Load libraries and data
#####################Read and Pre-Clean the Data#######################
require(Amelia)
## Loading required package: Amelia
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.6, built: 2019-11-24)
## ## Copyright (C) 2005-2020 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(car)
## Loading required package: carData
library(ggcorrplot)
## Loading required package: ggplot2
library(kableExtra)
library(MANOVA.RM)
## Warning: package 'MANOVA.RM' was built under R version 4.0.3
library(MASS)
library(mvtnorm)
require(psych) #to describe
## Loading required package: psych
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:car':
##
## logit
require(ggplot2)
require(reticulate) #to use Python in R as well
## Loading required package: reticulate
require(ResourceSelection)
## Loading required package: ResourceSelection
## ResourceSelection 0.3-5 2019-07-22
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.0.3
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:MASS':
##
## select
## The following object is masked from 'package:ggcorrplot':
##
## cor_pmat
## The following object is masked from 'package:stats':
##
## filter
library(tidyverse)
## -- Attaching packages --------------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------------ tidyverse_conflicts() --
## x psych::%+%() masks ggplot2::%+%()
## x psych::alpha() masks ggplot2::alpha()
## x dplyr::filter() masks rstatix::filter(), stats::filter()
## x dplyr::group_rows() masks kableExtra::group_rows()
## x dplyr::lag() masks stats::lag()
## x dplyr::recode() masks car::recode()
## x dplyr::select() masks rstatix::select(), MASS::select()
## x purrr::some() masks car::some()
mydata=read.csv("C:/Users/lfult/Desktop/Education/2020spring.csv", stringsAsFactors = TRUE)
colnames(mydata)
## [1] "Subject" "Gender" "Ethnicity" "Age" "Yr"
## [6] "DaysBetween" "GPA" "T_GPA" "PrePost" "Fin"
## [11] "Mgt" "HR" "Sys" "HIM" "Ldr"
## [16] "Chg" "Cli" "QI" "Strat" "Com"
## [21] "Lgl" "Score" "Rank" "Time"
#########################################################################
#########################################################################
missmap(mydata)
#########################################################################
pre=round(describe(mydata[1:54,10:24]),3)
post=round(describe(mydata[55:108, 10:24]),3)
mydelta=mydata[55:108, 10:24]-mydata[1:54, 10:24]
delta=round(describe(mydelta))
mynames=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems & Organizations", "Information Managment", "Leadership Skills and Behavior", "Managing Change", "Organizational Climate and Culture", "Quality Improvement", "Strategic Planning and Marketing", "The Community and the Environment", "The Legal Environment of Healthcare Administration", "Final Score", "Percentile Rank", "Time" )
row.names(pre)=row.names(post)=row.names(delta)=mynames
pre%>%kbl(caption="Pre-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 54 | 55.926 | 18.173 | 50.00 | 55.909 | 14.826 | 10.00 | 100.00 | 90.00 | 0.011 | -0.165 | 2.473 |
| General Management | 2 | 54 | 59.259 | 16.119 | 60.00 | 59.545 | 14.826 | 30.00 | 90.00 | 60.00 | -0.148 | -0.752 | 2.194 |
| Healthcare Personnel | 3 | 54 | 64.630 | 14.500 | 60.00 | 65.000 | 14.826 | 30.00 | 90.00 | 60.00 | -0.238 | -0.178 | 1.973 |
| Healthcare Systems & Organizations | 4 | 54 | 53.333 | 19.230 | 50.00 | 52.727 | 14.826 | 10.00 | 100.00 | 90.00 | 0.281 | -0.239 | 2.617 |
| Information Managment | 5 | 54 | 58.333 | 18.300 | 60.00 | 59.318 | 14.826 | 10.00 | 90.00 | 80.00 | -0.393 | -0.539 | 2.490 |
| Leadership Skills and Behavior | 6 | 54 | 58.704 | 15.667 | 60.00 | 59.091 | 14.826 | 20.00 | 90.00 | 70.00 | -0.165 | -0.369 | 2.132 |
| Managing Change | 7 | 54 | 61.481 | 12.945 | 60.00 | 61.591 | 14.826 | 30.00 | 90.00 | 60.00 | -0.168 | -0.033 | 1.762 |
| Organizational Climate and Culture | 8 | 54 | 63.889 | 16.981 | 60.00 | 64.091 | 14.826 | 30.00 | 100.00 | 70.00 | -0.085 | -0.390 | 2.311 |
| Quality Improvement | 9 | 54 | 57.963 | 18.262 | 60.00 | 58.409 | 14.826 | 20.00 | 90.00 | 70.00 | -0.251 | -0.770 | 2.485 |
| Strategic Planning and Marketing | 10 | 54 | 56.111 | 17.953 | 60.00 | 56.364 | 14.826 | 10.00 | 90.00 | 80.00 | -0.149 | -0.565 | 2.443 |
| The Community and the Environment | 11 | 54 | 53.148 | 16.577 | 50.00 | 52.727 | 14.826 | 20.00 | 100.00 | 80.00 | 0.284 | -0.057 | 2.256 |
| The Legal Environment of Healthcare Administration | 12 | 54 | 61.111 | 16.214 | 60.00 | 60.455 | 14.826 | 30.00 | 100.00 | 70.00 | 0.319 | -0.521 | 2.206 |
| Final Score | 13 | 54 | 58.654 | 7.920 | 59.58 | 58.879 | 8.036 | 39.16 | 78.33 | 39.17 | -0.124 | -0.100 | 1.078 |
| Percentile Rank | 14 | 54 | 58.685 | 22.862 | 63.00 | 60.045 | 26.687 | 7.00 | 98.00 | 91.00 | -0.361 | -0.680 | 3.111 |
| Time | 15 | 54 | 41.721 | 15.714 | 39.75 | 40.428 | 16.019 | 13.75 | 82.08 | 68.33 | 0.672 | -0.159 | 2.138 |
post%>%kbl(caption="Post-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 54 | 73.519 | 15.192 | 70.000 | 73.636 | 14.826 | 40.00 | 100.0 | 60.00 | -0.087 | -0.537 | 2.067 |
| General Management | 2 | 54 | 77.222 | 11.561 | 80.000 | 77.500 | 14.826 | 50.00 | 100.0 | 50.00 | -0.178 | -0.248 | 1.573 |
| Healthcare Personnel | 3 | 54 | 79.444 | 13.091 | 80.000 | 80.227 | 14.826 | 30.00 | 100.0 | 70.00 | -0.940 | 1.867 | 1.782 |
| Healthcare Systems & Organizations | 4 | 54 | 67.963 | 16.297 | 70.000 | 68.636 | 14.826 | 30.00 | 100.0 | 70.00 | -0.191 | -0.796 | 2.218 |
| Information Managment | 5 | 54 | 66.667 | 12.286 | 70.000 | 66.136 | 14.826 | 50.00 | 90.0 | 40.00 | 0.100 | -0.973 | 1.672 |
| Leadership Skills and Behavior | 6 | 54 | 77.037 | 15.126 | 80.000 | 77.273 | 14.826 | 50.00 | 100.0 | 50.00 | -0.047 | -1.078 | 2.058 |
| Managing Change | 7 | 54 | 70.556 | 13.656 | 70.000 | 71.364 | 14.826 | 40.00 | 90.0 | 50.00 | -0.447 | -0.620 | 1.858 |
| Organizational Climate and Culture | 8 | 54 | 75.741 | 16.206 | 80.000 | 76.364 | 14.826 | 30.00 | 100.0 | 70.00 | -0.483 | -0.330 | 2.205 |
| Quality Improvement | 9 | 54 | 72.963 | 13.822 | 70.000 | 73.409 | 14.826 | 40.00 | 100.0 | 60.00 | -0.192 | -0.622 | 1.881 |
| Strategic Planning and Marketing | 10 | 54 | 77.407 | 12.004 | 80.000 | 77.955 | 14.826 | 50.00 | 100.0 | 50.00 | -0.339 | -0.609 | 1.634 |
| The Community and the Environment | 11 | 54 | 68.148 | 16.261 | 70.000 | 69.318 | 14.826 | 0.00 | 90.0 | 90.00 | -1.463 | 3.879 | 2.213 |
| The Legal Environment of Healthcare Administration | 12 | 54 | 74.630 | 17.344 | 80.000 | 75.455 | 14.826 | 30.00 | 100.0 | 70.00 | -0.461 | -0.520 | 2.360 |
| Final Score | 13 | 54 | 71.505 | 5.129 | 71.915 | 71.691 | 4.559 | 58.46 | 82.3 | 23.84 | -0.348 | -0.142 | 0.698 |
| Percentile Rank | 14 | 54 | 80.389 | 15.674 | 84.000 | 82.864 | 8.896 | 0.00 | 97.0 | 97.00 | -2.801 | 10.824 | 2.133 |
| Time | 15 | 54 | 74.930 | 19.011 | 73.665 | 74.719 | 18.147 | 34.77 | 119.9 | 85.13 | 0.152 | -0.364 | 2.587 |
delta%>%kbl(caption="Difference, Post Minus Pre")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 54 | 18 | 23 | 20 | 18 | 30 | -20 | 60 | 80 | 0 | -1 | 3 |
| General Management | 2 | 54 | 18 | 21 | 20 | 17 | 15 | -20 | 70 | 90 | 0 | -1 | 3 |
| Healthcare Personnel | 3 | 54 | 15 | 21 | 10 | 15 | 15 | -40 | 60 | 100 | 0 | 0 | 3 |
| Healthcare Systems & Organizations | 4 | 54 | 15 | 26 | 15 | 15 | 37 | -40 | 70 | 110 | 0 | -1 | 4 |
| Information Managment | 5 | 54 | 8 | 22 | 10 | 8 | 30 | -30 | 50 | 80 | 0 | -1 | 3 |
| Leadership Skills and Behavior | 6 | 54 | 18 | 21 | 20 | 18 | 15 | -20 | 70 | 90 | 0 | 0 | 3 |
| Managing Change | 7 | 54 | 9 | 20 | 10 | 9 | 15 | -50 | 60 | 110 | 0 | 1 | 3 |
| Organizational Climate and Culture | 8 | 54 | 12 | 19 | 10 | 12 | 15 | -30 | 60 | 90 | 0 | 0 | 3 |
| Quality Improvement | 9 | 54 | 15 | 20 | 20 | 14 | 15 | -30 | 60 | 90 | 0 | 0 | 3 |
| Strategic Planning and Marketing | 10 | 54 | 21 | 20 | 20 | 21 | 30 | -20 | 70 | 90 | 0 | -1 | 3 |
| The Community and the Environment | 11 | 54 | 15 | 23 | 15 | 16 | 22 | -40 | 70 | 110 | 0 | 0 | 3 |
| The Legal Environment of Healthcare Administration | 12 | 54 | 14 | 24 | 10 | 13 | 22 | -40 | 60 | 100 | 0 | -1 | 3 |
| Final Score | 13 | 54 | 13 | 9 | 12 | 12 | 10 | 1 | 35 | 35 | 0 | -1 | 1 |
| Percentile Rank | 14 | 54 | 22 | 25 | 20 | 21 | 27 | -48 | 82 | 130 | 0 | 0 | 3 |
| Time | 15 | 54 | 33 | 18 | 33 | 32 | 18 | -6 | 78 | 83 | 0 | 0 | 2 |
Ethnicity and Race
#########################################################################
levels(mydata$Ethnicity)=c("Asian", "African American", "Caucasian", "Any Hispanic") #Assign new names to factor levels
ethtable=as.data.frame(table(mydata$Ethnicity[1:54],mydata$Gender[1:54])/length(mydata$Ethnicity[1:54])) #get a cross-tabs table for race and gender
colnames(ethtable)=c("Race","Gender", "Percentage")#set the colum names for the table
mylab=paste0(round(ethtable$Percentage,2)*100,"%, ", ethtable$Percentage*54, " students") #Get the labels for the graph
ggplot(data=ethtable, aes(x=Race,y=Percentage, fill=Gender))+
geom_bar(stat="identity")+
geom_text(aes( label = mylab, vjust = 1))
#########################################################################
Analyze age as a function of race and gender
#########################################################################
describe(mydata$Age[1:54]) #get the descriptive statistics
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 22.96 3.32 22 22.3 1.48 20 42 22 3.81 17.77 0.45
ggplot(data=mydata[1:54,], aes(x=Age,color=Gender))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age ~Gender
ggplot(data=mydata[1:54,], aes(x=Age,color=Ethnicity))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age~ Race
#########################################################################
#########################################################################
describe(mydata$GPA[1:54]) #Get descriptives
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 3.19 0.23 3.18 3.18 0.27 2.85 3.7 0.85 0.44 -0.89 0.03
ggplot(mydata[1:54, ], aes(x = Ethnicity, y = GPA, fill=Ethnicity))+
geom_boxplot(aes(color=Gender))+
coord_flip() #plot based on ethnicity and gender
#########################################################################
Evaluating GPA as a function of race and gender
#########################################################################
newdata1=aggregate(mydata$GPA[1:54], b=list(mydata$Ethnicity[1:54],mydata$Gender[1:54]), FUN=mean) #aggregate the data based on race and gender, get the means by those groups
newdata2=aggregate(mydata$GPA[1:54],b=list(mydata$Ethnicity[1:54],mydata$Gender[1:54]),function(x){qnorm(.975)*sd(x)/sqrt(length(x))}) #get the CI adjustment
newdata=cbind(newdata1,newdata2$x) #bind the data together by columns
colnames(newdata)=c("Race", "Gender", "GPA", "SD") #name the columns
newdata$RaceGender=as.factor(paste0(newdata$Race,", ",newdata$Gender)) #make a new variable that has both race and gender
ggplot( #plot
newdata,
aes(x = GPA, y = RaceGender, xmin = GPA-SD, xmax = GPA+SD)
) +
geom_point(aes(color = Gender)) +
geom_errorbarh(aes(color = Gender), height=.2)+
theme_light()+
xlab("95% Confidence Interval for GPA")
#########################################################################
Analyze the time between pretests and posttests
#########################################################################
describe(mydata$DaysBetween[1:54]) #describe the days between
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 435.54 44.18 430 430.05 22.98 333 560 227 1.17 1.56 6.01
ggplot(data=mydata[1:54,], aes(x=DaysBetween,color=Gender))+ #plot it
geom_histogram(fill="white", binwidth=30)+
ylab("Frequency")
#########################################################################
Look at bivariate pairs
#########################################################################
mysub=subset(mydata, select=c(Age, GPA, Score)) #get a subset for plotting
colnames(mysub)=c("Age", "GPA", "Score") #set column names
kdepairs(mysub) #plot
#########################################################################
Plot the Delta scores.
#########################################################################
par(mfrow=c(1,1))
myscores=as.data.frame(mydelta[1:13]) #Variables for plotting
mybars=error.bars(myscores)
plot(error.bars(myscores),ylab="Variable", xlab="Delta Score",
xlim=c(.5, 13.5), ylim=c(0,length(myscores)),lty="dashed", las=2)
#########################################################################
#########################################################################
myt=powerTransform(as.matrix(mydelta[1:12]+100)~1)
testTransform(myt)%>%kbl()%>%kable_classic(full_width = F, html_font = "Cambria") #########################################################################
| LRT | df | pval | |
|---|---|---|---|
| LR test, lambda = (1 1 1 1 1 1 1 1 1 1 1 1) | 4.409743 | 12 | 0.97486 |
#########################################################################
myf=function(x){
myt=t.test(x)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate,3),round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3), round(myt$parameter,3),
round(newp,3))
return(a)
}
a=matrix(rep(NA, 6*15), 15)
for (i in 1:15){a[i,1:6]=myf(mydelta[i])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems and Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change","Organizational Climate and Culture", "Quality Improvement", "Strategic Planning and Marketing","The Community and the Environment","The Legal Environment", "Total Score", "Percentile Rank", "Test Time")
colnames(a)=c("Estimate","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
| Estimate | Lower 95% CI | Upper 95% CI | t-Value | df | Holm-Adjusted p | |
|---|---|---|---|---|---|---|
| Financial Management | 17.593 | 11.433 | 23.752 | 5.729 | 53 | 0.000 |
| General Management | 17.963 | 12.292 | 23.634 | 6.354 | 53 | 0.000 |
| Healthcare Personnel | 14.815 | 9.037 | 20.593 | 5.143 | 53 | 0.000 |
| Healthcare Systems and Organizations | 14.630 | 7.443 | 21.816 | 4.083 | 53 | 0.000 |
| Information Management | 8.333 | 2.340 | 14.326 | 2.789 | 53 | 0.007 |
| Leadership Skills and Behavior | 18.333 | 12.604 | 24.062 | 6.418 | 53 | 0.000 |
| Managing Change | 9.074 | 3.738 | 14.410 | 3.411 | 53 | 0.001 |
| Organizational Climate and Culture | 11.852 | 6.548 | 17.156 | 4.482 | 53 | 0.000 |
| Quality Improvement | 15.000 | 9.420 | 20.580 | 5.392 | 53 | 0.000 |
| Strategic Planning and Marketing | 21.296 | 15.888 | 26.705 | 7.898 | 53 | 0.000 |
| The Community and the Environment | 15.000 | 8.754 | 21.246 | 4.817 | 53 | 0.000 |
| The Legal Environment | 13.519 | 7.021 | 20.016 | 4.173 | 53 | 0.000 |
| Total Score | 12.851 | 10.521 | 15.181 | 11.062 | 53 | 0.000 |
| Percentile Rank | 21.704 | 14.755 | 28.652 | 6.265 | 53 | 0.000 |
| Test Time | 33.209 | 28.224 | 38.195 | 13.360 | 53 | 0.000 |
#########################################################################
#########################################################################
myf=function(x,y){
myt=t.test(x, y)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate[1],3),round(myt$estimate[2],3),
round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3),
round(myt$parameter,3),round(newp,3))
return(a)
}
a=matrix(rep(NA, 7*15), 15)
for (i in 1:15){a[i,1:7]=myf(mydata[1:54,i+9], mydata[55:108,i+9])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems and Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change","Organizational Climate and Culture", "Quality Improvement", "Strategic Planning and Marketing","The Community and the Environment","The Legal Environment", "Total Score", "Percentile Rank", "Test Time")
colnames(a)=c("Mean Pre","Mean Post","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
| Mean Pre | Mean Post | Lower 95% CI | Upper 95% CI | t-Value | df | Holm-Adjusted p | |
|---|---|---|---|---|---|---|---|
| Financial Management | 55.926 | 73.519 | -23.985 | -11.200 | -5.458 | 102.769 | 0.000 |
| General Management | 59.259 | 77.222 | -23.321 | -12.605 | -6.655 | 96.117 | 0.000 |
| Healthcare Personnel | 64.630 | 79.444 | -20.086 | -9.544 | -5.573 | 104.912 | 0.000 |
| Healthcare Systems and Organizations | 53.333 | 67.963 | -21.433 | -7.827 | -4.265 | 103.222 | 0.000 |
| Information Management | 58.333 | 66.667 | -14.290 | -2.377 | -2.778 | 92.708 | 0.007 |
| Leadership Skills and Behavior | 58.704 | 77.037 | -24.209 | -12.458 | -6.186 | 105.869 | 0.000 |
| Managing Change | 61.481 | 70.556 | -14.151 | -3.997 | -3.544 | 105.699 | 0.001 |
| Organizational Climate and Culture | 63.889 | 75.741 | -18.185 | -5.519 | -3.710 | 105.770 | 0.000 |
| Quality Improvement | 57.963 | 72.963 | -21.185 | -8.815 | -4.813 | 98.720 | 0.000 |
| Strategic Planning and Marketing | 56.111 | 77.407 | -27.133 | -15.460 | -7.246 | 92.494 | 0.000 |
| The Community and the Environment | 53.148 | 68.148 | -21.265 | -8.735 | -4.747 | 105.961 | 0.000 |
| The Legal Environment | 61.111 | 74.630 | -19.924 | -7.113 | -4.184 | 105.523 | 0.000 |
| Total Score | 58.654 | 71.505 | -15.401 | -10.300 | -10.009 | 90.803 | 0.000 |
| Percentile Rank | 58.685 | 80.389 | -29.193 | -14.214 | -5.754 | 93.808 | 0.000 |
| Test Time | 41.721 | 74.930 | -39.867 | -26.552 | -9.894 | 102.375 | 0.000 |
#########################################################################
Teaching
T1. All faculty evaluations (100%) each term have a median of 4.0 or greater out of 5.0 on the question, “Instructor provided the opportunity to learn.” {1=Strongly Disagree,…5=Strongly Agree} PO T2. 100% of faculty members support opportunities for learning professional behavior as evidenced by in class learning activities and activities in SOHA- sponsored functions. PO T3. BHA majors will successfully complete (with a grade of 80% or better) a case study/project in HA 3376 (Financial Management). SLO T4. BHA majors will successfully complete (with a grade of 80% or better) a final exam in HA 3375 (Financial Accounting). SLO T5. 100% of students will successfully complete the field experience (HA 4848) with a passing evaluation by their preceptor. A preceptor analysis will be used to determine application of the above referenced skills needing improvement. SLO T6. 100% of students will successfully complete the final project requirements in the field experience (HA 4848) with a passing evaluation by their preceptor. SLO T7. BHA majors will successfully complete (with a grade of 80% or better) a capstone case study in HA 4325 (strategic management) including an internal audit of strategic assessment; an external environmental assessment; and an assessment of a healthcare organization strategic plan. SLO T8. 90% of students will demonstrate success in the writing intensive courses by scoring B’s or better on the final writing intensive (WI) assignments in HA3324. SLO T9. 90% of students will demonstrate success in oral communication by achieving B’s or better on HA3344 group presentations. SLO T10. 80% of our students will attain IISE Lean Six Sigma Green Belt Certification. SLO T11. 80% of our students will attain Excel Basic MOS Certification. SLO T12. 80% of our students will attain Excel Expert MOS Certification. SLO T13. 80% of our students will attain QuickBooks Certification. SLO T14. 100% of students will successfully complete the comprehensive exam with greater than median (nationwide) comparative scores. SLO T15. 100% of students will have higher post-test scores than pre-test scores on the Peregrine exit exam. SLO
Research
R1. 100% of faculty members are engaged in research activities that support the body of knowledge in their respective fields as evidenced by at least one peer-reviewed publication each year. PO R2. 50% of faculty acquire research funding for the University and the Department (stretch goal). PO R3. 50% of students present a paper, poster or other research outcome at a professional conference or research symposium. SLO R4. 10% of students are a named author on an article submitted for publication in a peer- reviewed journal. SLO R5. 100% of faculty will collaborate either internally or externally for research purposes to build the research portfolio of our program. PO
Service
S1. 100% of faculty members will have demonstrated professional service each year as evidenced by review of CV’s. PO S2. 100% of faculty members will have demonstrated community service each year as evidenced by review of CV’s. PO S3. 100% of faculty provide service at the University, College, School, or Department level. PO
Student Success and Admissions
SS1. 50% of students seeking employment will have jobs within 1 month after graduation. SLO SS2. 100% of students seeking employment will have jobs within 9 months after graduation. SLO SS3. 80% or more of available seats will be filled with highly qualified students each term. PO SS4. 70% of original cohort graduate together. SLO SS5. 25% or more of admitted students will be of minority status. SLO
Program Success
P1. The program will maintain AUPHA certification (binary). PO P2. One or more students will receive national awards. PO P3. The BHA budget remains static or grows but does not shrink. PO P4. 100% of vacant positions are filled. PO P5. Alumni will serve as preceptors and speakers for the program as well as board members. PO P6. In-building student computer facilities increase (binary). PO