## Parsed with column specification:
## cols(
##   .default = col_double(),
##   area_id = col_character()
## )
## See spec(...) for full column specifications.
## Warning: 56 parsing failures.
## row                        col expected actual                                           file
## 108 prevalence_obese_reception a double     na 'data/child_obesity_london_ward_2013-2014.csv'
## 108 prevalence_obese_y6        a double     na 'data/child_obesity_london_ward_2013-2014.csv'
## 110 prevalence_obese_reception a double     na 'data/child_obesity_london_ward_2013-2014.csv'
## 110 prevalence_obese_y6        a double     na 'data/child_obesity_london_ward_2013-2014.csv'
## 397 prevalence_obese_reception a double     na 'data/child_obesity_london_ward_2013-2014.csv'
## ... .......................... ........ ...... ..............................................
## See problems(...) for more details.
## Parsed with column specification:
## cols(
##   area_id = col_character(),
##   gp_patients = col_double(),
##   gp_patients_diabetes = col_double(),
##   estimated_diabetes_prevalence = col_double()
## )
## Reading layer `wardmap' from data source `C:\TEMP\Training\MITB\ISSS608-VA\Project2\Project\data\wardmap.shp' using driver `ESRI Shapefile'
## Simple feature collection with 638 features and 6 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 503568.2 ymin: 155850.8 xmax: 561957.5 ymax: 200933.9
## proj4string:    +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +datum=OSGB36 +units=m +no_defs

Data at Ward level is missing 19 out of 25 wards of City of London

## tmap mode set to plotting
## Warning: Number of levels of the variable "bor_nm" is 33, which is
## larger than max.categories (which is 30), so levels are combined. Set
## tmap_options(max.categories = 33) in the layer function to show all levels.

## Warning: Column `ward_id`/`area_id` joining factor and character vector,
## coercing into character vector

After joining with obesity and diabetes data, further reduced to 544 records.

## Warning: Number of levels of the variable "bor_nm" is 33, which is
## larger than max.categories (which is 30), so levels are combined. Set
## tmap_options(max.categories = 33) in the layer function to show all levels.

City of London left with only 2 wards

How should we have missing Y variable values in regression?

## Warning: Column `ward_id`/`area_id` joining factor and character vector,
## coercing into character vector
## Legend labels were too wide. Therefore, legend.text.size has been set to 0.23. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

Does tm_bubbles point to the centroid of the polygon?

## tmap mode set to plotting
## Warning: Number of levels of the variable "bor_nm" is 33, which is
## larger than max.categories (which is 30), so levels are combined. Set
## tmap_options(max.categories = 33) in the layer function to show all levels.

Coordinates points from the data

Should we use the points from the data or the centroid from the polygons?

## Warning: Number of levels of the variable "bor_nm" is 33, which is
## larger than max.categories (which is 30), so levels are combined. Set
## tmap_options(max.categories = 33) in the layer function to show all levels.

h1 <- ggplot(data=wardplot_wide, aes(x= `weight`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h2 <- ggplot(data=wardplot_wide, aes(x= `volume`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h3 <- ggplot(data=wardplot_wide, aes(x= `fat`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h4 <- ggplot(data=wardplot_wide, aes(x= `saturate`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h5 <- ggplot(data=wardplot_wide, aes(x= `salt`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h6 <- ggplot(data=wardplot_wide, aes(x= `sugar`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h7 <- ggplot(data=wardplot_wide, aes(x= `protein`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h8 <- ggplot(data=wardplot_wide, aes(x= `carb`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h9 <- ggplot(data=wardplot_wide, aes(x= `fibre`)) +
  geom_histogram(bins=20, color="black", fill="light blue")
h10 <- ggplot(data=wardplot_wide, aes(x= `alcohol`)) 
#   geom_histogram(bins=20, color="black", fill="light blue")
# h11 <- ggplot(data=wardplot_wide, aes(x= `energy_fat`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h12 <- ggplot(data=wardplot_wide, aes(x= `energy_saturate`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h13 <- ggplot(data=wardplot_wide, aes(x= `energy_sugar`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h14 <- ggplot(data=wardplot_wide, aes(x= `energy_protein`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h15 <- ggplot(data=wardplot_wide, aes(x= `energy_carb`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h16 <- ggplot(data=wardplot_wide, aes(x= `energy_fibre`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h17 <- ggplot(data=wardplot_wide, aes(x= `energy_alcohol`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h18 <- ggplot(data=wardplot_wide, aes(x= `energy_tot`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h19 <- ggplot(data=wardplot_wide, aes(x= `energy_density`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h20 <- ggplot(data=wardplot_wide, aes(x= `h_nutrients_weight`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h21 <- ggplot(data=wardplot_wide, aes(x= `h_nutrients_weight_norm`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h22 <- ggplot(data=wardplot_wide, aes(x= `h_nutrients_calories`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h23 <- ggplot(data=wardplot_wide, aes(x= `h_nutrients_calories_norm`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h24 <- ggplot(data=wardplot_wide, aes(x= `h_items`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h25 <- ggplot(data=wardplot_wide, aes(x= `h_items_norm`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h26 <- ggplot(data=wardplot_wide, aes(x= `h_items_weight`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h27 <- ggplot(data=wardplot_wide, aes(x= `h_items_weight_norm`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
# h28 <- ggplot(data=wardplot_wide, aes(x= `representativeness_norm`)) +
#   geom_histogram(bins=20, color="black", fill="light blue")
#ggarrange(h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11,h12,h13,h14,h15,h16,h17,h18,h19,h20,h21,h22,h23,h24,h25,h26,h27,h28, ncol = 7, nrow = 4)
ggarrange(h1,h2,h3,h4,h5,h6,h7,h8,h9,h10, ncol = 5, nrow = 2)

How do we interpret GWSS outputs?

## tmap mode set to plotting

## Variable "sugar_LSKe" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

## Variable "carb_LSKe" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

## Variable "Cov_sugar.carb" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

## Variable "Corr_sugar.carb" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

## Variable "Spearman_rho_sugar.carb" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

Comparing mean and median across sugar and carb

## Variable "sugar_QI" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

## Variable "carb_QI" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

# Different bandwidth and kernel

## Neighbour list object:
## Number of regions: 544 
## Number of nonzero links: 2980 
## Percentage nonzero weights: 1.006974 
## Average number of links: 5.477941
## Neighbour list object:
## Number of regions: 544 
## Number of nonzero links: 2868 
## Percentage nonzero weights: 0.9691285 
## Average number of links: 5.272059

How do we interpret all these spatial divides and proximities?

## 
##  Moran I test under randomisation
## 
## data:  wardplot_wide_sp$sugar  
## weights: zone.lw.queen    
## 
## Moran I statistic standard deviate = 25.558, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.6735339404     -0.0018416206      0.0006982794
## 
##  Moran I test under randomisation
## 
## data:  wardplot_wide_sp$sugar  
## weights: zone.lw.rook    
## 
## Moran I statistic standard deviate = 25.265, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.6772000818     -0.0018416206      0.0007223414
## [1] -0.8793962  1.0220326
## [1] -0.8813781  1.0210687

How to pick the correct variables?

reg.mod1 = as.formula(prevalence_overweight_reception ~weight+volume+fat+saturate+salt+sugar+protein+carb+fibre+alcohol+energy_fat+energy_saturate+energy_sugar+energy_protein+energy_carb+energy_fibre+energy_alcohol+energy_tot+energy_density+h_nutrients_weight+h_nutrients_weight_norm+h_nutrients_calories+h_nutrients_calories_norm+h_items+h_items_norm+h_items_weight+h_items_weight_norm)
reg.mod2 = as.formula(prevalence_overweight_y6 ~weight+volume+fat+saturate+salt+sugar+protein+carb+fibre+alcohol+energy_fat+energy_saturate+energy_sugar+energy_protein+energy_carb+energy_fibre+energy_alcohol+energy_tot+energy_density+h_nutrients_weight+h_nutrients_weight_norm+h_nutrients_calories+h_nutrients_calories_norm+h_items+h_items_norm+h_items_weight+h_items_weight_norm)
reg.mod3 = as.formula(prevalence_obese_reception ~weight+volume+fat+saturate+salt+sugar+protein+carb+fibre+alcohol+energy_fat+energy_saturate+energy_sugar+energy_protein+energy_carb+energy_fibre+energy_alcohol+energy_tot+energy_density+h_nutrients_weight+h_nutrients_weight_norm+h_nutrients_calories+h_nutrients_calories_norm+h_items+h_items_norm+h_items_weight+h_items_weight_norm)
reg.mod4 = as.formula(prevalence_obese_y6 ~weight+volume+fat+saturate+salt+sugar+protein+carb+fibre+alcohol+energy_fat+energy_saturate+energy_sugar+energy_protein+energy_carb+energy_fibre+energy_alcohol+energy_tot+energy_density+h_nutrients_weight+h_nutrients_weight_norm+h_nutrients_calories+h_nutrients_calories_norm+h_items+h_items_norm+h_items_weight+h_items_weight_norm)
reg.mod5 = as.formula(estimated_diabetes_prevalence ~weight+volume+fat+saturate+salt+sugar+protein+carb+fibre+alcohol+energy_fat+energy_saturate+energy_sugar+energy_protein+energy_carb+energy_fibre+energy_alcohol+energy_tot+energy_density+h_nutrients_weight+h_nutrients_weight_norm+h_nutrients_calories+h_nutrients_calories_norm+h_items+h_items_norm+h_items_weight+h_items_weight_norm)
#coefficients(mod.OLS) # model coefficients
#confint(mod.OLS, level=0.95) # CIs for model parameters
#fitted(mod.OLS) # predicted values
#residuals(mod.OLS) # residuals
#vcov(mod.OLS) # covariance matrix for model parameters
#influence(mod.OLS) # regression diagnostics
#vif(mod.OLS)
## 
## Call:
## lm(formula = reg.mod1, data = wardplot_wide_sp)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.080951 -0.023481  0.000699  0.020772  0.109031 
## 
## Coefficients: (11 not defined because of singularities)
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -4.269e+00  2.743e+00  -1.556  0.12023    
## weight                    -6.657e-04  2.282e-04  -2.917  0.00368 ** 
## volume                    -5.577e-06  2.604e-04  -0.021  0.98292    
## fat                        3.874e-02  5.079e-02   0.763  0.44592    
## saturate                  -1.150e-01  2.788e-02  -4.125 4.32e-05 ***
## salt                       1.218e-02  7.775e-02   0.157  0.87559    
## sugar                      7.776e-04  5.874e-03   0.132  0.89474    
## protein                   -9.099e-02  5.415e-02  -1.680  0.09347 .  
## carb                       6.593e-02  3.684e-02   1.790  0.07410 .  
## fibre                     -7.566e-01  2.499e-01  -3.027  0.00259 ** 
## alcohol                   -7.385e-01  2.982e-01  -2.477  0.01356 *  
## energy_fat                        NA         NA      NA       NA    
## energy_saturate                   NA         NA      NA       NA    
## energy_sugar                      NA         NA      NA       NA    
## energy_protein                    NA         NA      NA       NA    
## energy_carb                       NA         NA      NA       NA    
## energy_fibre               1.353e-01  1.128e-01   1.199  0.23093    
## energy_alcohol                    NA         NA      NA       NA    
## energy_tot                        NA         NA      NA       NA    
## energy_density            -4.566e-01  1.644e-01  -2.777  0.00568 ** 
## h_nutrients_weight         2.442e+00  1.978e+00   1.235  0.21742    
## h_nutrients_weight_norm           NA         NA      NA       NA    
## h_nutrients_calories       4.810e-01  1.717e+00   0.280  0.77945    
## h_nutrients_calories_norm         NA         NA      NA       NA    
## h_items                    1.471e-01  7.190e-02   2.045  0.04133 *  
## h_items_norm                      NA         NA      NA       NA    
## h_items_weight            -5.302e-03  6.093e-02  -0.087  0.93070    
## h_items_weight_norm               NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0324 on 521 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.4752, Adjusted R-squared:  0.4591 
## F-statistic: 29.49 on 16 and 521 DF,  p-value: < 2.2e-16
## Analysis of Variance Table
## 
## Response: prevalence_overweight_reception
##                       Df  Sum Sq  Mean Sq  F value    Pr(>F)    
## weight                 1 0.15284 0.152837 145.6288 < 2.2e-16 ***
## volume                 1 0.00062 0.000619   0.5895 0.4429784    
## fat                    1 0.00046 0.000456   0.4346 0.5100114    
## saturate               1 0.06119 0.061191  58.3047 1.081e-13 ***
## salt                   1 0.01254 0.012537  11.9458 0.0005924 ***
## sugar                  1 0.02649 0.026490  25.2406 6.965e-07 ***
## protein                1 0.00015 0.000154   0.1464 0.7021278    
## carb                   1 0.00661 0.006608   6.2961 0.0124029 *  
## fibre                  1 0.18205 0.182050 173.4638 < 2.2e-16 ***
## alcohol                1 0.02764 0.027643  26.3390 4.050e-07 ***
## energy_fibre           1 0.00109 0.001088   1.0368 0.3090289    
## energy_density         1 0.01480 0.014802  14.1042 0.0001925 ***
## h_nutrients_weight     1 0.00094 0.000944   0.8999 0.3432437    
## h_nutrients_calories   1 0.00142 0.001417   1.3500 0.2458146    
## h_items                1 0.00628 0.006281   5.9845 0.0147617 *  
## h_items_weight         1 0.00001 0.000008   0.0076 0.9306999    
## Residuals            521 0.54679 0.001049                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm(formula = reg.mod2, data = wardplot_wide)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.118177 -0.029203  0.000007  0.027633  0.193919 
## 
## Coefficients: (11 not defined because of singularities)
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -1.035e+01  3.655e+00  -2.832 0.004811 ** 
## weight                    -9.124e-04  3.042e-04  -3.000 0.002831 ** 
## volume                     2.050e-04  3.478e-04   0.589 0.555869    
## fat                        5.870e-02  6.747e-02   0.870 0.384691    
## saturate                  -1.799e-01  3.736e-02  -4.817 1.91e-06 ***
## salt                      -2.681e-01  1.032e-01  -2.597 0.009671 ** 
## sugar                      1.655e-03  7.845e-03   0.211 0.833014    
## protein                   -2.133e-01  7.217e-02  -2.955 0.003266 ** 
## carb                       1.476e-01  4.884e-02   3.022 0.002631 ** 
## fibre                     -1.351e+00  3.307e-01  -4.086 5.09e-05 ***
## alcohol                   -1.477e+00  3.976e-01  -3.715 0.000226 ***
## energy_fat                        NA         NA      NA       NA    
## energy_saturate                   NA         NA      NA       NA    
## energy_sugar                      NA         NA      NA       NA    
## energy_protein                    NA         NA      NA       NA    
## energy_carb                       NA         NA      NA       NA    
## energy_fibre               2.702e-01  1.496e-01   1.806 0.071477 .  
## energy_alcohol                    NA         NA      NA       NA    
## energy_tot                        NA         NA      NA       NA    
## energy_density            -7.340e-01  2.192e-01  -3.349 0.000870 ***
## h_nutrients_weight         6.486e+00  2.620e+00   2.475 0.013627 *  
## h_nutrients_weight_norm           NA         NA      NA       NA    
## h_nutrients_calories      -3.258e-02  2.281e+00  -0.014 0.988607    
## h_nutrients_calories_norm         NA         NA      NA       NA    
## h_items                    3.617e-01  9.640e-02   3.752 0.000195 ***
## h_items_norm                      NA         NA      NA       NA    
## h_items_weight            -4.170e-02  8.153e-02  -0.511 0.609259    
## h_items_weight_norm               NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0431 on 519 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5473, Adjusted R-squared:  0.5334 
## F-statistic: 39.22 on 16 and 519 DF,  p-value: < 2.2e-16
## Analysis of Variance Table
## 
## Response: prevalence_overweight_y6
##                       Df  Sum Sq Mean Sq  F value    Pr(>F)    
## weight                 1 0.48320 0.48320 260.0702 < 2.2e-16 ***
## volume                 1 0.00248 0.00248   1.3340 0.2486184    
## fat                    1 0.02040 0.02040  10.9811 0.0009847 ***
## saturate               1 0.08153 0.08153  43.8812 8.743e-11 ***
## salt                   1 0.00294 0.00294   1.5848 0.2086431    
## sugar                  1 0.01888 0.01888  10.1628 0.0015194 ** 
## protein                1 0.00112 0.00112   0.6013 0.4384483    
## carb                   1 0.03582 0.03582  19.2802 1.368e-05 ***
## fibre                  1 0.36433 0.36433 196.0937 < 2.2e-16 ***
## alcohol                1 0.06310 0.06310  33.9623 9.875e-09 ***
## energy_fibre           1 0.00281 0.00281   1.5130 0.2192320    
## energy_density         1 0.04646 0.04646  25.0038 7.840e-07 ***
## h_nutrients_weight     1 0.00501 0.00501   2.6984 0.1010542    
## h_nutrients_calories   1 0.00411 0.00411   2.2119 0.1375615    
## h_items                1 0.03329 0.03329  17.9193 2.726e-05 ***
## h_items_weight         1 0.00049 0.00049   0.2616 0.6092591    
## Residuals            519 0.96428 0.00186                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm(formula = reg.mod3, data = wardplot_wide)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.058757 -0.015206 -0.000453  0.013419  0.079038 
## 
## Coefficients: (11 not defined because of singularities)
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -5.410e+00  1.882e+00  -2.875 0.004203 ** 
## weight                    -4.765e-04  1.552e-04  -3.070 0.002258 ** 
## volume                    -5.963e-05  1.770e-04  -0.337 0.736327    
## fat                        5.816e-02  3.669e-02   1.585 0.113541    
## saturate                  -8.607e-02  1.899e-02  -4.532 7.28e-06 ***
## salt                       5.439e-03  5.271e-02   0.103 0.917843    
## sugar                     -1.922e-03  3.985e-03  -0.482 0.629798    
## protein                   -1.256e-01  3.698e-02  -3.397 0.000735 ***
## carb                       6.307e-02  2.627e-02   2.401 0.016728 *  
## fibre                     -4.206e-01  1.748e-01  -2.407 0.016450 *  
## alcohol                   -8.402e-01  2.034e-01  -4.131 4.22e-05 ***
## energy_fat                        NA         NA      NA       NA    
## energy_saturate                   NA         NA      NA       NA    
## energy_sugar                      NA         NA      NA       NA    
## energy_protein                    NA         NA      NA       NA    
## energy_carb                       NA         NA      NA       NA    
## energy_fibre              -1.203e-02  7.771e-02  -0.155 0.877042    
## energy_alcohol                    NA         NA      NA       NA    
## energy_tot                        NA         NA      NA       NA    
## energy_density            -3.828e-01  1.119e-01  -3.422 0.000671 ***
## h_nutrients_weight         2.211e+00  1.431e+00   1.546 0.122815    
## h_nutrients_weight_norm           NA         NA      NA       NA    
## h_nutrients_calories       1.421e+00  1.232e+00   1.153 0.249357    
## h_nutrients_calories_norm         NA         NA      NA       NA    
## h_items                    8.066e-02  4.962e-02   1.625 0.104701    
## h_items_norm                      NA         NA      NA       NA    
## h_items_weight            -2.011e-02  4.153e-02  -0.484 0.628386    
## h_items_weight_norm               NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02188 on 510 degrees of freedom
##   (17 observations deleted due to missingness)
## Multiple R-squared:  0.5393, Adjusted R-squared:  0.5249 
## F-statistic: 37.32 on 16 and 510 DF,  p-value: < 2.2e-16
## Analysis of Variance Table
## 
## Response: prevalence_obese_reception
##                       Df   Sum Sq  Mean Sq  F value    Pr(>F)    
## weight                 1 0.122914 0.122914 256.6771 < 2.2e-16 ***
## volume                 1 0.000245 0.000245   0.5118  0.474705    
## fat                    1 0.003291 0.003291   6.8731  0.009012 ** 
## saturate               1 0.026627 0.026627  55.6053 3.834e-13 ***
## salt                   1 0.000115 0.000115   0.2406  0.623966    
## sugar                  1 0.012504 0.012504  26.1109 4.564e-07 ***
## protein                1 0.000901 0.000901   1.8810  0.170821    
## carb                   1 0.002804 0.002804   5.8562  0.015871 *  
## fibre                  1 0.078447 0.078447 163.8185 < 2.2e-16 ***
## alcohol                1 0.024409 0.024409  50.9723 3.243e-12 ***
## energy_fibre           1 0.000000 0.000000   0.0000  0.994974    
## energy_density         1 0.007777 0.007777  16.2394 6.433e-05 ***
## h_nutrients_weight     1 0.002901 0.002901   6.0590  0.014165 *  
## h_nutrients_calories   1 0.001553 0.001553   3.2427  0.072332 .  
## h_items                1 0.001304 0.001304   2.7229  0.099534 .  
## h_items_weight         1 0.000112 0.000112   0.2345  0.628386    
## Residuals            510 0.244222 0.000479                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm(formula = reg.mod4, data = wardplot_wide)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.097398 -0.023144 -0.000532  0.022256  0.116113 
## 
## Coefficients: (11 not defined because of singularities)
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -1.066e+01  2.985e+00  -3.571 0.000389 ***
## weight                    -6.315e-04  2.477e-04  -2.549 0.011093 *  
## volume                    -1.720e-04  2.834e-04  -0.607 0.544116    
## fat                        4.094e-02  5.621e-02   0.728 0.466748    
## saturate                  -1.380e-01  3.043e-02  -4.536 7.15e-06 ***
## salt                      -2.635e-01  8.425e-02  -3.128 0.001861 ** 
## sugar                     -2.678e-03  6.391e-03  -0.419 0.675368    
## protein                   -2.337e-01  5.892e-02  -3.967 8.31e-05 ***
## carb                       1.493e-01  4.031e-02   3.703 0.000236 ***
## fibre                     -1.323e+00  2.736e-01  -4.834 1.77e-06 ***
## alcohol                   -1.404e+00  3.253e-01  -4.315 1.91e-05 ***
## energy_fat                        NA         NA      NA       NA    
## energy_saturate                   NA         NA      NA       NA    
## energy_sugar                      NA         NA      NA       NA    
## energy_protein                    NA         NA      NA       NA    
## energy_carb                       NA         NA      NA       NA    
## energy_fibre               2.736e-01  1.234e-01   2.217 0.027078 *  
## energy_alcohol                    NA         NA      NA       NA    
## energy_tot                        NA         NA      NA       NA    
## energy_density            -5.636e-01  1.785e-01  -3.157 0.001689 ** 
## h_nutrients_weight         6.527e+00  2.176e+00   3.000 0.002830 ** 
## h_nutrients_weight_norm           NA         NA      NA       NA    
## h_nutrients_calories       5.495e-02  1.908e+00   0.029 0.977034    
## h_nutrients_calories_norm         NA         NA      NA       NA    
## h_items                    2.722e-01  7.863e-02   3.462 0.000580 ***
## h_items_norm                      NA         NA      NA       NA    
## h_items_weight             1.409e-02  6.659e-02   0.212 0.832517    
## h_items_weight_norm               NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03509 on 515 degrees of freedom
##   (12 observations deleted due to missingness)
## Multiple R-squared:  0.5632, Adjusted R-squared:  0.5497 
## F-statistic: 41.51 on 16 and 515 DF,  p-value: < 2.2e-16
## Analysis of Variance Table
## 
## Response: prevalence_obese_y6
##                       Df  Sum Sq Mean Sq  F value    Pr(>F)    
## weight                 1 0.32962 0.32962 267.7185 < 2.2e-16 ***
## volume                 1 0.00012 0.00012   0.0936 0.7597700    
## fat                    1 0.01383 0.01383  11.2352 0.0008616 ***
## saturate               1 0.03367 0.03367  27.3460 2.478e-07 ***
## salt                   1 0.00792 0.00792   6.4295 0.0115188 *  
## sugar                  1 0.01078 0.01078   8.7562 0.0032275 ** 
## protein                1 0.00235 0.00235   1.9072 0.1678713    
## carb                   1 0.02456 0.02456  19.9510 9.773e-06 ***
## fibre                  1 0.28486 0.28486 231.3599 < 2.2e-16 ***
## alcohol                1 0.04224 0.04224  34.3046 8.408e-09 ***
## energy_fibre           1 0.00394 0.00394   3.1989 0.0742775 .  
## energy_density         1 0.02824 0.02824  22.9342 2.195e-06 ***
## h_nutrients_weight     1 0.00866 0.00866   7.0361 0.0082346 ** 
## h_nutrients_calories   1 0.00309 0.00309   2.5107 0.1136883    
## h_items                1 0.02377 0.02377  19.3019 1.356e-05 ***
## h_items_weight         1 0.00006 0.00006   0.0448 0.8325168    
## Residuals            515 0.63409 0.00123                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm(formula = reg.mod5, data = wardplot_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0688 -0.5674 -0.0276  0.5137  3.8819 
## 
## Coefficients: (11 not defined because of singularities)
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -82.587836  78.846701  -1.047  0.29537    
## weight                     -0.018011   0.006647  -2.710  0.00695 ** 
## volume                      0.046105   0.007562   6.097 2.10e-09 ***
## fat                         1.661111   1.452838   1.143  0.25341    
## saturate                    2.571056   0.812513   3.164  0.00164 ** 
## salt                        2.814148   2.257299   1.247  0.21307    
## sugar                      -0.743700   0.170869  -4.352 1.62e-05 ***
## protein                    -4.313920   1.558560  -2.768  0.00584 ** 
## carb                        0.757611   1.044027   0.726  0.46837    
## fibre                      28.114506   7.073269   3.975 8.03e-05 ***
## alcohol                   -16.325558   8.611982  -1.896  0.05855 .  
## energy_fat                        NA         NA      NA       NA    
## energy_saturate                   NA         NA      NA       NA    
## energy_sugar                      NA         NA      NA       NA    
## energy_protein                    NA         NA      NA       NA    
## energy_carb                       NA         NA      NA       NA    
## energy_fibre              -15.713635   3.234660  -4.858 1.57e-06 ***
## energy_alcohol                    NA         NA      NA       NA    
## energy_tot                        NA         NA      NA       NA    
## energy_density            -13.086124   4.784177  -2.735  0.00644 ** 
## h_nutrients_weight        -27.899436  56.014828  -0.498  0.61864    
## h_nutrients_weight_norm           NA         NA      NA       NA    
## h_nutrients_calories       83.906033  49.173132   1.706  0.08853 .  
## h_nutrients_calories_norm         NA         NA      NA       NA    
## h_items                     1.596262   2.073717   0.770  0.44179    
## h_items_norm                      NA         NA      NA       NA    
## h_items_weight              1.228896   1.746612   0.704  0.48200    
## h_items_weight_norm               NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9453 on 527 degrees of freedom
## Multiple R-squared:  0.7705, Adjusted R-squared:  0.7635 
## F-statistic: 110.6 on 16 and 527 DF,  p-value: < 2.2e-16
## Analysis of Variance Table
## 
## Response: estimated_diabetes_prevalence
##                       Df Sum Sq Mean Sq  F value    Pr(>F)    
## weight                 1 514.31  514.31 575.5323 < 2.2e-16 ***
## volume                 1 621.79  621.79 695.8095 < 2.2e-16 ***
## fat                    1 122.93  122.93 137.5587 < 2.2e-16 ***
## saturate               1  58.07   58.07  64.9796 5.110e-15 ***
## salt                   1   0.26    0.26   0.2963 0.5864375    
## sugar                  1 112.78  112.78 126.2006 < 2.2e-16 ***
## protein                1  18.92   18.92  21.1711 5.268e-06 ***
## carb                   1  80.16   80.16  89.7007 < 2.2e-16 ***
## fibre                  1   3.95    3.95   4.4179 0.0360383 *  
## alcohol                1   8.15    8.15   9.1243 0.0026447 ** 
## energy_fibre           1  22.56   22.56  25.2480 6.915e-07 ***
## energy_density         1   9.79    9.79  10.9509 0.0009996 ***
## h_nutrients_weight     1   0.01    0.01   0.0117 0.9139513    
## h_nutrients_calories   1   5.01    5.01   5.6091 0.0182272 *  
## h_items                1   1.84    1.84   2.0550 0.1522999    
## h_items_weight         1   0.44    0.44   0.4950 0.4819999    
## Residuals            527 470.94    0.89                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1