5a.

#True - An interaction effect in the model from a factorial experiment involving quantitative factors is a way of incorporating curvature into the response surface model representation of the results.

5b

#True-A factorial experiment may be conducted as a RCBD by running each replicate of the experiment in a unique block.c

5c

# True - If an interaction effect in a factorial experiment is significant, the main effects of the factors involved in that interaction are difficult to interpret individually.

5d

#a.
#   Ho: No term in the model is associated with the response (covariates, blocks, factor terms, and curvature).
#   Ha: At least one term in the model is associated with the response (covariates, blocks, factor terms, and curvature)
#   Since the p value>0.0904 in the row, We fail to reject Ho which means that no terms in the model is associated to y.

#b.
# A is associated with the response (p-value < 0.05), and B is not associated with the response (p-value > 0.05)

#c. 3 levels

#d.
# With 11 total degrees of freedom, a total of 12 runs were made. Therefore, two replicates were made for each experimental run.

#5

#a. Complete the ANOVA calculations
#   Source   SS      DF    MS      F
#   A          50.00   1       50.00   50
#   B          80.00   2     40.00   40
#   AB       30.00   2     15.00   15
#   Error    12.00   12    1.00
#   Total    172.00  17 
#b Since the F-values for the main effects and interaction effects are large, we can conclude that the main effect and interaction effects are significant.
#c  True
#6.
#Two-way ANOVA: y versus A, B

#Source        DF      SS         MS       F        P
# A              1    0.0002    0.0002   <0.0001  1.0
# B              3    180.378   60.126    3.03    0.1
# Interaction    3      8.479   2.83     0.142    0.9
# Error          8    158.797   19.85
# Total         15    347.653 

#b. 4 levels

#c. 16/8 =2

#d. All terms are not associated with the response since pvalue is > 0.05
# Treatment A: Pressure(200,215 and 230)
# Treatment B: Temperature(150,160 and 170).
a= 3
b=3
n=2
y <- c(90.4,90.2,90.7,90.6,90.2,90.4,90.1,90.3,90.5,90.6,89.9,90.1,
       90.5,90.7,90.8,90.9,90.4,90.1)
A <- factor(rep(c(rep("200",n),rep("215",n),rep("230",n)),3))
B <- factor(c(rep("150",3*n),rep("160",3*n),rep("170",3*n)))
X <- data.frame(y,A,B)
## main effects model
model <- aov(y~A*B)
anova(model)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## A          2 0.76778 0.38389 21.5937 0.0003673 ***
## B          2 0.30111 0.15056  8.4687 0.0085392 ** 
## A:B        4 0.06889 0.01722  0.9687 0.4700058    
## Residuals  9 0.16000 0.01778                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Only the main effects are significant.

#b.
qqnorm(model$residuals)
qqline(model$residuals)

shapiro.test(model$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model$residuals
## W = 0.87366, p-value = 0.02046
plot(model$fitted.values,model$residuals)
abline(h=0)

# Normality fails! I will check in with Professor Viles.

#c When both temperature and pressure are in a feasible range of ops.

#8

# treatment A (Depth of cut)
a <- 4
# treatment B(Feed rate)
b <- 3
# Number of relicates 
n=3
# response variable
y <- c(74,64,60,79,68,73,82,88,92,99,104,96,
       92,86,88,98,104,88,99,108,95,104,110,99,
       99,98,102,104,99,95,108,110,99,114,111,107)
# factor variables 
A <- factor(rep(c(rep("0.15",3),rep("0.18",3),rep("0.20",3),rep("0.25",3)),3))
B <- factor(c(rep("0.20",4*n),rep("0.25",4*n),rep("0.30",4*n)))
X <- data.frame(y,A,B)
model <- aov(y~A*B)
anova(model)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## A          3 2125.11  708.37 24.6628 1.652e-07 ***
## B          2 3160.50 1580.25 55.0184 1.086e-09 ***
## A:B        6  557.06   92.84  3.2324   0.01797 *  
## Residuals 24  689.33   28.72                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The main effects and interaction effects are associated with the response (p-value<0.05)

#b.
qqnorm(model$residuals)
qqline(model$residuals)

plot(model$fitted.values,model$residuals)
abline(h=0)

shapiro.test(model$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model$residuals
## W = 0.97051, p-value = 0.4397
# Critical assumptions met! 

#c.
# mean surface at each feed rate:
c(mean(y[B=="0.20"]),mean(y[B=="0.25"]),mean(y[B=="0.30"]))
## [1]  81.58333  97.58333 103.83333
#d in table

11

# Treatment A (Production machines)
a <- 4
# Treatment B (Operators)
b <- 3
# no of replicates 
n <- 2
y <- c(109,110,110,115,108,109,110,108,
       110,112,110,111,111,109,114,112,
       116,114,112,115,114,119,120,117)
A <- factor(rep(c(rep("m1",n),rep("m2",n),rep("m3",n),rep("m4",n)),3))
B <- factor(c(rep("O1",4*n),rep("O2",4*n),rep("O3",4*n)))
X <- data.frame(y,A,B)
model <- aov(y~A*B)
anova(model)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## A          3  12.458   4.153  1.0952 0.3887526    
## B          2 160.333  80.167 21.1429 0.0001167 ***
## A:B        6  44.667   7.444  1.9634 0.1506807    
## Residuals 12  45.500   3.792                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Only operators found to be associated with the response.

#b.
qqnorm(model$residuals)
qqline(model$residuals)

plot(model$fitted.values,model$residuals)
abline(h=0)

shapiro.test(model$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model$residuals
## W = 0.94926, p-value = 0.2611
#Critical assumptions met.

12

# Treatment A (Temperature)
a <- 3
# Treatment B (glass type)
b <- 3
n <- 3

y <- c(580,568,570,1090,1087,1085,1392,1380,1386,
       550,530,579,1070,1035,1000,1328,1312,1299,
       546,575,599,1045,1053,1066,867,904,889)
A <- factor(rep(c(rep("100",n),rep("125",n),rep("150",n)),3))
B <- factor(c(rep("type1",3*n),rep("type2",3*n),rep("type3",3*n)))
X <- data.frame(y,A,B)

model <- aov(y~A*B)
anova(model)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## A          2 1970335  985167 2695.26 < 2.2e-16 ***
## B          2  150865   75432  206.37 3.886e-13 ***
## A:B        4  290552   72638  198.73 1.254e-14 ***
## Residuals 18    6579     366                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# All main effects and interaction effects are related to response.


qqnorm(model$residuals)
qqline(model$residuals)

plot(model$fitted.values,model$residuals)
abline(h=0)

shapiro.test(model$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model$residuals
## W = 0.96695, p-value = 0.5237
#Critical assumptions met.

19

#Results provided in class.

21

# treatment A(Operators)
a <- 3
# treatment B(Cycle time)
b <- 3
# treatment C(Temperature)
c <- 2
# NO OF replicates
n <- 3
y <- c(23,24,25,27,28,26,31,32,29,
       36,35,36,34,38,39,33,34,35,
       28,24,27,35,35,34,26,27,25,
       24,23,28,38,36,35,34,36,39,
       37,39,35,34,38,36,34,36,31,
       26,29,25,36,37,34,28,26,24
)

A <- factor(rep(c(rep("o1",n),rep("o2",n),rep("o3",n)),c*b))
B <- factor(rep(c(rep("40",3*n),rep("50",3*n),rep("60",3*n)),2))
C <- factor(c(rep("t300",a*b*n),rep("t350",a*b*n)))
X <- data.frame(y,A,B,C)
model<- aov(y~A*B*C)
anova(model)
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## A          2 261.33 130.667 39.8644 7.439e-10 ***
## B          2 436.00 218.000 66.5085 8.141e-13 ***
## C          1  50.07  50.074 15.2768 0.0003934 ***
## A:B        4 355.67  88.917 27.1271 1.982e-10 ***
## A:C        2  11.26   5.630  1.7175 0.1938948    
## B:C        2  78.81  39.407 12.0226 0.0001002 ***
## A:B:C      4  46.19  11.546  3.5226 0.0158701 *  
## Residuals 36 118.00   3.278                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Expect the interaction between A and C, all other main terms and interactive terms are associated with the respone

## residuals
qqnorm(model$residuals)
qqline(model$residuals)

plot(model$fitted.values,model$residuals)
abline(h=0)

shapiro.test(model$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model$residuals
## W = 0.97742, p-value = 0.3978

26

# treatment A (anneal temperature)
a <- 3
# treatment B (polysilicon doping)
b <- 2
# replicates 
n <- 2
#response variable
y <- c(4.6,4.4,10.15,10.2,11.01,10.58,
       3.2,3.5,9.38,10.02,10.81,10.6)
# factor variables
A <- factor(rep(c(rep("900",n),rep("950",n),rep("1000",n)),2))
B <- factor(c(rep("1e20",3*n),rep("2e20",3*n)))
X <- data.frame(y,A,B)

model <- aov(y~A*B)
anova(model)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq  F value    Pr(>F)    
## A          2 111.188  55.594 865.1634 4.126e-08 ***
## B          1   0.980   0.980  15.2573  0.007928 ** 
## A:B        2   0.576   0.288   4.4805  0.064502 .  
## Residuals  6   0.386   0.064                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The main terms and interactive terms are associated with the response.


#b.
interaction.plot(x.factor=A,trace.factor=B,response=y,
                 fun=mean,type="b",col=c(2,3),  
                 pch=c(19,15),fixed=TRUE,leg.bty="o",main="Interaction Plot")

#c.
qqnorm(model$residuals)
qqline(model$residuals)

plot(model$fitted.values,model$residuals)
abline(h=0)

#Critical Assumptions met.

#d - Will ask Professor Viles in Class.