Introduction

On Tuesday March 24th, 2020 Grady Healthcare System implemented a COVID-19 Screening Program for its healthcare workforce in Zone for of its Emergency Department. In this program, HCWs complete a REDCap (Research Electronic Data Capture) survey available on-line and through their smartphones.

Link to survey.

This is a report of the numbers of HCWs tested, the number positive, and a comparison of demographic and symptom characteristics between those HCWs with and without SARS-CoV-2 detected.

Dataset Construction

Exclusions are those with missing result status for SARS-CoV-2 test. Select the code button in this section to see the R code for dataset construction.

uri = 'https://redcap.emory.edu/api/'
token = "76F7E451B7A30F57E44C3598EBB7A510"

hcw0<-redcap_read_oneshot(redcap_uri=uri, token=token)$data

onezero <- function(x){
  x <- as.factor(x)
  x <- recode_factor(x, "0"="No","1"="Yes")
}

hcw1 <- hcw0 %>%
  filter(record_id >= 5000)%>%
  mutate(
    test_date = as.Date(hcw_testing_date, format='%Y-%d-%m'),
    sx_onset_date = as.Date(hcw_onset, format='%Y-%d-%m'),
    quarantine_date = as.Date(quarantine_date, format='%Y-%d-%m'),
    Sx.to.test = test_date - sx_onset_date,
    Quarantine.to.test =test_date - quarantine_date, 
    Sx.to.quarantine = quarantine_date - sx_onset_date,
    Sx.to.test = ifelse(Sx.to.test < 0, -1, Sx.to.test), 
    Sx.to.test = na_if(Sx.to.test, -1),
    Quarantine.to.test = ifelse(Quarantine.to.test < 0, -1,  
                                Quarantine.to.test), 
    Quarantine.to.test = na_if(Quarantine.to.test, -1),
    Sx.to.quarantine = ifelse(Sx.to.quarantine < 0, -1, 
                              Sx.to.quarantine), 
    Sx.to.quarantine = na_if(Sx.to.quarantine, -1),
    sars_result = if_else(hcws_sars==0, "No",
                          if_else(hcws_sars==1, "Yes",
                                                NA_character_)),
    sars_result = as.factor(sars_result),
    Gender = if_else(hcws_gender==1, "Female",
                     if_else(hcws_gender==0, "Male",
                             NA_character_)),
    Employer = if_else(hcw_employer==0, "Grady",
                       if_else(hcw_employer==1, "Emory",
                               if_else(hcw_employer==2, "Morehouse",
                                       NA_character_))),
    Location = if_else(hcw_location == 0, "Hospital",
                       if_else(hcw_location == 1, "Clinic",
                               if_else(hcw_location == 2, "Clinic",
                                       if_else(hcw_location == 3, "Nursing Home",
                                               NA_character_)))),
    Job = if_else(hcw_job == 0, "Nurse",
            if_else(hcw_job == 1, "Medical Assistant",
              if_else(hcw_job == 2, "Physician",
                if_else(hcw_job == 3, "Pharmacist",
                  if_else(hcw_job == 4|
                            hcw_job == 5|
                            hcw_job == 6|
                            hcw_job == 7|
                            hcw_job == 8|
                            hcw_job == 11,"Other",
                    if_else(hcw_job == 9, "Administrator",
                      if_else(hcw_job == 10, "EMT", NA_character_))))))),
    Family_Exposure = if_else(hcw_family_exp==1, "Yes",
                              if_else(hcw_family_exp==0|
                                      hcw_family_exp==2, "No", NA_character_)),
    Patient_Exposure = if_else(hcw_patient_exp==1, "Yes",
                               if_else(hcw_patient_exp==0|
                                      hcw_patient_exp==2, "No", NA_character_)),
    Home_Exposure = if_else(hcw_sick_contact==1, "Yes",
                            if_else(hcw_sick_contact==0|
                                    hcw_sick_contact==2, "No", NA_character_)),
    Patient_contact = onezero(hcw_patient_contact),
    Area = onezero(hcw_area),
    Self.quarantine = onezero(hcw_quarantine),
    Fever = onezero(hcw_fever),
    Fatigue = onezero(hcw_fatigue),
    Chills  = onezero(hcw_chills),
    Myalgias = onezero(hcw_myalgias),
    Cough = onezero(hcw_cough),
    Short.of.breath = onezero(hcw_sob),
    Congestion = onezero(hcw_congestion),
    Sore.throat = onezero(hcw_throat),
    Diarrhea = onezero(hcw_diarrhea),
    Loss.of.smell = onezero(hcw_smell),
    Loss.of.taste = onezero(hcw_taste),
    Symptom.number = hcw_fever +
      hcw_fatigue + 
      hcw_chills + 
      hcw_myalgias + 
      hcw_cough + 
      hcw_sob + 
      hcw_congestion + 
      hcw_throat + 
      hcw_diarrhea + 
      hcw_smell + 
      hcw_taste,
    Fever.38 = if_else(fever_amount >= 38, "Yes", "No", NA_character_),
    Smell.and.taste = if_else(hcw_taste == 1 & hcw_smell ==1, "Yes", "No", NA_character_),
    Smell.or.taste = if_else(hcw_taste == 1 | hcw_smell ==1, "Yes", "No", NA_character_),
    Smell.nor.taste = if_else(hcw_taste == 0 | hcw_smell ==0, "Yes", "No", NA_character_)
      )%>%
  select(
    record_id,
    test_date,
    sx_onset_date,
    quarantine_date,
    Sx.to.test,
    Quarantine.to.test,
    Sx.to.quarantine,
    sars_result,
    Age = hcw_age,
    Gender,
    Location,
    Employer,
    Family_Exposure,
    Patient_Exposure,
    Home_Exposure,
    Patient_contact,
    Job,
    Area,
    Self.quarantine,
    Fever,
    fever_amount,
    Fatigue,
    Chills,
    Myalgias,
    Cough,
    Short.of.breath,
    Congestion,
    Sore.throat,
    Diarrhea,
    Loss.of.smell,
    Loss.of.taste,
    Symptom.number,
    Fever.38,
    Smell.and.taste,
    Smell.or.taste,
    Smell.nor.taste
  )

#Remove those with missing SARS_coV2 result
hcw2 <- hcw1 %>% filter(is.na(sars_result)!=T)

#data summary for graphing
hcw.ts <- hcw2 %>%
  mutate(date = as.character(test_date, '%m-%d')) %>%
  group_by(date)%>%
  summarise(N = n(),
            Positive = sum(sars_result=="Yes"),
            Percent.positive = round(Positive/N * 100, digits = 1),
            Mean.Sx.2.quarantine = round(mean(Sx.to.quarantine, na.rm = T), digits = 1),
            Mean.Sx.2.test = round(mean(Sx.to.test,na.rm = T), digits = 1),
            Mean.quarantine.2.test = round(mean(Quarantine.to.test, na.rm = T), digits = 1),
            )%>%
  mutate(Cum.N = cumsum(N),
         Cum.P = cumsum(Positive))

hcw_subset1 <- hcw2 %>%
  filter(sars_result == "No")%>%
  filter(Smell.or.taste == "Yes")%>%
  select(Smell.or.taste,
         sars_result,
         Sx.to.test)

hcw_subset2 <- hcw2 %>%
  filter(sars_result == "Yes")%>%
  filter(Fever == "No" & Cough == "No" & Short.of.breath == "No" & Sore.throat == "No")%>%
  select(Smell.or.taste,
         sars_result,
         Fever,
         Cough,
         Short.of.breath,
         Sore.throat)

hcw_subset3 <- hcw2 %>%
  filter(sars_result == "Yes")%>%
  select(Smell.or.taste,
         sars_result,
         Congestion)

hcw_subset4 <- hcw2 %>%
  filter(sars_result == "No")%>%
  select(Smell.or.taste,
         sars_result,
         Congestion)

Results

  • As of 2020-04-28:
    • Total number of tests = 352
    • Total number of tests with results = 283
    • Total number of positive tests = 51
    • Total percent positive = 18
    • Mean (SD) number of days from symptoms to testing total group = 5.7(6)
ggplot(hcw.ts, aes(x=date))+
  geom_bar(aes(y=N),stat = 'identity',fill="dark grey", color = "black")+
  geom_bar(aes(y=Positive),stat = 'identity',fill="dark red", color = "black")+
  geom_text(aes(y=N, label = N), nudge_y = 2.5)+
  geom_text(aes(y=Positive, label = Positive), nudge_y = 2)+
  theme_bw()+
  labs(title = "Total Daily Tests Performed",
       x= "Date of SARS-CoV- 2 Test",
       y= "Number of tests")+
  theme(axis.title = element_text(size = 14),
        axis.text.x = element_text(angle = 60, hjust = 1, size =12),
        axis.text.y = element_text(size = 12))

ggplot(hcw.ts, aes(x=date))+
  geom_bar(aes(y=Cum.N),stat = 'identity',fill="dark grey", color = "black")+
  geom_bar(aes(y=Cum.P),stat = 'identity',fill="dark red", color = "black")+
  geom_text(aes(y=Cum.N, label = Cum.N), nudge_y = 20)+
  geom_text(aes(y=Cum.P, label = Cum.P), nudge_y = 10)+
  theme_bw()+
  labs(title = "Cumulative Number of Tests Performed",
       x= "Date of SARS-CoV- 2 Test",
       y= "Number of tests")+
  theme(axis.title = element_text(size = 14),
        axis.text.x = element_text(angle = 60, hjust = 1, size =12),
        axis.text.y = element_text(size = 12))

ggplot(hcw.ts, aes(x=date))+
  geom_bar(aes(y=Percent.positive),stat = 'identity',fill="dark red", color = "black")+
  geom_text(aes(y=Percent.positive, label = Percent.positive), nudge_y = 2)+
  theme_bw()+
  labs(title = "Percent of Daily Tests Performed Resulted Positive",
       x= "Date of SARS-CoV- 2 Test",
       y= "%")+
  theme(axis.title = element_text(size = 14),
        axis.text.x = element_text(angle = 60, hjust = 1, size =12),
        axis.text.y = element_text(size = 12))

ggplot(hcw.ts, aes(x=date))+
  geom_bar(aes(y=Mean.Sx.2.quarantine),stat = 'identity',fill="dark red", color = "black")+
  geom_text(aes(y=Mean.Sx.2.quarantine, label = Mean.Sx.2.quarantine), nudge_y = 2)+
  theme_bw()+
  labs(title = "Mean Days from Symptoms Onset to Quarantine",
       x= "Date of SARS-CoV- 2 Test",
       y= "Days")+
  theme(axis.title = element_text(size = 14),
        axis.text.x = element_text(angle = 60, hjust = 1, size =12),
        axis.text.y = element_text(size = 12))

ggplot(hcw.ts, aes(x=date))+
  geom_bar(aes(y= Mean.quarantine.2.test),stat = 'identity',fill="dark red", color = "black")+
  geom_text(aes(y= Mean.quarantine.2.test, label =  Mean.quarantine.2.test), nudge_y = 2)+
  theme_bw()+
  labs(title = "Mean Days from Quarantine to Test",
       x= "Date of SARS-CoV- 2 Test",
       y= "Days")+
  theme(axis.title = element_text(size = 14),
        axis.text.x = element_text(angle = 60, hjust = 1, size =12),
        axis.text.y = element_text(size = 12))

ggplot(hcw.ts, aes(x=date))+
  geom_bar(aes(y= Mean.Sx.2.test),stat = 'identity',fill="dark red", color = "black")+
  geom_text(aes(y= Mean.Sx.2.test, label =  Mean.Sx.2.test), nudge_y = 2)+
  theme_bw()+
  labs(title = "Mean Days from Symptoms Onset to Test",
       x= "Date of SARS-CoV- 2 Test",
       y= "Days")+
  theme(axis.title = element_text(size = 14),
        axis.text.x = element_text(angle = 60, hjust = 1, size =12),
        axis.text.y = element_text(size = 12))

Bivariate Analysis on SARS-CoV-2 Result

The CompareGroups package was utilized to generate this table.

  • Notes*
    • Number with Invalid Quarantine to test = 86
    • Number with Invalid Symptome Onset to test = 11
    • Number with Invalid Symptoms Onset Quarantine = 93
    • Number with Fever over 38C Missing = 196
sars.demo <- compareGroups(sars_result ~ 
                        Age+
                        Gender +
                        Location +
                        Employer +
                        Job + 
                        Patient_contact +
                        Self.quarantine+
                        Family_Exposure+
                        Patient_Exposure+
                        Home_Exposure+
                        Sx.to.test+
                        Quarantine.to.test+
                        Sx.to.quarantine,
                      data = hcw2,
                      method = c(Age = 1, Sx.to.test = 1, Quarantine.to.test =1, Sx.to.quarantine =1))

sars.demo.table <- createTable(sars.demo, hide.no = "no")

sars.sx <- compareGroups(sars_result ~ 
                             Fever +
                             Fatigue +
                             Chills +
                             Myalgias +
                             Cough +
                             Short.of.breath +
                             Congestion +
                             Sore.throat +
                             Diarrhea +
                             Loss.of.smell +
                             Loss.of.taste +
                             Symptom.number+
                             Fever.38+
                             Smell.and.taste+
                             Smell.or.taste+
                             Smell.nor.taste,
                           data = hcw2)

sars.sx.table <- createTable(sars.sx, hide.no = "no")

export2md(sars.demo.table, loc = "left", caption = "Demographic Characteristics", size = "large")
Demographic Characteristics
No Yes p.overall
N=232 N=51
Age 41.9 (11.7) 42.8 (11.6) 0.615
Gender: 0.440
Female 191 (82.3%) 39 (76.5%)
Male 41 (17.7%) 12 (23.5%)
Location: 0.202
Clinic 30 (13.0%) 10 (19.6%)
Hospital 192 (83.1%) 41 (80.4%)
Nursing Home 9 (3.90%) 0 (0.00%)
Employer: 1.000
Emory 17 (7.33%) 3 (6.00%)
Grady 206 (88.8%) 45 (90.0%)
Morehouse 9 (3.88%) 2 (4.00%)
Job: 0.104
Administrator 8 (3.46%) 2 (3.92%)
EMT 17 (7.36%) 1 (1.96%)
Medical Assistant 11 (4.76%) 2 (3.92%)
Nurse 80 (34.6%) 14 (27.5%)
Other 76 (32.9%) 19 (37.3%)
Pharmacist 10 (4.33%) 8 (15.7%)
Physician 29 (12.6%) 5 (9.80%)
Patient_contact 202 (87.8%) 49 (96.1%) 0.140
Self.quarantine 165 (71.4%) 40 (78.4%) 0.400
Family_Exposure 23 (9.96%) 3 (5.88%) 0.591
Patient_Exposure 83 (35.9%) 17 (33.3%) 0.850
Home_Exposure 17 (7.36%) 3 (5.88%) 1.000
Sx.to.test 5.77 (6.40) 5.09 (3.05) 0.266
Quarantine.to.test 4.09 (6.18) 2.94 (2.93) 0.100
Sx.to.quarantine 2.57 (6.53) 6.22 (25.6) 0.395
export2md(sars.sx.table, loc = "left", caption = "Self-Reported Symptoms", size = "large")
Self-Reported Symptoms
No Yes p.overall
N=228 N=51
Fever 74 (32.5%) 32 (62.7%) <0.001
Fatigue 139 (61.0%) 39 (76.5%) 0.055
Chills 83 (36.4%) 34 (66.7%) <0.001
Myalgias 80 (35.1%) 28 (54.9%) 0.014
Cough 157 (68.9%) 37 (72.5%) 0.727
Short.of.breath 86 (37.7%) 16 (31.4%) 0.490
Congestion 118 (51.8%) 25 (49.0%) 0.843
Sore.throat 108 (47.4%) 22 (43.1%) 0.695
Diarrhea 72 (31.6%) 13 (26.0%) 0.545
Loss.of.smell 17 (7.46%) 26 (51.0%) <0.001
Loss.of.taste 17 (7.46%) 27 (52.9%) <0.001
Symptom.number 4.17 (2.21) 5.86 (2.11) <0.001
Fever.38 22 (37.3%) 5 (17.9%) 0.114
Smell.and.taste 10 (4.39%) 22 (43.1%) <0.001
Smell.or.taste 24 (10.5%) 31 (60.8%) <0.001
Smell.nor.taste 218 (95.6%) 29 (56.9%) <0.001

Predictive Characteristics of Symptoms

Fever

Fever.tab <- with(hcw2,table(Fever,sars_result))
Fever.matrix <- as.matrix(confusionMatrix(Fever.tab, positive = "Yes"), what = "classes")
kable(Fever.matrix, digits = 2)
Sensitivity 0.63
Specificity 0.68
Pos Pred Value 0.30
Neg Pred Value 0.89
Precision 0.30
Recall 0.63
F1 0.41
Prevalence 0.18
Detection Rate 0.11
Detection Prevalence 0.38
Balanced Accuracy 0.65

Fever 38

Fever38.tab <- with(hcw2,table(Fever.38,sars_result))
Fever38.matrix <- as.matrix(confusionMatrix(Fever38.tab, positive = "Yes"), what = "classes")
kable(Fever38.matrix, digits = 2)
Sensitivity 0.18
Specificity 0.63
Pos Pred Value 0.19
Neg Pred Value 0.62
Precision 0.19
Recall 0.18
F1 0.18
Prevalence 0.32
Detection Rate 0.06
Detection Prevalence 0.31
Balanced Accuracy 0.40

Fatigue

Fatigue.tab <- with(hcw2,table(Fatigue,sars_result))
Fatigue.matrix <- as.matrix(confusionMatrix(Fatigue.tab, positive = "Yes"), what = "classes")
kable(Fatigue.matrix, digits = 2)
Sensitivity 0.76
Specificity 0.39
Pos Pred Value 0.22
Neg Pred Value 0.88
Precision 0.22
Recall 0.76
F1 0.34
Prevalence 0.18
Detection Rate 0.14
Detection Prevalence 0.64
Balanced Accuracy 0.58

Chills

Chills.tab <- with(hcw2,table(Chills,sars_result))
Chills.matrix <- as.matrix(confusionMatrix(Chills.tab, positive = "Yes"), what = "classes")
kable(Chills.matrix, digits = 2)
Sensitivity 0.67
Specificity 0.64
Pos Pred Value 0.29
Neg Pred Value 0.90
Precision 0.29
Recall 0.67
F1 0.40
Prevalence 0.18
Detection Rate 0.12
Detection Prevalence 0.42
Balanced Accuracy 0.65

Myalgias

Myalgias.tab <- with(hcw2,table(Myalgias,sars_result))
Myalgias.matrix <- as.matrix(confusionMatrix(Myalgias.tab, positive = "Yes"), what = "classes")
kable(Myalgias.matrix, digits = 2)
Sensitivity 0.55
Specificity 0.65
Pos Pred Value 0.26
Neg Pred Value 0.87
Precision 0.26
Recall 0.55
F1 0.35
Prevalence 0.18
Detection Rate 0.10
Detection Prevalence 0.39
Balanced Accuracy 0.60

Cough

Cough.tab <- with(hcw2,table(Cough,sars_result))
Cough.matrix <- as.matrix(confusionMatrix(Cough.tab, positive = "Yes"), what = "classes")
kable(Cough.matrix, digits = 2)
Sensitivity 0.73
Specificity 0.31
Pos Pred Value 0.19
Neg Pred Value 0.84
Precision 0.19
Recall 0.73
F1 0.30
Prevalence 0.18
Detection Rate 0.13
Detection Prevalence 0.70
Balanced Accuracy 0.52

Shortness of Breath

Short.of.breath.tab <- with(hcw2,table(Short.of.breath,sars_result))
Short.of.breath.matrix <- as.matrix(confusionMatrix(Short.of.breath.tab, positive = "Yes"), what = "classes")
kable(Short.of.breath.matrix, digits = 2)
Sensitivity 0.31
Specificity 0.62
Pos Pred Value 0.16
Neg Pred Value 0.80
Precision 0.16
Recall 0.31
F1 0.21
Prevalence 0.18
Detection Rate 0.06
Detection Prevalence 0.37
Balanced Accuracy 0.47

Congestion

Congestion.tab <- with(hcw2,table(Congestion,sars_result))
Congestion.matrix <- as.matrix(confusionMatrix(Congestion.tab, positive = "Yes"), what = "classes")
kable(Congestion.matrix, digits = 2)
Sensitivity 0.49
Specificity 0.48
Pos Pred Value 0.17
Neg Pred Value 0.81
Precision 0.17
Recall 0.49
F1 0.26
Prevalence 0.18
Detection Rate 0.09
Detection Prevalence 0.51
Balanced Accuracy 0.49

Sore Throat

Sore.throat.tab <- with(hcw2,table(Sore.throat,sars_result))
Sore.throat.matrix <- as.matrix(confusionMatrix(Sore.throat.tab, positive = "Yes"), what = "classes")
kable(Sore.throat.matrix, digits = 2)
Sensitivity 0.43
Specificity 0.53
Pos Pred Value 0.17
Neg Pred Value 0.81
Precision 0.17
Recall 0.43
F1 0.24
Prevalence 0.18
Detection Rate 0.08
Detection Prevalence 0.47
Balanced Accuracy 0.48

Diarrhea

Diarrhea.tab <- with(hcw2,table(Diarrhea,sars_result))
Diarrhea.matrix <- as.matrix(confusionMatrix(Diarrhea.tab, positive = "Yes"), what = "classes")
kable(Diarrhea.matrix, digits = 2)
Sensitivity 0.26
Specificity 0.68
Pos Pred Value 0.15
Neg Pred Value 0.81
Precision 0.15
Recall 0.26
F1 0.19
Prevalence 0.18
Detection Rate 0.05
Detection Prevalence 0.31
Balanced Accuracy 0.47

Loss of Smell (ansomia)

Loss.of.smell.tab <- with(hcw2,table(Loss.of.smell,sars_result))
Loss.of.smell.matrix <- as.matrix(confusionMatrix(Loss.of.smell.tab, positive = "Yes"), what = "classes")
kable(Loss.of.smell.matrix, digits = 2)
Sensitivity 0.51
Specificity 0.93
Pos Pred Value 0.60
Neg Pred Value 0.89
Precision 0.60
Recall 0.51
F1 0.55
Prevalence 0.18
Detection Rate 0.09
Detection Prevalence 0.15
Balanced Accuracy 0.72

Loss of Taste (ageusia)

Loss.of.taste.tab <- with(hcw2,table(Loss.of.taste,sars_result))
Loss.of.taste.matrix <- as.matrix(confusionMatrix(Loss.of.taste.tab, positive = "Yes"), what = "classes")
kable(Loss.of.taste.matrix, digits = 2)
Sensitivity 0.53
Specificity 0.93
Pos Pred Value 0.61
Neg Pred Value 0.90
Precision 0.61
Recall 0.53
F1 0.57
Prevalence 0.18
Detection Rate 0.10
Detection Prevalence 0.16
Balanced Accuracy 0.73

Loss of Smell and Taste

Smell.and.taste.tab <- with(hcw2,table(Smell.and.taste,sars_result))
Smell.and.taste.matrix <- as.matrix(confusionMatrix(Smell.and.taste.tab, positive = "Yes"), what = "classes")
kable(Smell.and.taste.matrix, digits = 2)
Sensitivity 0.43
Specificity 0.96
Pos Pred Value 0.69
Neg Pred Value 0.88
Precision 0.69
Recall 0.43
F1 0.53
Prevalence 0.18
Detection Rate 0.08
Detection Prevalence 0.11
Balanced Accuracy 0.69

Loss of Smell or Taste

Smell.or.taste.tab <- with(hcw2,table(Smell.or.taste,sars_result))
Smell.or.taste.matrix <- as.matrix(confusionMatrix(Smell.or.taste.tab, positive = "Yes"), what = "classes")
kable(Smell.or.taste.matrix, digits = 2)
Sensitivity 0.61
Specificity 0.89
Pos Pred Value 0.56
Neg Pred Value 0.91
Precision 0.56
Recall 0.61
F1 0.58
Prevalence 0.18
Detection Rate 0.11
Detection Prevalence 0.20
Balanced Accuracy 0.75

Loss of Smell NOR Taste

Smell.nor.taste.tab <- with(hcw2,table(Smell.nor.taste,sars_result))
Smell.nor.taste.matrix <- as.matrix(confusionMatrix(Smell.nor.taste.tab, positive = "Yes"), what = "classes")
kable(Smell.nor.taste.matrix, digits = 2)
Sensitivity 0.57
Specificity 0.04
Pos Pred Value 0.12
Neg Pred Value 0.31
Precision 0.12
Recall 0.57
F1 0.19
Prevalence 0.18
Detection Rate 0.10
Detection Prevalence 0.89
Balanced Accuracy 0.31

Exploratory Analyses:

Of those who were SARS-CoV-2 positive and did not have self-reported fever, cough, shortness of breath, or sore throat, how may of those had loss of taste or smell? answer = 2

Of those with SARS-CoV-2 negative result and with loss of smell or taste, the time from symptom onset to testing: Min. 1st Qu. Median Mean 3rd Qu. Max.

1, 2, 4.5, 7.2916667, 11.25, 40

Of those SARS-CoV-2 Positive, what was the association between congestion and loss of taste or smell?

congestion1 <- compareGroups(Smell.or.taste ~ Congestion,
                           data = hcw_subset3)
congestion1.table <- createTable(congestion1)
export2md(congestion1.table, loc = "left", caption = "Loss of Smell or Taste (SARS+)", size = "large")
Loss of Smell or Taste (SARS+)
No Yes p.overall
N=20 N=31
Congestion: 1.000
No 10 (50.0%) 16 (51.6%)
Yes 10 (50.0%) 15 (48.4%)

Of those SARS-CoV-2 Negative, what was the association between congestion and loss of taste or smell?

congestion2 <- compareGroups(Smell.or.taste ~ Congestion,
                           data = hcw_subset4)
 congestion2.table <- createTable(congestion2)
 export2md(congestion2.table, loc = "left", caption = "Loss of Smell or Taste (SARS-)", size = "large")
Loss of Smell or Taste (SARS-)
No Yes p.overall
N=204 N=24
Congestion: 0.078
No 103 (50.5%) 7 (29.2%)
Yes 101 (49.5%) 17 (70.8%)