This is my coursework. This project is to discover the crime in Boston area. We use the dataset from Kaggle, Crime in Boston

This is a dataset containing records from the new crime incident report system in Boston area, which includes a reduced set of fields focused on capturing the type of incident as well as when and where it occurred.

Crime incident reports are provided by Boston Police Department (BPD) to document the initial details surrounding an incident to which BPD officers respond.

June 14, 2015 to September 3, 2018

I also create an interactive dashboard by tableau. Feel free to check the link and click them.

The link: Crime in Boston Dashboard

Load Library

library(tidyverse)
## -- Attaching packages ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ tidyverse 1.3.0 --
## v ggplot2 3.3.0     v purrr   0.3.3
## v tibble  2.1.3     v dplyr   0.8.5
## v tidyr   1.0.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
library(DataExplorer)

Load Data

Boston_Crime <- read.table("Boston_Crime.csv", header = TRUE, sep=",")

Inspecting data frames

Use head() function to view the first few rows.

head(Boston_Crime,5)
##   INCIDENT_NUMBER OFFENSE_CODE OFFENSE_CODE_GROUP
## 1      I182080058         2403 Disorderly Conduct
## 2      I182080053         3201      Property Lost
## 3      I182080052         2647              Other
## 4      I182080051          413 Aggravated Assault
## 5      I182080050         3122           Aircraft
##              OFFENSE_DESCRIPTION DISTRICT REPORTING_AREA SHOOTING
## 1           DISTURBING THE PEACE      E18            495         
## 2                PROPERTY - LOST      D14            795         
## 3      THREATS TO DO BODILY HARM       B2            329         
## 4 ASSAULT - AGGRAVATED - BATTERY       A1             92         
## 5             AIRCRAFT INCIDENTS       A7             36         
##   OCCURRED_ON_DATE YEAR MONTH DAY_OF_WEEK HOUR   UCR_PART       STREET
## 1 2018-10-03 20:13 2018    10   Wednesday   20   Part Two ARLINGTON ST
## 2 2018-08-30 20:00 2018     8    Thursday   20 Part Three   ALLSTON ST
## 3 2018-10-03 19:20 2018    10   Wednesday   19   Part Two     DEVON ST
## 4 2018-10-03 20:00 2018    10   Wednesday   20   Part One CAMBRIDGE ST
## 5 2018-10-03 20:49 2018    10   Wednesday   20 Part Three  PRESCOTT ST
##        Lat      Long                    Location
## 1 42.26261 -71.12119 (42.26260773, -71.12118637)
## 2 42.35211 -71.13531 (42.35211146, -71.13531147)
## 3 42.30813 -71.07693 (42.30812619, -71.07692974)
## 4 42.35945 -71.05965 (42.35945371, -71.05964817)
## 5 42.37526 -71.02466 (42.37525782, -71.02466343)

Use str() function to check the structure of the data

str(Boston_Crime)
## 'data.frame':    151764 obs. of  17 variables:
##  $ INCIDENT_NUMBER    : Factor w/ 134389 levels "142052550","I010370257-00",..: 134389 134388 134387 134386 134385 134384 134383 134382 134381 134380 ...
##  $ OFFENSE_CODE       : int  2403 3201 2647 413 3122 1402 3803 3301 802 3410 ...
##  $ OFFENSE_CODE_GROUP : Factor w/ 66 levels "Aggravated Assault",..: 14 52 46 1 2 63 43 64 61 62 ...
##  $ OFFENSE_DESCRIPTION: Factor w/ 242 levels "A&B HANDS, FEET, ETC.  - MED. ATTENTION REQ.",..: 62 185 220 13 5 229 160 230 21 221 ...
##  $ DISTRICT           : Factor w/ 13 levels "","A1","A15",..: 12 9 5 2 4 7 1 5 12 10 ...
##  $ REPORTING_AREA     : int  495 795 329 92 36 351 NA 603 543 621 ...
##  $ SHOOTING           : Factor w/ 2 levels "","Y": 1 1 1 1 1 1 1 1 1 1 ...
##  $ OCCURRED_ON_DATE   : Factor w/ 114576 levels "2015-06-15 0:00",..: 114572 112099 114564 114571 114574 114524 114573 114567 114565 114571 ...
##  $ YEAR               : int  2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 ...
##  $ MONTH              : int  10 8 10 10 10 10 10 10 10 10 ...
##  $ DAY_OF_WEEK        : Factor w/ 7 levels "Friday","Monday",..: 7 5 7 7 7 6 7 7 7 7 ...
##  $ HOUR               : int  20 20 19 20 20 20 20 19 19 20 ...
##  $ UCR_PART           : Factor w/ 5 levels "","Other","Part One",..: 5 4 5 3 4 5 4 4 5 4 ...
##  $ STREET             : Factor w/ 4241 levels ""," ALBANY ST ",..: 180 100 1059 615 3129 1093 1 3834 241 856 ...
##  $ Lat                : num  42.3 42.4 42.3 42.4 42.4 ...
##  $ Long               : num  -71.1 -71.1 -71.1 -71.1 -71 ...
##  $ Location           : Factor w/ 15433 levels "(-1.00000000, -1.00000000)",..: 729 12456 5788 13499 14566 4885 7672 9497 477 11790 ...
summary(Boston_Crime)
##       INCIDENT_NUMBER    OFFENSE_CODE 
##  I152080623   :    11   Min.   : 111  
##  I172096394   :    10   1st Qu.:1001  
##  I182065208   :    10   Median :2914  
##  I162071327   :     9   Mean   :2318  
##  I172056883   :     9   3rd Qu.:3201  
##  I130041200-00:     8   Max.   :3831  
##  (Other)      :151707                 
##                        OFFENSE_CODE_GROUP
##  Motor Vehicle Accident Response:17733   
##  Larceny                        :12268   
##  Medical Assistance             :11193   
##  Investigate Person             : 8883   
##  Other                          : 8502   
##  Drug Violation                 : 7702   
##  (Other)                        :85483   
##                             OFFENSE_DESCRIPTION    DISTRICT    
##  SICK/INJURED/MEDICAL - PERSON        :  8908   B2     :23667  
##  INVESTIGATE PERSON                   :  8887   C11    :20340  
##  M/V - LEAVING SCENE - PROPERTY DAMAGE:  7790   D4     :19929  
##  VANDALISM                            :  7351   A1     :17074  
##  ASSAULT SIMPLE - BATTERY             :  7076   B3     :16875  
##  VERBAL DISPUTE                       :  6190   C6     :11204  
##  (Other)                              :105562   (Other):42675  
##  REPORTING_AREA  SHOOTING           OCCURRED_ON_DATE       YEAR     
##  Min.   :  0.0    :151229   2015-06-18 5:00 :    22   Min.   :2015  
##  1st Qu.:177.0   Y:   535   2015-07-01 0:00 :    16   1st Qu.:2016  
##  Median :344.0              2017-06-01 0:00 :    16   Median :2016  
##  Mean   :383.7              2015-12-07 11:38:    14   Mean   :2017  
##  3rd Qu.:546.0              2015-10-02 21:00:    13   3rd Qu.:2017  
##  Max.   :962.0              2016-04-01 0:00 :    13   Max.   :2018  
##  NA's   :9664               (Other)         :151670                 
##      MONTH           DAY_OF_WEEK         HOUR             UCR_PART    
##  Min.   : 1.000   Friday   :23242   Min.   : 0.00             :   42  
##  1st Qu.: 4.000   Monday   :21896   1st Qu.: 9.00   Other     :  578  
##  Median : 7.000   Saturday :22236   Median :14.00   Part One  :29375  
##  Mean   : 6.733   Sunday   :19905   Mean   :13.08   Part Three:75654  
##  3rd Qu.: 9.000   Thursday :21212   3rd Qu.:18.00   Part Two  :46115  
##  Max.   :12.000   Tuesday  :22050   Max.   :23.00                     
##                   Wednesday:21223                                     
##             STREET            Lat             Long       
##  WASHINGTON ST :  6596   Min.   :-1.00   Min.   :-71.18  
##                :  5303   1st Qu.:42.30   1st Qu.:-71.10  
##  BLUE HILL AVE :  3703   Median :42.33   Median :-71.08  
##  BOYLSTON ST   :  3472   Mean   :42.21   Mean   :-70.89  
##  DORCHESTER AVE:  2457   3rd Qu.:42.35   3rd Qu.:-71.06  
##  TREMONT ST    :  2288   Max.   :42.40   Max.   : -1.00  
##  (Other)       :127945   NA's   :9460    NA's   :9460    
##                         Location     
##  (0.00000000, 0.00000000)   :  9460  
##  (42.34862382, -71.08277637):   572  
##  (42.36183857, -71.05976489):   548  
##  (42.28482577, -71.09137369):   542  
##  (42.32866284, -71.08563401):   461  
##  (42.25621592, -71.12401947):   395  
##  (Other)                    :139786

Anthor way: to use glimpse() function to see every column in a data frame

glimpse(Boston_Crime)
## Observations: 151,764
## Variables: 17
## $ INCIDENT_NUMBER     <fct> I182080058, I182080053, I182080052, I18208...
## $ OFFENSE_CODE        <int> 2403, 3201, 2647, 413, 3122, 1402, 3803, 3...
## $ OFFENSE_CODE_GROUP  <fct> Disorderly Conduct, Property Lost, Other, ...
## $ OFFENSE_DESCRIPTION <fct> "DISTURBING THE PEACE", "PROPERTY - LOST",...
## $ DISTRICT            <fct> E18, D14, B2, A1, A7, C11, , B2, E18, D4, ...
## $ REPORTING_AREA      <int> 495, 795, 329, 92, 36, 351, NA, 603, 543, ...
## $ SHOOTING            <fct> , , , , , , , , , , , , , , , , , , , , , ...
## $ OCCURRED_ON_DATE    <fct> 2018-10-03 20:13, 2018-08-30 20:00, 2018-1...
## $ YEAR                <int> 2018, 2018, 2018, 2018, 2018, 2018, 2018, ...
## $ MONTH               <int> 10, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10,...
## $ DAY_OF_WEEK         <fct> Wednesday, Thursday, Wednesday, Wednesday,...
## $ HOUR                <int> 20, 20, 19, 20, 20, 20, 20, 19, 19, 20, 19...
## $ UCR_PART            <fct> Part Two, Part Three, Part Two, Part One, ...
## $ STREET              <fct> ARLINGTON ST, ALLSTON ST, DEVON ST, CAMBRI...
## $ Lat                 <dbl> 42.26261, 42.35211, 42.30813, 42.35945, 42...
## $ Long                <dbl> -71.12119, -71.13531, -71.07693, -71.05965...
## $ Location            <fct> "(42.26260773, -71.12118637)", "(42.352111...

Let’s check the completeness of the data.

plot_intro(Boston_Crime)

Let’s start the visualization and Exploratory Data Analysis (EDA)

plot_correlation(Boston_Crime)
## 6 features with more than 20 categories ignored!
## INCIDENT_NUMBER: 134389 categories
## OFFENSE_CODE_GROUP: 66 categories
## OFFENSE_DESCRIPTION: 242 categories
## OCCURRED_ON_DATE: 114576 categories
## STREET: 4241 categories
## Location: 15433 categories

plot_histogram(Boston_Crime)

plot_bar(Boston_Crime)
## 6 columns ignored with more than 50 categories.
## INCIDENT_NUMBER: 134389 categories
## OFFENSE_CODE_GROUP: 66 categories
## OFFENSE_DESCRIPTION: 242 categories
## OCCURRED_ON_DATE: 114576 categories
## STREET: 4241 categories
## Location: 15433 categories

Boston_Crime  %>% separate(OCCURRED_ON_DATE, c("Date", "Time"), sep = " ") %>% mutate(Date = ymd(Date)) %>% 
    ggplot(aes(Date))+
    geom_freqpoly() +
    ylab("Number of Crimes")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Boston_Crime  %>% count(OFFENSE_CODE_GROUP) %>% arrange(-n) %>% head(30) %>% 
  ggplot(aes(reorder(OFFENSE_CODE_GROUP,n), n))+
  geom_col()+
  coord_flip()+
  labs(x = NULL, y = 'Counts')

Boston_Crime %>% count(STREET) %>% arrange(-n) %>% head(15) %>% 
    ggplot(aes(reorder(STREET,n), n))+
    geom_col()+
    coord_flip()+
    labs(x = NULL, y = NULL)

Boston_Crime %>% filter(DISTRICT %in% (Boston_Crime %>% count(DISTRICT) %>% arrange(-n) %>% pull(DISTRICT)),
                OFFENSE_CODE_GROUP %in% (Boston_Crime %>% count(OFFENSE_CODE_GROUP) %>% arrange(-n) %>% head(5) %>% pull(OFFENSE_CODE_GROUP))
                ) %>% 
    ggplot(aes(DISTRICT, fill = OFFENSE_CODE_GROUP))+
    geom_bar()+
    scale_fill_ordinal()+
    coord_flip()

Boston_Crime %>% filter(STREET %in% (Boston_Crime %>% count(STREET) %>% arrange(-n) %>% head(5) %>% pull(STREET)),
                OFFENSE_CODE_GROUP %in% (Boston_Crime %>% count(OFFENSE_CODE_GROUP) %>% arrange(-n) %>% head(5) %>% pull(OFFENSE_CODE_GROUP))
                ) %>% 
    ggplot(aes(STREET, fill = OFFENSE_CODE_GROUP))+
    geom_bar(position = "fill")+
    scale_fill_ordinal()+
    coord_flip()

Boston_Crime %>% filter(STREET %in% (Boston_Crime %>% count(STREET) %>% arrange(-n) %>% head(5) %>% pull(STREET))) %>% 
    ggplot(aes(DISTRICT, fill = STREET))+
    geom_bar(position = "fill")+
    coord_flip()+
    scale_fill_ordinal()

Boston_Crime %>% filter(STREET %in% (Boston_Crime %>% count(STREET) %>% arrange(-n) %>% head(5) %>% pull(STREET))) %>% 
    ggplot(aes(DAY_OF_WEEK, fill = STREET))+
    geom_bar()+
    coord_flip()+
    scale_fill_ordinal()

Boston_Crime %>% filter(OFFENSE_CODE_GROUP %in% (Boston_Crime %>% count(OFFENSE_CODE_GROUP) %>% arrange(-n) %>% head(5) %>% pull(OFFENSE_CODE_GROUP))) %>% 
    ggplot(aes(HOUR, fill = OFFENSE_CODE_GROUP))+
    geom_bar()+
    coord_flip()+
    scale_fill_ordinal()

Boston_Crime %>% filter(OFFENSE_CODE_GROUP %in% (Boston_Crime %>% count(OFFENSE_CODE_GROUP) %>% arrange(-n) %>% head(5) %>% pull(OFFENSE_CODE_GROUP))) %>% 
  ggplot(aes(HOUR, fill = OFFENSE_CODE_GROUP))+
  geom_bar()+
  facet_wrap(~YEAR)+
  coord_flip()+
  scale_fill_ordinal()

Boston_Crime %>% filter(OFFENSE_CODE_GROUP %in% (Boston_Crime %>% count(OFFENSE_CODE_GROUP) %>% arrange(-n) %>% head(5) %>% pull(OFFENSE_CODE_GROUP))) %>% 
  ggplot(aes(DISTRICT, fill = OFFENSE_CODE_GROUP))+
  geom_bar()+
  facet_wrap(~YEAR)+
  coord_flip()+
  scale_fill_ordinal()

Modelling and Training a Naive Bayes Classifier

Load libraries

library(e1071)
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
## 
##     lift

Import the Data

Choose the columns we needed and filter them our; meanwhile, clean the null value

Boston_Crime_UCR <- Boston_Crime %>% filter(UCR_PART !='') %>% select(UCR_PART, OFFENSE_CODE_GROUP, DISTRICT, DAY_OF_WEEK, HOUR)

Check and study the dataset

summary(Boston_Crime_UCR)
##        UCR_PART                           OFFENSE_CODE_GROUP
##            :    0   Motor Vehicle Accident Response:17733   
##  Other     :  578   Larceny                        :12268   
##  Part One  :29375   Medical Assistance             :11193   
##  Part Three:75654   Investigate Person             : 8883   
##  Part Two  :46115   Other                          : 8502   
##                     Drug Violation                 : 7702   
##                     (Other)                        :85441   
##     DISTRICT        DAY_OF_WEEK         HOUR      
##  B2     :23659   Friday   :23236   Min.   : 0.00  
##  C11    :20334   Monday   :21887   1st Qu.: 9.00  
##  D4     :19926   Saturday :22232   Median :14.00  
##  A1     :17072   Sunday   :19897   Mean   :13.08  
##  B3     :16867   Thursday :21207   3rd Qu.:18.00  
##  C6     :11202   Tuesday  :22046   Max.   :23.00  
##  (Other):42662   Wednesday:21217
str(Boston_Crime_UCR)
## 'data.frame':    151722 obs. of  5 variables:
##  $ UCR_PART          : Factor w/ 5 levels "","Other","Part One",..: 5 4 5 3 4 5 4 4 5 4 ...
##  $ OFFENSE_CODE_GROUP: Factor w/ 66 levels "Aggravated Assault",..: 14 52 46 1 2 63 43 64 61 62 ...
##  $ DISTRICT          : Factor w/ 13 levels "","A1","A15",..: 12 9 5 2 4 7 1 5 12 10 ...
##  $ DAY_OF_WEEK       : Factor w/ 7 levels "Friday","Monday",..: 7 5 7 7 7 6 7 7 7 7 ...
##  $ HOUR              : int  20 20 19 20 20 20 20 19 19 20 ...

Quick Exploratory Data Analysis

Boston_Crime_UCR %>% filter(UCR_PART %in% (Boston_Crime_UCR %>% count(UCR_PART) %>% arrange(-n) %>% head(5) %>% pull(UCR_PART))) %>% 
    ggplot(aes(HOUR, fill = UCR_PART))+
    geom_bar()+
    coord_flip()+
    scale_fill_ordinal()

Boston_Crime_UCR %>% 
  ggplot(aes(x=UCR_PART, y=HOUR, fill=UCR_PART))+
  geom_boxplot() +
  ggtitle('Box Plot')

Boston_Crime_UCR %>% 
  ggplot(aes(x=HOUR, fill=UCR_PART))+
  geom_density(alpha = 0.8, color = 'black') +
  coord_flip()+
  ggtitle('Density Plot')

Data Modelling

Partition the dataset in the train set and the test set

set.seed(1234)
id <- sample(2, nrow(Boston_Crime_UCR), replace = T, prob = c(0.8, 0.2))
train <- Boston_Crime_UCR[id == 1,]
test <- Boston_Crime_UCR[id == 2,]

Round 1:

Create Naive Bayes model by using the training data set

crime_nb1 <- naiveBayes(as.factor(HOUR)~., data=train, )
crime_nb1
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##          0          1          2          3          4          5 
## 0.04822577 0.03008044 0.02420748 0.01427114 0.01049567 0.01076710 
##          6          7          8          9         10         11 
## 0.01509369 0.02760459 0.04034580 0.04667939 0.05239607 0.05247010 
##         12         13         14         15         16         17 
## 0.05902578 0.05275799 0.05310346 0.05066873 0.06107391 0.06396104 
##         18         19         20         21         22         23 
## 0.06386234 0.05537368 0.04855479 0.04454077 0.04040338 0.03403688 
## 
## Conditional probabilities:
##     UCR_PART
## Y                      Other    Part One  Part Three    Part Two
##   0  0.000000000 0.004434590 0.187105577 0.457274433 0.351185400
##   1  0.000000000 0.004648619 0.185124419 0.458299152 0.351927810
##   2  0.000000000 0.004077472 0.183486239 0.476044852 0.336391437
##   3  0.000000000 0.003458213 0.207492795 0.511239193 0.277809798
##   4  0.000000000 0.003918495 0.224137931 0.518025078 0.253918495
##   5  0.000000000 0.002291826 0.203208556 0.572192513 0.222307105
##   6  0.000000000 0.003814714 0.196185286 0.586376022 0.213623978
##   7  0.000000000 0.003575685 0.170143027 0.611740167 0.214541120
##   8  0.000000000 0.005300714 0.168807339 0.571661570 0.254230377
##   9  0.000000000 0.005991189 0.159471366 0.555418502 0.279118943
##   10 0.000000000 0.005651491 0.169387755 0.532496075 0.292464678
##   11 0.000000000 0.005329989 0.174321994 0.522182160 0.298165857
##   12 0.000000000 0.003483835 0.187151616 0.484253066 0.325111483
##   13 0.000000000 0.003741815 0.185687558 0.504521360 0.306049267
##   14 0.000000000 0.003717472 0.203531599 0.490706320 0.302044610
##   15 0.000000000 0.003084416 0.201623377 0.488474026 0.306818182
##   16 0.000000000 0.002693603 0.198383838 0.478114478 0.320808081
##   17 0.000000000 0.002443416 0.192644033 0.460519547 0.344393004
##   18 0.000000000 0.003219990 0.198093766 0.451571355 0.347114889
##   19 0.000000000 0.002673797 0.203802733 0.460190137 0.333333333
##   20 0.000000000 0.003049297 0.219718787 0.473657462 0.303574454
##   21 0.000000000 0.003878116 0.214219760 0.507848569 0.274053555
##   22 0.000000000 0.003257329 0.218851792 0.511604235 0.266286645
##   23 0.000000000 0.004108265 0.216288062 0.521991300 0.257612373
## 
##     OFFENSE_CODE_GROUP
## Y    Aggravated Assault     Aircraft        Arson
##   0        0.0301893229 0.0000000000 0.0003411223
##   1        0.0418375718 0.0000000000 0.0002734482
##   2        0.0496092423 0.0000000000 0.0006795787
##   3        0.0351585014 0.0000000000 0.0000000000
##   4        0.0384012539 0.0000000000 0.0007836991
##   5        0.0213903743 0.0007639419 0.0007639419
##   6        0.0152588556 0.0000000000 0.0005449591
##   7        0.0140047676 0.0000000000 0.0002979738
##   8        0.0156982671 0.0002038736 0.0002038736
##   9        0.0119823789 0.0000000000 0.0003524229
##   10       0.0152276295 0.0001569859 0.0000000000
##   11       0.0169305534 0.0003135288 0.0000000000
##   12       0.0165830546 0.0000000000 0.0002787068
##   13       0.0208917992 0.0001559089 0.0000000000
##   14       0.0192069393 0.0001548947 0.0003097893
##   15       0.0215909091 0.0001623377 0.0001623377
##   16       0.0268013468 0.0000000000 0.0002693603
##   17       0.0198045267 0.0001286008 0.0002572016
##   18       0.0202215353 0.0001287996 0.0002575992
##   19       0.0251039810 0.0004456328 0.0004456328
##   20       0.0293071320 0.0001694054 0.0005082162
##   21       0.0323176362 0.0000000000 0.0001846722
##   22       0.0348127036 0.0000000000 0.0000000000
##   23       0.0413243113 0.0002416626 0.0002416626
##     OFFENSE_CODE_GROUP
## Y    Assembly or Gathering Violations   Auto Theft Auto Theft Recovery
##   0                      0.0121098414 0.0144976974        0.0039229064
##   1                      0.0103910309 0.0131255127        0.0038282745
##   2                      0.0050968400 0.0125722052        0.0033978933
##   3                      0.0046109510 0.0161383285        0.0028818444
##   4                      0.0031347962 0.0242946708        0.0023510972
##   5                      0.0000000000 0.0175706646        0.0015278839
##   6                      0.0005449591 0.0212534060        0.0032697548
##   7                      0.0026817640 0.0116209774        0.0029797378
##   8                      0.0014271152 0.0120285423        0.0038735984
##   9                      0.0015859031 0.0126872247        0.0049339207
##   10                     0.0021978022 0.0122448980        0.0053375196
##   11                     0.0017244082 0.0112870356        0.0050164603
##   12                     0.0033444816 0.0115663322        0.0029264214
##   13                     0.0009354537 0.0121608980        0.0034299969
##   14                     0.0015489467 0.0147149938        0.0034076828
##   15                     0.0017857143 0.0116883117        0.0027597403
##   16                     0.0016161616 0.0117171717        0.0020202020
##   17                     0.0010288066 0.0122170782        0.0020576132
##   18                     0.0011591963 0.0142967543        0.0027047913
##   19                     0.0011883541 0.0164884135        0.0019310755
##   20                     0.0010164323 0.0225309165        0.0023716754
##   21                     0.0016620499 0.0236380425        0.0035087719
##   22                     0.0030537459 0.0250407166        0.0032573290
##   23                     0.0125664572 0.0212663122        0.0033832769
##     OFFENSE_CODE_GROUP
## Y      Ballistics    Bomb Hoax Burglary - No Property Taken
##   0  0.0027289783 0.0003411223                 0.0000000000
##   1  0.0054689636 0.0000000000                 0.0000000000
##   2  0.0071355759 0.0000000000                 0.0000000000
##   3  0.0109510086 0.0000000000                 0.0000000000
##   4  0.0070532915 0.0000000000                 0.0000000000
##   5  0.0045836516 0.0000000000                 0.0000000000
##   6  0.0038147139 0.0000000000                 0.0000000000
##   7  0.0011918951 0.0005959476                 0.0000000000
##   8  0.0016309888 0.0000000000                 0.0000000000
##   9  0.0015859031 0.0000000000                 0.0000000000
##   10 0.0032967033 0.0006279435                 0.0000000000
##   11 0.0015676438 0.0001567644                 0.0001567644
##   12 0.0029264214 0.0005574136                 0.0000000000
##   13 0.0021827253 0.0003118179                 0.0000000000
##   14 0.0020136307 0.0000000000                 0.0000000000
##   15 0.0017857143 0.0003246753                 0.0000000000
##   16 0.0020202020 0.0002693603                 0.0000000000
##   17 0.0020576132 0.0002572016                 0.0000000000
##   18 0.0023183926 0.0002575992                 0.0000000000
##   19 0.0028223411 0.0001485443                 0.0000000000
##   20 0.0015246485 0.0000000000                 0.0000000000
##   21 0.0025854109 0.0001846722                 0.0000000000
##   22 0.0048859935 0.0000000000                 0.0000000000
##   23 0.0070082165 0.0002416626                 0.0000000000
##     OFFENSE_CODE_GROUP
## Y    Commercial Burglary Confidence Games Counterfeiting
##   0         0.0056285178     0.0274603445   0.0080163739
##   1         0.0068362045     0.0051955154   0.0013672409
##   2         0.0067957866     0.0057764186   0.0003397893
##   3         0.0195965418     0.0034582133   0.0023054755
##   4         0.0297805643     0.0000000000   0.0031347962
##   5         0.0183346066     0.0038197097   0.0007639419
##   6         0.0147138965     0.0076294278   0.0021798365
##   7         0.0071513707     0.0077473182   0.0020858164
##   8         0.0053007136     0.0099898063   0.0040774720
##   9         0.0054625551     0.0149779736   0.0065198238
##   10        0.0025117739     0.0095761381   0.0048665620
##   11        0.0018811726     0.0083085123   0.0064273397
##   12        0.0023690078     0.0154682274   0.0072463768
##   13        0.0009354537     0.0124727159   0.0067040848
##   14        0.0023234201     0.0117719950   0.0063506815
##   15        0.0019480519     0.0125000000   0.0060064935
##   16        0.0018855219     0.0082154882   0.0045791246
##   17        0.0012860082     0.0086162551   0.0047582305
##   18        0.0025759918     0.0099175683   0.0028335909
##   19        0.0031194296     0.0077243018   0.0026737968
##   20        0.0022022700     0.0050821616   0.0028798916
##   21        0.0022160665     0.0053554940   0.0029547553
##   22        0.0030537459     0.0065146580   0.0012214984
##   23        0.0053165781     0.0041082649   0.0009666506
##     OFFENSE_CODE_GROUP
## Y    Criminal Harassment Disorderly Conduct Drug Violation Embezzlement
##   0         0.0005116834       0.0126215248   0.0320654955 0.0017056115
##   1         0.0002734482       0.0169537873   0.0273448182 0.0002734482
##   2         0.0000000000       0.0220863065   0.0227658852 0.0000000000
##   3         0.0005763689       0.0178674352   0.0161383285 0.0000000000
##   4         0.0000000000       0.0078369906   0.0274294671 0.0007836991
##   5         0.0007639419       0.0061115355   0.0160427807 0.0000000000
##   6         0.0005449591       0.0070844687   0.0207084469 0.0000000000
##   7         0.0002979738       0.0047675805   0.0172824791 0.0000000000
##   8         0.0000000000       0.0069317023   0.0185524975 0.0010193680
##   9         0.0003524229       0.0066960352   0.0232599119 0.0015859031
##   10        0.0006279435       0.0065934066   0.0365777080 0.0010989011
##   11        0.0004702931       0.0062705753   0.0429534410 0.0004702931
##   12        0.0005574136       0.0072463768   0.0436176143 0.0016722408
##   13        0.0004677268       0.0067040848   0.0559713128 0.0007795447
##   14        0.0004646840       0.0044919455   0.0565365551 0.0015489467
##   15        0.0003246753       0.0042207792   0.0639610390 0.0009740260
##   16        0.0005387205       0.0057912458   0.0857912458 0.0005387205
##   17        0.0001286008       0.0069444444   0.1028806584 0.0005144033
##   18        0.0003863988       0.0061823802   0.0994332818 0.0005151984
##   19        0.0005941771       0.0068330362   0.0861556744 0.0007427213
##   20        0.0005082162       0.0096561071   0.0592918855 0.0005082162
##   21        0.0000000000       0.0072022161   0.0326869806 0.0003693444
##   22        0.0002035831       0.0107899023   0.0219869707 0.0002035831
##   23        0.0000000000       0.0089415176   0.0154664089 0.0007249879
##     OFFENSE_CODE_GROUP
## Y    Evading Fare   Explosives Fire Related Reports Firearm Discovery
##   0  0.0020467338 0.0001705611         0.0051168344      0.0015350503
##   1  0.0038282745 0.0002734482         0.0084768936      0.0013672409
##   2  0.0047570506 0.0000000000         0.0074753653      0.0010193680
##   3  0.0028818444 0.0000000000         0.0109510086      0.0017291066
##   4  0.0031347962 0.0000000000         0.0109717868      0.0023510972
##   5  0.0007639419 0.0000000000         0.0084033613      0.0022918258
##   6  0.0005449591 0.0000000000         0.0038147139      0.0005449591
##   7  0.0008939213 0.0000000000         0.0053635280      0.0008939213
##   8  0.0006116208 0.0000000000         0.0032619776      0.0030581040
##   9  0.0003524229 0.0001762115         0.0054625551      0.0028193833
##   10 0.0007849294 0.0001569859         0.0056514914      0.0021978022
##   11 0.0006270575 0.0000000000         0.0040758740      0.0031352877
##   12 0.0004180602 0.0000000000         0.0058528428      0.0033444816
##   13 0.0012472716 0.0003118179         0.0045213595      0.0035859058
##   14 0.0006195787 0.0000000000         0.0068153656      0.0038723668
##   15 0.0008116883 0.0000000000         0.0060064935      0.0016233766
##   16 0.0008080808 0.0000000000         0.0076767677      0.0029629630
##   17 0.0010288066 0.0000000000         0.0050154321      0.0018004115
##   18 0.0007727975 0.0000000000         0.0068263782      0.0016743946
##   19 0.0019310755 0.0000000000         0.0063874034      0.0020796197
##   20 0.0008470269 0.0000000000         0.0084702694      0.0018634593
##   21 0.0020313943 0.0000000000         0.0075715605      0.0018467221
##   22 0.0016286645 0.0000000000         0.0061074919      0.0002035831
##   23 0.0026582890 0.0002416626         0.0060415660      0.0007249879
##     OFFENSE_CODE_GROUP
## Y    Firearm Violations        Fraud     Gambling   Harassment
##   0        0.0071635681 0.0409346751 0.0000000000 0.0165444312
##   1        0.0084768936 0.0046486191 0.0000000000 0.0060158600
##   2        0.0084947333 0.0047570506 0.0000000000 0.0037376826
##   3        0.0074927954 0.0028818444 0.0000000000 0.0069164265
##   4        0.0086206897 0.0039184953 0.0000000000 0.0047021944
##   5        0.0061115355 0.0061115355 0.0007639419 0.0068754775
##   6        0.0010899183 0.0070844687 0.0000000000 0.0049046322
##   7        0.0017878427 0.0080452920 0.0000000000 0.0125148987
##   8        0.0024464832 0.0156982671 0.0000000000 0.0101936799
##   9        0.0031718062 0.0262555066 0.0000000000 0.0142731278
##   10       0.0037676609 0.0270015699 0.0000000000 0.0164835165
##   11       0.0048596959 0.0246120082 0.0000000000 0.0125411507
##   12       0.0052954292 0.0377647715 0.0000000000 0.0174191750
##   13       0.0067040848 0.0210477081 0.0001559089 0.0151231681
##   14       0.0044919455 0.0255576208 0.0000000000 0.0140954151
##   15       0.0047077922 0.0202922078 0.0000000000 0.0146103896
##   16       0.0049831650 0.0183164983 0.0000000000 0.0123905724
##   17       0.0061728395 0.0169753086 0.0001286008 0.0132458848
##   18       0.0065687790 0.0135239567 0.0000000000 0.0124935600
##   19       0.0077243018 0.0136660725 0.0000000000 0.0115864528
##   20       0.0055903778 0.0111807555 0.0000000000 0.0155852956
##   21       0.0053554940 0.0094182825 0.0001846722 0.0101569714
##   22       0.0052931596 0.0032573290 0.0000000000 0.0091612378
##   23       0.0053165781 0.0038666022 0.0000000000 0.0070082165
##     OFFENSE_CODE_GROUP
## Y    Harbor Related Incidents HOME INVASION     Homicide HUMAN TRAFFICKING
##   0              0.0003411223  0.0000000000 0.0006822446      0.0000000000
##   1              0.0005468964  0.0000000000 0.0010937927      0.0000000000
##   2              0.0006795787  0.0000000000 0.0006795787      0.0000000000
##   3              0.0000000000  0.0000000000 0.0011527378      0.0000000000
##   4              0.0015673981  0.0000000000 0.0007836991      0.0000000000
##   5              0.0000000000  0.0000000000 0.0000000000      0.0000000000
##   6              0.0005449591  0.0000000000 0.0010899183      0.0000000000
##   7              0.0002979738  0.0000000000 0.0002979738      0.0000000000
##   8              0.0002038736  0.0000000000 0.0002038736      0.0000000000
##   9              0.0003524229  0.0000000000 0.0000000000      0.0000000000
##   10             0.0004709576  0.0000000000 0.0003139717      0.0000000000
##   11             0.0007838219  0.0000000000 0.0001567644      0.0000000000
##   12             0.0005574136  0.0000000000 0.0000000000      0.0000000000
##   13             0.0007795447  0.0000000000 0.0001559089      0.0000000000
##   14             0.0000000000  0.0000000000 0.0001548947      0.0000000000
##   15             0.0003246753  0.0000000000 0.0001623377      0.0000000000
##   16             0.0010774411  0.0000000000 0.0002693603      0.0000000000
##   17             0.0009002058  0.0000000000 0.0005144033      0.0000000000
##   18             0.0007727975  0.0000000000 0.0003863988      0.0000000000
##   19             0.0014854427  0.0000000000 0.0004456328      0.0000000000
##   20             0.0003388108  0.0000000000 0.0008470269      0.0000000000
##   21             0.0005540166  0.0000000000 0.0007386888      0.0000000000
##   22             0.0002035831  0.0000000000 0.0010179153      0.0000000000
##   23             0.0004833253  0.0000000000 0.0019333011      0.0000000000
##     OFFENSE_CODE_GROUP
## Y    HUMAN TRAFFICKING - INVOLUNTARY SERVITUDE Investigate Person
##   0                               0.0000000000       0.0499744158
##   1                               0.0000000000       0.0451189500
##   2                               0.0000000000       0.0489296636
##   3                               0.0000000000       0.0593659942
##   4                               0.0000000000       0.0611285266
##   5                               0.0000000000       0.0519480519
##   6                               0.0000000000       0.0446866485
##   7                               0.0000000000       0.0482717521
##   8                               0.0000000000       0.0470948012
##   9                               0.0000000000       0.0579735683
##   10                              0.0000000000       0.0588697017
##   11                              0.0000000000       0.0638031039
##   12                              0.0000000000       0.0617335563
##   13                              0.0000000000       0.0671967571
##   14                              0.0000000000       0.0628872367
##   15                              0.0000000000       0.0665584416
##   16                              0.0000000000       0.0615488215
##   17                              0.0000000000       0.0565843621
##   18                              0.0000000000       0.0622102009
##   19                              0.0000000000       0.0655080214
##   20                              0.0000000000       0.0598001016
##   21                              0.0000000000       0.0633425669
##   22                              0.0000000000       0.0629071661
##   23                              0.0000000000       0.0563073949
##     OFFENSE_CODE_GROUP
## Y    INVESTIGATE PERSON Investigate Property Landlord/Tenant Disputes
##   0        0.0000000000         0.0411052362             0.0027289783
##   1        0.0000000000         0.0388296418             0.0008203445
##   2        0.0000000000         0.0530071356             0.0006795787
##   3        0.0000000000         0.0680115274             0.0005763689
##   4        0.0000000000         0.0611285266             0.0000000000
##   5        0.0000000000         0.0481283422             0.0015278839
##   6        0.0000000000         0.0441416894             0.0010899183
##   7        0.0000000000         0.0390345650             0.0023837902
##   8        0.0000000000         0.0250764526             0.0024464832
##   9        0.0000000000         0.0320704846             0.0033480176
##   10       0.0000000000         0.0324960754             0.0047095761
##   11       0.0000000000         0.0308825835             0.0048596959
##   12       0.0000000000         0.0333054627             0.0043199554
##   13       0.0000000000         0.0293108824             0.0037418148
##   14       0.0000000000         0.0294299876             0.0030978934
##   15       0.0000000000         0.0336038961             0.0025974026
##   16       0.0000000000         0.0432323232             0.0026936027
##   17       0.0000000000         0.0324074074             0.0033436214
##   18       0.0000000000         0.0280783101             0.0030911901
##   19       0.0000000000         0.0271836007             0.0037136067
##   20       0.0000000000         0.0315094020             0.0042351347
##   21       0.0000000000         0.0360110803             0.0029547553
##   22       0.0000000000         0.0337947883             0.0018322476
##   23       0.0000000000         0.0478492025             0.0031416143
##     OFFENSE_CODE_GROUP
## Y         Larceny Larceny From Motor Vehicle
##   0  0.0617431349               0.0392290636
##   1  0.0462127427               0.0330872300
##   2  0.0441726130               0.0258239891
##   3  0.0409221902               0.0368876081
##   4  0.0407523511               0.0352664577
##   5  0.0404889228               0.0504201681
##   6  0.0485013624               0.0441416894
##   7  0.0536352801               0.0455899881
##   8  0.0662589195               0.0373088685
##   9  0.0669603524               0.0352422907
##   10 0.0857142857               0.0287284144
##   11 0.0940586299               0.0230443643
##   12 0.1040969900               0.0252229654
##   13 0.1049267228               0.0219831618
##   14 0.1096654275               0.0252478315
##   15 0.1084415584               0.0267857143
##   16 0.0996632997               0.0292255892
##   17 0.0949074074               0.0340792181
##   18 0.0909325090               0.0383822772
##   19 0.0846702317               0.0405525847
##   20 0.0828392343               0.0406572929
##   21 0.0664819945               0.0474607572
##   22 0.0549674267               0.0531351792
##   23 0.0480908652               0.0502658289
##     OFFENSE_CODE_GROUP
## Y    License Plate Related Incidents License Violation Liquor Violation
##   0                     0.0028995395      0.0252430496     0.0049462732
##   1                     0.0008203445      0.0216024063     0.0030079300
##   2                     0.0010193680      0.0129119946     0.0013591573
##   3                     0.0000000000      0.0040345821     0.0017291066
##   4                     0.0000000000      0.0015673981     0.0007836991
##   5                     0.0015278839      0.0000000000     0.0000000000
##   6                     0.0010899183      0.0000000000     0.0005449591
##   7                     0.0008939213      0.0002979738     0.0002979738
##   8                     0.0040774720      0.0000000000     0.0002038736
##   9                     0.0022907489      0.0005286344     0.0021145374
##   10                    0.0009419152      0.0007849294     0.0039246468
##   11                    0.0012541151      0.0036055808     0.0070543972
##   12                    0.0022296544      0.0029264214     0.0073857302
##   13                    0.0015590895      0.0042095416     0.0026504521
##   14                    0.0015489467      0.0018587361     0.0015489467
##   15                    0.0008116883      0.0011363636     0.0009740260
##   16                    0.0014814815      0.0012121212     0.0030976431
##   17                    0.0015432099      0.0037294239     0.0057870370
##   18                    0.0018031942      0.0018031942     0.0045079856
##   19                    0.0014854427      0.0013368984     0.0038621509
##   20                    0.0025410808      0.0028798916     0.0027104862
##   21                    0.0020313943      0.0055401662     0.0024007387
##   22                    0.0016286645      0.0122149837     0.0048859935
##   23                    0.0009666506      0.0289995167     0.0053165781
##     OFFENSE_CODE_GROUP
## Y    Manslaughter Medical Assistance Missing Person Located
##   0  0.0000000000       0.0622548184           0.0167149923
##   1  0.0002734482       0.0776592836           0.0131255127
##   2  0.0000000000       0.0750934421           0.0118926266
##   3  0.0005763689       0.0870317003           0.0109510086
##   4  0.0007836991       0.1042319749           0.0101880878
##   5  0.0000000000       0.1077158136           0.0168067227
##   6  0.0000000000       0.0801089918           0.0261580381
##   7  0.0000000000       0.0682359952           0.0208581645
##   8  0.0002038736       0.0678899083           0.0189602446
##   9  0.0000000000       0.0703083700           0.0130396476
##   10 0.0000000000       0.0839874411           0.0139717425
##   11 0.0000000000       0.0736792601           0.0128546794
##   12 0.0000000000       0.0714882943           0.0139353400
##   13 0.0000000000       0.0834112878           0.0152790770
##   14 0.0000000000       0.0755885998           0.0154894672
##   15 0.0000000000       0.0711038961           0.0125000000
##   16 0.0001346801       0.0649158249           0.0146801347
##   17 0.0000000000       0.0653292181           0.0128600823
##   18 0.0000000000       0.0575734158           0.0140391551
##   19 0.0000000000       0.0701128936           0.0148544266
##   20 0.0001694054       0.0738607488           0.0198204303
##   21 0.0000000000       0.0877192982           0.0193905817
##   22 0.0000000000       0.0804153094           0.0270765472
##   23 0.0000000000       0.0775737071           0.0193330111
##     OFFENSE_CODE_GROUP
## Y    Missing Person Reported Motor Vehicle Accident Response
##   0             0.0129626471                    0.0776053215
##   1             0.0109379273                    0.0976210008
##   2             0.0115528372                    0.1281005776
##   3             0.0080691643                    0.1279538905
##   4             0.0054858934                    0.1285266458
##   5             0.0122230710                    0.1611917494
##   6             0.0234332425                    0.1820163488
##   7             0.0172824791                    0.1576281287
##   8             0.0132517839                    0.1445463812
##   9             0.0096916300                    0.1207048458
##   10            0.0108320251                    0.1006279435
##   11            0.0116005644                    0.1094215394
##   12            0.0117056856                    0.1020066890
##   13            0.0123168070                    0.1114748987
##   14            0.0148698885                    0.1140024783
##   15            0.0108766234                    0.1310064935
##   16            0.0111784512                    0.1239057239
##   17            0.0101594650                    0.1225565844
##   18            0.0103039670                    0.1150180319
##   19            0.0092097445                    0.1088829471
##   20            0.0120277825                    0.1080806370
##   21            0.0156971376                    0.1165281625
##   22            0.0207654723                    0.1209283388
##   23            0.0132914451                    0.1227646206
##     OFFENSE_CODE_GROUP
## Y    Offenses Against Child / Family Operating Under the Influence
##   0                     0.0010233669                  0.0032406618
##   1                     0.0013672409                  0.0090237900
##   2                     0.0000000000                  0.0088345226
##   3                     0.0005763689                  0.0040345821
##   4                     0.0007836991                  0.0039184953
##   5                     0.0000000000                  0.0022918258
##   6                     0.0005449591                  0.0000000000
##   7                     0.0026817640                  0.0002979738
##   8                     0.0014271152                  0.0002038736
##   9                     0.0019383260                  0.0001762115
##   10                    0.0015698587                  0.0004709576
##   11                    0.0018811726                  0.0007838219
##   12                    0.0022296544                  0.0006967670
##   13                    0.0020268163                  0.0004677268
##   14                    0.0017038414                  0.0006195787
##   15                    0.0014610390                  0.0000000000
##   16                    0.0026936027                  0.0008080808
##   17                    0.0029578189                  0.0010288066
##   18                    0.0016743946                  0.0005151984
##   19                    0.0014854427                  0.0019310755
##   20                    0.0011858377                  0.0027104862
##   21                    0.0020313943                  0.0027700831
##   22                    0.0016286645                  0.0032573290
##   23                    0.0002416626                  0.0021749638
##     OFFENSE_CODE_GROUP
## Y           Other Other Burglary Phone Call Complaints
##   0  0.0521917107   0.0017056115          0.0001705611
##   1  0.0587913590   0.0008203445          0.0002734482
##   2  0.0533469249   0.0010193680          0.0000000000
##   3  0.0489913545   0.0028818444          0.0000000000
##   4  0.0446708464   0.0023510972          0.0000000000
##   5  0.0427807487   0.0030557678          0.0000000000
##   6  0.0376021798   0.0027247956          0.0000000000
##   7  0.0435041716   0.0014898689          0.0000000000
##   8  0.0591233435   0.0020387360          0.0002038736
##   9  0.0629074890   0.0017621145          0.0003524229
##   10 0.0616954474   0.0003139717          0.0003139717
##   11 0.0689763286   0.0020379370          0.0001567644
##   12 0.0661928651   0.0012541806          0.0001393534
##   13 0.0639226692   0.0003118179          0.0001559089
##   14 0.0509603470   0.0015489467          0.0000000000
##   15 0.0590909091   0.0019480519          0.0000000000
##   16 0.0544107744   0.0014814815          0.0001346801
##   17 0.0480967078   0.0018004115          0.0000000000
##   18 0.0582174137   0.0006439979          0.0001287996
##   19 0.0564468212   0.0007427213          0.0000000000
##   20 0.0543791293   0.0020328646          0.0000000000
##   21 0.0500461681   0.0012927054          0.0001846722
##   22 0.0445846906   0.0012214984          0.0000000000
##   23 0.0420492992   0.0016916385          0.0000000000
##     OFFENSE_CODE_GROUP
## Y    Police Service Incidents Prisoner Related Incidents Property Found
##   0              0.0081869350               0.0006822446   0.0071635681
##   1              0.0084768936               0.0008203445   0.0046486191
##   2              0.0054366293               0.0003397893   0.0074753653
##   3              0.0046109510               0.0005763689   0.0069164265
##   4              0.0047021944               0.0000000000   0.0054858934
##   5              0.0244461421               0.0000000000   0.0091673033
##   6              0.0092643052               0.0005449591   0.0119891008
##   7              0.0083432658               0.0011918951   0.0119189511
##   8              0.0120285423               0.0012232416   0.0165137615
##   9              0.0128634361               0.0012334802   0.0186784141
##   10             0.0172684458               0.0009419152   0.0163265306
##   11             0.0133249726               0.0006270575   0.0128546794
##   12             0.0112876254               0.0005574136   0.0149108138
##   13             0.0082631743               0.0000000000   0.0157468039
##   14             0.0103779430               0.0012391574   0.0147149938
##   15             0.0071428571               0.0012987013   0.0134740260
##   16             0.0083501684               0.0005387205   0.0091582492
##   17             0.0061728395               0.0009002058   0.0101594650
##   18             0.0078567749               0.0006439979   0.0109479650
##   19             0.0059417706               0.0000000000   0.0109922757
##   20             0.0050821616               0.0006776215   0.0105031340
##   21             0.0064635272               0.0003693444   0.0108956602
##   22             0.0052931596               0.0000000000   0.0103827362
##   23             0.0041082649               0.0002416626   0.0074915418
##     OFFENSE_CODE_GROUP
## Y    Property Lost Property Related Damage Prostitution
##   0   0.0395701859            0.0015350503 0.0010233669
##   1   0.0213289582            0.0016406891 0.0027344818
##   2   0.0231056745            0.0013591573 0.0010193680
##   3   0.0155619597            0.0028818444 0.0005763689
##   4   0.0062695925            0.0023510972 0.0054858934
##   5   0.0076394194            0.0030557678 0.0015278839
##   6   0.0234332425            0.0038147139 0.0000000000
##   7   0.0202622169            0.0041716329 0.0000000000
##   8   0.0246687054            0.0034658512 0.0004077472
##   9   0.0296035242            0.0035242291 0.0001762115
##   10  0.0324960754            0.0029827316 0.0000000000
##   11  0.0384072739            0.0042326383 0.0009405863
##   12  0.0457079153            0.0023690078 0.0005574136
##   13  0.0377299657            0.0040536327 0.0023386342
##   14  0.0393432466            0.0043370508 0.0009293680
##   15  0.0366883117            0.0027597403 0.0012987013
##   16  0.0360942761            0.0026936027 0.0008080808
##   17  0.0304783951            0.0038580247 0.0007716049
##   18  0.0287223081            0.0028335909 0.0005151984
##   19  0.0264408794            0.0040106952 0.0002970885
##   20  0.0291377266            0.0016940539 0.0008470269
##   21  0.0238227147            0.0011080332 0.0000000000
##   22  0.0250407166            0.0014250814 0.0004071661
##   23  0.0280328661            0.0021749638 0.0007249879
##     OFFENSE_CODE_GROUP
## Y    Recovered Stolen Property Residential Burglary
##   0               0.0037523452         0.0173972369
##   1               0.0084768936         0.0153130982
##   2               0.0040774720         0.0115528372
##   3               0.0063400576         0.0282420749
##   4               0.0054858934         0.0235109718
##   5               0.0045836516         0.0252100840
##   6               0.0043596730         0.0310626703
##   7               0.0032777116         0.0277115614
##   8               0.0040774720         0.0238532110
##   9               0.0051101322         0.0197356828
##   10              0.0045525903         0.0182103611
##   11              0.0043894027         0.0164602602
##   12              0.0041806020         0.0183946488
##   13              0.0040536327         0.0132522607
##   14              0.0049566295         0.0164188352
##   15              0.0032467532         0.0150974026
##   16              0.0044444444         0.0158922559
##   17              0.0041152263         0.0169753086
##   18              0.0054095827         0.0181607419
##   19              0.0046048723         0.0167855021
##   20              0.0050821616         0.0157547010
##   21              0.0038781163         0.0179132041
##   22              0.0052931596         0.0173045603
##   23              0.0036249396         0.0198163364
##     OFFENSE_CODE_GROUP
## Y    Restraining Order Violations      Robbery Search Warrants
##   0                  0.0030701006 0.0160327477    0.0028995395
##   1                  0.0032813782 0.0267979218    0.0002734482
##   2                  0.0016989467 0.0312606184    0.0013591573
##   3                  0.0046109510 0.0265129683    0.0005763689
##   4                  0.0039184953 0.0289968652    0.0117554859
##   5                  0.0030557678 0.0267379679    0.0084033613
##   6                  0.0038147139 0.0174386921    0.0065395095
##   7                  0.0044696067 0.0086412396    0.0026817640
##   8                  0.0053007136 0.0061162080    0.0016309888
##   9                  0.0054625551 0.0056387665    0.0037004405
##   10                 0.0043956044 0.0061224490    0.0047095761
##   11                 0.0058002822 0.0084652767    0.0050164603
##   12                 0.0076644370 0.0076644370    0.0033444816
##   13                 0.0057686311 0.0110695354    0.0046772685
##   14                 0.0061957869 0.0142503098    0.0038723668
##   15                 0.0050324675 0.0139610390    0.0029220779
##   16                 0.0061952862 0.0114478114    0.0035016835
##   17                 0.0050154321 0.0110596708    0.0027006173
##   18                 0.0051519835 0.0124935600    0.0018031942
##   19                 0.0038621509 0.0158942365    0.0013368984
##   20                 0.0055903778 0.0235473488    0.0011858377
##   21                 0.0040627886 0.0221606648    0.0016620499
##   22                 0.0034609121 0.0282980456    0.0012214984
##   23                 0.0041082649 0.0265828903    0.0009666506
##     OFFENSE_CODE_GROUP
## Y         Service Simple Assault        Towed    Vandalism Verbal Disputes
##   0  0.0005116834   0.0573085451 0.0266075388 0.0562851782    0.0363295241
##   1  0.0008203445   0.0855892808 0.0262510254 0.0639868745    0.0377358491
##   2  0.0003397893   0.0893645940 0.0220863065 0.0625212368    0.0346585117
##   3  0.0000000000   0.0605187320 0.0305475504 0.0657060519    0.0461095101
##   4  0.0000000000   0.0501567398 0.0313479624 0.0595611285    0.0391849530
##   5  0.0000000000   0.0473644003 0.0466004584 0.0641711230    0.0290297937
##   6  0.0010899183   0.0348773842 0.0588555858 0.0697547684    0.0376021798
##   7  0.0005959476   0.0396305125 0.1495828367 0.0551251490    0.0300953516
##   8  0.0006116208   0.0397553517 0.1092762487 0.0503567788    0.0338430173
##   9  0.0005286344   0.0320704846 0.0881057269 0.0431718062    0.0324229075
##   10 0.0012558870   0.0367346939 0.0635792779 0.0425431711    0.0373626374
##   11 0.0012541151   0.0412290328 0.0473428437 0.0396613889    0.0337043424
##   12 0.0004180602   0.0457079153 0.0257803790 0.0366499443    0.0321906355
##   13 0.0009354537   0.0447458684 0.0249454319 0.0366386031    0.0383536015
##   14 0.0012391574   0.0529739777 0.0165737299 0.0368649318    0.0381040892
##   15 0.0009740260   0.0508116883 0.0128246753 0.0428571429    0.0436688312
##   16 0.0008080808   0.0486195286 0.0162962963 0.0424242424    0.0363636364
##   17 0.0012860082   0.0495113169 0.0176183128 0.0432098765    0.0340792181
##   18 0.0009015971   0.0477846471 0.0153271510 0.0458526533    0.0440494590
##   19 0.0011883541   0.0536244801 0.0172311349 0.0506535948    0.0510992276
##   20 0.0013552431   0.0489581569 0.0176181603 0.0581060478    0.0547179400
##   21 0.0009233610   0.0541089566 0.0238227147 0.0629732225    0.0585410896
##   22 0.0010179153   0.0604641694 0.0223941368 0.0639250814    0.0590390879
##   23 0.0004833253   0.0645239246 0.0161913968 0.0671822136    0.0575157081
##     OFFENSE_CODE_GROUP
## Y      Violations Warrant Arrests
##   0  0.0179089203    0.0213201433
##   1  0.0363686081    0.0281651627
##   2  0.0343187224    0.0224260958
##   3  0.0149855908    0.0184438040
##   4  0.0172413793    0.0219435737
##   5  0.0084033613    0.0267379679
##   6  0.0076294278    0.0239782016
##   7  0.0086412396    0.0184743743
##   8  0.0242609582    0.0356778797
##   9  0.0276651982    0.0440528634
##   10 0.0274725275    0.0353218210
##   11 0.0238281862    0.0377802163
##   12 0.0170011148    0.0277313266
##   13 0.0176177113    0.0271281572
##   14 0.0176579926    0.0294299876
##   15 0.0128246753    0.0254870130
##   16 0.0150841751    0.0242424242
##   17 0.0217335391    0.0344650206
##   18 0.0251159196    0.0312982998
##   19 0.0161913250    0.0261437908
##   20 0.0121971879    0.0242249704
##   21 0.0151431210    0.0175438596
##   22 0.0152687296    0.0126221498
##   23 0.0130497825    0.0130497825
## 
##     DISTRICT
## Y                         A1         A15          A7          B2
##   0  0.009039741 0.129967593 0.018761726 0.035817841 0.144976974
##   1  0.004922067 0.180749248 0.012031720 0.052502051 0.157506153
##   2  0.007815155 0.201495073 0.009174312 0.051987768 0.159021407
##   3  0.006340058 0.141210375 0.021325648 0.044380403 0.180979827
##   4  0.003918495 0.115987461 0.014890282 0.038401254 0.151253918
##   5  0.009167303 0.099312452 0.017570665 0.050420168 0.184873950
##   6  0.002179837 0.087193460 0.027247956 0.045776567 0.148773842
##   7  0.006257449 0.099523242 0.020858164 0.042014303 0.134684148
##   8  0.006320082 0.097043833 0.025688073 0.040163099 0.139449541
##   9  0.003171806 0.105903084 0.023083700 0.043700441 0.140616740
##   10 0.005180534 0.113814757 0.022448980 0.038147567 0.141444270
##   11 0.005800282 0.113967707 0.023044364 0.039504625 0.155353504
##   12 0.004459309 0.111900780 0.022157191 0.040133779 0.157329989
##   13 0.007171812 0.108356720 0.022450889 0.042407234 0.145307141
##   14 0.005731103 0.098358116 0.019206939 0.040737299 0.150402726
##   15 0.006331169 0.110714286 0.019480519 0.040097403 0.156331169
##   16 0.004579125 0.105993266 0.018855219 0.041616162 0.151111111
##   17 0.006430041 0.119341564 0.015432099 0.040380658 0.157664609
##   18 0.007599176 0.108191654 0.019319938 0.040700670 0.161643483
##   19 0.006833036 0.096405229 0.021093286 0.044266191 0.158199643
##   20 0.005759783 0.098424530 0.021853295 0.044214806 0.157885821
##   21 0.004801477 0.084949215 0.022714681 0.038227147 0.169529086
##   22 0.004885993 0.104030945 0.017508143 0.041123779 0.183021173
##   23 0.003866602 0.122281295 0.018124698 0.044465926 0.165780570
##     DISTRICT
## Y             B3         C11          C6         D14          D4
##   0  0.105747911 0.143100802 0.080334300 0.068736142 0.129285349
##   1  0.105824446 0.122504785 0.068635494 0.069729286 0.114848236
##   2  0.099218485 0.113829426 0.061501869 0.071355759 0.122663948
##   3  0.110086455 0.147550432 0.062824207 0.070317003 0.098559078
##   4  0.130877743 0.170062696 0.077586207 0.066614420 0.115203762
##   5  0.108479756 0.158899924 0.061879297 0.058823529 0.110771581
##   6  0.119891008 0.172207084 0.069209809 0.053405995 0.113896458
##   7  0.112038141 0.120679380 0.077473182 0.087902265 0.138557807
##   8  0.110907238 0.131498471 0.076452599 0.075229358 0.141080530
##   9  0.103964758 0.128634361 0.080000000 0.066079295 0.126696035
##   10 0.110047096 0.130769231 0.075824176 0.059968603 0.145211931
##   11 0.109264775 0.131368553 0.073365731 0.060511052 0.136855306
##   12 0.099637681 0.120958751 0.069537347 0.062709030 0.147296544
##   13 0.116152167 0.122700343 0.075615840 0.058621765 0.142033053
##   14 0.111059480 0.129337051 0.080390335 0.059014870 0.143897150
##   15 0.103896104 0.130357143 0.073863636 0.061688312 0.141233766
##   16 0.108417508 0.138316498 0.080673401 0.058720539 0.131447811
##   17 0.100051440 0.130787037 0.074331276 0.057741770 0.137217078
##   18 0.115018032 0.131633179 0.074446162 0.057315817 0.133436373
##   19 0.121509210 0.136660725 0.076945930 0.060903149 0.127599525
##   20 0.119430798 0.148737930 0.069286803 0.064374047 0.122988311
##   21 0.134441367 0.155493998 0.066112650 0.063711911 0.114681440
##   22 0.123982085 0.137011401 0.067793160 0.067385993 0.116449511
##   23 0.112614790 0.144272595 0.062590623 0.078298695 0.110681489
##     DISTRICT
## Y            E13         E18          E5
##   0  0.043322531 0.046563193 0.044345898
##   1  0.042384468 0.038556194 0.029805852
##   2  0.036357458 0.034998301 0.030581040
##   3  0.046109510 0.040922190 0.029394813
##   4  0.037617555 0.039184953 0.038401254
##   5  0.049656226 0.047364400 0.042780749
##   6  0.048501362 0.063760218 0.047956403
##   7  0.058402861 0.059892729 0.041716329
##   8  0.058103976 0.053414883 0.044648318
##   9  0.062555066 0.062026432 0.053568282
##   10 0.057456829 0.053689168 0.045996860
##   11 0.055024298 0.055337827 0.040601975
##   12 0.054626533 0.060200669 0.049052397
##   13 0.059245401 0.054568132 0.045369504
##   14 0.054368030 0.065365551 0.042131351
##   15 0.051136364 0.058928571 0.045941558
##   16 0.056969697 0.062626263 0.040673401
##   17 0.063143004 0.060442387 0.037037037
##   18 0.059763009 0.051133436 0.039799073
##   19 0.057338087 0.052139037 0.040106952
##   20 0.054887345 0.054717940 0.037438591
##   21 0.054293629 0.052446907 0.038596491
##   22 0.055781759 0.048452769 0.032573290
##   23 0.053890768 0.044465926 0.038666022
## 
##     DAY_OF_WEEK
## Y        Friday     Monday   Saturday     Sunday   Thursday    Tuesday
##   0  0.14378305 0.13849565 0.16953778 0.16851441 0.12587413 0.12553300
##   1  0.12852065 0.12031720 0.19770304 0.23543888 0.10637134 0.11375444
##   2  0.12130479 0.10363575 0.23445464 0.26231736 0.09208291 0.08019028
##   3  0.10720461 0.12219020 0.20115274 0.27435159 0.09971182 0.09913545
##   4  0.12539185 0.12774295 0.20141066 0.22257053 0.10971787 0.10344828
##   5  0.14056532 0.12146677 0.12987013 0.18334607 0.15431627 0.12223071
##   6  0.15095368 0.14495913 0.10735695 0.12806540 0.16621253 0.16076294
##   7  0.15494636 0.16299166 0.12127533 0.09505364 0.14630513 0.15941597
##   8  0.16941896 0.16472987 0.11539246 0.09133537 0.14576962 0.16085627
##   9  0.15859031 0.14801762 0.12757709 0.10907489 0.13955947 0.15947137
##   10 0.16483516 0.15808477 0.12621664 0.11601256 0.14191523 0.14348509
##   11 0.15645085 0.14939646 0.12917385 0.11600564 0.15002351 0.14955322
##   12 0.15830546 0.14353400 0.14464883 0.11928651 0.14785396 0.14130435
##   13 0.14733396 0.15060804 0.13673215 0.11973807 0.14343623 0.14795759
##   14 0.14916357 0.14203841 0.14451673 0.12252169 0.14513631 0.15040273
##   15 0.15048701 0.14480519 0.13879870 0.11461039 0.15389610 0.15974026
##   16 0.15326599 0.14976431 0.13117845 0.11299663 0.14922559 0.15973064
##   17 0.16306584 0.15483539 0.12872942 0.11754115 0.13747428 0.15457819
##   18 0.15043792 0.15378671 0.13588357 0.11360124 0.14232354 0.15417311
##   19 0.14676173 0.14750446 0.14438503 0.12329174 0.13398693 0.15240642
##   20 0.14789090 0.14839912 0.13942063 0.13366085 0.14924615 0.15331188
##   21 0.14939982 0.14330563 0.15789474 0.13130194 0.14736842 0.13277932
##   22 0.17772801 0.12764658 0.16775244 0.13823290 0.13680782 0.13070033
##   23 0.18849686 0.12421460 0.20130498 0.12010633 0.13436443 0.12228130
##     DAY_OF_WEEK
## Y     Wednesday
##   0  0.12826198
##   1  0.09789445
##   2  0.10601427
##   3  0.09625360
##   4  0.10971787
##   5  0.14820474
##   6  0.14168937
##   7  0.16001192
##   8  0.15249745
##   9  0.15770925
##   10 0.14945055
##   11 0.14939646
##   12 0.14506689
##   13 0.15419395
##   14 0.14622057
##   15 0.13766234
##   16 0.14383838
##   17 0.14377572
##   18 0.14979392
##   19 0.15166370
##   20 0.12807047
##   21 0.13795014
##   22 0.12113192
##   23 0.10923151

Evaluate the model by using testing set; then, check the confusion matrix

pred1 <- predict(crime_nb1, test)
confusionMatrix(table(pred1, test$HOUR))
## Confusion Matrix and Statistics
## 
##      
## pred1   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
##    0  170  62  66  37  18  15  17  25  51  77  75  78 132 103  89  57  79
##    1   66  64  70  34  19  12  13   8  17  20  35  38  38  31  24  36  40
##    2   49  62  64  20  12   4  10  14  22  16  19  22  20  28  21  21  20
##    3    1   1   2   1   1   2   0   1   1   1   1   0   1   3   0   1   0
##    4    8  10   3   7   8   8   5   6   3   4   1   3   5   2   1   1   6
##    5    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##    6    0   0   1   1   0   0   1   1   1   1   2   0   0   0   0   0   0
##    7   26   8   7   5   4   4  12  52  74  62  44  30  18  22  14   9  17
##    8   28  16  12  11   6  16  21  55  96  83  68  53  50  55  53  51  49
##    9   38  21  19  18  10  15  23  40  77  67  82  70  69  54  53  47  77
##    10  60  48  43  24  24  29  39  44  64  90 142 111 108 119 119  83 101
##    11  13   8  10   1   4   6   6   3  14  13  14  24  22  23  21  14  14
##    12 180  74  57  31  29  15  38  66 133 201 208 242 300 219 229 213 227
##    13  19  10  13  10   9   7   3  13  26  20  25  43  37  39  38  36  38
##    14  39  22   8  10   8   3  11  20  28  28  61  50  56  57  66  64  57
##    15   2   0   1   0   0   0   0   1   0   3   1   2   1   4   1   1   3
##    16 144  78  59  37  30  38  64 115 147 170 175 188 180 209 193 212 243
##    17 147  99  90  53  40  34  54 114 169 159 177 225 221 208 238 242 306
##    18 164 134 103  54  37  37  87 111 195 207 225 241 265 236 258 221 300
##    19  17  14   9   6   3   3  14  16  14  13  15  19  11  24  22  16  18
##    20  43  23  25  16   8   9  10  15  32  30  22  23  24  31  35  29  41
##    21  63  52  41  19  20  19  19  36  57  70  76  77  82  70  90  88  79
##    22  94  44  39  22  18  13  33  49  58  57  67  66  75  63  84  70  80
##    23  56  32  26  23   9   6   5   2  10  22  21  26  26  26  28  22  32
##      
## pred1  17  18  19  20  21  22  23
##    0   67  67  66  83  80  76  57
##    1   31  45  40  53  46  29  43
##    2   31  38  21  24  31  34  25
##    3    0   0   1   1   0   0   2
##    4    5   0   5   6   6   6   5
##    5    0   0   0   0   0   0   0
##    6    0   1   0   1   0   1   1
##    7   18  16  16  14  14  11   8
##    8   67  43  28  38  47  17  18
##    9   53  68  58  43  45  35  29
##    10 106 100  87  88  68  69  36
##    11  21  18  17  10   9  10   5
##    12 249 208 189 168 137 121  95
##    13  34  36  37  22  27  27  20
##    14  60  59  53  46  24  23  23
##    15   1   1   1   1   1   1   2
##    16 212 215 189 176 152 149 139
##    17 350 317 241 211 174 131 130
##    18 293 323 291 264 190 210 141
##    19  15  23  31  27  22  11  15
##    20  48  39  32  51  50  46  46
##    21  85 100  76 102 107  85  60
##    22  88  94  82  76  88  91  76
##    23  29  30  30  34  34  38  49
## 
## Overall Statistics
##                                           
##                Accuracy : 0.0776          
##                  95% CI : (0.0746, 0.0807)
##     No Information Rate : 0.0618          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.0263          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: 0 Class: 1 Class: 2  Class: 3  Class: 4
## Sensitivity          0.119131 0.072562 0.083333 2.273e-03 0.0252366
## Specificity          0.948574 0.973075 0.980803 9.993e-01 0.9964466
## Pos Pred Value       0.103218 0.075117 0.101911 4.762e-02 0.0701754
## Neg Pred Value       0.955896 0.972078 0.976152 9.854e-01 0.9897117
## Prevalence           0.047333 0.029256 0.025474 1.459e-02 0.0105148
## Detection Rate       0.005639 0.002123 0.002123 3.317e-05 0.0002654
## Detection Prevalence 0.054630 0.028261 0.020831 6.966e-04 0.0037813
## Balanced Accuracy    0.533853 0.522818 0.532068 5.008e-01 0.5108416
##                      Class: 5  Class: 6 Class: 7 Class: 8 Class: 9
## Sensitivity          0.000000 2.062e-03 0.064436 0.074476 0.047383
## Specificity          1.000000 9.996e-01 0.984561 0.969334 0.963667
## Pos Pred Value            NaN 8.333e-02 0.102970 0.097859 0.060306
## Neg Pred Value       0.990215 9.839e-01 0.974530 0.959098 0.953611
## Prevalence           0.009785 1.609e-02 0.026768 0.042756 0.046902
## Detection Rate       0.000000 3.317e-05 0.001725 0.003184 0.002222
## Detection Prevalence 0.000000 3.980e-04 0.016751 0.032539 0.036852
## Balanced Accuracy    0.500000 5.008e-01 0.524499 0.521905 0.505525
##                      Class: 10 Class: 11 Class: 12 Class: 13 Class: 14
## Sensitivity            0.09126 0.0147149  0.172315  0.023985  0.039356
## Specificity            0.94194 0.9903216  0.882811  0.980717  0.971550
## Pos Pred Value         0.07880 0.0800000  0.082667  0.066214  0.075342
## Neg Pred Value         0.95012 0.9461605  0.945662  0.946311  0.944964
## Prevalence             0.05161 0.0540998  0.057748  0.053934  0.055626
## Detection Rate         0.00471 0.0007961  0.009951  0.001294  0.002189
## Detection Prevalence   0.05977 0.0099509  0.120373  0.019537  0.029057
## Balanced Accuracy      0.51660 0.5025182  0.527563  0.502351  0.505453
##                      Class: 15 Class: 16 Class: 17 Class: 18 Class: 19
## Sensitivity          6.519e-04   0.13300   0.18787   0.17545  0.019485
## Specificity          9.991e-01   0.88450   0.86636   0.84937  0.987849
## Pos Pred Value       3.571e-02   0.06915   0.08475   0.07042  0.082011
## Neg Pred Value       9.491e-01   0.94053   0.94185   0.94061  0.947598
## Prevalence           5.088e-02   0.06060   0.06180   0.06107  0.052773
## Detection Rate       3.317e-05   0.00806   0.01161   0.01071  0.001028
## Detection Prevalence 9.288e-04   0.11656   0.13699   0.15215  0.012538
## Balanced Accuracy    4.999e-01   0.50875   0.52711   0.51241  0.503667
##                      Class: 20 Class: 21 Class: 22 Class: 23
## Sensitivity           0.033138  0.079142  0.074529  0.047805
## Specificity           0.976336  0.949090  0.950358  0.980531
## Pos Pred Value        0.070055  0.068023  0.059594  0.079545
## Neg Pred Value        0.949422  0.956430  0.960519  0.966951
## Prevalence            0.051048  0.044845  0.040500  0.033999
## Detection Rate        0.001692  0.003549  0.003018  0.001625
## Detection Prevalence  0.024148  0.052176  0.050650  0.020433
## Balanced Accuracy     0.504737  0.514116  0.512443  0.514168

Round 2:

crime_nb2 <- naiveBayes(UCR_PART ~ ., data=train)
crime_nb2
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##                   Other    Part One  Part Three    Part Two 
## 0.000000000 0.003816606 0.193125175 0.499325514 0.303732706 
## 
## Conditional probabilities:
##             OFFENSE_CODE_GROUP
## Y            Aggravated Assault     Aircraft        Arson
##                                                          
##   Other            0.000000e+00 0.000000e+00 6.681034e-02
##   Part One         1.242813e-01 0.000000e+00 0.000000e+00
##   Part Three       0.000000e+00 2.470966e-04 0.000000e+00
##   Part Two         0.000000e+00 0.000000e+00 0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Assembly or Gathering Violations   Auto Theft
##                                                           
##   Other                          0.000000e+00 0.000000e+00
##   Part One                       0.000000e+00 7.730312e-02
##   Part Three                     5.880899e-03 0.000000e+00
##   Part Two                       0.000000e+00 0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Auto Theft Recovery   Ballistics    Bomb Hoax
##                                                           
##   Other             8.534483e-01 0.000000e+00 0.000000e+00
##   Part One          0.000000e+00 0.000000e+00 0.000000e+00
##   Part Three        0.000000e+00 0.000000e+00 0.000000e+00
##   Part Two          0.000000e+00 9.559660e-03 7.041109e-04
##             OFFENSE_CODE_GROUP
## Y            Burglary - No Property Taken Commercial Burglary
##                                                              
##   Other                      2.155172e-03        0.000000e+00
##   Part One                   0.000000e+00        2.074194e-02
##   Part Three                 0.000000e+00        0.000000e+00
##   Part Two                   0.000000e+00        0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Confidence Games Counterfeiting Criminal Harassment
##                                                                 
##   Other          0.000000e+00   0.000000e+00        0.000000e+00
##   Part One       0.000000e+00   0.000000e+00        0.000000e+00
##   Part Three     0.000000e+00   0.000000e+00        0.000000e+00
##   Part Two       3.263283e-02   1.432595e-02        1.218654e-03
##             OFFENSE_CODE_GROUP
## Y            Disorderly Conduct Drug Violation Embezzlement Evading Fare
##                                                                         
##   Other            0.000000e+00   0.000000e+00 0.000000e+00 0.000000e+00
##   Part One         0.000000e+00   0.000000e+00 0.000000e+00 0.000000e+00
##   Part Three       0.000000e+00   0.000000e+00 0.000000e+00 0.000000e+00
##   Part Two         2.599794e-02   1.674701e-01 2.572713e-03 4.224666e-03
##             OFFENSE_CODE_GROUP
## Y              Explosives Fire Related Reports Firearm Discovery
##                                                                 
##   Other      0.000000e+00         0.000000e+00      0.000000e+00
##   Part One   0.000000e+00         0.000000e+00      0.000000e+00
##   Part Three 3.294622e-05         1.181122e-02      4.365374e-03
##   Part Two   1.354059e-04         9.207604e-04      0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Firearm Violations        Fraud     Gambling   Harassment
##                                                                       
##   Other            0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
##   Part One         0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
##   Part Three       0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
##   Part Two         1.787359e-02 5.941613e-02 1.083248e-04 4.110925e-02
##             OFFENSE_CODE_GROUP
## Y            Harbor Related Incidents HOME INVASION     Homicide
##                                                                 
##   Other                  0.000000e+00  0.000000e+00 0.000000e+00
##   Part One               0.000000e+00  0.000000e+00 2.427701e-03
##   Part Three             1.169591e-03  0.000000e+00 0.000000e+00
##   Part Two               0.000000e+00  0.000000e+00 0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            HUMAN TRAFFICKING HUMAN TRAFFICKING - INVOLUNTARY SERVITUDE
##                                                                         
##   Other           0.000000e+00                              0.000000e+00
##   Part One        0.000000e+00                              0.000000e+00
##   Part Three      0.000000e+00                              0.000000e+00
##   Part Two        0.000000e+00                              0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Investigate Person INVESTIGATE PERSON Investigate Property
##                                                                        
##   Other            0.000000e+00       0.000000e+00         0.000000e+00
##   Part One         0.000000e+00       0.000000e+00         0.000000e+00
##   Part Three       1.183758e-01       0.000000e+00         7.020838e-02
##   Part Two         0.000000e+00       0.000000e+00         0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Landlord/Tenant Disputes      Larceny
##                                                   
##   Other                  0.000000e+00 0.000000e+00
##   Part One               0.000000e+00 4.184590e-01
##   Part Three             6.177415e-03 0.000000e+00
##   Part Two               0.000000e+00 0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Larceny From Motor Vehicle License Plate Related Incidents
##                                                                        
##   Other                    0.000000e+00                    3.879310e-02
##   Part One                 1.796499e-01                    0.000000e+00
##   Part Three               0.000000e+00                    3.047525e-03
##   Part Two                 0.000000e+00                    0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            License Violation Liquor Violation Manslaughter
##                                                             
##   Other           0.000000e+00     0.000000e+00 1.293103e-02
##   Part One        0.000000e+00     0.000000e+00 0.000000e+00
##   Part Three      1.088872e-02     0.000000e+00 0.000000e+00
##   Part Two        0.000000e+00     1.145534e-02 0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Medical Assistance Missing Person Located
##                                                       
##   Other            0.000000e+00           0.000000e+00
##   Part One         0.000000e+00           0.000000e+00
##   Part Three       1.469072e-01           3.161189e-02
##   Part Two         0.000000e+00           0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Missing Person Reported Motor Vehicle Accident Response
##                                                                     
##   Other                 0.000000e+00                    0.000000e+00
##   Part One              0.000000e+00                    0.000000e+00
##   Part Three            2.434725e-02                    2.346100e-01
##   Part Two              4.332990e-04                    0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Offenses Against Child / Family Operating Under the Influence
##                                                                           
##   Other                         0.000000e+00                  0.000000e+00
##   Part One                      0.000000e+00                  0.000000e+00
##   Part Three                    0.000000e+00                  0.000000e+00
##   Part Two                      5.551644e-03                  5.497481e-03
##             OFFENSE_CODE_GROUP
## Y                   Other Other Burglary Phone Call Complaints
##                                                               
##   Other      2.586207e-02   0.000000e+00          0.000000e+00
##   Part One   0.000000e+00   7.368287e-03          0.000000e+00
##   Part Three 6.292727e-03   0.000000e+00          0.000000e+00
##   Part Two   1.719656e-01   0.000000e+00          3.520555e-04
##             OFFENSE_CODE_GROUP
## Y            Police Service Incidents Prisoner Related Incidents
##                                                                 
##   Other                  0.000000e+00               0.000000e+00
##   Part One               0.000000e+00               0.000000e+00
##   Part Three             1.774154e-02               8.236554e-05
##   Part Two               0.000000e+00               2.031089e-03
##             OFFENSE_CODE_GROUP
## Y            Property Found Property Lost Property Related Damage
##                                                                  
##   Other        0.000000e+00  0.000000e+00            0.000000e+00
##   Part One     0.000000e+00  0.000000e+00            0.000000e+00
##   Part Three   2.375422e-02  6.212009e-02            5.831480e-03
##   Part Two     0.000000e+00  0.000000e+00            0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Prostitution Recovered Stolen Property Residential Burglary
##                                                                         
##   Other      0.000000e+00              0.000000e+00         0.000000e+00
##   Part One   0.000000e+00              0.000000e+00         9.289152e-02
##   Part Three 0.000000e+00              0.000000e+00         0.000000e+00
##   Part Two   2.681038e-03              1.494882e-02         0.000000e+00
##             OFFENSE_CODE_GROUP
## Y            Restraining Order Violations      Robbery Search Warrants
##                                                                       
##   Other                      0.000000e+00 0.000000e+00    0.000000e+00
##   Part One                   0.000000e+00 7.687721e-02    0.000000e+00
##   Part Three                 0.000000e+00 0.000000e+00    5.831480e-03
##   Part Two                   1.622163e-02 0.000000e+00    0.000000e+00
##             OFFENSE_CODE_GROUP
## Y                 Service Simple Assault        Towed    Vandalism
##                                                                   
##   Other      0.000000e+00   0.000000e+00 0.000000e+00 0.000000e+00
##   Part One   0.000000e+00   0.000000e+00 0.000000e+00 0.000000e+00
##   Part Three 1.762623e-03   0.000000e+00 7.014249e-02 0.000000e+00
##   Part Two   0.000000e+00   1.654119e-01 0.000000e+00 1.618101e-01
##             OFFENSE_CODE_GROUP
## Y            Verbal Disputes   Violations Warrant Arrests
##                                                          
##   Other         0.000000e+00 0.000000e+00    0.000000e+00
##   Part One      0.000000e+00 0.000000e+00    0.000000e+00
##   Part Three    8.195371e-02 0.000000e+00    5.480603e-02
##   Part Two      0.000000e+00 6.336998e-02    0.000000e+00
## 
##             DISTRICT
## Y                                 A1         A15          A7          B2
##                                                                         
##   Other      0.004310345 0.064655172 0.010775862 0.064655172 0.183189655
##   Part One   0.004173943 0.136079049 0.020358618 0.036287746 0.140295583
##   Part Three 0.006688082 0.101177827 0.021464459 0.042088790 0.155324932
##   Part Two   0.005497481 0.115690841 0.017684017 0.044304826 0.163353734
##             DISTRICT
## Y                     B3         C11          C6         D14          D4
##                                                                         
##   Other      0.150862069 0.144396552 0.114224138 0.043103448 0.090517241
##   Part One   0.081391882 0.110694663 0.071894033 0.066740492 0.202052898
##   Part Three 0.120336051 0.139329545 0.073618318 0.069368256 0.109051973
##   Part Two   0.115365867 0.141228403 0.074175378 0.053241618 0.123517305
##             DISTRICT
## Y                    E13         E18          E5
##                                                 
##   Other      0.038793103 0.053879310 0.036637931
##   Part One   0.059244431 0.041952383 0.028834277
##   Part Three 0.053751750 0.060917552 0.046882464
##   Part Two   0.054054054 0.051400097 0.040486378
## 
##             DAY_OF_WEEK
## Y               Friday    Monday  Saturday    Sunday  Thursday   Tuesday
##                                                                         
##   Other      0.1961207 0.1314655 0.1099138 0.1034483 0.1465517 0.1573276
##   Part One   0.1551599 0.1417011 0.1471102 0.1360365 0.1412326 0.1422548
##   Part Three 0.1531505 0.1431678 0.1507454 0.1371716 0.1369409 0.1412734
##   Part Two   0.1520067 0.1498673 0.1378162 0.1195364 0.1445323 0.1504631
##             DAY_OF_WEEK
## Y            Wednesday
##                       
##   Other      0.1551724
##   Part One   0.1365050
##   Part Three 0.1375504
##   Part Two   0.1457780
## 
##             HOUR
## Y                [,1]     [,2]
##                    NA       NA
##   Other      12.24138 6.364888
##   Part One   13.42498 6.377021
##   Part Three 12.96852 6.267762
##   Part Two   13.07715 6.355693
pred2 <- predict(crime_nb2, test)
confusionMatrix(factor(pred2), factor(test$UCR_PART))
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   Other Part One Part Three Part Two
##   Other         97        0          0        0
##   Part One       0     5881          2        1
##   Part Three    16       15      14858       32
##   Part Two       1        0         89     9156
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9948          
##                  95% CI : (0.9939, 0.9956)
##     No Information Rate : 0.4959          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9917          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: Other Class: Part One Class: Part Three
## Sensitivity              0.850877          0.9975            0.9939
## Specificity              1.000000          0.9999            0.9959
## Pos Pred Value           1.000000          0.9995            0.9958
## Neg Pred Value           0.999434          0.9994            0.9940
## Prevalence               0.003781          0.1956            0.4959
## Detection Rate           0.003217          0.1951            0.4928
## Detection Prevalence     0.003217          0.1952            0.4949
## Balanced Accuracy        0.925439          0.9987            0.9949
##                      Class: Part Two
## Sensitivity                   0.9964
## Specificity                   0.9957
## Pos Pred Value                0.9903
## Neg Pred Value                0.9984
## Prevalence                    0.3048
## Detection Rate                0.3037
## Detection Prevalence          0.3067
## Balanced Accuracy             0.9961

Resource

ggplot cheatsheet

Introduction to Data Exploration and Analysis with R

Kaggle Notebook - Crime in Boson EDA with R