library(car)
## Loading required package: carData
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(cluster)
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(data.table)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(e1071)
library(epitools)
library(effects)
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
## Use the command
##     lattice::trellis.par.set(effectsTheme())
##   to customize lattice options for effects plots.
## See ?effectsTheme for details.
library(ggplot2)
library(ggthemes)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
## 
##     combine
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(ranger)
## 
## Attaching package: 'ranger'
## The following object is masked from 'package:randomForest':
## 
##     importance
library(rgl)
library(rattle)
## Rattle: A free graphical interface for data science with R.
## バージョン 5.3.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## 'rattle()' と入力して、データを多角的に分析します。
## 
## Attaching package: 'rattle'
## The following object is masked from 'package:ranger':
## 
##     importance
## The following object is masked from 'package:randomForest':
## 
##     importance
library(readr)
library(rpart.plot)
## Loading required package: rpart
library(rpart)
library(readr)
library(reshape)
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename
## The following object is masked from 'package:data.table':
## 
##     melt
library(rsconnect)
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following objects are masked from 'package:reshape':
## 
##     colsplit, melt, recast
## The following objects are masked from 'package:data.table':
## 
##     dcast, melt
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
## 
##     smiths
## The following objects are masked from 'package:reshape':
## 
##     expand, smiths
library(xtable)
library(nnet)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.3.0 --
## √ tibble  3.0.0     √ stringr 1.4.0
## √ purrr   0.3.3     √ forcats 0.5.0
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::between()        masks data.table::between()
## x randomForest::combine() masks dplyr::combine()
## x tidyr::expand()         masks reshape::expand()
## x dplyr::filter()         masks stats::filter()
## x dplyr::first()          masks data.table::first()
## x dplyr::lag()            masks stats::lag()
## x dplyr::last()           masks data.table::last()
## x purrr::lift()           masks caret::lift()
## x randomForest::margin()  masks ggplot2::margin()
## x dplyr::recode()         masks car::recode()
## x reshape::rename()       masks dplyr::rename()
## x purrr::some()           masks car::some()
## x purrr::transpose()      masks data.table::transpose()
require(ranger)
library(makedummies)

-下水道データ読み込み# 基本統計量表示 gesui # 教科書ではlogit

#gesui = read_csv("osui2.csv")
gesui = read_csv("enbi.csv")
## Parsed with column specification:
## cols(
##   OBJECTID = col_double(),
##   sys_name = col_double(),
##   slope = col_double(),
##   uedokaburi = col_double(),
##   masuhonsuu = col_double(),
##   long = col_double(),
##   kubun = col_double(),
##   did = col_double(),
##   kouhou = col_double(),
##   nendo = col_double(),
##   ekijyouka = col_double(),
##   kyouyounensuu = col_double(),
##   kansyu = col_double(),
##   kei = col_double(),
##   kinkyuudo = col_double(),
##   taisyo = col_double()
## )
gesui <- data.frame(gesui) # 教科書ではlogit
#testデータの行番号取得
#randomgesui<-sample(282,200)
#train <- gesui[randomgesui,]
#test <-gesui[-randomgesui,]
#cat(test$sys_name, file = "testrow.txt",append=FALSE)
#write.table(test,"testoutput.txt", quote=F, 
#             col.names=T, append=T)

gesui <- gesui[-1:-2] #OBJECTID,sys_name列をデータから削除
gesui <- gesui[-13]
gesui <- gesui[-8]
gesui <- gesui[-10]

gesui2 <- gesui

randomgesui<-sample(282,200)
train <- gesui[randomgesui,]
test <-gesui[-randomgesui,]

塩ビ管データの基本統計量

stargazer(as.data.frame(gesui),type = "html")
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
slope 282 3.309 2.017 0.000 1.900 4.100 9.900
uedokaburi 282 4.218 2.570 1.009 2.462 5.397 13.385
masuhonsuu 282 1.284 1.765 0 0 2 11
long 282 31.300 15.309 0.970 21.325 40.492 96.820
kubun 282 1.209 0.407 1 1 1 2
did 282 0.766 0.424 0 1 1 1
kouhou 282 0.337 0.473 0 0 1 1
ekijyouka 282 0.202 0.402 0 0 0 1
kyouyounensuu 282 27.514 5.204 10 25 27 40
kei 282 390.248 162.287 200 250 600 900
taisyo 282 0.312 0.464 0 0 1 1

塩ビ管データのカテゴリー変数の指定

gesui$taisyo <- as.factor(gesui$taisyo)
#gesui$kansyu <- as.factor(gesui$kansyu)

gesui$kubun <- as.factor(gesui$kubun)
gesui$did <- as.factor(gesui$did)
gesui$ekijyouka <- as.factor(gesui$ekijyouka)
#gesui$kinkyuudo <- as.factor(gesui$kinkyuudo)


cordata <- gesui
# ダミー化したい変数をセレクト
dum <- cordata %>% select( kubun, did, ekijyouka, kouhou)
# ダミー化しない変数をセレクト
not_dum <- cordata %>% select(slope, uedokaburi, masuhonsuu, long, kyouyounensuu, kei, taisyo)
# makedummies()を使用してダミー変数を作成
 dummy_var <- makedummies(dum, basal_level = FALSE)
# 結合する
gesui <- cbind(dummy_var, not_dum) 





sapply(gesui, class)
##         kubun           did     ekijyouka        kouhou         slope 
##     "integer"     "integer"     "integer"     "numeric"     "numeric" 
##    uedokaburi    masuhonsuu          long kyouyounensuu           kei 
##     "numeric"     "numeric"     "numeric"     "numeric"     "numeric" 
##        taisyo 
##      "factor"
summary(gesui)
##      kubun             did          ekijyouka          kouhou      
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.000   Median :0.0000   Median :0.0000  
##  Mean   :0.2092   Mean   :0.766   Mean   :0.2021   Mean   :0.3369  
##  3rd Qu.:0.0000   3rd Qu.:1.000   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      slope         uedokaburi       masuhonsuu          long      
##  Min.   :0.000   Min.   : 1.009   Min.   : 0.000   Min.   : 0.97  
##  1st Qu.:1.900   1st Qu.: 2.462   1st Qu.: 0.000   1st Qu.:21.32  
##  Median :2.685   Median : 3.402   Median : 1.000   Median :30.06  
##  Mean   :3.309   Mean   : 4.218   Mean   : 1.284   Mean   :31.30  
##  3rd Qu.:4.100   3rd Qu.: 5.397   3rd Qu.: 2.000   3rd Qu.:40.49  
##  Max.   :9.900   Max.   :13.385   Max.   :11.000   Max.   :96.82  
##  kyouyounensuu        kei        taisyo 
##  Min.   :10.00   Min.   :200.0   0:194  
##  1st Qu.:25.00   1st Qu.:250.0   1: 88  
##  Median :25.00   Median :250.0          
##  Mean   :27.51   Mean   :390.2          
##  3rd Qu.:27.00   3rd Qu.:600.0          
##  Max.   :40.00   Max.   :900.0

ダミー化したい変数をセレクト

cordata <- gesui
# ダミー化したい変数をセレクト
dum <- cordata %>% select( kubun, did, ekijyouka, kouhou)
# ダミー化しない変数をセレクト
not_dum <- cordata %>% select(slope, uedokaburi, masuhonsuu, long, kyouyounensuu, kei, taisyo)
# makedummies()を使用してダミー変数を作成
 dummy_var <- makedummies(dum, basal_level = FALSE)
# 結合する
gesui <- cbind(dummy_var, not_dum)
head(gesui)
##   kubun did ekijyouka kouhou slope uedokaburi masuhonsuu  long kyouyounensuu
## 1     1   1         1      0  1.22   1.054575          1  3.39            12
## 2     1   1         0      0  2.50   1.533001          0  7.78            28
## 3     1   1         1      0  4.71   1.414000          0  5.02            24
## 4     1   1         1      0  1.10   1.544714          3 13.17            24
## 5     1   1         1      1  1.80   4.412133          1  5.56            24
## 6     1   1         1      0  8.90   1.738222          0 15.72            24
##   kei taisyo
## 1 200      0
## 2 250      1
## 3 250      0
## 4 250      0
## 5 250      1
## 6 250      0

交差検証rf

https://shohei-doi.github.io/notes/posts/2019-05-27-cross-validation/

vote_logit3 <- train(
  taisyo ~ .,
  data = gesui,
  method = "rf",
  trControl = trainControl(method = "cv")
)
vote_logit3
## Random Forest 
## 
## 282 samples
##  10 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 254, 254, 254, 254, 254, 254, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##    2    0.8123153  0.5052759
##    6    0.8157635  0.5394256
##   10    0.8051724  0.5132297
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 6.
vote_logit1 <- train(
taisyo ~ slope + uedokaburi + masuhonsuu + long + kyouyounensuu + kei,
  data = gesui,
  method = "rf",
  trControl = trainControl(method = "cv")
)
vote_logit1
## Random Forest 
## 
## 282 samples
##   6 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 254, 254, 253, 254, 254, 254, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##   2     0.7912197  0.4656561
##   4     0.7840677  0.4456567
##   6     0.7840586  0.4467893
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.

ランダムフォレストによる分類に寄与した変数の分析

# 乱数の設定
# ランダムフォレストによる分類に寄与した変数の分析
library(kernlab)
## 
## Attaching package: 'kernlab'
## The following object is masked from 'package:purrr':
## 
##     cross
## The following object is masked from 'package:ggplot2':
## 
##     alpha
set.seed(1)
rf.model <- randomForest(taisyo ~ .,
                         data = test, ntree = 100, proximity = TRUE)
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
# 個体間の類似度を多次元尺度法で視覚化

head(test)
##    slope uedokaburi masuhonsuu  long kubun did kouhou ekijyouka kyouyounensuu
## 4   1.10   1.544714          3 13.17     2   1      0         1            24
## 6   8.90   1.738222          0 15.72     2   1      0         1            24
## 7   9.10   2.981000          0 14.26     1   1      0         0            34
## 11  1.30   3.583047          0 10.86     2   1      0         0            40
## 12  0.00   2.633001          0  5.00     2   1      0         0            32
## 15  1.74   1.436539          3  9.25     2   1      0         1            39
##    kei taisyo
## 4  250      0
## 6  250      0
## 7  250      1
## 11 250      0
## 12 250      0
## 15 250      0

MDSplot(rf.model, taisyo$test)

交差検証nnt

https://shohei-doi.github.io/notes/posts/2019-05-27-cross-validation/

vote_logit3 <- train(
  taisyo ~ .,
  data = gesui,
  method = "nnet",
  trControl = trainControl(method = "cv")
)
## # weights:  13
## initial  value 220.305672 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 233.468827 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 280.330064 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 205.407386 
## iter  10 value 157.516642
## iter  20 value 156.478475
## iter  30 value 145.592762
## iter  40 value 134.932329
## iter  50 value 132.081047
## final  value 131.990037 
## converged
## # weights:  37
## initial  value 313.855636 
## iter  10 value 157.938910
## iter  20 value 152.195567
## iter  30 value 147.330341
## iter  40 value 146.156325
## iter  50 value 134.401657
## iter  60 value 120.319626
## iter  70 value 118.606977
## iter  80 value 115.277081
## iter  90 value 111.543000
## iter 100 value 110.142800
## final  value 110.142800 
## stopped after 100 iterations
## # weights:  61
## initial  value 158.557116 
## iter  10 value 156.574491
## iter  20 value 153.901075
## iter  30 value 134.838431
## iter  40 value 131.053861
## iter  50 value 128.000563
## iter  60 value 118.729363
## iter  70 value 112.206128
## iter  80 value 108.934500
## iter  90 value 108.208971
## iter 100 value 106.957181
## final  value 106.957181 
## stopped after 100 iterations
## # weights:  13
## initial  value 197.861177 
## final  value 157.459198 
## converged
## # weights:  37
## initial  value 164.628644 
## final  value 157.459681 
## converged
## # weights:  61
## initial  value 166.600477 
## final  value 157.460095 
## converged
## # weights:  13
## initial  value 220.821655 
## final  value 158.245151 
## converged
## # weights:  37
## initial  value 208.914530 
## final  value 158.245151 
## converged
## # weights:  61
## initial  value 182.965039 
## final  value 158.245151 
## converged
## # weights:  13
## initial  value 167.914554 
## iter  10 value 158.208612
## iter  20 value 145.679240
## iter  30 value 128.424190
## iter  40 value 125.008921
## iter  50 value 122.669216
## final  value 122.666157 
## converged
## # weights:  37
## initial  value 230.952902 
## iter  10 value 158.280807
## iter  20 value 158.244203
## iter  30 value 154.592689
## iter  40 value 148.889196
## iter  50 value 139.473333
## iter  60 value 134.421348
## iter  70 value 124.084708
## iter  80 value 118.594503
## iter  90 value 115.730343
## iter 100 value 115.184109
## final  value 115.184109 
## stopped after 100 iterations
## # weights:  61
## initial  value 187.453299 
## iter  10 value 156.384685
## iter  20 value 140.369877
## iter  30 value 128.954685
## iter  40 value 122.657432
## iter  50 value 115.672256
## iter  60 value 110.308108
## iter  70 value 109.568747
## iter  80 value 108.922464
## iter  90 value 107.305186
## iter 100 value 106.079319
## final  value 106.079319 
## stopped after 100 iterations
## # weights:  13
## initial  value 173.062162 
## final  value 158.245414 
## converged
## # weights:  37
## initial  value 179.079115 
## final  value 158.246398 
## converged
## # weights:  61
## initial  value 166.711735 
## final  value 158.246151 
## converged
## # weights:  13
## initial  value 184.595891 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 229.032551 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 165.246326 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 243.075811 
## iter  10 value 152.350171
## iter  20 value 133.333804
## iter  30 value 125.977655
## iter  40 value 124.760495
## iter  50 value 124.250893
## final  value 124.218001 
## converged
## # weights:  37
## initial  value 175.775841 
## iter  10 value 135.100999
## iter  20 value 130.911889
## iter  30 value 129.571618
## iter  40 value 124.463165
## iter  50 value 121.434443
## iter  60 value 121.196781
## iter  70 value 121.177650
## final  value 121.177604 
## converged
## # weights:  61
## initial  value 165.189519 
## iter  10 value 157.443100
## iter  20 value 156.099166
## iter  30 value 140.062272
## iter  40 value 135.646839
## iter  50 value 131.504986
## iter  60 value 126.855571
## iter  70 value 122.536824
## iter  80 value 115.705112
## iter  90 value 115.074511
## iter 100 value 114.973888
## final  value 114.973888 
## stopped after 100 iterations
## # weights:  13
## initial  value 200.036420 
## final  value 157.459235 
## converged
## # weights:  37
## initial  value 211.874516 
## final  value 157.459708 
## converged
## # weights:  61
## initial  value 168.935511 
## final  value 157.459876 
## converged
## # weights:  13
## initial  value 195.278564 
## final  value 157.085538 
## converged
## # weights:  37
## initial  value 303.792169 
## final  value 157.085538 
## converged
## # weights:  61
## initial  value 157.153667 
## final  value 157.085538 
## converged
## # weights:  13
## initial  value 245.511554 
## iter  10 value 156.531063
## iter  20 value 131.075950
## iter  30 value 120.638446
## iter  40 value 120.609069
## final  value 120.603103 
## converged
## # weights:  37
## initial  value 161.774247 
## iter  10 value 156.967731
## iter  20 value 142.954930
## iter  30 value 134.189239
## iter  40 value 127.172076
## iter  50 value 121.675431
## iter  60 value 115.501887
## iter  70 value 112.876876
## iter  80 value 111.047935
## iter  90 value 108.580508
## iter 100 value 107.974755
## final  value 107.974755 
## stopped after 100 iterations
## # weights:  61
## initial  value 188.509343 
## iter  10 value 153.721478
## iter  20 value 150.725366
## iter  30 value 141.813210
## iter  40 value 136.273273
## iter  50 value 133.801656
## iter  60 value 127.091322
## iter  70 value 119.574343
## iter  80 value 112.495671
## iter  90 value 110.226923
## iter 100 value 110.065102
## final  value 110.065102 
## stopped after 100 iterations
## # weights:  13
## initial  value 163.595281 
## final  value 157.085717 
## converged
## # weights:  37
## initial  value 173.723090 
## final  value 157.086137 
## converged
## # weights:  61
## initial  value 268.188237 
## final  value 157.086584 
## converged
## # weights:  13
## initial  value 242.516740 
## final  value 157.085538 
## converged
## # weights:  37
## initial  value 159.744332 
## final  value 157.085538 
## converged
## # weights:  61
## initial  value 161.001250 
## final  value 157.085538 
## converged
## # weights:  13
## initial  value 163.931577 
## iter  10 value 157.117134
## iter  20 value 153.280966
## iter  30 value 149.428068
## iter  40 value 149.247614
## iter  50 value 147.594086
## iter  60 value 140.977640
## iter  70 value 131.833872
## iter  80 value 123.182638
## iter  90 value 122.143359
## final  value 122.143334 
## converged
## # weights:  37
## initial  value 198.595850 
## iter  10 value 157.117562
## iter  20 value 137.692356
## iter  30 value 122.551078
## iter  40 value 119.230535
## iter  50 value 113.027376
## iter  60 value 111.247326
## iter  70 value 109.952960
## iter  80 value 109.938103
## iter  90 value 109.936736
## iter 100 value 109.734062
## final  value 109.734062 
## stopped after 100 iterations
## # weights:  61
## initial  value 158.677711 
## iter  10 value 152.583894
## iter  20 value 130.021785
## iter  30 value 120.140078
## iter  40 value 114.281081
## iter  50 value 112.594837
## iter  60 value 104.099795
## iter  70 value 98.633909
## iter  80 value 95.710260
## iter  90 value 94.529339
## iter 100 value 94.386682
## final  value 94.386682 
## stopped after 100 iterations
## # weights:  13
## initial  value 168.697731 
## final  value 157.085823 
## converged
## # weights:  37
## initial  value 274.999159 
## final  value 157.086254 
## converged
## # weights:  61
## initial  value 165.165846 
## final  value 157.086536 
## converged
## # weights:  13
## initial  value 246.525457 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 158.901373 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 157.770178 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 172.951644 
## iter  10 value 156.880339
## iter  20 value 151.379536
## iter  30 value 149.662348
## iter  40 value 144.191647
## iter  50 value 138.143989
## iter  60 value 128.770358
## iter  70 value 119.389572
## iter  80 value 118.781009
## iter  80 value 118.781008
## iter  80 value 118.781008
## final  value 118.781008 
## converged
## # weights:  37
## initial  value 229.770967 
## iter  10 value 156.350985
## iter  20 value 151.875414
## iter  30 value 143.669537
## iter  40 value 128.788828
## iter  50 value 124.783895
## iter  60 value 119.976044
## iter  70 value 116.493378
## iter  80 value 115.177512
## iter  90 value 113.749749
## iter 100 value 110.445240
## final  value 110.445240 
## stopped after 100 iterations
## # weights:  61
## initial  value 160.344224 
## iter  10 value 157.509817
## iter  20 value 137.546612
## iter  30 value 122.965566
## iter  40 value 118.372360
## iter  50 value 118.166284
## iter  60 value 116.092670
## iter  70 value 114.018448
## iter  80 value 113.226058
## iter  90 value 113.225102
## iter 100 value 113.224155
## final  value 113.224155 
## stopped after 100 iterations
## # weights:  13
## initial  value 285.182023 
## final  value 157.459142 
## converged
## # weights:  37
## initial  value 178.708002 
## final  value 157.459565 
## converged
## # weights:  61
## initial  value 159.541864 
## final  value 157.460112 
## converged
## # weights:  13
## initial  value 177.529437 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 191.260091 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 174.733119 
## iter  10 value 152.691185
## iter  20 value 152.177760
## final  value 151.839846 
## converged
## # weights:  13
## initial  value 189.622473 
## iter  10 value 157.110551
## iter  20 value 126.139320
## iter  30 value 123.082871
## iter  40 value 122.772513
## final  value 122.688402 
## converged
## # weights:  37
## initial  value 221.414117 
## iter  10 value 154.854231
## iter  20 value 149.136005
## iter  30 value 147.063575
## iter  40 value 137.780878
## iter  50 value 124.906031
## iter  60 value 123.693786
## iter  70 value 121.898507
## iter  80 value 114.822006
## iter  90 value 114.087050
## iter 100 value 114.080287
## final  value 114.080287 
## stopped after 100 iterations
## # weights:  61
## initial  value 226.032229 
## iter  10 value 158.109367
## iter  20 value 151.335246
## iter  30 value 150.271988
## iter  40 value 133.234907
## iter  50 value 123.946746
## iter  60 value 119.843628
## iter  70 value 113.035121
## iter  80 value 104.268237
## iter  90 value 101.219911
## iter 100 value 98.340891
## final  value 98.340891 
## stopped after 100 iterations
## # weights:  13
## initial  value 184.755813 
## final  value 157.459194 
## converged
## # weights:  37
## initial  value 204.519355 
## final  value 157.460271 
## converged
## # weights:  61
## initial  value 239.024217 
## final  value 157.460924 
## converged
## # weights:  13
## initial  value 169.826189 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 157.479903 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 164.043220 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 173.549445 
## iter  10 value 156.085704
## iter  20 value 135.372310
## iter  30 value 125.642341
## iter  40 value 124.801494
## final  value 124.633251 
## converged
## # weights:  37
## initial  value 158.671564 
## iter  10 value 156.698360
## iter  20 value 142.701645
## iter  30 value 135.405119
## iter  40 value 135.311305
## iter  50 value 129.911933
## iter  60 value 125.433014
## iter  70 value 124.001828
## iter  80 value 123.933621
## final  value 123.933504 
## converged
## # weights:  61
## initial  value 195.318593 
## iter  10 value 156.203321
## iter  20 value 144.990541
## iter  30 value 133.908887
## iter  40 value 128.853959
## iter  50 value 127.984961
## iter  60 value 127.593645
## iter  70 value 127.163081
## iter  80 value 126.633832
## iter  90 value 123.962449
## iter 100 value 122.212162
## final  value 122.212162 
## stopped after 100 iterations
## # weights:  13
## initial  value 179.909448 
## final  value 157.459275 
## converged
## # weights:  37
## initial  value 158.516798 
## final  value 157.459672 
## converged
## # weights:  61
## initial  value 220.974682 
## final  value 157.459899 
## converged
## # weights:  13
## initial  value 192.003548 
## final  value 158.622528 
## converged
## # weights:  37
## initial  value 184.188255 
## final  value 158.622528 
## converged
## # weights:  61
## initial  value 172.873142 
## final  value 158.622528 
## converged
## # weights:  13
## initial  value 162.999541 
## iter  10 value 158.292142
## iter  20 value 138.358008
## iter  30 value 124.874233
## iter  40 value 124.635571
## final  value 124.604374 
## converged
## # weights:  37
## initial  value 178.604990 
## iter  10 value 156.477009
## iter  20 value 149.621212
## iter  30 value 146.520336
## iter  40 value 141.592668
## iter  50 value 135.409743
## iter  60 value 123.455156
## iter  70 value 120.688451
## iter  80 value 117.835351
## iter  90 value 115.233089
## iter 100 value 114.988901
## final  value 114.988901 
## stopped after 100 iterations
## # weights:  61
## initial  value 368.120009 
## iter  10 value 160.354027
## iter  20 value 158.840727
## iter  30 value 134.154770
## iter  40 value 122.958425
## iter  50 value 118.913058
## iter  60 value 117.342464
## iter  70 value 113.732335
## iter  80 value 111.337124
## iter  90 value 111.194529
## iter 100 value 111.142239
## final  value 111.142239 
## stopped after 100 iterations
## # weights:  13
## initial  value 177.116837 
## final  value 158.622764 
## converged
## # weights:  37
## initial  value 166.637109 
## final  value 158.623093 
## converged
## # weights:  61
## initial  value 214.519818 
## final  value 158.623665 
## converged
## # weights:  13
## initial  value 159.286219 
## final  value 157.085538 
## converged
## # weights:  37
## initial  value 186.791405 
## final  value 157.085538 
## converged
## # weights:  61
## initial  value 196.367667 
## final  value 157.085538 
## converged
## # weights:  13
## initial  value 157.789974 
## iter  10 value 157.146780
## iter  20 value 156.549833
## iter  30 value 149.347379
## iter  40 value 146.173878
## iter  50 value 143.800073
## final  value 143.710412 
## converged
## # weights:  37
## initial  value 157.747543 
## iter  10 value 155.500412
## iter  20 value 151.392181
## iter  30 value 151.113455
## iter  40 value 149.603577
## iter  50 value 121.470524
## iter  60 value 119.552575
## iter  70 value 117.639031
## iter  80 value 106.328411
## iter  90 value 103.790436
## iter 100 value 103.660055
## final  value 103.660055 
## stopped after 100 iterations
## # weights:  61
## initial  value 201.340432 
## iter  10 value 153.068361
## iter  20 value 139.272068
## iter  30 value 124.551822
## iter  40 value 119.113957
## iter  50 value 118.041490
## iter  60 value 113.635577
## iter  70 value 112.986528
## iter  80 value 110.171751
## iter  90 value 105.680967
## iter 100 value 103.995043
## final  value 103.995043 
## stopped after 100 iterations
## # weights:  13
## initial  value 197.044232 
## final  value 157.085808 
## converged
## # weights:  37
## initial  value 290.050048 
## final  value 157.086120 
## converged
## # weights:  61
## initial  value 158.954647 
## final  value 157.086359 
## converged
## # weights:  37
## initial  value 178.030222 
## iter  10 value 162.737352
## iter  20 value 144.621125
## iter  30 value 135.992616
## iter  40 value 130.141928
## iter  50 value 129.082258
## iter  60 value 123.363737
## iter  70 value 117.272266
## iter  80 value 117.059003
## iter  90 value 117.055575
## iter  90 value 117.055575
## iter  90 value 117.055575
## final  value 117.055575 
## converged
vote_logit3
## Neural Network 
## 
## 282 samples
##  10 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 254, 254, 254, 253, 253, 254, ... 
## Resampling results across tuning parameters:
## 
##   size  decay  Accuracy   Kappa    
##   1     0e+00  0.6879812  0.0000000
##   1     1e-04  0.6879812  0.0000000
##   1     1e-01  0.7524083  0.3814798
##   3     0e+00  0.6879812  0.0000000
##   3     1e-04  0.6879812  0.0000000
##   3     1e-01  0.7730980  0.4231230
##   5     0e+00  0.6879812  0.0000000
##   5     1e-04  0.6879812  0.0000000
##   5     1e-01  0.7660874  0.4215595
## 
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 3 and decay = 0.1.

交差検証nnt-2

http://ushi-goroshi.hatenablog.com/entry/2019/02/06/153859

vote_logit3 <- train(
  taisyo ~ .,
  data = gesui,
  method = "nnet",
  trControl = trainControl(method = "cv")
)
## # weights:  13
## initial  value 205.690088 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 198.698424 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 160.064483 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 157.681889 
## iter  10 value 143.512750
## iter  20 value 128.843530
## iter  30 value 124.970775
## final  value 124.970568 
## converged
## # weights:  37
## initial  value 251.595406 
## iter  10 value 157.492178
## iter  20 value 143.353770
## iter  30 value 129.401317
## iter  40 value 123.955362
## iter  50 value 123.562872
## iter  60 value 123.401658
## iter  70 value 122.637367
## iter  80 value 116.376610
## iter  90 value 107.614951
## iter 100 value 106.029074
## final  value 106.029074 
## stopped after 100 iterations
## # weights:  61
## initial  value 189.608520 
## iter  10 value 157.462729
## iter  20 value 154.548126
## iter  30 value 153.379751
## iter  40 value 135.623384
## iter  50 value 134.381387
## iter  60 value 131.533431
## iter  70 value 124.965788
## iter  80 value 111.276828
## iter  90 value 104.780049
## iter 100 value 101.661978
## final  value 101.661978 
## stopped after 100 iterations
## # weights:  13
## initial  value 158.563194 
## final  value 157.459189 
## converged
## # weights:  37
## initial  value 157.787508 
## final  value 157.459629 
## converged
## # weights:  61
## initial  value 181.085169 
## final  value 157.459848 
## converged
## # weights:  13
## initial  value 169.029712 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 264.419218 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 186.724248 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 197.614701 
## iter  10 value 156.102287
## iter  20 value 132.201319
## iter  30 value 119.688085
## iter  40 value 119.671369
## final  value 119.670463 
## converged
## # weights:  37
## initial  value 172.350760 
## iter  10 value 157.427776
## iter  20 value 153.523438
## iter  30 value 152.024540
## iter  40 value 135.369655
## iter  50 value 125.813156
## iter  60 value 122.554541
## iter  70 value 119.131069
## iter  80 value 114.796116
## iter  90 value 114.317114
## iter 100 value 113.983854
## final  value 113.983854 
## stopped after 100 iterations
## # weights:  61
## initial  value 259.332695 
## iter  10 value 157.409301
## iter  20 value 156.912670
## iter  30 value 140.930734
## iter  40 value 135.085302
## iter  50 value 131.876073
## iter  60 value 120.201975
## iter  70 value 117.943574
## iter  80 value 117.846489
## iter  90 value 117.582177
## iter 100 value 114.528026
## final  value 114.528026 
## stopped after 100 iterations
## # weights:  13
## initial  value 163.795195 
## final  value 157.459245 
## converged
## # weights:  37
## initial  value 185.424913 
## final  value 157.459640 
## converged
## # weights:  61
## initial  value 164.107672 
## final  value 157.459963 
## converged
## # weights:  13
## initial  value 179.289641 
## iter  10 value 134.514034
## iter  20 value 131.316280
## iter  30 value 130.443928
## final  value 130.442001 
## converged
## # weights:  37
## initial  value 233.453105 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 238.558846 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 158.096385 
## iter  10 value 156.445755
## iter  20 value 133.462726
## iter  30 value 131.100503
## iter  40 value 126.464473
## iter  50 value 124.546442
## final  value 124.546106 
## converged
## # weights:  37
## initial  value 219.568292 
## iter  10 value 138.239938
## iter  20 value 129.604966
## iter  30 value 124.499736
## iter  40 value 124.286928
## iter  50 value 119.438280
## iter  60 value 114.340941
## iter  70 value 114.000717
## iter  80 value 113.963847
## iter  90 value 113.828279
## iter 100 value 110.079551
## final  value 110.079551 
## stopped after 100 iterations
## # weights:  61
## initial  value 223.662662 
## iter  10 value 155.427028
## iter  20 value 133.943805
## iter  30 value 127.009119
## iter  40 value 126.122764
## final  value 126.121355 
## converged
## # weights:  13
## initial  value 157.760541 
## final  value 157.459237 
## converged
## # weights:  37
## initial  value 158.751100 
## iter  10 value 131.340713
## iter  20 value 120.887418
## iter  30 value 120.402490
## iter  40 value 120.328157
## iter  50 value 120.295641
## iter  60 value 120.290431
## iter  70 value 120.282069
## iter  80 value 120.273337
## iter  90 value 120.271791
## iter 100 value 120.269591
## final  value 120.269591 
## stopped after 100 iterations
## # weights:  61
## initial  value 165.272424 
## final  value 157.460128 
## converged
## # weights:  13
## initial  value 185.138412 
## final  value 157.085538 
## converged
## # weights:  37
## initial  value 188.084548 
## final  value 157.085538 
## converged
## # weights:  61
## initial  value 190.793943 
## final  value 157.085538 
## converged
## # weights:  13
## initial  value 157.981154 
## iter  10 value 149.408145
## iter  20 value 124.034179
## iter  30 value 119.166691
## iter  40 value 118.949633
## final  value 118.942356 
## converged
## # weights:  37
## initial  value 284.764702 
## iter  10 value 155.652824
## iter  20 value 144.863134
## iter  30 value 122.143110
## iter  40 value 116.896693
## iter  50 value 113.567859
## iter  60 value 111.062373
## iter  70 value 109.868420
## iter  80 value 109.854390
## iter  90 value 107.753980
## iter 100 value 97.790745
## final  value 97.790745 
## stopped after 100 iterations
## # weights:  61
## initial  value 164.790790 
## iter  10 value 153.586278
## iter  20 value 127.588358
## iter  30 value 120.074384
## iter  40 value 117.933279
## iter  50 value 116.076582
## iter  60 value 115.303330
## iter  70 value 113.125178
## iter  80 value 108.820690
## iter  90 value 105.002929
## iter 100 value 100.382019
## final  value 100.382019 
## stopped after 100 iterations
## # weights:  13
## initial  value 158.861685 
## iter  10 value 128.817067
## iter  20 value 121.196026
## iter  30 value 118.786749
## iter  40 value 118.703485
## iter  50 value 118.563329
## final  value 118.562512 
## converged
## # weights:  37
## initial  value 235.449133 
## final  value 157.086213 
## converged
## # weights:  61
## initial  value 304.506616 
## final  value 157.086520 
## converged
## # weights:  13
## initial  value 199.423542 
## final  value 157.085538 
## converged
## # weights:  37
## initial  value 160.134828 
## final  value 157.085537 
## converged
## # weights:  61
## initial  value 196.091171 
## final  value 157.085538 
## converged
## # weights:  13
## initial  value 206.628631 
## iter  10 value 156.907871
## iter  20 value 150.663720
## iter  30 value 146.222592
## iter  40 value 146.024506
## final  value 146.024494 
## converged
## # weights:  37
## initial  value 180.631859 
## iter  10 value 156.850332
## iter  20 value 140.666883
## iter  30 value 128.240012
## iter  40 value 123.275300
## iter  50 value 123.254669
## iter  60 value 122.068439
## iter  70 value 114.392605
## iter  80 value 113.866784
## iter  90 value 112.803980
## iter 100 value 108.888206
## final  value 108.888206 
## stopped after 100 iterations
## # weights:  61
## initial  value 171.247070 
## iter  10 value 157.899261
## iter  20 value 157.243094
## iter  30 value 138.423606
## iter  40 value 131.914417
## iter  50 value 124.551554
## iter  60 value 123.696106
## iter  70 value 120.988659
## iter  80 value 115.615506
## iter  90 value 110.968683
## iter 100 value 109.124351
## final  value 109.124351 
## stopped after 100 iterations
## # weights:  13
## initial  value 165.679142 
## final  value 157.085856 
## converged
## # weights:  37
## initial  value 157.554215 
## iter  10 value 137.996953
## iter  20 value 134.141840
## iter  30 value 133.607595
## iter  40 value 133.600932
## iter  50 value 133.599044
## iter  60 value 133.590642
## iter  70 value 133.590466
## iter  70 value 133.590465
## iter  70 value 133.590465
## final  value 133.590465 
## converged
## # weights:  61
## initial  value 268.283400 
## final  value 157.091389 
## converged
## # weights:  13
## initial  value 208.711557 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 199.607073 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 283.320863 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 157.789881 
## iter  10 value 153.785006
## iter  20 value 151.353897
## iter  30 value 135.957460
## iter  40 value 124.675004
## iter  50 value 118.563685
## final  value 118.360488 
## converged
## # weights:  37
## initial  value 190.784383 
## iter  10 value 145.786830
## iter  20 value 135.561164
## iter  30 value 115.649132
## iter  40 value 113.644086
## iter  50 value 112.857424
## iter  60 value 112.213246
## final  value 112.205163 
## converged
## # weights:  61
## initial  value 178.466555 
## iter  10 value 152.769041
## iter  20 value 145.710603
## iter  30 value 138.204130
## iter  40 value 132.338982
## iter  50 value 126.567033
## iter  60 value 118.605499
## iter  70 value 116.690516
## iter  80 value 112.792361
## iter  90 value 109.409144
## iter 100 value 105.356239
## final  value 105.356239 
## stopped after 100 iterations
## # weights:  13
## initial  value 159.317121 
## final  value 157.459275 
## converged
## # weights:  37
## initial  value 160.424207 
## final  value 157.460313 
## converged
## # weights:  61
## initial  value 214.350869 
## final  value 157.460152 
## converged
## # weights:  13
## initial  value 182.520188 
## final  value 157.458978 
## converged
## # weights:  37
## initial  value 157.564882 
## final  value 157.458978 
## converged
## # weights:  61
## initial  value 324.996909 
## final  value 157.458978 
## converged
## # weights:  13
## initial  value 168.032832 
## iter  10 value 157.220318
## iter  20 value 152.191374
## iter  30 value 137.690493
## iter  40 value 137.062636
## iter  50 value 133.292525
## iter  60 value 124.261820
## iter  70 value 123.878464
## final  value 123.878440 
## converged
## # weights:  37
## initial  value 158.201401 
## iter  10 value 155.467996
## iter  20 value 135.202150
## iter  30 value 125.282259
## iter  40 value 124.615168
## iter  50 value 124.384525
## iter  60 value 123.411035
## iter  70 value 113.397387
## iter  80 value 108.901722
## iter  90 value 108.646587
## iter 100 value 108.628776
## final  value 108.628776 
## stopped after 100 iterations
## # weights:  61
## initial  value 162.241636 
## iter  10 value 157.281268
## iter  20 value 153.576902
## iter  30 value 150.953144
## iter  40 value 137.773798
## iter  50 value 126.689525
## iter  60 value 113.587840
## iter  70 value 109.823435
## iter  80 value 106.213947
## iter  90 value 103.834536
## iter 100 value 99.295122
## final  value 99.295122 
## stopped after 100 iterations
## # weights:  13
## initial  value 174.092556 
## final  value 157.459214 
## converged
## # weights:  37
## initial  value 179.047178 
## final  value 157.459660 
## converged
## # weights:  61
## initial  value 177.139241 
## final  value 157.460358 
## converged
## # weights:  13
## initial  value 157.257589 
## final  value 157.085538 
## converged
## # weights:  37
## initial  value 203.172258 
## final  value 157.085538 
## converged
## # weights:  61
## initial  value 157.255544 
## final  value 157.085538 
## converged
## # weights:  13
## initial  value 167.037240 
## iter  10 value 156.751765
## iter  20 value 137.387338
## iter  30 value 136.992545
## iter  40 value 130.088050
## iter  50 value 126.013935
## iter  60 value 125.591135
## iter  70 value 125.384721
## final  value 125.384714 
## converged
## # weights:  37
## initial  value 190.409650 
## iter  10 value 154.252434
## iter  20 value 143.170769
## iter  30 value 127.210651
## iter  40 value 124.114751
## iter  50 value 122.551380
## iter  60 value 121.687828
## iter  70 value 121.435652
## iter  80 value 119.803084
## iter  90 value 116.680235
## iter 100 value 115.796028
## final  value 115.796028 
## stopped after 100 iterations
## # weights:  61
## initial  value 168.790758 
## iter  10 value 156.088936
## iter  20 value 136.182449
## iter  30 value 125.929448
## iter  40 value 122.269114
## iter  50 value 120.649924
## iter  60 value 118.187240
## iter  70 value 117.059275
## iter  80 value 114.066184
## iter  90 value 111.080808
## iter 100 value 105.667183
## final  value 105.667183 
## stopped after 100 iterations
## # weights:  13
## initial  value 170.642404 
## final  value 157.085774 
## converged
## # weights:  37
## initial  value 171.632667 
## final  value 157.086202 
## converged
## # weights:  61
## initial  value 166.542678 
## iter  10 value 156.145333
## iter  20 value 146.152843
## iter  30 value 142.804498
## iter  40 value 142.113873
## iter  50 value 140.527337
## iter  60 value 139.078442
## iter  70 value 138.841188
## iter  80 value 136.337412
## iter  90 value 136.191806
## iter 100 value 136.179798
## final  value 136.179798 
## stopped after 100 iterations
## # weights:  13
## initial  value 170.273868 
## final  value 158.245151 
## converged
## # weights:  37
## initial  value 158.533213 
## final  value 158.245151 
## converged
## # weights:  61
## initial  value 159.303888 
## final  value 158.245151 
## converged
## # weights:  13
## initial  value 165.213410 
## iter  10 value 158.372415
## iter  20 value 158.274203
## iter  30 value 152.364033
## iter  40 value 151.504172
## iter  50 value 151.503072
## final  value 151.503053 
## converged
## # weights:  37
## initial  value 159.899899 
## iter  10 value 156.514986
## iter  20 value 141.838719
## iter  30 value 135.316815
## iter  40 value 134.638261
## iter  50 value 118.946405
## iter  60 value 111.914656
## iter  70 value 110.524258
## iter  80 value 108.910189
## iter  90 value 107.952472
## iter 100 value 107.378348
## final  value 107.378348 
## stopped after 100 iterations
## # weights:  61
## initial  value 171.864990 
## iter  10 value 158.026417
## iter  20 value 151.750283
## iter  30 value 137.706342
## iter  40 value 126.590943
## iter  50 value 124.739511
## iter  60 value 119.285588
## iter  70 value 116.380454
## iter  80 value 115.345695
## iter  90 value 114.379917
## iter 100 value 114.331930
## final  value 114.331930 
## stopped after 100 iterations
## # weights:  13
## initial  value 181.571001 
## final  value 158.245330 
## converged
## # weights:  37
## initial  value 162.318135 
## final  value 158.245749 
## converged
## # weights:  61
## initial  value 173.036737 
## final  value 158.246112 
## converged
## # weights:  13
## initial  value 179.851107 
## final  value 158.622528 
## converged
## # weights:  37
## initial  value 177.034640 
## final  value 158.622528 
## converged
## # weights:  61
## initial  value 159.813096 
## final  value 158.622528 
## converged
## # weights:  13
## initial  value 173.819494 
## iter  10 value 158.683733
## iter  20 value 158.487329
## iter  30 value 134.340019
## iter  40 value 127.473506
## iter  50 value 125.611516
## iter  60 value 124.045669
## final  value 124.045023 
## converged
## # weights:  37
## initial  value 161.331073 
## iter  10 value 157.855662
## iter  20 value 150.577561
## iter  30 value 145.089333
## iter  40 value 125.135746
## iter  50 value 122.338279
## iter  60 value 113.968361
## iter  70 value 110.780828
## iter  80 value 110.674559
## iter  90 value 108.913553
## iter 100 value 107.259382
## final  value 107.259382 
## stopped after 100 iterations
## # weights:  61
## initial  value 187.128010 
## iter  10 value 151.537453
## iter  20 value 145.940894
## iter  30 value 138.870289
## iter  40 value 129.065328
## iter  50 value 125.156040
## iter  60 value 124.760687
## iter  70 value 124.538540
## iter  80 value 124.521998
## iter  90 value 124.518434
## iter 100 value 124.412858
## final  value 124.412858 
## stopped after 100 iterations
## # weights:  13
## initial  value 196.596755 
## final  value 158.622783 
## converged
## # weights:  37
## initial  value 158.927153 
## iter  10 value 155.532962
## iter  20 value 151.028220
## iter  30 value 148.653189
## iter  40 value 145.873692
## iter  50 value 145.662110
## iter  60 value 145.440518
## iter  70 value 145.417060
## iter  80 value 145.393890
## iter  90 value 145.368867
## iter 100 value 145.122644
## final  value 145.122644 
## stopped after 100 iterations
## # weights:  61
## initial  value 281.749801 
## final  value 158.623502 
## converged
## # weights:  37
## initial  value 176.756632 
## iter  10 value 173.435396
## iter  20 value 148.158520
## iter  30 value 142.199348
## iter  40 value 129.617829
## iter  50 value 126.914871
## iter  60 value 126.375900
## iter  70 value 126.237550
## final  value 126.236723 
## converged
vote_logit3
## Neural Network 
## 
## 282 samples
##  10 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 254, 254, 254, 253, 253, 254, ... 
## Resampling results across tuning parameters:
## 
##   size  decay  Accuracy   Kappa       
##   1     0e+00  0.7022669   0.052054795
##   1     1e-04  0.6879812   0.020183486
##   1     1e-01  0.7697911   0.367751857
##   3     0e+00  0.6879812   0.000000000
##   3     1e-04  0.7161832   0.111434617
##   3     1e-01  0.7976054   0.471048172
##   5     0e+00  0.6879812   0.000000000
##   5     1e-04  0.6845329  -0.006617647
##   5     1e-01  0.7941571   0.467965203
## 
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 3 and decay = 0.1.
nn<-nnet(taisyo ~ slope + uedokaburi + masuhonsuu + long + kyouyounensuu + kei,
         data=train,size = 5, rang = .1, decay = 0.1, maxit = 200 )
## # weights:  41
## initial  value 52.005164 
## iter  10 value 43.474070
## iter  20 value 38.064828
## iter  30 value 35.829526
## iter  40 value 33.369503
## iter  50 value 32.603099
## iter  60 value 32.304821
## iter  70 value 32.016855
## iter  80 value 31.642203
## iter  90 value 31.532014
## iter 100 value 31.506384
## final  value 31.505625 
## converged
predition = predict(nn, test)
table(predition,test$taisyo)
##                     
## predition            0 1
##   0.0295242463268687 1 0
##   0.0295848987964667 1 0
##   0.0298475547487361 1 0
##   0.0303574479733984 1 0
##   0.0314777984410032 1 0
##   0.0317463280092576 1 0
##   0.0326670304051563 0 1
##   0.0585518218908303 1 0
##   0.0877923166251347 1 0
##   0.092421602998543  1 0
##   0.0985715850512022 1 0
##   0.0993357800492    1 0
##   0.107931143019777  1 0
##   0.115890202563216  1 0
##   0.117318515716786  1 0
##   0.121641234485692  1 0
##   0.131090271302498  1 0
##   0.139292898085026  0 1
##   0.155224881339847  0 1
##   0.160665732869271  1 0
##   0.196190293178982  1 0
##   0.209117984735156  0 1
##   0.218654096224618  1 0
##   0.229112800928227  1 0
##   0.230688895085002  1 0
##   0.236979498841049  1 0
##   0.243621785460793  1 0
##   0.247646479469752  1 0
##   0.25399406320416   1 0
##   0.254268756730388  1 0
##   0.255216412954828  1 0
##   0.255628494820377  1 0
##   0.259076998324261  1 0
##   0.262867312407084  1 0
##   0.263222327317786  1 0
##   0.267168709231038  1 0
##   0.268332666042179  0 1
##   0.268504605951573  1 0
##   0.269904933076506  1 0
##   0.274441633274133  1 0
##   0.27510310250442   1 0
##   0.275147002461864  1 0
##   0.275442134068737  1 0
##   0.276303703556832  1 0
##   0.277323779661832  1 0
##   0.277589143380674  0 1
##   0.277727926512261  1 0
##   0.277750580618592  1 0
##   0.277851374509356  0 1
##   0.27786388631142   0 1
##   0.277905486684228  0 1
##   0.278054301802326  1 0
##   0.278101011993139  1 0
##   0.278342203339156  1 0
##   0.278383452876594  1 0
##   0.28860824532644   1 0
##   0.294674964170076  1 0
##   0.307986189797099  1 0
##   0.324384794057157  1 0
##   0.325164738531486  1 0
##   0.35786181806826   1 0
##   0.405104652122653  1 0
##   0.424962729683021  0 1
##   0.427394312851678  0 1
##   0.430108805096737  1 0
##   0.484801248072998  1 0
##   0.494395290304906  0 1
##   0.536409839196686  1 0
##   0.642993521547959  0 1
##   0.653464593461555  1 0
##   0.675490255559909  0 1
##   0.688656635679323  0 1
##   0.696262608629013  1 0
##   0.743357775551049  0 1
##   0.760817610572907  0 1
##   0.772815014719463  0 1
##   0.77726621862403   0 1
##   0.781733328877021  0 1
##   0.786189457683613  0 1
##   0.791901140094849  0 1
##   0.794114848787367  0 1
##   0.796691630158656  0 1