Let’s pull together everything you’ve learned to tackle a realistic data tidying problem. The tidyr::who
dataset contains tuberculosis (TB) cases broken down by year, country, age, gender, and diagnosis method. The data comes from the 2014 World Health Organization Global Tuberculosis Report, available at http://www.who.int/tb/country/data/download/en/.
There’s a wealth of epidemiological information in this dataset, but it’s challenging to work with the data in the form that it’s provided:
library(tidyverse)
who
This is a very typical real-life example dataset. It contains redundant columns, odd variable codes, and many missing values. In short, who
is messy, and we’ll need multiple steps to tidy it. Like dplyr, tidyr is designed so that each function does one thing well. That means in real-life situations you’ll usually need to string together multiple verbs into a pipeline.
The best place to start is almost always to gather together the columns that are not variables. Let’s have a look at what we’ve got:
It looks like country
, iso2
, and iso3
are three variables that redundantly specify the country.
year
is clearly also a variable.
We don’t know what all the other columns are yet, but given the structure in the variable names (e.g. new_sp_m014
, new_ep_m014
, new_ep_f014
) these are likely to be values, not variables.
So we need to gather together all the columns from new_sp_m014
to newrel_f65
. We don’t know what those values represent yet, so we’ll give them the generic name "key"
. We know the cells represent the count of cases, so we’ll use the variable cases
. There are a lot of missing values in the current representation, so for now we’ll use na.rm
just so we can focus on the values that are present.
who1 <- who %>%
pivot_longer(
cols = new_sp_m014:newrel_f65,
names_to = "key",
values_to = "cases",
values_drop_na = TRUE
)
who1
We can get some hint of the structure of the values in the new key
column by counting them:
who1 %>%
count(key)
You might be able to parse this out by yourself with a little thought and some experimentation, but luckily we have the data dictionary handy. It tells us:
1. The first three letters of each column denote whether the column contains new or old cases of TB. In this dataset, each column contains new cases.
2. The next two letters describe the type of TB:
rel
stands for cases of relapse
ep
stands for cases of extrapulmonary TB
sn
stands for cases of pulmonary TB that could not be diagnosed by a pulmonary smear (smear negative)
sp
stands for cases of pulmonary TB that could be diagnosed be a pulmonary smear (smear positive)
3. The sixth letter gives the sex of TB patients. The dataset groups cases by males (m
) and females (f
).
4. The remaining numbers gives the age group. The dataset groups cases into seven age groups:
014
= 0 – 14 years old
1524
= 15 – 24 years old
2534
= 25 – 34 years old
3544
= 35 – 44 years old
4554
= 45 – 54 years old
5564
= 55 – 64 years old
65
= 65 or older
We need to make a minor fix to the format of the column names: unfortunately the names are slightly inconsistent because instead of new_rel
we have newrel
(it’s hard to spot this here but if you don’t fix it we’ll get errors in subsequent steps). You’ll learn about str_replace()
in the strings lecture, but the basic idea is pretty simple: replace the characters “newrel” with “new_rel”. This makes all variable names consistent.
who2 <- who1 %>%
mutate(names_from = stringr::str_replace(key, "newrel", "new_rel"))
who2
We can separate the values in each code with two passes of separate()
. The first pass will split the codes at each underscore.
who3 <- who2 %>%
separate(key, c("new", "type", "sexage"), sep = "_")
Expected 3 pieces. Missing pieces filled with `NA` in 2580 rows [243, 244, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 903, 904, 905, 906, ...].
who3
Then we might as well drop the new
column because it’s constant in this dataset.
who3 %>%
count(new)
While we’re dropping columns, let’s also drop iso2
and iso3
since they’re redundant.
who4 <- who3 %>%
select(-new, -iso2, -iso3)
who4
Next we’ll separate sexage
into sex
and age
by splitting after the first character:
who5 <- who4 %>%
separate(sexage, c("sex", "age"), sep = 1)
who5
The who dataset is now tidy!
I’ve shown you the code a piece at a time, assigning each interim result to a new variable. This typically isn’t how you’d work interactively. Instead, you’d gradually build up a complex pipe:
who %>%
pivot_longer(
cols = new_sp_m014:newrel_f65,
names_to = "key",
values_to = "cases",
values_drop_na = TRUE
) %>%
mutate(
key = stringr::str_replace(key, "newrel", "new_rel")
) %>%
separate(key, c("new", "var", "sexage")) %>%
select(-new, -iso2, -iso3) %>%
separate(sexage, c("sex", "age"), sep = 1)
Head over to Case Study WHO Example Questions to see more.
LS0tDQp0aXRsZTogIlRpZHkgRGF0YSBDYXNlIFN0dWR5Ig0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KTGV04oCZcyBwdWxsIHRvZ2V0aGVyIGV2ZXJ5dGhpbmcgeW914oCZdmUgbGVhcm5lZCB0byB0YWNrbGUgYSByZWFsaXN0aWMgZGF0YSB0aWR5aW5nIHByb2JsZW0uIFRoZSBgdGlkeXI6Ondob2AgZGF0YXNldCBjb250YWlucyB0dWJlcmN1bG9zaXMgKFRCKSBjYXNlcyBicm9rZW4gZG93biBieSB5ZWFyLCBjb3VudHJ5LCBhZ2UsIGdlbmRlciwgYW5kIGRpYWdub3NpcyBtZXRob2QuIFRoZSBkYXRhIGNvbWVzIGZyb20gdGhlIDIwMTQgV29ybGQgSGVhbHRoIE9yZ2FuaXphdGlvbiBHbG9iYWwgVHViZXJjdWxvc2lzIFJlcG9ydCwgYXZhaWxhYmxlIGF0IDxodHRwOi8vd3d3Lndoby5pbnQvdGIvY291bnRyeS9kYXRhL2Rvd25sb2FkL2VuLy4+DQoNClRoZXJl4oCZcyBhIHdlYWx0aCBvZiBlcGlkZW1pb2xvZ2ljYWwgaW5mb3JtYXRpb24gaW4gdGhpcyBkYXRhc2V0LCBidXQgaXTigJlzIGNoYWxsZW5naW5nIHRvIHdvcmsgd2l0aCB0aGUgZGF0YSBpbiB0aGUgZm9ybSB0aGF0IGl04oCZcyBwcm92aWRlZDoNCg0KYGBge3IsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQp3aG8NCmBgYA0KDQoNClRoaXMgaXMgYSB2ZXJ5IHR5cGljYWwgcmVhbC1saWZlIGV4YW1wbGUgZGF0YXNldC4gSXQgY29udGFpbnMgcmVkdW5kYW50IGNvbHVtbnMsIG9kZCB2YXJpYWJsZSBjb2RlcywgYW5kIG1hbnkgbWlzc2luZyB2YWx1ZXMuIEluIHNob3J0LCBgd2hvYCBpcyBtZXNzeSwgYW5kIHdl4oCZbGwgbmVlZCBtdWx0aXBsZSBzdGVwcyB0byB0aWR5IGl0LiBMaWtlIGRwbHlyLCB0aWR5ciBpcyBkZXNpZ25lZCBzbyB0aGF0IGVhY2ggZnVuY3Rpb24gZG9lcyBvbmUgdGhpbmcgd2VsbC4gVGhhdCBtZWFucyBpbiByZWFsLWxpZmUgc2l0dWF0aW9ucyB5b3XigJlsbCB1c3VhbGx5IG5lZWQgdG8gc3RyaW5nIHRvZ2V0aGVyIG11bHRpcGxlIHZlcmJzIGludG8gYSBwaXBlbGluZS4NCg0KVGhlIGJlc3QgcGxhY2UgdG8gc3RhcnQgaXMgYWxtb3N0IGFsd2F5cyB0byBnYXRoZXIgdG9nZXRoZXIgdGhlIGNvbHVtbnMgdGhhdCBhcmUgbm90IHZhcmlhYmxlcy4gTGV04oCZcyBoYXZlIGEgbG9vayBhdCB3aGF0IHdl4oCZdmUgZ290Og0KDQotIEl0IGxvb2tzIGxpa2UgYGNvdW50cnlgLCBgaXNvMmAsIGFuZCBgaXNvM2AgYXJlIHRocmVlIHZhcmlhYmxlcyB0aGF0IHJlZHVuZGFudGx5IHNwZWNpZnkgdGhlIGNvdW50cnkuDQoNCi0gYHllYXJgIGlzIGNsZWFybHkgYWxzbyBhIHZhcmlhYmxlLg0KDQotIFdlIGRvbuKAmXQga25vdyB3aGF0IGFsbCB0aGUgb3RoZXIgY29sdW1ucyBhcmUgeWV0LCBidXQgZ2l2ZW4gdGhlIHN0cnVjdHVyZSBpbiB0aGUgdmFyaWFibGUgbmFtZXMgKGUuZy4gYG5ld19zcF9tMDE0YCwgYG5ld19lcF9tMDE0YCwgYG5ld19lcF9mMDE0YCkgdGhlc2UgYXJlIGxpa2VseSB0byBiZSB2YWx1ZXMsIG5vdCB2YXJpYWJsZXMuDQoNClNvIHdlIG5lZWQgdG8gZ2F0aGVyIHRvZ2V0aGVyIGFsbCB0aGUgY29sdW1ucyBmcm9tIGBuZXdfc3BfbTAxNGAgdG8gYG5ld3JlbF9mNjVgLiBXZSBkb27igJl0IGtub3cgd2hhdCB0aG9zZSB2YWx1ZXMgcmVwcmVzZW50IHlldCwgc28gd2XigJlsbCBnaXZlIHRoZW0gdGhlIGdlbmVyaWMgbmFtZSBgImtleSJgLiBXZSBrbm93IHRoZSBjZWxscyByZXByZXNlbnQgdGhlIGNvdW50IG9mIGNhc2VzLCBzbyB3ZeKAmWxsIHVzZSB0aGUgdmFyaWFibGUgYGNhc2VzYC4gVGhlcmUgYXJlIGEgbG90IG9mIG1pc3NpbmcgdmFsdWVzIGluIHRoZSBjdXJyZW50IHJlcHJlc2VudGF0aW9uLCBzbyBmb3Igbm93IHdl4oCZbGwgdXNlIGBuYS5ybWAganVzdCBzbyB3ZSBjYW4gZm9jdXMgb24gdGhlIHZhbHVlcyB0aGF0IGFyZSBwcmVzZW50Lg0KDQpgYGB7cn0NCndobzEgPC0gd2hvICU+JSANCiAgcGl2b3RfbG9uZ2VyKA0KICAgIGNvbHMgPSBuZXdfc3BfbTAxNDpuZXdyZWxfZjY1LCANCiAgICBuYW1lc190byA9ICJrZXkiLCANCiAgICB2YWx1ZXNfdG8gPSAiY2FzZXMiLCANCiAgICB2YWx1ZXNfZHJvcF9uYSA9IFRSVUUNCiAgKQ0Kd2hvMQ0KYGBgDQoNCldlIGNhbiBnZXQgc29tZSBoaW50IG9mIHRoZSBzdHJ1Y3R1cmUgb2YgdGhlIHZhbHVlcyBpbiB0aGUgbmV3IGBrZXlgIGNvbHVtbiBieSBjb3VudGluZyB0aGVtOg0KDQpgYGB7cn0NCndobzEgJT4lIA0KICBjb3VudChrZXkpDQpgYGANCg0KWW91IG1pZ2h0IGJlIGFibGUgdG8gcGFyc2UgdGhpcyBvdXQgYnkgeW91cnNlbGYgd2l0aCBhIGxpdHRsZSB0aG91Z2h0IGFuZCBzb21lIGV4cGVyaW1lbnRhdGlvbiwgYnV0IGx1Y2tpbHkgd2UgaGF2ZSB0aGUgZGF0YSBkaWN0aW9uYXJ5IGhhbmR5LiBJdCB0ZWxscyB1czoNCg0KKioxLioqIFRoZSBmaXJzdCB0aHJlZSBsZXR0ZXJzIG9mIGVhY2ggY29sdW1uIGRlbm90ZSB3aGV0aGVyIHRoZSBjb2x1bW4gY29udGFpbnMgbmV3IG9yIG9sZCBjYXNlcyBvZiBUQi4gSW4gdGhpcyBkYXRhc2V0LCBlYWNoIGNvbHVtbiBjb250YWlucyBuZXcgY2FzZXMuDQoNCioqMi4qKiBUaGUgbmV4dCB0d28gbGV0dGVycyBkZXNjcmliZSB0aGUgdHlwZSBvZiBUQjoNCg0KICAgLSBgcmVsYCBzdGFuZHMgZm9yIGNhc2VzIG9mIHJlbGFwc2UNCiAgIC0gYGVwYCBzdGFuZHMgZm9yIGNhc2VzIG9mIGV4dHJhcHVsbW9uYXJ5IFRCDQogICAtIGBzbmAgc3RhbmRzIGZvciBjYXNlcyBvZiBwdWxtb25hcnkgVEIgdGhhdCBjb3VsZCBub3QgYmUgZGlhZ25vc2VkIGJ5IGEgcHVsbW9uYXJ5IHNtZWFyIChzbWVhciBuZWdhdGl2ZSkNCiAgIC0gYHNwYCBzdGFuZHMgZm9yIGNhc2VzIG9mIHB1bG1vbmFyeSBUQiB0aGF0IGNvdWxkIGJlIGRpYWdub3NlZCBiZSBhIHB1bG1vbmFyeSBzbWVhciAoc21lYXIgcG9zaXRpdmUpDQoNCioqMy4qKiBUaGUgc2l4dGggbGV0dGVyIGdpdmVzIHRoZSBzZXggb2YgVEIgcGF0aWVudHMuIFRoZSBkYXRhc2V0IGdyb3VwcyBjYXNlcyBieSBtYWxlcyAoYG1gKSBhbmQgZmVtYWxlcyAoYGZgKS4NCg0KKio0LioqIFRoZSByZW1haW5pbmcgbnVtYmVycyBnaXZlcyB0aGUgYWdlIGdyb3VwLiBUaGUgZGF0YXNldCBncm91cHMgY2FzZXMgaW50byBzZXZlbiBhZ2UgZ3JvdXBzOg0KDQogICAtIGAwMTRgID0gMCDigJMgMTQgeWVhcnMgb2xkDQogICAtIGAxNTI0YCA9IDE1IOKAkyAyNCB5ZWFycyBvbGQNCiAgIC0gYDI1MzRgID0gMjUg4oCTIDM0IHllYXJzIG9sZA0KICAgLSBgMzU0NGAgPSAzNSDigJMgNDQgeWVhcnMgb2xkDQogICAtIGA0NTU0YCA9IDQ1IOKAkyA1NCB5ZWFycyBvbGQNCiAgIC0gYDU1NjRgID0gNTUg4oCTIDY0IHllYXJzIG9sZA0KICAgLSBgNjVgID0gNjUgb3Igb2xkZXINCg0KV2UgbmVlZCB0byBtYWtlIGEgbWlub3IgZml4IHRvIHRoZSBmb3JtYXQgb2YgdGhlIGNvbHVtbiBuYW1lczogdW5mb3J0dW5hdGVseSB0aGUgbmFtZXMgYXJlIHNsaWdodGx5IGluY29uc2lzdGVudCBiZWNhdXNlIGluc3RlYWQgb2YgYG5ld19yZWxgIHdlIGhhdmUgYG5ld3JlbGAgKGl04oCZcyBoYXJkIHRvIHNwb3QgdGhpcyBoZXJlIGJ1dCBpZiB5b3UgZG9u4oCZdCBmaXggaXQgd2XigJlsbCBnZXQgZXJyb3JzIGluIHN1YnNlcXVlbnQgc3RlcHMpLiBZb3XigJlsbCBsZWFybiBhYm91dCBgc3RyX3JlcGxhY2UoKWAgaW4gdGhlIHN0cmluZ3MgbGVjdHVyZSwgYnV0IHRoZSBiYXNpYyBpZGVhIGlzIHByZXR0eSBzaW1wbGU6IHJlcGxhY2UgdGhlIGNoYXJhY3RlcnMg4oCcbmV3cmVs4oCdIHdpdGgg4oCcbmV3X3JlbOKAnS4gVGhpcyBtYWtlcyBhbGwgdmFyaWFibGUgbmFtZXMgY29uc2lzdGVudC4NCg0KYGBge3J9DQp3aG8yIDwtIHdobzEgJT4lIA0KICBtdXRhdGUobmFtZXNfZnJvbSA9IHN0cmluZ3I6OnN0cl9yZXBsYWNlKGtleSwgIm5ld3JlbCIsICJuZXdfcmVsIikpDQp3aG8yDQpgYGANCg0KV2UgY2FuIHNlcGFyYXRlIHRoZSB2YWx1ZXMgaW4gZWFjaCBjb2RlIHdpdGggdHdvIHBhc3NlcyBvZiBgc2VwYXJhdGUoKWAuIFRoZSBmaXJzdCBwYXNzIHdpbGwgc3BsaXQgdGhlIGNvZGVzIGF0IGVhY2ggdW5kZXJzY29yZS4NCg0KYGBge3J9DQp3aG8zIDwtIHdobzIgJT4lIA0KICBzZXBhcmF0ZShrZXksIGMoIm5ldyIsICJ0eXBlIiwgInNleGFnZSIpLCBzZXAgPSAiXyIpDQp3aG8zDQpgYGANCg0KVGhlbiB3ZSBtaWdodCBhcyB3ZWxsIGRyb3AgdGhlIGBuZXdgIGNvbHVtbiBiZWNhdXNlIGl04oCZcyBjb25zdGFudCBpbiB0aGlzIGRhdGFzZXQuIA0KDQpgYGB7cn0NCndobzMgJT4lIA0KICBjb3VudChuZXcpDQpgYGANCg0KV2hpbGUgd2XigJlyZSBkcm9wcGluZyBjb2x1bW5zLCBsZXTigJlzIGFsc28gZHJvcCBgaXNvMmAgYW5kIGBpc28zYCBzaW5jZSB0aGV54oCZcmUgcmVkdW5kYW50Lg0KDQpgYGB7cn0NCndobzQgPC0gd2hvMyAlPiUgDQogIHNlbGVjdCgtbmV3LCAtaXNvMiwgLWlzbzMpDQp3aG80DQpgYGANCg0KTmV4dCB3ZeKAmWxsIHNlcGFyYXRlIGBzZXhhZ2VgIGludG8gYHNleGAgYW5kIGBhZ2VgIGJ5IHNwbGl0dGluZyBhZnRlciB0aGUgZmlyc3QgY2hhcmFjdGVyOg0KDQpgYGB7cn0NCndobzUgPC0gd2hvNCAlPiUgDQogIHNlcGFyYXRlKHNleGFnZSwgYygic2V4IiwgImFnZSIpLCBzZXAgPSAxKQ0Kd2hvNQ0KYGBgDQoNClRoZSB3aG8gZGF0YXNldCBpcyBub3cgdGlkeSENCg0KSeKAmXZlIHNob3duIHlvdSB0aGUgY29kZSBhIHBpZWNlIGF0IGEgdGltZSwgYXNzaWduaW5nIGVhY2ggaW50ZXJpbSByZXN1bHQgdG8gYSBuZXcgdmFyaWFibGUuIFRoaXMgdHlwaWNhbGx5IGlzbuKAmXQgaG93IHlvdeKAmWQgd29yayBpbnRlcmFjdGl2ZWx5LiBJbnN0ZWFkLCB5b3XigJlkIGdyYWR1YWxseSBidWlsZCB1cCBhIGNvbXBsZXggcGlwZToNCg0KYGBge3IsZXZhbD1GQUxTRX0NCndobyAlPiUNCiAgcGl2b3RfbG9uZ2VyKA0KICAgIGNvbHMgPSBuZXdfc3BfbTAxNDpuZXdyZWxfZjY1LCANCiAgICBuYW1lc190byA9ICJrZXkiLCANCiAgICB2YWx1ZXNfdG8gPSAiY2FzZXMiLCANCiAgICB2YWx1ZXNfZHJvcF9uYSA9IFRSVUUNCiAgKSAlPiUgDQogIG11dGF0ZSgNCiAgICBrZXkgPSBzdHJpbmdyOjpzdHJfcmVwbGFjZShrZXksICJuZXdyZWwiLCAibmV3X3JlbCIpDQogICkgJT4lDQogIHNlcGFyYXRlKGtleSwgYygibmV3IiwgInZhciIsICJzZXhhZ2UiKSkgJT4lIA0KICBzZWxlY3QoLW5ldywgLWlzbzIsIC1pc28zKSAlPiUgDQogIHNlcGFyYXRlKHNleGFnZSwgYygic2V4IiwgImFnZSIpLCBzZXAgPSAxKQ0KYGBgDQoNCkhlYWQgb3ZlciB0byBbQ2FzZSBTdHVkeSBXSE8gRXhhbXBsZSBRdWVzdGlvbnNdKGh0dHBzOi8vcnB1YnMuY29tL3VreTk5NC81OTYwOTEpIHRvIHNlZSBtb3JlLg==