First, we need to put the problem into a transition matrix in canonical form:
(P <- matrix(c(0, 1/3, 0, 0, 0, 2/3, 0, 1/3, 0, 0, 0, 2/3, 0, 0, 0, 1/3, 0, 0, 1, 0, 0, 0, 2/3, 0, 1), nrow=5))
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0000000 0.6666667 0.0000000 0.3333333 0.0000000
## [2,] 0.3333333 0.0000000 0.6666667 0.0000000 0.0000000
## [3,] 0.0000000 0.3333333 0.0000000 0.0000000 0.6666667
## [4,] 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000
## [5,] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
The original Q looked like this:
\[Q=\begin{pmatrix} 0 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix}\] However, the new matrix will look like this (we assume because while drinking he hurt his left foot and favors his right side)
\[Q=\begin{pmatrix} 0 & 2/3 & 0 \\ 1/3 & 0 & 2/3 \\ 0 & 1/3 & 0 \end{pmatrix}\]
(Q <- matrix(c(0, 1/3, 0, 2/3, 0, 1/3, 0, 2/3, 0), nrow=3))
## [,1] [,2] [,3]
## [1,] 0.0000000 0.6666667 0.0000000
## [2,] 0.3333333 0.0000000 0.6666667
## [3,] 0.0000000 0.3333333 0.0000000
Creating IQ
I <- diag(3)
(IQ <- I-Q)
## [,1] [,2] [,3]
## [1,] 1.0000000 -0.6666667 0.0000000
## [2,] -0.3333333 1.0000000 -0.6666667
## [3,] 0.0000000 -0.3333333 1.0000000
Creating N by inverting IQ
(N <- inv(IQ))
## [,1] [,2] [,3]
## [1,] 1.4 1.2 0.8
## [2,] 0.6 1.8 1.2
## [3,] 0.2 0.6 1.4
The original R matrix looked like this: \[R=\begin{pmatrix} 1/2 & 0 \\ 0 & 0 \\ 0 & 1/2 \end{pmatrix}\] However, as we have defined he has a hurt left foot and is favoring his right side, the new one looks like: \[R=\begin{pmatrix} 1/3 & 0 \\ 0 & 0 \\ 0 & 2/3 \end{pmatrix}\]
R <- matrix(c(1/3, 0, 0, 0, 0, 2/3), nrow=3)
If we multiply our N Matrix by this new R matrix, we get the NR Value.
(NR <-round(N %*% R, 4))
## [,1] [,2]
## [1,] 0.4667 0.5333
## [2,] 0.2000 0.8000
## [3,] 0.0667 0.9333
C <-matrix(c(1, 1, 1), nrow=3)
(NC <- N %*% C)
## [,1]
## [1,] 3.4
## [2,] 3.6
## [3,] 2.2