4058           prohibits constraining
## 4059             refrain constraining
## 4060          refraining constraining
## 4061            refrains constraining
## 4062             require constraining
## 4063            required constraining
## 4064         requirement constraining
## 4065        requirements constraining
## 4066            requires constraining
## 4067           requiring constraining
## 4068            restrain constraining
## 4069          restrained constraining
## 4070         restraining constraining
## 4071           restrains constraining
## 4072           restraint constraining
## 4073          restraints constraining
## 4074            restrict constraining
## 4075          restricted constraining
## 4076         restricting constraining
## 4077         restriction constraining
## 4078        restrictions constraining
## 4079         restrictive constraining
## 4080       restrictively constraining
## 4081     restrictiveness constraining
## 4082           restricts constraining
## 4083           stipulate constraining
## 4084          stipulated constraining
## 4085          stipulates constraining
## 4086         stipulating constraining
## 4087         stipulation constraining
## 4088        stipulations constraining
## 4089              strict constraining
## 4090            stricter constraining
## 4091           strictest constraining
## 4092            strictly constraining
## 4093      unavailability constraining
## 4094         unavailable constraining
## 4095               aegis  superfluous
## 4096           amorphous  superfluous
## 4097        anticipatory  superfluous
## 4098        appertaining  superfluous
## 4099          assimilate  superfluous
## 4100        assimilating  superfluous
## 4101        assimilation  superfluous
## 4102          bifurcated  superfluous
## 4103         bifurcation  superfluous
## 4104            cessions  superfluous
## 4105          cognizable  superfluous
## 4106         concomitant  superfluous
## 4107         correlative  superfluous
## 4108     deconsolidation  superfluous
## 4109         delineation  superfluous
## 4110        demonstrable  superfluous
## 4111        demonstrably  superfluous
## 4112        derecognized  superfluous
## 4113        derecognizes  superfluous
## 4114        derivatively  superfluous
## 4115          effectuate  superfluous
## 4116         effectuated  superfluous
## 4117         effectuates  superfluous
## 4118        effectuating  superfluous
## 4119        effectuation  superfluous
## 4120         efficacious  superfluous
## 4121            efficacy  superfluous
## 4122             exigent  superfluous
## 4123       expeditiously  superfluous
## 4124              extant  superfluous
## 4125         furthermore  superfluous
## 4126             germane  superfluous
## 4127           howsoever  superfluous
## 4128              impost  superfluous
## 4129             imposts  superfluous
## 4130          imputation  superfluous
## 4131             imputed  superfluous
## 4132       investigatory  superfluous
## 4133         mandatorily  superfluous
## 4134         nonetheless  superfluous
## 4135             obviate  superfluous
## 4136             plenary  superfluous
## 4137       preponderance  superfluous
## 4138         presumptive  superfluous
## 4139         propagation  superfluous
## 4140           proscribe  superfluous
## 4141            putative  superfluous
## 4142  recharacterization  superfluous
## 4143     redetermination  superfluous
## 4144        redetermined  superfluous
## 4145             stratum  superfluous
## 4146      superannuation  superfluous
## 4147              theses  superfluous
## 4148          ubiquitous  superfluous
## 4149         wheresoever  superfluous
## 4150              whilst  superfluous

Lets read in a file I want to clean outside of the tutorial.

reviews <- read.csv('cleanedRegexReviews13.csv',sep=',', header=TRUE,na.strings=c('',' ','NA'))
head(reviews)
##         userReviewSeries
## 1 mostRecentVisit_review
## 2 mostRecentVisit_review
## 3 mostRecentVisit_review
## 4 mostRecentVisit_review
## 5 mostRecentVisit_review
## 6 mostRecentVisit_review
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##         userRatingSeries userRatingValue businessReplied
## 1 mostRecentVisit_rating               5             yes
## 2 mostRecentVisit_rating               4             yes
## 3 mostRecentVisit_rating               5              no
## 4 mostRecentVisit_rating               5              no
## 5 mostRecentVisit_rating               5              no
## 6 mostRecentVisit_rating               5              no
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  businessReplyContent
## 1  Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n1/2/20191/15/2018-\nHi Michelle, HIGH END SPA is proud to welcome men and women of all shapes and sizes. In response to your day, we are now in the process of ordering a few XL robes so we can continue to have offerings for all of our guests.  I wanted to reach out to you to let you know we have sent you a private message as we would like to connect with you directly. Thank you again for communicating your concern with us.\nAlexa Gallegos\n\n1/2/2019 -\n\nHi Michelle,\nI am so happy to hear that you had a great returning experience! Our team members do the best they can to accommodate all of our guests needs and we are very glad to hear you were happy with the solution.\nWe hope to see you and your husband again!\n\nBest,\nAmber Peyghambari\n\nRead less\n
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n3/25/2019Hi Cathy,\n\nThank you for taking the time to share your experience with us. We are happy to hear that you enjoyed your day at HIGH END SPA. We appreciate all feedback and will share these concerns with our team. We hope to see you back this summer!\n\nWith kind,\nAmber Peyghambari\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <NA>
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <NA>
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <NA>
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <NA>
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           userReviewContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1/1/2019Updated review\n 2 photos\n\nWhat a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\nComment from Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n1/2/20191/15/2018-\nHi Michelle, HIGH END SPA is proud to welcome men and women of all shapes and sizes. In response to your day, we are now in the process of ordering a few XL robes so we can continue to have offerings for all of our guests.  I wanted to reach out to you to let you know we have sent you a private message as we would like to connect with you directly. Thank you again for communicating your concern with us.\nAlexa Gallegos\n\n1/2/2019 -\n\nHi Michelle,\nI am so happy to hear that you had a great returning experience! Our team members do the best they can to accommodate all of our guests needs and we are very glad to hear you were happy with the solution.\nWe hope to see you and your husband again!\n\nBest,\nAmber Peyghambari\n\nRead less\n
## 2 3/24/2019\n 12 photos\n\nMy sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\nComment from Amber P. of HIGH END SPA Hot Springs\n\nBusiness Customer Service\n\n3/25/2019Hi Cathy,\n\nThank you for taking the time to share your experience with us. We are happy to hear that you enjoyed your day at HIGH END SPA. We appreciate all feedback and will share these concerns with our team. We hope to see you back this summer!\n\nWith kind,\nAmber Peyghambari\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1/26/2020\nI came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1/24/2020\nI have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 10/22/2019\nDr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         12/23/2019\nMany in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   LowAvgHighCost             businessType         cityState friends reviews
## 1           High high end massage retreat        Orange, CA      26      33
## 2           High high end massage retreat   Los Angeles, CA     894     311
## 3            Avg             chiropractic  Laguna Beach, CA       0      NA
## 4            Avg             chiropractic Moreno Valley, CA       0      NA
## 5            Avg             chiropractic        Corona, CA       0      11
## 6            Avg             chiropractic        Corona, CA       0       2
##   photos eliteStatus    userName       Date userBusinessPhotos userCheckIns
## 1     21        <NA> Michelle A. 2019-01-01                  2           NA
## 2   1187 Elite '2020    Cathy P. 2019-03-24                 NA           NA
## 3     NA        <NA>     Brie W. 2020-01-26                 NA           NA
## 4     NA        <NA>    Yoles A. 2020-01-24                 NA           NA
## 5     NA        <NA>    Rafeh T. 2019-10-22                 NA           NA
## 6     NA        <NA>     Kort U. 2019-12-23                 NA           NA

I want to use the rating and the cleaned up reviews only.This is not a corpus, and the following document term matrix (dtm) and document feature matrix (dfm) work on corpus of documents to split each review into a large matrix of sparse words and counts per row of each document. For this it would be each review.

reviews1 <- reviews[,c(2,4)]
head(reviews1)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   userRatingValue
## 1               5
## 2               4
## 3               5
## 4               5
## 5               5
## 6               5
dim(reviews1)
## [1] 614   2
colnames(reviews1)
## [1] "userReviewOnlyContent" "userRatingValue"

The unnest() from strings to tokens of a table. This uses dplyr and the tidytext package.

revs <- as.character(paste(reviews1$userReviewOnlyContent))
length(revs)
## [1] 614
head(revs)
## [1] " What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
## [2] " My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n"
## [3] "I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
## [4] "I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
## [5] "Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies\" are great with an outstanding care and smile. Thank you guys for all you do."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
## [6] "Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, \"he is really good at what he does and he is a good person.\" We all feel better after visiting him. Recommend him to everyone."

A tibble is a tibble and dplyr product that doesn’t convert to factors, the string was converted to character before making this tibble.

library(dplyr)
text_df <- tibble(line = 1:614, text = revs)

text_df
## # A tibble: 614 x 2
##     line text                                                                   
##    <int> <chr>                                                                  
##  1     1 " What a wonderful way to start the year! This was my second time back…
##  2     2 " My sister and I brought my mom here for her birthday and overall, we…
##  3     3 "I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMA…
##  4     4 "I have to say.... This is by far the best Chiropractic place I've eve…
##  5     5 "Dr.  is my chiropractor and he is a fabulous individual. I've never w…
##  6     6 "Many in our family have seen DOCTOR for chiropractic care.  He is ver…
##  7     7 "Dr.  fixed my neck/shoulder pain in 2 sessions! I was in horrible pai…
##  8     8 "  has been treating myself, family and friends so many years. I drive…
##  9     9 "Dr.  is great! I've been to other chiropractors in the past and have …
## 10    10 "I'm so happy I found CHIROPRACTIC!\n\nBrenda was so sweet and attenti…
## # … with 604 more rows

Now the tidytext packages is used to unnest the tokens or words per document and count the frequency of each token per document or line.

tokenizedRevs <- text_df %>%
  unnest_tokens(word, text)

Note that all tokens are lowercase and none are punctuations, because they have been stripped with the unnest_tokens(), but also because this cleaned reviews data did so.

head(tokenizedRevs,30)
## # A tibble: 30 x 2
##     line word     
##    <int> <chr>    
##  1     1 what     
##  2     1 a        
##  3     1 wonderful
##  4     1 way      
##  5     1 to       
##  6     1 start    
##  7     1 the      
##  8     1 year     
##  9     1 this     
## 10     1 was      
## # … with 20 more rows
tokRevs <- tokenizedRevs %>% group_by(line) %>% count(word, sort=TRUE) %>% 
  mutate(wordCount=n) %>% ungroup()
tokRevs2 <- tokRevs[,-3]
head(tokRevs2)
## # A tibble: 6 x 3
##    line word  wordCount
##   <int> <chr>     <int>
## 1   365 the          45
## 2   334 the          36
## 3   376 the          35
## 4   372 the          31
## 5   373 the          29
## 6   420 the          29
bing_tokRevs <- tokRevs2 %>%
  inner_join(bing, by = c(word = "word")) %>% 
  mutate(Bing_wordCount=wordCount,Bing_sentiment=sentiment)
bing_tokRevs2 <- bing_tokRevs[,-c(3:4)]

bing_tokRevs2
## # A tibble: 4,860 x 4
##     line word   Bing_wordCount Bing_sentiment
##    <int> <chr>           <int> <fct>         
##  1   224 like                7 positive      
##  2   509 like                7 positive      
##  3   365 dirty               6 negative      
##  4   440 warm                6 positive      
##  5   602 better              5 positive      
##  6     2 like                4 positive      
##  7    25 best                4 positive      
##  8    56 great               4 positive      
##  9    63 great               4 positive      
## 10   108 relief              4 positive      
## # … with 4,850 more rows
nrc_tokRevs <- tokRevs2 %>% 
  inner_join(nrc, by = c(word = "word")) %>%
  mutate(NRC_wordCount=wordCount,NRC_sentiment=sentiment)
nrc_tokRevs2 <- nrc_tokRevs[,-c(3:4)]
nrc_tokRevs2
## # A tibble: 15,189 x 4
##     line word  NRC_wordCount NRC_sentiment
##    <int> <chr>         <int> <fct>        
##  1   466 spa              13 anticipation 
##  2   466 spa              13 joy          
##  3   466 spa              13 positive     
##  4   466 spa              13 surprise     
##  5   466 spa              13 trust        
##  6   410 mud              12 negative     
##  7   393 spa              10 anticipation 
##  8   393 spa              10 joy          
##  9   393 spa              10 positive     
## 10   393 spa              10 surprise     
## # … with 15,179 more rows
loughran_tokRevs <- tokRevs2 %>% 
  inner_join(loughran, by = c(word="word")) %>%
  mutate(loughran_wordCount=wordCount,
         loughran_sentiment=sentiment)
loughran_tokRevs2 <- loughran_tokRevs[,-c(3:4)]

loughran_tokRevs2
## # A tibble: 2,045 x 4
##     line word     loughran_wordCount loughran_sentiment
##    <int> <chr>                 <int> <fct>             
##  1   602 better                    5 positive          
##  2    25 accident                  4 negative          
##  3    25 best                      4 positive          
##  4    56 great                     4 positive          
##  5    63 great                     4 positive          
##  6   308 able                      4 positive          
##  7   350 good                      4 positive          
##  8   372 could                     4 uncertainty       
##  9   420 good                      4 positive          
## 10   439 good                      4 positive          
## # … with 2,035 more rows
afinn_tokRevs <- tokRevs2 %>%
  inner_join(afinn, by=c(word="word")) %>%
  mutate(afinn_wordCount=wordCount,
         afinn_wordValue=value)
afinn_tokRevs2 <- afinn_tokRevs[,-c(3:4)]
afinn_tokRevs2
## # A tibble: 4,309 x 4
##     line word     afinn_wordCount afinn_wordValue
##    <int> <chr>              <int>           <int>
##  1   224 like                   7               2
##  2   509 like                   7               2
##  3   308 gift                   6               2
##  4   365 dirty                  6              -2
##  5   440 warm                   6               1
##  6   602 better                 5               2
##  7     2 like                   4               2
##  8    25 accident               4              -2
##  9    25 best                   4               3
## 10    56 great                  4               3
## # … with 4,299 more rows
group_afinn_tR <- afinn_tokRevs2 %>% group_by(line) %>% summarise(totalAFINN_Value=sum(afinn_wordValue),
          totalAFINN_Words=sum(afinn_wordCount))

head(group_afinn_tR)
## # A tibble: 6 x 3
##    line totalAFINN_Value totalAFINN_Words
##   <int>            <int>            <int>
## 1     1               24               16
## 2     2               44               39
## 3     3               20               14
## 4     4               18                7
## 5     5               18                6
## 6     6               17                9
revs2 <- reviews1
revs2$line <- as.integer(row.names(reviews1))

revs3 <- revs2 %>% full_join(group_afinn_tR, by = c(line='line'))
head(revs3)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   userRatingValue line totalAFINN_Value totalAFINN_Words
## 1               5    1               24               16
## 2               4    2               44               39
## 3               5    3               20               14
## 4               5    4               18                7
## 5               5    5               18                6
## 6               5    6               17                9

The above data frame shows the review, rating, line or review original order, and the sum of the afinn measures of positive and negative words in the review as shown in the total column.

group_loughran_tR <- loughran_tokRevs2 %>% group_by(line) %>% count(loughran_sentiment) %>%
  mutate(loughran_totalSentimentCount=n)
group_loughran_tR2 <- group_loughran_tR[,-3]
head(group_loughran_tR2,30)
## # A tibble: 30 x 3
## # Groups:   line [19]
##     line loughran_sentiment loughran_totalSentimentCount
##    <int> <fct>                                     <int>
##  1     1 negative                                      2
##  2     1 positive                                      6
##  3     2 litigious                                     2
##  4     2 negative                                      5
##  5     2 positive                                      6
##  6     2 uncertainty                                   4
##  7     3 negative                                      2
##  8     3 positive                                      2
##  9     4 positive                                      2
## 10     5 positive                                      1
## # … with 20 more rows
grL <- group_loughran_tR2 %>% pivot_wider(names_from=loughran_sentiment, values_from = loughran_totalSentimentCount)
head(grL)
## # A tibble: 6 x 7
## # Groups:   line [6]
##    line negative positive litigious uncertainty constraining superfluous
##   <int>    <int>    <int>     <int>       <int>        <int>       <int>
## 1     1        2        6        NA          NA           NA          NA
## 2     2        5        6         2           4           NA          NA
## 3     3        2        2        NA          NA           NA          NA
## 4     4       NA        2        NA          NA           NA          NA
## 5     5       NA        1        NA          NA           NA          NA
## 6     6       NA        4        NA          NA           NA          NA
group_nrc_tR <- nrc_tokRevs2 %>% group_by(line) %>% count(NRC_sentiment) %>%
  mutate(NRC_totalSentimentCount=n)
group_nrc_tR2 <- group_nrc_tR[,-3]
head(group_nrc_tR2,30)
## # A tibble: 30 x 3
## # Groups:   line [5]
##     line NRC_sentiment NRC_totalSentimentCount
##    <int> <fct>                           <int>
##  1     1 anticipation                        7
##  2     1 disgust                             1
##  3     1 joy                                 8
##  4     1 negative                            3
##  5     1 positive                           10
##  6     1 surprise                            4
##  7     1 trust                               6
##  8     2 anger                               3
##  9     2 anticipation                       10
## 10     2 disgust                             2
## # … with 20 more rows
grN <- group_nrc_tR2 %>% pivot_wider(names_from=NRC_sentiment, values_from = NRC_totalSentimentCount)
head(grN)
## # A tibble: 6 x 11
## # Groups:   line [6]
##    line anticipation disgust   joy negative positive surprise trust anger  fear
##   <int>        <int>   <int> <int>    <int>    <int>    <int> <int> <int> <int>
## 1     1            7       1     8        3       10        4     6    NA    NA
## 2     2           10       2    12        8       19        2    10     3     2
## 3     3            2      NA     2        1        4        1     4    NA     1
## 4     4            1      NA     2       NA        4       NA     3    NA    NA
## 5     5           NA      NA     2        1        2        1     2    NA    NA
## 6     6            2      NA     2       NA        5        1     4    NA    NA
## # … with 1 more variable: sadness <int>
revs4 <- revs3 %>% full_join(grL, by=c(line='line'))
head(revs4)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   userRatingValue line totalAFINN_Value totalAFINN_Words negative positive
## 1               5    1               24               16        2        6
## 2               4    2               44               39        5        6
## 3               5    3               20               14        2        2
## 4               5    4               18                7       NA        2
## 5               5    5               18                6       NA        1
## 6               5    6               17                9       NA        4
##   litigious uncertainty constraining superfluous
## 1        NA          NA           NA          NA
## 2         2           4           NA          NA
## 3        NA          NA           NA          NA
## 4        NA          NA           NA          NA
## 5        NA          NA           NA          NA
## 6        NA          NA           NA          NA
revs5 <- revs4 %>% full_join(grN, by=c(line='line'))
colnames(revs5)[6:7] <- paste(colnames(revs5)[6:7],'loughran',sep='_')
colnames(revs5)[15:16] <- paste(colnames(revs5)[15:16],'nrc', sep='_')
colnames(revs5)[6:7] <- gsub('.x_','_',colnames(revs5)[6:7])
colnames(revs5)[15:16] <- gsub('.y_','_',colnames(revs5)[15:16])

head(revs5)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   userRatingValue line totalAFINN_Value totalAFINN_Words negative_loughran
## 1               5    1               24               16                 2
## 2               4    2               44               39                 5
## 3               5    3               20               14                 2
## 4               5    4               18                7                NA
## 5               5    5               18                6                NA
## 6               5    6               17                9                NA
##   positive_loughran litigious uncertainty constraining superfluous anticipation
## 1                 6        NA          NA           NA          NA            7
## 2                 6         2           4           NA          NA           10
## 3                 2        NA          NA           NA          NA            2
## 4                 2        NA          NA           NA          NA            1
## 5                 1        NA          NA           NA          NA           NA
## 6                 4        NA          NA           NA          NA            2
##   disgust joy negative_nrc positive_nrc surprise trust anger fear sadness
## 1       1   8            3           10        4     6    NA   NA      NA
## 2       2  12            8           19        2    10     3    2       1
## 3      NA   2            1            4        1     4    NA    1       1
## 4      NA   2           NA            4       NA     3    NA   NA      NA
## 5      NA   2            1            2        1     2    NA   NA      NA
## 6      NA   2           NA            5        1     4    NA   NA      NA
group_bing_tR <- bing_tokRevs2 %>% group_by(line) %>% count(Bing_sentiment) %>%
  mutate(Bing_totalSentimentCount=n)
group_bing_tR2 <- group_bing_tR[,-3]
head(group_bing_tR2,30)
## # A tibble: 30 x 3
## # Groups:   line [20]
##     line Bing_sentiment Bing_totalSentimentCount
##    <int> <fct>                             <int>
##  1     1 negative                              3
##  2     1 positive                             10
##  3     2 negative                              9
##  4     2 positive                             36
##  5     3 negative                              3
##  6     3 positive                             10
##  7     4 positive                              6
##  8     5 positive                              5
##  9     6 positive                              7
## 10     7 negative                              2
## # … with 20 more rows
grB <- group_bing_tR2 %>% pivot_wider(names_from=Bing_sentiment, values_from = Bing_totalSentimentCount)
colnames(grB)[2:3] <- paste(colnames(grB)[2:3],'bing',sep='.')
head(grB)
## # A tibble: 6 x 3
## # Groups:   line [6]
##    line negative.bing positive.bing
##   <int>         <int>         <int>
## 1     1             3            10
## 2     2             9            36
## 3     3             3            10
## 4     4            NA             6
## 5     5            NA             5
## 6     6            NA             7
reviewsLexicons <- revs5 %>% full_join(grB, by=c(line='line'))
head(reviewsLexicons)
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        userReviewOnlyContent
## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      What a wonderful way to start the year! This was my second time back to HIGH END SPA, and we had a great time. The crowds were very low (seriously, it felt like we had the place to ourselves most of the day.) We walked right into the mineral baths, club mud, and didn't wait in any kind of line for lunch. None of the pools were crowded, and we were even able to enjoy one of the hammocks in the secret garden.\n\nTiffany at the front check-in desk went above and beyond for us regarding the robes. I had requested a plus-sized robe, since after my last review I knew they had added some to their collection. Unfortunately, all of their plus-sized robes were still dirty from the day before. Tiffany was so accommodating, though! She was able to get us robes from the cabana area that fit me perfectly! It is so great to know that not only do they now offer guests of all sizes the option to enjoy a warm robe, but that they really want to make sure you have a good day. Thank you, Tiffany, for everything.\n\nAll of the staff today were in good spirits. The only thing that would have made today better would have been a massage. We'll have to book one next time. My husband and I are going to make HIGH END SPA our annual New Year's Day tradition!\n\n
## 2  My sister and I brought my mom here for her birthday and overall, we really enjoyed our time here. We're used to going to Korean spas, but this was definitely an upgrade.\n\nPROS:\n- The resort itself is beautiful and so relaxing. Like seriously such a pleasing escape from reality that I needed. It's set up so nicely and feels very luxurious.\n- It was my mom's birthday so she received free admission on birthday with a purchase of a service. Admission is $52, so she booked a manicure for $50 and got in for free. WORTH. My mom had gone 52 years without ever getting her nails done, so it was kind of heartwarming to see how much she loved her experience.\n- The three of us took a Yin Yoga class and really enjoyed it. We definitely want to take advantage of the other class options next time we come.\n- CLUB MUD. We had so much fun there and even made a little clay sculpture. It really does do wonders for your skin, and the area is suprisingly very well-kept.\n- The shower and locker facilities can get pretty crowded, but overall, they are super nice and clean. They have an ample amount of showers, so we didn't have to wait at all.\n- All the staff seemed really friendly and helpful. There's always staff members roaming around, so you always feel somewhat taken care of.\n- I really appreciated the towel and water stands located throughout the resort. So handy and necessary.\n- Parking is free, thank God.\n\nCONS:\n- We went on a fairly cold day (around 60 degrees), so the hot pools were CROWDED,. Like there were a couple of times I touched other people's body parts I definitely did not want to touch. I feel like some of the hot pools exceeded capacity, and I'm sure it was mostly because it was a cold day, but I do wish there were more of the hot pools or they should just be larger!\n- The food is incredibly expensive. Like as ridiculous as Disneyland, which is saying something. Plan to spend around $20 per meal per person. The one thing that was worth it was the nachos ($16 for the small, but this thing is huge).\n- The kitchen moves VERY SLOWLY. Especially the salad section because I came before the lunch rush and still waited 20 minutes to order my salad. The kitchen staff seems a bit incompetent, or maybe it's just run inefficiently.\n- This is more of a side note, but I wish there was a more streamlined reservation system. I made the entire reservation over the phone, which was fine, but it wasn't laid out as clearly as I would have liked it with the premium admissions prices, services, etc. The online one also just seemed really confusing.\n\nOverall, we had a positive experience with just a couple of kinks here and there. We love that there's just a lot to do here and time FLIES when you're here so come as early as you can. We definitely want to try coming back in the summer months when it's warmer!\n\n\n
## 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I came to CHIROPRACTIC with severe back and neck pain. DOCTOR was AMAZING and helped me to feel much better than I have felt for YEARS! The girls up front also are very sweet and always made sure that all my appointments were set and on time! Heather the billing manager was very kind as well, she was AWESOME when it came to dealing with me and my insurance amd was definitely a huge help! I don't know what I would have done without Heather helping me with all of the insurance problems I had!!! She is the BEST, thank you Heather!! I would  definitely recommend going to this clinic!!!!
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I have to say.... This is by far the best Chiropractic place I've ever been to. The staff is super friendly and very professional. From the moment I walk in the door I get greeted by name . The Drs are amazing too. Love this place and I highly recommend them.
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Dr.  is my chiropractor and he is a fabulous individual. I've never waited more than few minutes for him to see me. The front team (Both ladies" are great with an outstanding care and smile. Thank you guys for all you do.
## 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Many in our family have seen DOCTOR for chiropractic care.  He is very warm and friendly, knowledgable, puts your mind at ease during his adjustments. He gives great explanations. Our 14yo son said, "he is really good at what he does and he is a good person." We all feel better after visiting him. Recommend him to everyone.
##   userRatingValue line totalAFINN_Value totalAFINN_Words negative_loughran
## 1               5    1               24               16                 2
## 2               4    2               44               39                 5
## 3               5    3               20               14                 2
## 4               5    4               18                7                NA
## 5               5    5               18                6                NA
## 6               5    6               17                9                NA
##   positive_loughran litigious uncertainty constraining superfluous anticipation
## 1                 6        NA          NA           NA          NA            7
## 2                 6         2           4           NA          NA           10
## 3                 2        NA          NA           NA          NA            2
## 4                 2        NA          NA           NA          NA            1
## 5                 1        NA          NA           NA          NA           NA
## 6                 4        NA          NA           NA          NA            2
##   disgust joy negative_nrc positive_nrc surprise trust anger fear sadness
## 1       1   8            3           10        4     6    NA   NA      NA
## 2       2  12            8           19        2    10     3    2       1
## 3      NA   2            1            4        1     4    NA    1       1
## 4      NA   2           NA            4       NA     3    NA   NA      NA
## 5      NA   2            1            2        1     2    NA   NA      NA
## 6      NA   2           NA            5        1     4    NA   NA      NA
##   negative.bing positive.bing
## 1             3            10
## 2             9            36
## 3             3            10
## 4            NA             6
## 5            NA             5
## 6            NA             7
ReviewsLexicons <-  reviewsLexicons[,-c(1,3)]
colnames(ReviewsLexicons)
##  [1] "userRatingValue"   "totalAFINN_Value"  "totalAFINN_Words" 
##  [4] "negative_loughran" "positive_loughran" "litigious"        
##  [7] "uncertainty"       "constraining"      "superfluous"      
## [10] "anticipation"      "disgust"           "joy"              
## [13] "negative_nrc"      "positive_nrc"      "surprise"         
## [16] "trust"             "anger"             "fear"             
## [19] "sadness"           "negative.bing"     "positive.bing"
dim(ReviewsLexicons)
## [1] 614  21

We should change the NAs to zeros, and the target,userRatingValue, to a factor.

RL1 <- as.matrix(ReviewsLexicons)
RL2 <- as.factor(paste(RL1))
RL3 <- gsub('NA','0',RL2)
RL4 <- as.numeric(paste(RL3))#to make numeric 2nd run
RL5 <- matrix(RL4,nrow=614,ncol=21,byrow=FALSE)
RL6 <- as.data.frame(RL5)
colnames(RL6) <- colnames(ReviewsLexicons)
RL6$userRatingValue <- as.factor(paste(RL6$userRatingValue))

Now lets use this data frame RL6 to test out how well these feature scores per review using four different sentiment lexicons of the tokens in each review can predict the rating accurately, or if some adjustments by feature selection would help to prevent a lot of noise effecting prediction accuracy.

library(RANN) #this pkg supplements caret for out of bag validation
library(e1071)
library(caret)
library(randomForest)
library(MASS)
library(gbm)
set.seed(12345)
inTrain <- createDataPartition(y=RL6$userRatingValue, p=0.7, list=FALSE)

trainingSet <- RL6[inTrain,]
testingSet <- RL6[-inTrain,]

Lets use random forest, knn, and glm algorithms to predict the ratings.

rf_boot <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)
predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$userRatingValue)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.6428571
head(DF_boot,30)
##    predRF_boot type
## 1            5    5
## 2            5    5
## 3            5    5
## 4            1    5
## 5            5    5
## 6            5    5
## 7            5    5
## 8            5    3
## 9            1    4
## 10           5    5
## 11           5    5
## 12           5    5
## 13           5    4
## 14           5    5
## 15           5    5
## 16           5    5
## 17           5    5
## 18           5    5
## 19           5    5
## 20           5    1
## 21           5    5
## 22           5    4
## 23           5    5
## 24           5    5
## 25           5    5
## 26           5    5
## 27           1    1
## 28           5    5
## 29           5    5
## 30           5    5
knn_boot <- train(userRatingValue ~ .,
                method='knn', preProcess=c('center','scale'),
                tuneLength=10, trControl=trainControl(method='boot'),
                data=trainingSet)
predKNN_boot <- predict(knn_boot, testingSet)

DF_KNN_boot <- data.frame(predKNN_boot, type=testingSet$userRatingValue)

length_KNN_boot <- length(DF_KNN_boot$type)

sum_KNN_boot <- sum(DF_KNN_boot$predKNN_boot==DF_KNN_boot$type)

accKNN_boot <- (sum_KNN_boot/length_KNN_boot)

accKNN_boot
## [1] 0.5934066
head(DF_KNN_boot,30)
##    predKNN_boot type
## 1             5    5
## 2             5    5
## 3             5    5
## 4             5    5
## 5             5    5
## 6             5    5
## 7             5    5
## 8             5    3
## 9             5    4
## 10            5    5
## 11            5    5
## 12            5    5
## 13            5    4
## 14            5    5
## 15            5    5
## 16            5    5
## 17            5    5
## 18            5    5
## 19            5    5
## 20            4    1
## 21            5    5
## 22            5    4
## 23            5    5
## 24            5    5
## 25            5    5
## 26            5    5
## 27            5    1
## 28            5    5
## 29            4    5
## 30            5    5

GeneralizedBoostedModel

gbmMod <- train(userRatingValue~., method='gbm', data=trainingSet, verbose=FALSE )
predGbm <- predict(gbmMod, testingSet)
sumGBM0 <- sum(predGbm==testingSet$userRatingValue)
lengthGBM0 <- length(testingSet$userRatingValue)
accuracy_gbmMod <- sumGBM0/lengthGBM0 
accuracy_gbmMod
## [1] 0.6593407
DF_GBM <- data.frame(predGbm, type=testingSet$userRatingValue)
head(DF_GBM,30)
##    predGbm type
## 1        5    5
## 2        5    5
## 3        4    5
## 4        3    5
## 5        5    5
## 6        5    5
## 7        5    5
## 8        5    3
## 9        1    4
## 10       5    5
## 11       5    5
## 12       5    5
## 13       4    4
## 14       5    5
## 15       5    5
## 16       5    5
## 17       5    5
## 18       5    5
## 19       5    5
## 20       1    1
## 21       5    5
## 22       5    4
## 23       5    5
## 24       5    5
## 25       5    5
## 26       5    5
## 27       1    1
## 28       5    5
## 29       5    5
## 30       5    5

Linkage dirichlet allocation model

ldaMod <- train(userRatingValue~., method='lda', data=trainingSet)
predlda <- predict(ldaMod, testingSet)
sumLDA0 <- sum(predlda==testingSet$userRatingValue)
lengthLDA0 <- length(testingSet$userRatingValue)
accuracy_ldaMod <- sumLDA0/lengthLDA0 
accuracy_ldaMod
## [1] 0.6153846
DF_LDA <- data.frame(predlda, type=testingSet$userRatingValue)
head(DF_LDA,30)
##    predlda type
## 1        5    5
## 2        5    5
## 3        5    5
## 4        1    5
## 5        5    5
## 6        5    5
## 7        5    5
## 8        4    3
## 9        2    4
## 10       5    5
## 11       5    5
## 12       5    5
## 13       4    4
## 14       5    5
## 15       5    5
## 16       5    5
## 17       5    5
## 18       5    5
## 19       5    5
## 20       5    1
## 21       5    5
## 22       5    4
## 23       5    5
## 24       5    5
## 25       5    5
## 26       5    5
## 27       5    1
## 28       5    5
## 29       5    5
## 30       5    5
trainingSet$userRatingValue <- as.numeric(paste(trainingSet$userRatingValue))
testingSet$userRatingValue <- as.numeric(paste(testingSet$userRatingValue))

glmMod2 <- train(userRatingValue ~ .,
                method='glm', data=trainingSet)
predglm2 <- predict(glmMod2, testingSet)

DF_glm2 <- data.frame(predglm2,ceiling=ceiling(predglm2), type=testingSet$userRatingValue)

length_glm2 <- length(DF_glm2$type)

sum_glm2 <- sum(ceiling(DF_glm2$predglm2)==DF_glm2$type)

accglm2 <- (sum_glm2/length_glm2)

accglm2
## [1] 0.4450549
head(DF_glm2,30)
##    predglm2 ceiling type
## 3  5.029177       6    5
## 12 4.879738       5    5
## 19 3.861239       4    5
## 25 2.840386       3    5
## 26 4.034935       5    5
## 28 4.934079       5    5
## 30 4.817512       5    5
## 35 3.578700       4    3
## 37 2.987951       3    4
## 38 4.323159       5    5
## 39 4.408233       5    5
## 40 3.998067       4    5
## 46 4.449719       5    4
## 47 4.583152       5    5
## 49 4.055503       5    5
## 51 4.296429       5    5
## 53 4.706731       5    5
## 54 3.862306       4    5
## 56 4.665154       5    5
## 57 3.284461       4    1
## 58 4.133352       5    5
## 59 3.991659       4    4
## 60 4.186162       5    5
## 61 4.589193       5    5
## 64 4.572981       5    5
## 70 5.741061       6    5
## 73 3.469176       4    1
## 82 4.610063       5    5
## 87 4.420120       5    5
## 88 4.046568       5    5

Using the lexicon ratings of tokens in each review to predict the ratings of our reviews we get back accuracies from 44-64%. The models were random forest (64.3%), k-nearest neighbor (59.3%), latent dirichlet allocation (61.5%), gradient boosted models (62.1%), and generalized linear models (44.5%).


What if we could do better by removing some features of the lexicons. Or only using certain lexicons to predict the rating? We won’t know unless we try. So we will.

colnames(RL6)
##  [1] "userRatingValue"   "totalAFINN_Value"  "totalAFINN_Words" 
##  [4] "negative_loughran" "positive_loughran" "litigious"        
##  [7] "uncertainty"       "constraining"      "superfluous"      
## [10] "anticipation"      "disgust"           "joy"              
## [13] "negative_nrc"      "positive_nrc"      "surprise"         
## [16] "trust"             "anger"             "fear"             
## [19] "sadness"           "negative.bing"     "positive.bing"

Lets use the best performing model above, which was the random forest to test out each of the four different lexicons to predict the rating.

The following will produce the data sets with the target variable of the rating, from the predictors of each lexicon sentiment class as a feature.

NRC <- RL6[,c(1,10:19)]
LOUGHRAN <- RL6[,c(1,4:9)]
BING <- RL6[,c(1,20:21)]
AFINN <- RL6[,c(1:3)]

Test of the NRC class features to predict ratings for each review follows.

set.seed(12345)
inTrain <- createDataPartition(y=NRC$userRatingValue, p=0.7, list=FALSE)

trainingSet <- NRC[inTrain,]
testingSet <- NRC[-inTrain,]


rf_boot <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)


predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$userRatingValue)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.6208791
head(DF_boot,30)
##    predRF_boot type
## 1            5    5
## 2            5    5
## 3            5    5
## 4            1    5
## 5            5    5
## 6            5    5
## 7            5    5
## 8            5    3
## 9            1    4
## 10           5    5
## 11           5    5
## 12           5    5
## 13           4    4
## 14           5    5
## 15           5    5
## 16           5    5
## 17           5    5
## 18           5    5
## 19           5    5
## 20           5    1
## 21           5    5
## 22           5    4
## 23           5    5
## 24           5    5
## 25           5    5
## 26           5    5
## 27           1    1
## 28           5    5
## 29           5    5
## 30           5    5

The NRC lexicon scored 62% accuracy in predicting the rating with the random forest model.

Now lets use the LOUGHRAN lexicon to predict the ratings. Test of the NRC class features to predict ratings for each review follows.

set.seed(12345)
inTrain <- createDataPartition(y=LOUGHRAN$userRatingValue, p=0.7, list=FALSE)

trainingSet <- LOUGHRAN[inTrain,]
testingSet <- LOUGHRAN[-inTrain,]


rf_boot <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)


predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$userRatingValue)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.5604396
head(DF_boot,30)
##    predRF_boot type
## 1            5    5
## 2            5    5
## 3            5    5
## 4            1    5
## 5            5    5
## 6            5    5
## 7            5    5
## 8            5    3
## 9            5    4
## 10           5    5
## 11           5    5
## 12           5    5
## 13           5    4
## 14           5    5
## 15           5    5
## 16           5    5
## 17           5    5
## 18           5    5
## 19           5    5
## 20           5    1
## 21           5    5
## 22           5    4
## 23           5    5
## 24           5    5
## 25           5    5
## 26           5    5
## 27           5    1
## 28           5    5
## 29           4    5
## 30           5    5

The LOUGHRAN lexicon scored 56% accuracy, now lets test the BING lexicon.

set.seed(12345)
inTrain <- createDataPartition(y=BING$userRatingValue, p=0.7, list=FALSE)

trainingSet <- BING[inTrain,]
testingSet <- BING[-inTrain,]


rf_boot <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$userRatingValue)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.5769231
head(DF_boot,30)
##    predRF_boot type
## 1            5    5
## 2            5    5
## 3            5    5
## 4            2    5
## 5            5    5
## 6            5    5
## 7            5    5
## 8            5    3
## 9            1    4
## 10           5    5
## 11           5    5
## 12           5    5
## 13           4    4
## 14           5    5
## 15           5    5
## 16           5    5
## 17           2    5
## 18           5    5
## 19           5    5
## 20           5    1
## 21           5    5
## 22           5    4
## 23           5    5
## 24           5    5
## 25           5    5
## 26           5    5
## 27           5    1
## 28           5    5
## 29           5    5
## 30           5    5

The bing lexicon scored 57.6 % accuracy. Now lets test the afinn lexicon.

set.seed(12345)
inTrain <- createDataPartition(y=AFINN$userRatingValue, p=0.7, list=FALSE)

trainingSet <- AFINN[inTrain,]
testingSet <- AFINN[-inTrain,]


rf_boot <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)
## note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$userRatingValue)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.543956
head(DF_boot,30)
##    predRF_boot type
## 1            4    5
## 2            5    5
## 3            5    5
## 4            1    5
## 5            1    5
## 6            5    5
## 7            5    5
## 8            4    3
## 9            1    4
## 10           3    5
## 11           5    5
## 12           1    5
## 13           5    4
## 14           3    5
## 15           4    5
## 16           5    5
## 17           5    5
## 18           5    5
## 19           5    5
## 20           1    1
## 21           5    5
## 22           4    4
## 23           3    5
## 24           3    5
## 25           3    5
## 26           5    5
## 27           1    1
## 28           5    5
## 29           4    5
## 30           5    5

The AFINN lexicon scored 54.4% accuracy. The best lexicon to predict the rating on reviews of businesses out of the four was the NRC lexicon with 62% accuracy. The NRC lexicon counts each word in separate categories of anticipation, disgust, joy, negative, positive, surprise, trust, anger, fear, or sadness. This requires a commercial license and citation to use as well as the Loughran lexicon if publishing their work.

When it came to predicting ratings on a score of 1 to 5 the best we could do is when we turned the class into a dichotomous split into a low or high rating using the 24 bigrams, 12 keywords, and 12 stopwords on the absolute minimum distance between term to total terms ratio in documents to all documents in each rating as a corpus. That model scored 70%.

What if we did the same to these lexicon predictions, since the best predictor model is all lexicon features used with the random forest algorithm. Lets try it and see. We have to run it again, because the tests were re-run for a quick comparison with the same object names for each type.

set.seed(12345)
inTrain <- createDataPartition(y=RL6$userRatingValue, p=0.7, list=FALSE)

trainingSet <- RL6[inTrain,]
testingSet <- RL6[-inTrain,]


rf_boot <- train(userRatingValue~., method='rf', 
               na.action=na.pass,
               data=(trainingSet),  preProc = c("center", "scale","knnImpute"),
               trControl=trainControl(method='boot'), number=5)


predRF_boot <- predict(rf_boot, testingSet)

DF_boot <- data.frame(predRF_boot, type=testingSet$userRatingValue)

length_boot <- length(DF_boot$type)

sum_boot <- sum(DF_boot$predRF_boot==DF_boot$type)

accRF_boot <- (sum_boot/length_boot)

accRF_boot
## [1] 0.6428571
head(DF_boot,30)
##    predRF_boot type
## 1            5    5
## 2            5    5
## 3            5    5
## 4            1    5
## 5            5    5
## 6            5    5
## 7            5    5
## 8            5    3
## 9            1    4
## 10           5    5
## 11           5    5
## 12           5    5
## 13           5    4
## 14           5    5
## 15           5    5
## 16           5    5
## 17           5    5
## 18           5    5
## 19           5    5
## 20           5    1
## 21           5    5
## 22           5    4
## 23           5    5
## 24           5    5
## 25           5    5
## 26           5    5
## 27           1    1
## 28           5    5
## 29           5    5
## 30           5    5
DF_boot$predRF_boot <- as.integer(DF_boot$predRF_boot)
DF_boot$type <- as.integer(DF_boot$type)
DF_boot$lowHighPrediction <- ifelse(DF_boot$predRF_boot>3,'high','low')
DF_boot$lowHighTrueValue <- ifelse(DF_boot$type>3,'high','low')
DF_boot$Correct <- ifelse(DF_boot$lowHighPrediction==DF_boot$lowHighTrueValue,
                          1,0)
accuracy2class4lexicons <- sum(DF_boot$Correct)/length(DF_boot$Correct)
accuracy2class4lexicons
## [1] 0.8351648
DF_boot
##     predRF_boot type lowHighPrediction lowHighTrueValue Correct
## 1             5    5              high             high       1
## 2             5    5              high             high       1
## 3             5    5              high             high       1
## 4             1    5               low             high       0
## 5             5    5              high             high       1
## 6             5    5              high             high       1
## 7             5    5              high             high       1
## 8             5    3              high              low       0
## 9             1    4               low             high       0
## 10            5    5              high             high       1
## 11            5    5              high             high       1
## 12            5    5              high             high       1
## 13            5    4              high             high       1
## 14            5    5              high             high       1
## 15            5    5              high             high       1
## 16            5    5              high             high       1
## 17            5    5              high             high       1
## 18            5    5              high             high       1
## 19            5    5              high             high       1
## 20            5    1              high              low       0
## 21            5    5              high             high       1
## 22            5    4              high             high       1
## 23            5    5              high             high       1
## 24            5    5              high             high       1
## 25            5    5              high             high       1
## 26            5    5              high             high       1
## 27            1    1               low              low       1
## 28            5    5              high             high       1
## 29            5    5              high             high       1
## 30            5    5              high             high       1
## 31            5    5              high             high       1
## 32            5    1              high              low       0
## 33            5    5              high             high       1
## 34            5    5              high             high       1
## 35            1    5               low             high       0
## 36            5    5              high             high       1
## 37            1    5               low             high       0
## 38            5    5              high             high       1
## 39            5    5              high             high       1
## 40            5    5              high             high       1
## 41            5    5              high             high       1
## 42            5    5              high             high       1
## 43            5    5              high             high       1
## 44            5    5              high             high       1
## 45            5    5              high             high       1
## 46            1    2               low              low       1
## 47            5    5              high             high       1
## 48            5    5              high             high       1
## 49            1    5               low             high       0
## 50            5    1              high              low       0
## 51            5    4              high             high       1
## 52            3    1               low              low       1
## 53            5    5              high             high       1
## 54            5    5              high             high       1
## 55            5    5              high             high       1
## 56            4    4              high             high       1
## 57            5    5              high             high       1
## 58            5    4              high             high       1
## 59            5    5              high             high       1
## 60            1    2               low              low       1
## 61            5    4              high             high       1
## 62            1    1               low              low       1
## 63            1    1               low              low       1
## 64            5    5              high             high       1
## 65            5    5              high             high       1
## 66            4    4              high             high       1
## 67            4    4              high             high       1
## 68            5    5              high             high       1
## 69            5    5              high             high       1
## 70            5    4              high             high       1
## 71            5    5              high             high       1
## 72            5    4              high             high       1
## 73            5    4              high             high       1
## 74            5    1              high              low       0
## 75            5    5              high             high       1
## 76            1    2               low              low       1
## 77            5    5              high             high       1
## 78            5    4              high             high       1
## 79            5    5              high             high       1
## 80            5    4              high             high       1
## 81            5    4              high             high       1
## 82            5    5              high             high       1
## 83            5    5              high             high       1
## 84            5    5              high             high       1
## 85            5    5              high             high       1
## 86            5    4              high             high       1
## 87            1    3               low              low       1
## 88            5    3              high              low       0
## 89            5    5              high             high       1
## 90            5    5              high             high       1
## 91            5    5              high             high       1
## 92            5    1              high              low       0
## 93            5    5              high             high       1
## 94            5    5              high             high       1
## 95            2    1               low              low       1
## 96            1    2               low              low       1
## 97            1    3               low              low       1
## 98            5    5              high             high       1
## 99            5    5              high             high       1
## 100           4    3              high              low       0
## 101           1    2               low              low       1
## 102           5    5              high             high       1
## 103           5    4              high             high       1
## 104           4    1              high              low       0
## 105           5    5              high             high       1
## 106           5    5              high             high       1
## 107           4    4              high             high       1
## 108           5    4              high             high       1
## 109           4    2              high              low       0
## 110           5    5              high             high       1
## 111           2    2               low              low       1
## 112           1    3               low              low       1
## 113           5    1              high              low       0
## 114           5    5              high             high       1
## 115           2    1               low              low       1
## 116           4    4              high             high       1
## 117           4    5              high             high       1
## 118           5    5              high             high       1
## 119           4    4              high             high       1
## 120           5    5              high             high       1
## 121           1    1               low              low       1
## 122           5    2              high              low       0
## 123           1    1               low              low       1
## 124           5    5              high             high       1
## 125           4    4              high             high       1
## 126           5    5              high             high       1
## 127           5    4              high             high       1
## 128           1    5               low             high       0
## 129           5    5              high             high       1
## 130           5    5              high             high       1
## 131           5    5              high             high       1
## 132           1    1               low              low       1
## 133           5    1              high              low       0
## 134           5    1              high              low       0
## 135           1    2               low              low       1
## 136           4    4              high             high       1
## 137           5    5              high             high       1
## 138           5    3              high              low       0
## 139           1    1               low              low       1
## 140           4    5              high             high       1
## 141           5    5              high             high       1
## 142           5    5              high             high       1
## 143           1    1               low              low       1
## 144           1    3               low              low       1
## 145           1    1               low              low       1
## 146           3    1               low              low       1
## 147           2    2               low              low       1
## 148           5    4              high             high       1
## 149           1    4               low             high       0
## 150           1    3               low              low       1
## 151           5    5              high             high       1
## 152           4    4              high             high       1
## 153           1    3               low              low       1
## 154           4    4              high             high       1
## 155           5    5              high             high       1
## 156           5    5              high             high       1
## 157           5    5              high             high       1
## 158           5    5              high             high       1
## 159           5    5              high             high       1
## 160           4    4              high             high       1
## 161           4    3              high              low       0
## 162           3    4               low             high       0
## 163           1    1               low              low       1
## 164           4    1              high              low       0
## 165           4    1              high              low       0
## 166           3    1               low              low       1
## 167           4    3              high              low       0
## 168           4    3              high              low       0
## 169           4    3              high              low       0
## 170           4    3              high              low       0
## 171           3    3               low              low       1
## 172           5    5              high             high       1
## 173           5    5              high             high       1
## 174           5    5              high             high       1
## 175           5    5              high             high       1
## 176           5    5              high             high       1
## 177           5    5              high             high       1
## 178           5    5              high             high       1
## 179           5    5              high             high       1
## 180           5    5              high             high       1
## 181           5    5              high             high       1
## 182           5    5              high             high       1

The accuracy when using all four lexicons to predict on two classes instead of five was much better than 64.3%, at 83.5% correctly predicted.

We can make an interactive link network of this by using the Correctly anwered as groups to see how well this model works on predicting ratings for reviews when only concerned with whether the sentiment is low or high praise for the business.

DF_boot$predRF_boot <- as.factor(paste(DF_boot$predRF_boot))
DF_boot$type <- as.factor(paste(DF_boot$type))
DF_boot$lowHighPrediction <- as.factor(paste(DF_boot$lowHighPrediction))
DF_boot$lowHighTrueValue <- as.factor(paste(DF_boot$lowHighTrueValue))
DF_boot$Correct <- as.factor(paste(DF_boot$Correct))

It moves from 614 to 7368 obsrevations because of the 12 keywords and 614 reveiws which equals 7368.

nodes <- DF_boot[,c(2:5)]
nodes$id <- row.names(nodes) 
nodes$label <- nodes$type
nodes$title <- nodes$lowHighPrediction 
nodes$group <- nodes$Correct
nodes$group <- gsub('1','Correct', nodes$group)
nodes$group <- gsub('0','Incorrect',nodes$group)
nodes1 <- nodes[,c(6:8,5,2,3)]
head(nodes1)
##   label title     group id lowHighPrediction lowHighTrueValue
## 1     5  high   Correct  1              high             high
## 2     5  high   Correct  2              high             high
## 3     5  high   Correct  3              high             high
## 4     5   low Incorrect  4               low             high
## 5     5  high   Correct  5              high             high
## 6     5  high   Correct  6              high             high
edges <- DF_boot[,c(1:3)]
edges$label <- DF_boot$lowHighPrediction
edges$width <- 
  abs(as.numeric(paste(DF_boot$predRF_boot))/as.numeric(paste(DF_boot$type)))
edges$weight <- edges$width/5
edges1 <- edges %>% mutate(to=plyr::mapvalues(edges$label, from=nodes1$lowHighPrediction,
                                              to=nodes1$id)) %>%
  mutate(from=plyr::mapvalues(edges$label, from=nodes1$lowHighTrueValue, to=nodes1$id))

edges2 <- edges1[,c(8,7,4:6)]
head(edges2)
##   from to label width weight
## 1    1  1  high   1.0   0.20
## 2    1  1  high   1.0   0.20
## 3    1  1  high   1.0   0.20
## 4    8  4   low   0.2   0.04
## 5    1  1  high   1.0   0.20
## 6    1  1  high   1.0   0.20

Now lets use visNetwork and igraph to plot these nodes and edges.

visNetwork(nodes=nodes1, edges=edges2, main='Low High Prediction on Hovering with the True Rating as Each Node\'s Label and Grouped by Correct or Incorrect', width=500,height=600) %>% visEdges(arrows=c('from','middle')) %>%
  visInteraction(navigationButtons=TRUE, dragNodes=TRUE,
                 dragView=TRUE, zoomView = TRUE) %>%
  visOptions(nodesIdSelection = TRUE, manipulation=FALSE) %>%
  visIgraphLayout(layout='layout.star') %>%
  visLegend

The above shows us that there aren’t as many incorrectly classified in two classes of low or high praise for a business by a user’s rating of the business based on tokenized lexicon scores per review. The plot above shows there are about 83.5% correctly classified. The hovering will show what the true rating is as a 1-3 being low praise, and a 4-5 being high praise.




Pst! Lets try out reticulate. Have you heard of this link between python coding and R for the R ennvironment? Well, lets test it out. It does what MySQL and maria db do for communicating between R and MySQL, but with python. I did try out the same cleaned dataset of ‘cleanedRegexReviews13.csv’ in python using multinomial naive bayes. The time to do so actually didn’t take long using the python 3.6 with packages that worked for that version in sci-kit learn and keras among a few. The results were better than the best here using all five ratings as classes but not by much. The score was 73% accuracy and the best here was 64% accuracy on all five classes using a modified absolute shortest difference of ratios in document to rating corpus’s of term to total terms. And also with random forest or the ceiling of the generalized linear models using regression for the latter. Because both scored 64% on first runs with a set seed.

So, here we go…

The python packages were sklearn, matplotlib, pandas, numpy, nltk, textBlob, and regex. Some versions that work are later modules, for instance the re package was used that made regex obsolete because it is a build version that replaced regex for my version of python, 3.6.

# knitr::knit_engines$set(python = reticulate::eng_python)

library(reticulate)
## Warning: package 'reticulate' was built under R version 3.6.3
conda_list(conda = "auto") 
##           name                                                  python
## 1    Anaconda2                     C:\\Users\\m\\Anaconda2\\python.exe
## 2    djangoenv    C:\\Users\\m\\Anaconda2\\envs\\djangoenv\\python.exe
## 3     python36     C:\\Users\\m\\Anaconda2\\envs\\python36\\python.exe
## 4     python37     C:\\Users\\m\\Anaconda2\\envs\\python37\\python.exe
## 5 r-reticulate C:\\Users\\m\\Anaconda2\\envs\\r-reticulate\\python.exe

I have my python IDE, Anaconda, open in the console and use the python36 environment mostly, and more importantly for the testing that was done on NLP using multinomial Naive Bayes to classify 5 ratings categores per review. The above shows those environments in conda.

use_condaenv(condaenv = "python36")
import pandas as pd 
import matplotlib.pyplot as plt 
from textblob import TextBlob 
import sklearn 
import numpy as np 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.naive_bayes import MultinomialNB 
from sklearn.metrics import classification_report, f1_score, accuracy_score, confusion_matrix 
 
np.random.seed(47) 
reviews = pd.read_csv('cleanedRegexReviews13.csv', encoding = 'unicode_escape') 
print(reviews.head())
##          userReviewSeries  ... userCheckIns
## 0  mostRecentVisit_review  ...          NaN
## 1  mostRecentVisit_review  ...          NaN
## 2  mostRecentVisit_review  ...          NaN
## 3  mostRecentVisit_review  ...          NaN
## 4  mostRecentVisit_review  ...          NaN
## 
## [5 rows x 18 columns]
print(reviews.tail())
##            userReviewSeries  ... userCheckIns
## 609  mostRecentVisit_review  ...          1.0
## 610  mostRecentVisit_review  ...          1.0
## 611  mostRecentVisit_review  ...          1.0
## 612  mostRecentVisit_review  ...          1.0
## 613  mostRecentVisit_review  ...          NaN
## 
## [5 rows x 18 columns]
print(reviews.shape)
## (614, 18)
import regex
def preprocessor(text):
    text = regex.sub('<[^>]*>', '', text)
    emoticons = regex.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)
    text = regex.sub('[\W]+', ' ', text.lower()) +\
        ' '.join(emoticons).replace('-', '')
    return text
reviews.tail()
##            userReviewSeries  ... userCheckIns
## 609  mostRecentVisit_review  ...          1.0
## 610  mostRecentVisit_review  ...          1.0
## 611  mostRecentVisit_review  ...          1.0
## 612  mostRecentVisit_review  ...          1.0
## 613  mostRecentVisit_review  ...          NaN
## 
## [5 rows x 18 columns]
import numpy as np

reviews = reviews.reindex(np.random.permutation(reviews.index))

print(reviews.head())
##            userReviewSeries  ... userCheckIns
## 551  mostRecentVisit_review  ...          NaN
## 340  mostRecentVisit_review  ...          NaN
## 474        lastVisit_review  ...          NaN
## 7    mostRecentVisit_review  ...          1.0
## 239  mostRecentVisit_review  ...          NaN
## 
## [5 rows x 18 columns]
print(reviews.tail())
##            userReviewSeries  ... userCheckIns
## 23   mostRecentVisit_review  ...          NaN
## 584  mostRecentVisit_review  ...          1.0
## 264  mostRecentVisit_review  ...          6.0
## 327  mostRecentVisit_review  ...          NaN
## 135  mostRecentVisit_review  ...          NaN
## 
## [5 rows x 18 columns]
reviews.groupby('userRatingValue').describe()
##                 friends                               ... userCheckIns                 
##                   count        mean         std  min  ...          25%  50%   75%   max
## userRatingValue                                       ...                              
## 1                  81.0   85.370370  133.524103  0.0  ...          1.0  1.5  2.00   3.0
## 2                  31.0  149.967742  152.750010  0.0  ...          1.0  1.0  2.00   3.0
## 3                  52.0  275.461538  700.341862  0.0  ...          1.0  2.0  2.75  22.0
## 4                 101.0  288.841584  493.898000  0.0  ...          1.0  1.0  2.25  45.0
## 5                 308.0  122.746753  329.574151  0.0  ...          1.0  1.0  3.00  41.0
## 
## [5 rows x 40 columns]
reviews.groupby('businessType').describe()
##                          userRatingValue                      ... userCheckIns           
##                                    count      mean       std  ...          50%  75%   max
## businessType                                                  ...                        
## chiropractic                       233.0  4.686695  0.956216  ...          1.0  3.0  43.0
## grocery store                      136.0  3.779412  1.484194  ...          1.0  5.5  45.0
## high end massage retreat           245.0  3.261224  1.511271  ...          1.0  2.0   4.0
## 
## [3 rows x 48 columns]
reviews['length'] = reviews['userReviewOnlyContent'].map(lambda text: len(text))
print(reviews.head())
##            userReviewSeries  ... length
## 551  mostRecentVisit_review  ...    112
## 340  mostRecentVisit_review  ...    750
## 474        lastVisit_review  ...   2972
## 7    mostRecentVisit_review  ...    210
## 239  mostRecentVisit_review  ...    213
## 
## [5 rows x 19 columns]
# %matplotlib inline 
reviews.length.plot(bins=20, kind='hist')
plt.show()

reviews.length.describe()
## count     614.000000
## mean      626.206840
## std       588.507777
## min        36.000000
## 25%       249.000000
## 50%       433.500000
## 75%       785.750000
## max      3489.000000
## Name: length, dtype: float64
print(list(reviews.userReviewOnlyContent[reviews.length > 630].index))
## [340, 474, 107, 319, 460, 75, 157, 417, 331, 214, 182, 581, 119, 110, 100, 390, 440, 360, 483, 556, 528, 427, 12, 410, 559, 587, 68, 248, 1, 414, 463, 220, 385, 371, 426, 547, 146, 336, 301, 407, 304, 415, 431, 386, 17, 328, 121, 513, 314, 24, 502, 222, 291, 462, 158, 217, 531, 313, 352, 320, 375, 393, 469, 347, 424, 508, 439, 312, 381, 270, 302, 236, 120, 583, 112, 269, 242, 452, 34, 329, 298, 20, 41, 409, 349, 325, 364, 365, 296, 613, 495, 344, 438, 464, 315, 316, 299, 401, 191, 434, 419, 392, 317, 272, 282, 592, 138, 377, 330, 335, 358, 404, 149, 459, 466, 601, 318, 45, 49, 376, 444, 505, 309, 0, 78, 86, 83, 527, 480, 193, 22, 526, 521, 455, 26, 485, 348, 279, 307, 337, 332, 604, 451, 94, 412, 246, 98, 189, 356, 97, 67, 229, 333, 267, 156, 475, 341, 373, 537, 372, 277, 310, 210, 355, 430, 402, 262, 465, 476, 391, 535, 382, 238, 201, 380, 369, 366, 418, 44, 305, 406, 442, 354, 489, 374, 573, 30, 397, 416, 306, 225, 195, 324, 205, 170, 458, 21, 223, 578, 379, 23, 327]
print(list(reviews.userRatingValue[reviews.length > 630]))
## [1, 1, 5, 1, 2, 5, 1, 5, 5, 1, 5, 5, 4, 4, 1, 1, 3, 4, 5, 5, 2, 1, 4, 4, 1, 5, 5, 4, 4, 5, 1, 5, 4, 2, 2, 3, 5, 1, 5, 4, 4, 5, 5, 2, 3, 5, 5, 5, 3, 5, 1, 1, 3, 1, 5, 4, 4, 3, 4, 5, 1, 2, 3, 1, 5, 4, 4, 3, 5, 3, 3, 1, 5, 5, 1, 5, 5, 1, 3, 1, 3, 5, 5, 1, 2, 5, 3, 2, 5, 5, 4, 4, 4, 2, 3, 2, 5, 3, 5, 2, 4, 3, 2, 4, 4, 4, 5, 5, 3, 4, 4, 5, 2, 1, 4, 5, 5, 4, 5, 2, 5, 2, 1, 5, 4, 5, 5, 1, 4, 1, 1, 1, 5, 3, 1, 5, 2, 1, 2, 5, 5, 5, 2, 5, 3, 3, 5, 2, 3, 5, 1, 4, 4, 5, 1, 1, 3, 1, 5, 5, 5, 4, 5, 2, 4, 1, 5, 2, 2, 2, 4, 4, 5, 1, 5, 1, 5, 4, 5, 4, 3, 1, 5, 1, 3, 5, 5, 5, 5, 5, 1, 1, 4, 1, 5, 4, 5, 4, 3, 3, 4, 4]
reviews.hist(column='length', by='userRatingValue', bins=10)


plt.show()

def split_into_tokens(review):
    
    #review = unicode(review, 'iso-8859-1')# in python 3 the default of str() previously python2 as unicode() is utf-8
    return TextBlob(review).words
reviews.userReviewOnlyContent.head().apply(split_into_tokens)
## 551    [Still, no, update, by, this, facility, do, n'...
## 340    [It, 's, a, pretty, cool, nice, place, from, w...
## 474    [Imagine, planning, a, family, event, for, the...
## 7      [has, been, treating, myself, family, and, fri...
## 239    [Love, the, deli, department, cheap, fast, foo...
## Name: userReviewOnlyContent, dtype: object
TextBlob("hello world, how is it going?").tags  # list of (word, POS) pairs
## [('hello', 'JJ'), ('world', 'NN'), ('how', 'WRB'), ('is', 'VBZ'), ('it', 'PRP'), ('going', 'VBG')]
import nltk
nltk.download('stopwords')
## True
## 
## [nltk_data] Downloading package stopwords to
## [nltk_data]     C:\Users\m\AppData\Roaming\nltk_data...
## [nltk_data]   Package stopwords is already up-to-date!
from nltk.corpus import stopwords

stop = stopwords.words('english')
stop = stop + [u'a',u'b',u'c',u'd',u'e',u'f',u'g',u'h',u'i',u'j',u'k',u'l',u'm',u'n',u'o',u'p',u'q',u'r',u's',u't',u'v',u'w',u'x',u'y',u'z']
def split_into_lemmas(review):
    #review = unicode(review, 'iso-8859-1')
    review = review.lower()
    #review = unicode(review, 'utf8').lower()
    #review = str(review).lower()
    words = TextBlob(review).words
    # for each word, take its "base form" = lemma 
    return [word.lemma for word in words if word not in stop]

reviews.userReviewOnlyContent.head().apply(split_into_lemmas)
## 551    [still, update, facility, n't, think, 'll, eve...
## 340    ['s, pretty, cool, nice, place, tell, next, mo...
## 474    [imagine, planning, family, event, last, three...
## 7      [treating, family, friend, many, year, drive, ...
## 239    [love, deli, department, cheap, fast, food, st...
## Name: userReviewOnlyContent, dtype: object
bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(reviews['userReviewOnlyContent'])
print(len(bow_transformer.vocabulary_))
## 4547
review4 = reviews['userReviewOnlyContent'][42]
print(review4)
##  Love this place! I had never been to a chiropractor before and was definitely scared but I tried this place out because I had heard great things and it was even better than I anticipated. The whole staff is super efficient and organized. Dr. Brian Heller was super friendly and helped ease the neck pain I was having before.
## 
## On top of that, the first appointment which includes X-rays, a consultation and the first adjustment was only $40! Great price and an overall awesome experience. I plan to come here regularly now.
bow4 = bow_transformer.transform([review4])
print(bow4)
##   (0, 106)   1
##   (0, 212)   1
##   (0, 335)   1
##   (0, 363)   1
##   (0, 459)   1
##   (0, 571)   1
##   (0, 663)   1
##   (0, 854)   1
##   (0, 945)   1
##   (0, 1013)  1
##   (0, 1185)  1
##   (0, 1330)  1
##   (0, 1374)  1
##   (0, 1389)  1
##   (0, 1465)  1
##   (0, 1515)  1
##   (0, 1620)  2
##   (0, 1709)  1
##   (0, 1813)  2
##   (0, 1908)  1
##   (0, 1925)  1
##   (0, 1929)  1
##   (0, 2076)  1
##   (0, 2398)  1
##   (0, 2650)  1
##   (0, 2665)  1
##   (0, 2784)  1
##   (0, 2799)  1
##   (0, 2833)  1
##   (0, 2944)  2
##   (0, 2947)  1
##   (0, 3048)  1
##   (0, 3243)  1
##   (0, 3453)  1
##   (0, 3802)  1
##   (0, 3922)  2
##   (0, 4052)  1
##   (0, 4121)  1
##   (0, 4167)  1
##   (0, 4441)  1
##   (0, 4502)  1
reviews_bow = bow_transformer.transform(reviews['userReviewOnlyContent'])
print('sparse matrix shape:', reviews_bow.shape)
## sparse matrix shape: (614, 4547)
print('number of non-zeros:', reviews_bow.nnz)
## number of non-zeros: 29971
print('sparsity: %.2f%%' % (100.0 * reviews_bow.nnz / (reviews_bow.shape[0] * reviews_bow.shape[1])))
## sparsity: 1.07%

Indexing is different in python compared to R. Python includes zero and when indicating a slice, the last value is ignored, so only up to the value. So it is used to slice, so that the next can start and include that number up to the empty slice which indicates the last value.

# Split/splice into training ~ 80% and testing ~ 20%
reviews_bow_train = reviews_bow[:491]
reviews_bow_test = reviews_bow[491:]
reviews_sentiment_train = reviews['userRatingValue'][:491]
reviews_sentiment_test = reviews['userRatingValue'][491:]

print(reviews_bow_train.shape)
## (491, 4547)
print(reviews_bow_test.shape)
## (123, 4547)
review_sentiment = MultinomialNB().fit(reviews_bow_train, reviews_sentiment_train)
print('predicted:', review_sentiment.predict(bow4)[0])
## predicted: 5
print('expected:', reviews.userRatingValue[42])
## expected: 5
predictions = review_sentiment.predict(reviews_bow_test)
print(predictions)
## [5 4 2 4 5 1 5 5 4 1 4 5 5 4 5 5 1 3 5 4 5 4 5 5 1 4 4 5 5 5 5 5 5 4 5 5 4
##  5 5 4 5 1 5 5 3 4 1 4 5 5 5 4 5 2 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 5 4 1 1 1
##  5 5 5 5 3 5 5 5 1 5 5 1 4 5 4 5 5 4 5 5 4 5 5 5 5 5 1 4 5 5 4 4 1 3 5 4 5
##  5 5 4 3 5 5 5 4 5 4 4 5]
print('accuracy', accuracy_score(reviews_sentiment_test, predictions))
## accuracy 0.7235772357723578
print('confusion matrix\n', confusion_matrix(reviews_sentiment_test, predictions))
## confusion matrix
##  [[10  0  0  2  2]
##  [ 1  1  0  3  0]
##  [ 1  0  1  4  2]
##  [ 0  1  3 15  5]
##  [ 1  0  1  8 62]]
print('(row=expected, col=predicted)')
## (row=expected, col=predicted)

This model generated a 72% accuracy using multinomial naive bayes. The confusion matrix above gives the 1 through 5 values that 10 were correctly predicted 1s, but a 1 was falsely predicted as a 2, 3, and a 5 as type 1 errors. Also, 62 5s were correctly predicted, but 8 5s were misclassified as a 4, one 5 as a 3, and another 5 as a 1.

print(classification_report(reviews_sentiment_test, predictions))
##               precision    recall  f1-score   support
## 
##            1       0.77      0.71      0.74        14
##            2       0.50      0.20      0.29         5
##            3       0.20      0.12      0.15         8
##            4       0.47      0.62      0.54        24
##            5       0.87      0.86      0.87        72
## 
##     accuracy                           0.72       123
##    macro avg       0.56      0.51      0.52       123
## weighted avg       0.72      0.72      0.72       123

From the above, precision accounts for type 1 errors (how many real negatives classified as positives-False Positives: TP/(TP+FP)) and type 2 errors (how many real posiives classified as negatives-False Negatives: TP/(TP+FN)) are part of recall. The 5s and 1 ratings had higher recall and precision than the 2-4 ratings classified.


def predict_review(new_review): 
    new_sample = bow_transformer.transform([new_review])
    pr = np.around(review_sentiment.predict_proba(new_sample),2)
    print(new_review,'\n\n', pr)
    
    if (pr[0][0] == max(pr[0])):
        print('The max probability is 1 for this review with ', pr[0][0]*100,'%')
    elif (pr[0][1] == max(pr[0])):
        print('The max probability is 2 for this review with ', pr[0][1]*100,'%')
    elif (pr[0][2] == max(pr[0])):
        print('The max probability is 3 for this review with ', pr[0][2]*100,'%')
    elif (pr[0][3] == max(pr[0])):
        print('The max probability is 4 for this review with ', pr[0][3]*100,'%')
    else:
        print('The max probability is 5 for this review with ', pr[0][4]*100,'%')
    print('-----------------------------------------\n\n')
reviews.userRatingValue.unique()
## array([1, 5, 4, 2, 3], dtype=int64)
predict_review('great place. loved it. returning soon.')
## great place. loved it. returning soon. 
## 
##  [[0.01 0.   0.01 0.05 0.92]]
## The max probability is 5 for this review with  92.0 %
## -----------------------------------------
predict_review('i\'ve been going here for years, and never again, worst place ever.')
## i've been going here for years, and never again, worst place ever. 
## 
##  [[0.1 0.  0.  0.  0.9]]
## The max probability is 5 for this review with  90.0 %
## -----------------------------------------
predict_review('way too over priced. had better')
## way too over priced. had better 
## 
##  [[0.02 0.01 0.   0.08 0.88]]
## The max probability is 5 for this review with  88.0 %
## -----------------------------------------
predict_review('wonderful. perfect. loved anaconda.')
## wonderful. perfect. loved anaconda. 
## 
##  [[0.01 0.01 0.   0.16 0.81]]
## The max probability is 5 for this review with  81.0 %
## -----------------------------------------

In the above, the second review is more of a low review, and the algorithm predicted it would be a 5 instead of a 1-3. It did predict it being a 1 rating by 10%.

predict_review('can never get an appointment. Still waiting. ')
## can never get an appointment. Still waiting.  
## 
##  [[0.25 0.03 0.01 0.08 0.63]]
## The max probability is 5 for this review with  63.0 %
## -----------------------------------------
predict_review("don't waste your time or money here.")
## don't waste your time or money here. 
## 
##  [[0.57 0.09 0.09 0.15 0.09]]
## The max probability is 1 for this review with  56.99999999999999 %
## -----------------------------------------

The above shows that this sentiment put into the function predicted the sentiment to be a 1 rating by 57%, and next best was a 4 rating with 15%

predict_review('love this place better than others')
## love this place better than others 
## 
##  [[0.   0.   0.   0.01 0.98]]
## The max probability is 5 for this review with  98.0 %
## -----------------------------------------
predict_review('''OMG! the best! a hidden gem. 
The prices are affordable. ''')
## OMG! the best! a hidden gem. 
## The prices are affordable.  
## 
##  [[0.   0.   0.   0.05 0.95]]
## The max probability is 5 for this review with  95.0 %
## -----------------------------------------
predict_review('''OMG! I am in so much pain. Sale on the massages. I want to go here regularly. ''')
## OMG! I am in so much pain. Sale on the massages. I want to go here regularly.  
## 
##  [[0. 0. 0. 0. 1.]]
## The max probability is 5 for this review with  100.0 %
## -----------------------------------------

When knitting with python36 open in Anaconda prompt window, the matplotlib graphs above threw an error and halted knitr with a message,‘…could not find or load the Qt platform plugin …’ for windows. Checking online, stackoverflow, found one to:

$ conda env remove -n r-reticulate $ conda create -n r-reticulate python=3 $ source activate r-reticulate $ python -m pip install matplotlib $ Rscript -e “library(knitr); knit(‘eng-reticulate-example.Rmd’)”

in the Anaconda prompt.

I started at line 2, and made python=3.6 adjustment to the command. Anaconda updated some packages. This actually created a new environment called ‘r-reticulate’

As a comparison, the multinomial naive bayes from the sklearn, keras, and numpy python packages offer a way to manually enter in a sentiment and get back a probability of the sentiment being a 1-5 rating. The accuracy scored was 72% using our same cleaned reviews of 614 reviews. Reticulate is a great package with dual purpose data science needs between python and R coders. There are much more tasks or techniques than what was shown here, as all angles are infinite in approaching a feasible way to predict a rating off a bunch of mixed reviews that scored high or low based on their own scale. You are encouraged to try out your own and publish to Rpubs or message me.