Metode deep learning yang digunakan adalah metode recurrent neural network(RNN). RNN adalah jenis arsitektur jaringan saraf tiruan yang pemrosesannya dipanggil berulang-ulang untuk memroses masukan yang biasanya adalah data sekuensial.
Mengatifkan H2O
library("h2o")
##
## ----------------------------------------------------------------------
##
## Your next step is to start H2O:
## > h2o.init()
##
## For H2O package documentation, ask for help:
## > ??h2o
##
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit http://docs.h2o.ai
##
## ----------------------------------------------------------------------
##
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
##
## cor, sd, var
## The following objects are masked from 'package:base':
##
## %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
## colnames<-, ifelse, is.character, is.factor, is.numeric, log,
## log10, log1p, log2, round, signif, trunc
h2o.init(nthreads=-1,max_mem_size="3G")
##
## H2O is not running yet, starting it now...
##
## Note: In case of errors look at the following log files:
## C:\Users\Hellan\AppData\Local\Temp\RtmpSeXob7/h2o_Hellan_started_from_r.out
## C:\Users\Hellan\AppData\Local\Temp\RtmpSeXob7/h2o_Hellan_started_from_r.err
##
##
## Starting H2O JVM and connecting: .. Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 11 seconds 464 milliseconds
## H2O cluster timezone: Asia/Bangkok
## H2O data parsing timezone: UTC
## H2O cluster version: 3.20.0.8
## H2O cluster version age: 1 year, 6 months and 12 days !!!
## H2O cluster name: H2O_started_from_R_Hellan_lxa421
## H2O cluster total nodes: 1
## H2O cluster total memory: 2.67 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Algos, AutoML, Core V3, Core V4
## R Version: R version 3.5.1 (2018-07-02)
## Warning in h2o.clusterInfo():
## Your H2O cluster version is too old (1 year, 6 months and 12 days)!
## Please download and install the latest version from http://h2o.ai/download/
Membaca data mnist untuk training dan testing
train_mnist=read.csv("mnist_train_100.csv", header=FALSE)
head(train_mnist)
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V57 V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V75 V76 V77 V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V93 V94 V95 V96 V97 V98 V99 V100 V101 V102 V103 V104 V105 V106 V107 V108
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V109 V110 V111 V112 V113 V114 V115 V116 V117 V118 V119 V120 V121 V122
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V123 V124 V125 V126 V127 V128 V129 V130 V131 V132 V133 V134 V135 V136
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 145 255 211 31 0 0 0 0 0 0 0
## V137 V138 V139 V140 V141 V142 V143 V144 V145 V146 V147 V148 V149 V150
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V151 V152 V153 V154 V155 V156 V157 V158 V159 V160 V161 V162 V163 V164
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 13 29 29 66 28 0 0 10 179 242 47
## 3 0 15 108 233 253 255 180 101 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 85 255 103 1 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 67 232 39
## 6 0 0 32 237 253 252 71 0 0 0 0 0 0 0
## V165 V166 V167 V168 V169 V170 V171 V172 V173 V174 V175 V176 V177 V178
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 62 81 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V179 V180 V181 V182 V183 V184 V185 V186 V187 V188 V189 V190 V191 V192
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 19 144 253 252 252 215 170 82 28 209 253 84
## 3 36 219 252 252 252 253 252 227 50 0 0 0 0 0
## 4 0 0 0 0 0 0 0 205 253 253 30 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 120 180 39
## 6 0 0 11 175 253 252 71 0 0 0 0 0 0 0
## V193 V194 V195 V196 V197 V198 V199 V200 V201 V202 V203 V204 V205 V206
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 85
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 126 163 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V207 V208 V209 V210 V211 V212 V213 V214 V215 V216 V217 V218 V219 V220
## 1 0 0 0 0 7 67 141 205 255 255 153 0 0 0
## 2 0 0 123 252 253 252 252 252 253 240 72 210 253 84
## 3 222 252 233 141 69 79 227 252 160 0 0 0 0 0
## 4 0 0 0 0 0 0 0 205 253 253 30 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 2 153 210 40
## 6 0 0 0 144 253 252 71 0 0 0 0 0 0 0
## V221 V222 V223 V224 V225 V226 V227 V228 V229 V230 V231 V232 V233 V234
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 116
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 220 163 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V235 V236 V237 V238 V239 V240 V241 V242 V243 V244 V245 V246 V247 V248
## 1 0 45 57 121 188 253 253 254 253 253 253 0 0 0
## 2 0 151 246 252 178 28 28 28 253 151 91 252 253 84
## 3 253 235 64 0 0 0 161 252 160 0 0 0 0 0
## 4 0 0 0 0 0 0 44 233 253 244 27 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 27 254 162 0
## 6 0 0 16 191 253 252 71 0 0 0 0 0 0 0
## V249 V250 V251 V252 V253 V254 V255 V256 V257 V258 V259 V260 V261 V262
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 111
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 11
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 222 163 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V263 V264 V265 V266 V267 V268 V269 V270 V271 V272 V273 V274 V275 V276
## 1 198 241 253 254 253 253 215 179 253 253 165 0 0 0
## 2 16 179 253 178 0 0 0 0 166 91 229 253 201 0
## 3 128 18 0 0 0 22 244 252 108 0 0 0 0 0
## 4 0 0 0 0 0 0 135 253 253 100 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 183 254 125 0
## 6 0 0 26 221 253 252 124 31 0 0 0 0 0 0
## V277 V278 V279 V280 V281 V282 V283 V284 V285 V286 V287 V288 V289 V290
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 242
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 46 245 163 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V291 V292 V293 V294 V295 V296 V297 V298 V299 V300 V301 V302 V303 V304
## 1 253 253 253 191 116 28 16 79 253 253 40 0 0 0
## 2 47 196 252 103 0 0 0 0 16 215 252 252 0 0
## 3 0 0 0 0 0 97 253 184 0 0 0 0 0 0
## 4 0 0 0 0 0 0 153 253 240 76 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 198 254 56 0
## 6 0 0 0 125 253 252 252 108 0 0 0 0 0 0
## V305 V306 V307 V308 V309 V310 V311 V312 V313 V314 V315 V316 V317 V318
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 64
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 120 254 163 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V319 V320 V321 V322 V323 V324 V325 V326 V327 V328 V329 V330 V331 V332
## 1 114 114 13 0 0 0 0 142 254 207 13 0 0 0
## 2 0 131 252 228 38 0 0 0 204 252 252 127 0 0
## 3 0 0 0 38 99 253 244 98 0 0 0 0 0 0
## 4 0 0 0 0 0 12 208 253 166 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 23 231 254 29 0
## 6 0 0 0 0 253 252 252 108 0 0 0 0 0 0
## V333 V334 V335 V336 V337 V338 V339 V340 V341 V342 V343 V344 V345 V346
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 159 254 120 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V347 V348 V349 V350 V351 V352 V353 V354 V355 V356 V357 V358 V359 V360
## 1 0 0 0 0 0 0 26 217 253 143 0 0 0 0
## 2 0 32 228 252 226 38 38 213 253 252 127 3 0 0
## 3 0 13 153 240 252 253 240 101 13 0 0 0 0 0
## 4 0 0 0 0 0 69 253 253 142 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 163 254 216 16 0
## 6 0 0 0 0 255 253 253 108 0 0 0 0 0 0
## V361 V362 V363 V364 V365 V366 V367 V368 V369 V370 V371 V372 V373 V374
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 159 254 67 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V375 V376 V377 V378 V379 V380 V381 V382 V383 V384 V385 V386 V387 V388
## 1 0 0 0 0 0 0 151 254 234 37 0 0 0 0
## 2 0 0 85 253 255 203 253 253 214 38 0 0 0 0
## 3 0 99 252 252 252 253 252 252 215 19 0 0 0 0
## 4 0 0 0 0 14 110 253 235 33 0 0 0 0 0
## 5 0 0 0 0 0 0 14 86 178 248 254 91 0 0
## 6 0 0 0 0 253 252 252 108 0 0 0 0 0 0
## V389 V390 V391 V392 V393 V394 V395 V396 V397 V398 V399 V400 V401 V402
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 159 254 85 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V403 V404 V405 V406 V407 V408 V409 V410 V411 V412 V413 V414 V415 V416
## 1 0 0 0 0 0 0 226 254 197 0 0 0 0 0
## 2 0 0 28 184 253 252 252 202 0 0 0 0 0 0
## 3 0 26 221 210 137 23 96 221 252 128 0 0 0 0
## 4 0 0 0 0 63 223 235 130 0 0 0 0 0 0
## 5 47 49 116 144 150 241 243 234 179 241 252 40 0 0
## 6 0 0 0 0 253 252 252 108 0 0 0 0 0 0
## V417 V418 V419 V420 V421 V422 V423 V424 V425 V426 V427 V428 V429 V430
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 150 253 237 207 207 207
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V431 V432 V433 V434 V435 V436 V437 V438 V439 V440 V441 V442 V443 V444
## 1 0 0 0 0 0 48 242 252 75 0 0 0 0 0
## 2 0 0 29 184 253 252 252 28 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 70 253 253 64 0 0 0
## 4 0 0 0 0 186 253 235 37 0 0 0 0 0 0
## 5 253 254 250 240 198 143 91 28 5 233 250 0 0 0
## 6 0 0 0 0 253 252 252 108 0 0 0 0 0 0
## V445 V446 V447 V448 V449 V450 V451 V452 V453 V454 V455 V456 V457 V458
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 119 177 177 177 177
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V459 V460 V461 V462 V463 V464 V465 V466 V467 V468 V469 V470 V471 V472
## 1 0 0 0 0 0 160 253 201 0 0 0 0 0 0
## 2 0 26 159 252 253 252 252 178 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 25 223 252 116 0 0 0
## 4 0 0 0 17 145 253 231 35 0 0 0 0 0 0
## 5 177 98 56 0 0 0 0 0 102 254 220 0 0 0
## 6 0 0 0 0 255 253 253 170 0 0 0 0 0 0
## V473 V474 V475 V476 V477 V478 V479 V480 V481 V482 V483 V484 V485 V486
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V487 V488 V489 V490 V491 V492 V493 V494 V495 V496 V497 V498 V499 V500
## 1 0 0 0 0 45 241 253 114 0 0 0 0 0 0
## 2 0 120 253 253 114 194 253 253 63 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 207 252 116 0 0 0
## 4 0 0 0 69 220 231 123 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 254 137 0 0 0
## 6 0 0 0 0 253 252 252 252 42 0 0 0 0 0
## V501 V502 V503 V504 V505 V506 V507 V508 V509 V510 V511 V512 V513 V514
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V515 V516 V517 V518 V519 V520 V521 V522 V523 V524 V525 V526 V527 V528
## 1 0 0 0 0 57 253 253 114 0 0 0 0 0 0
## 2 170 225 233 96 0 131 252 252 38 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 207 252 116 0 0 0
## 4 0 0 18 205 253 176 27 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 254 57 0 0 0
## 6 0 0 0 0 149 252 252 252 144 0 0 0 0 0
## V529 V530 V531 V532 V533 V534 V535 V536 V537 V538 V539 V540 V541 V542
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 89
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V543 V544 V545 V546 V547 V548 V549 V550 V551 V552 V553 V554 V555 V556
## 1 0 0 0 4 180 254 242 0 0 0 0 0 0 0
## 2 253 252 80 0 13 206 252 202 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 64 248 252 116 0 0 0
## 4 0 17 125 253 185 39 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 254 57 0 0 0
## 6 0 0 0 0 109 252 252 252 144 0 0 0 0 0
## V557 V558 V559 V560 V561 V562 V563 V564 V565 V566 V567 V568 V569 V570
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 38 225
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V571 V572 V573 V574 V575 V576 V577 V578 V579 V580 V581 V582 V583 V584
## 1 0 0 0 54 253 253 116 0 0 0 0 0 0 0
## 2 253 102 6 0 13 206 252 102 0 0 0 0 0 0
## 3 0 0 0 0 0 0 5 138 253 253 53 0 0 0
## 4 0 71 214 231 41 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 255 94 0 0 0
## 6 0 0 0 0 0 218 253 253 255 35 0 0 0 0
## V585 V586 V587 V588 V589 V590 V591 V592 V593 V594 V595 V596 V597 V598
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 86 253
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V599 V600 V601 V602 V603 V604 V605 V606 V607 V608 V609 V610 V611 V612
## 1 0 0 0 141 253 253 28 0 0 0 0 0 0 0
## 2 251 75 0 0 104 253 206 13 0 0 0 0 0 0
## 3 5 47 34 0 0 5 136 252 252 157 0 0 0 0
## 4 0 167 253 225 33 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 254 96 0 0 0
## 6 0 0 0 0 0 175 252 252 253 35 0 0 0 0
## V613 V614 V615 V616 V617 V618 V619 V620 V621 V622 V623 V624 V625 V626
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 110 252
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V627 V628 V629 V630 V631 V632 V633 V634 V635 V636 V637 V638 V639 V640
## 1 0 0 0 141 253 177 3 0 0 0 0 0 0 0
## 2 244 144 95 169 253 252 142 0 0 0 0 0 0 0
## 3 24 252 234 90 70 191 252 252 227 16 0 0 0 0
## 4 72 205 207 14 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 254 153 0 0 0
## 6 0 0 0 0 0 73 252 252 253 35 0 0 0 0
## V641 V642 V643 V644 V645 V646 V647 V648 V649 V650 V651 V652 V653 V654
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 110 252
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 30
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V655 V656 V657 V658 V659 V660 V661 V662 V663 V664 V665 V666 V667 V668
## 1 0 0 0 205 254 56 0 0 0 0 0 0 0 0
## 2 253 252 252 252 244 93 13 0 0 0 0 0 0 0
## 3 24 252 252 252 252 253 235 128 29 0 0 0 0 0
## 4 249 233 49 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 169 255 153 0 0 0
## 6 0 0 0 0 0 31 211 252 253 35 0 0 0 0
## V669 V670 V671 V672 V673 V674 V675 V676 V677 V678 V679 V680 V681 V682
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 10 128
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 32
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V683 V684 V685 V686 V687 V688 V689 V690 V691 V692 V693 V694 V695 V696
## 1 0 0 26 254 253 81 0 0 0 0 0 0 0 0
## 2 253 252 202 102 25 0 0 0 0 0 0 0 0 0
## 3 13 211 252 252 252 137 60 0 0 0 0 0 0 0
## 4 253 89 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 96 254 153 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V697 V698 V699 V700 V701 V702 V703 V704 V705 V706 V707 V708 V709 V710
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V711 V712 V713 V714 V715 V716 V717 V718 V719 V720 V721 V722 V723 V724
## 1 0 0 25 254 253 235 22 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V725 V726 V727 V728 V729 V730 V731 V732 V733 V734 V735 V736 V737 V738
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V739 V740 V741 V742 V743 V744 V745 V746 V747 V748 V749 V750 V751 V752
## 1 0 0 0 204 228 103 3 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V753 V754 V755 V756 V757 V758 V759 V760 V761 V762 V763 V764 V765 V766
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V767 V768 V769 V770 V771 V772 V773 V774 V775 V776 V777 V778 V779 V780
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V781 V782 V783 V784 V785
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
train_mnist[10,-1]
## V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74 V75
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V76 V77 V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92 V93
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V94 V95 V96 V97 V98 V99 V100 V101 V102 V103 V104 V105 V106 V107 V108
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V109 V110 V111 V112 V113 V114 V115 V116 V117 V118 V119 V120 V121 V122
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V123 V124 V125 V126 V127 V128 V129 V130 V131 V132 V133 V134 V135 V136
## 10 0 0 0 0 0 0 51 159 253 159 50 0 0 0
## V137 V138 V139 V140 V141 V142 V143 V144 V145 V146 V147 V148 V149 V150
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V151 V152 V153 V154 V155 V156 V157 V158 V159 V160 V161 V162 V163 V164
## 10 0 0 0 0 0 48 238 252 252 252 237 0 0 0
## V165 V166 V167 V168 V169 V170 V171 V172 V173 V174 V175 V176 V177 V178
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V179 V180 V181 V182 V183 V184 V185 V186 V187 V188 V189 V190 V191 V192
## 10 0 0 0 0 54 227 253 252 239 233 252 57 6 0
## V193 V194 V195 V196 V197 V198 V199 V200 V201 V202 V203 V204 V205 V206
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V207 V208 V209 V210 V211 V212 V213 V214 V215 V216 V217 V218 V219 V220
## 10 0 0 10 60 224 252 253 252 202 84 252 253 122 0
## V221 V222 V223 V224 V225 V226 V227 V228 V229 V230 V231 V232 V233 V234
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V235 V236 V237 V238 V239 V240 V241 V242 V243 V244 V245 V246 V247 V248
## 10 0 0 163 252 252 252 253 252 252 96 189 253 167 0
## V249 V250 V251 V252 V253 V254 V255 V256 V257 V258 V259 V260 V261 V262
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V263 V264 V265 V266 V267 V268 V269 V270 V271 V272 V273 V274 V275 V276
## 10 0 51 238 253 253 190 114 253 228 47 79 255 168 0
## V277 V278 V279 V280 V281 V282 V283 V284 V285 V286 V287 V288 V289 V290
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V291 V292 V293 V294 V295 V296 V297 V298 V299 V300 V301 V302 V303 V304
## 10 48 238 252 252 179 12 75 121 21 0 0 253 243 50
## V305 V306 V307 V308 V309 V310 V311 V312 V313 V314 V315 V316 V317 V318
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 38
## V319 V320 V321 V322 V323 V324 V325 V326 V327 V328 V329 V330 V331 V332
## 10 165 253 233 208 84 0 0 0 0 0 0 253 252 165
## V333 V334 V335 V336 V337 V338 V339 V340 V341 V342 V343 V344 V345 V346
## 10 0 0 0 0 0 0 0 0 0 0 0 0 7 178
## V347 V348 V349 V350 V351 V352 V353 V354 V355 V356 V357 V358 V359 V360
## 10 252 240 71 19 28 0 0 0 0 0 0 253 252 195
## V361 V362 V363 V364 V365 V366 V367 V368 V369 V370 V371 V372 V373 V374
## 10 0 0 0 0 0 0 0 0 0 0 0 0 57 252
## V375 V376 V377 V378 V379 V380 V381 V382 V383 V384 V385 V386 V387 V388
## 10 252 63 0 0 0 0 0 0 0 0 0 253 252 195
## V389 V390 V391 V392 V393 V394 V395 V396 V397 V398 V399 V400 V401 V402
## 10 0 0 0 0 0 0 0 0 0 0 0 0 198 253
## V403 V404 V405 V406 V407 V408 V409 V410 V411 V412 V413 V414 V415 V416
## 10 190 0 0 0 0 0 0 0 0 0 0 255 253 196
## V417 V418 V419 V420 V421 V422 V423 V424 V425 V426 V427 V428 V429 V430
## 10 0 0 0 0 0 0 0 0 0 0 0 76 246 252
## V431 V432 V433 V434 V435 V436 V437 V438 V439 V440 V441 V442 V443 V444
## 10 112 0 0 0 0 0 0 0 0 0 0 253 252 148
## V445 V446 V447 V448 V449 V450 V451 V452 V453 V454 V455 V456 V457 V458
## 10 0 0 0 0 0 0 0 0 0 0 0 85 252 230
## V459 V460 V461 V462 V463 V464 V465 V466 V467 V468 V469 V470 V471 V472
## 10 25 0 0 0 0 0 0 0 0 7 135 253 186 12
## V473 V474 V475 V476 V477 V478 V479 V480 V481 V482 V483 V484 V485 V486
## 10 0 0 0 0 0 0 0 0 0 0 0 85 252 223
## V487 V488 V489 V490 V491 V492 V493 V494 V495 V496 V497 V498 V499 V500
## 10 0 0 0 0 0 0 0 0 7 131 252 225 71 0
## V501 V502 V503 V504 V505 V506 V507 V508 V509 V510 V511 V512 V513 V514
## 10 0 0 0 0 0 0 0 0 0 0 0 85 252 145
## V515 V516 V517 V518 V519 V520 V521 V522 V523 V524 V525 V526 V527 V528
## 10 0 0 0 0 0 0 0 48 165 252 173 0 0 0
## V529 V530 V531 V532 V533 V534 V535 V536 V537 V538 V539 V540 V541 V542
## 10 0 0 0 0 0 0 0 0 0 0 0 86 253 225
## V543 V544 V545 V546 V547 V548 V549 V550 V551 V552 V553 V554 V555 V556
## 10 0 0 0 0 0 0 114 238 253 162 0 0 0 0
## V557 V558 V559 V560 V561 V562 V563 V564 V565 V566 V567 V568 V569 V570
## 10 0 0 0 0 0 0 0 0 0 0 0 85 252 249
## V571 V572 V573 V574 V575 V576 V577 V578 V579 V580 V581 V582 V583 V584
## 10 146 48 29 85 178 225 253 223 167 56 0 0 0 0
## V585 V586 V587 V588 V589 V590 V591 V592 V593 V594 V595 V596 V597 V598
## 10 0 0 0 0 0 0 0 0 0 0 0 85 252 252
## V599 V600 V601 V602 V603 V604 V605 V606 V607 V608 V609 V610 V611 V612
## 10 252 229 215 252 252 252 196 130 0 0 0 0 0 0
## V613 V614 V615 V616 V617 V618 V619 V620 V621 V622 V623 V624 V625 V626
## 10 0 0 0 0 0 0 0 0 0 0 0 28 199 252
## V627 V628 V629 V630 V631 V632 V633 V634 V635 V636 V637 V638 V639 V640
## 10 252 253 252 252 233 145 0 0 0 0 0 0 0 0
## V641 V642 V643 V644 V645 V646 V647 V648 V649 V650 V651 V652 V653 V654
## 10 0 0 0 0 0 0 0 0 0 0 0 0 25 128
## V655 V656 V657 V658 V659 V660 V661 V662 V663 V664 V665 V666 V667 V668
## 10 252 253 252 141 37 0 0 0 0 0 0 0 0 0
## V669 V670 V671 V672 V673 V674 V675 V676 V677 V678 V679 V680 V681 V682
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V683 V684 V685 V686 V687 V688 V689 V690 V691 V692 V693 V694 V695 V696
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V697 V698 V699 V700 V701 V702 V703 V704 V705 V706 V707 V708 V709 V710
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V711 V712 V713 V714 V715 V716 V717 V718 V719 V720 V721 V722 V723 V724
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V725 V726 V727 V728 V729 V730 V731 V732 V733 V734 V735 V736 V737 V738
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V739 V740 V741 V742 V743 V744 V745 V746 V747 V748 V749 V750 V751 V752
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V753 V754 V755 V756 V757 V758 V759 V760 V761 V762 V763 V764 V765 V766
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V767 V768 V769 V770 V771 V772 V773 V774 V775 V776 V777 V778 V779 V780
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## V781 V782 V783 V784 V785
## 10 0 0 0 0 0
test_mnist=read.csv("mnist_test_10.csv", header=FALSE)
Membangun data matrix
m = matrix(unlist(train_mnist[10,-1]),
nrow = 28,
byrow = TRUE)
Visualisasi dari data m
image(m,col=grey.colors(255))
Membalikan visualisasi dari data m
rotate = function(x) t(apply(x, 2, rev))
image(rotate(m),col=grey.colors(255))
Visualisasi dari data train_mnist
par(mfrow=c(2,3))
lapply(1:6,
function(x) image(
rotate(matrix(unlist(train_mnist[x,-1]),
nrow = 28,
byrow = TRUE)),
col=grey.colors(255),
xlab=train_mnist[x,1]
)
)
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
par(mfrow=c(1,1))
str(train_mnist)
## 'data.frame': 100 obs. of 785 variables:
## $ V1 : int 7 8 3 1 4 1 1 4 3 0 ...
## $ V2 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V3 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V4 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V5 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V6 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V7 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V8 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V9 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V10 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V11 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V12 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V13 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V14 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V15 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V16 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V17 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V18 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V19 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V20 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V21 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V22 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V23 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V24 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V25 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V26 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V27 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V28 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V29 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V30 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V31 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V32 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V33 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V34 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V35 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V36 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V37 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V38 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V39 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V40 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V41 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V42 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V43 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V44 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V45 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V46 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V47 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V48 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V49 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V50 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V51 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V52 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V53 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V54 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V55 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V56 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V57 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V58 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V59 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V60 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V61 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V62 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V63 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V64 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V65 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V66 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V67 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V68 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V69 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V70 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V71 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V72 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V73 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V74 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V75 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V76 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V77 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V78 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V79 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V80 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V81 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V82 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V83 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V84 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V85 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V86 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V87 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V88 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V89 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V90 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V91 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V92 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V93 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V94 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V95 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V96 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V97 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V98 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ V99 : int 0 0 0 0 0 0 0 0 0 0 ...
## [list output truncated]
x=2:785
y=1
table(train_mnist[,y])
##
## 0 1 2 3 4 5 6 7 8 9
## 13 14 6 11 11 5 11 10 8 11
Membuat Model Deep Learning
model=h2o.deeplearning(x,
y,
as.h2o(train_mnist),
model_id="MNIST_deeplearning",
seed=405,
activation="RectifierWithDropout",
l1=0.00001,
input_dropout_ratio=0.2,
classification_stop = -1,
epochs=2500
)
##
|
| | 0%
|
|=================================================================| 100%
## Warning in .h2o.startModelJob(algo, params, h2oRestApiVersion): Dropping bad and constant columns: [V256, V254, V253, V252, V119, V118, V117, V116, V479, V481, V480, V368, V367, V366, V365, V122, V364, V121, V363, V120, V706, V705, V704, V703, V702, V701, V700, V707, V393, V392, V391, V396, V395, V394, V139, V138, V140, V144, V143, V142, V141, V728, V727, V726, V725, V724, V723, V729, V172, V171, V170, V731, V730, V2, V3, V4, V5, V6, V7, V8, V9, V282, V281, V280, V169, V168, V167, V166, V284, V508, V507, V749, V506, V505, V504, V503, V509, V753, V752, V751, V750, V199, V198, V197, V196, V618, V617, V616, V615, V734, V733, V732, V619, V10, V12, V11, V14, V621, V13, V620, V16, V15, V18, V17, V19, V649, V648, V769, V647, V768, V646, V767, V645, V644, V21, V20, V23, V22, V25, V533, V775, V24, V532, V774, V27, V531, V773, V26, V772, V29, V771, V28, V770, V759, V758, V757, V756, V755, V754, V30, V32, V31, V34, V33, V36, V643, V35, V642, V38, V762, V37, V761, V760, V39, V309, V308, V307, V424, V41, V40, V43, V42, V45, V44, V47, V676, V46, V312, V675, V49, V311, V674, V48, V310, V673, V672, V671, V670, V537, V779, V536, V778, V535, V777, V534, V776, V50, V52, V51, V54, V53, V56, V55, V58, V423, V57, V422, V785, V421, V784, V59, V420, V783, V782, V781, V780, V449, V448, V61, V60, V63, V62, V65, V64, V67, V66, V69, V335, V698, V68, V453, V452, V451, V450, V559, V677, V70, V71, V79, V565, V564, V200, V563, V562, V561, V560, V109, V108, V107, V228, V227, V226, V589, V81, V80, V83, V591, V82, V590, V85, V84, V87, V86, V89, V88, V115, V478, V114, V477, V113, V476, V112, V475, V111, V110, V593, V592, V339, V338, V337, V336, V699, V90, V92, V91, V94, V93, V95, V225, V588, V224, V587, V340].
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 9%
|
|====== | 10%
|
|======= | 11%
|
|======== | 12%
|
|========= | 14%
|
|========== | 15%
|
|=========== | 16%
|
|=========== | 18%
|
|============ | 18%
|
|============= | 20%
|
|============== | 21%
|
|=============== | 22%
|
|=============== | 24%
|
|================ | 24%
|
|================ | 25%
|
|================= | 26%
|
|================== | 28%
|
|=================== | 30%
|
|==================== | 30%
|
|===================== | 32%
|
|===================== | 33%
|
|====================== | 34%
|
|======================= | 35%
|
|======================= | 36%
|
|======================== | 36%
|
|======================== | 38%
|
|========================= | 39%
|
|=========================== | 41%
|
|============================ | 42%
|
|=================================================================| 100%
Data Statistik model
summary(model)
## Model Details:
## ==============
##
## H2ORegressionModel: deeplearning
## Model Key: MNIST_deeplearning
## Status of Neuron Layers: predicting V1, regression, gaussian distribution, Quadratic loss, 140.801 weights/biases, 1,7 MB, 107.000 training samples, mini-batch size 1
## layer units type dropout l1 l2 mean_rate
## 1 1 501 Input 20.00 % NA NA NA
## 2 2 200 RectifierDropout 50.00 % 0.000010 0.000000 0.065506
## 3 3 200 RectifierDropout 50.00 % 0.000010 0.000000 0.023710
## 4 4 1 Linear NA 0.000010 0.000000 0.001079
## rate_rms momentum mean_weight weight_rms mean_bias bias_rms
## 1 NA NA NA NA NA NA
## 2 0.065640 0.000000 0.004261 0.054040 0.423469 0.053351
## 3 0.019530 0.000000 -0.018238 0.067772 0.960785 0.053868
## 4 0.000374 0.000000 0.001479 0.039133 -0.063746 0.000000
##
## H2ORegressionMetrics: deeplearning
## ** Reported on training data. **
## ** Metrics reported on full training frame **
##
## MSE: 0.1424873
## RMSE: 0.3774749
## MAE: 0.3111871
## RMSLE: 0.1275395
## Mean Residual Deviance : 0.1424873
##
##
##
##
##
## Scoring History:
## timestamp duration training_speed epochs
## 1 2020-04-02 23:19:37 0.000 sec NA 0.00000
## 2 2020-04-02 23:19:39 8.717 sec 641 obs/sec 10.00000
## 3 2020-04-02 23:19:49 17.717 sec 1185 obs/sec 120.00000
## 4 2020-04-02 23:19:54 23.132 sec 1323 obs/sec 200.00000
## 5 2020-04-02 23:20:00 28.724 sec 1385 obs/sec 280.00000
## 6 2020-04-02 23:20:05 34.079 sec 1429 obs/sec 360.00000
## 7 2020-04-02 23:20:11 39.583 sec 1484 obs/sec 450.00000
## 8 2020-04-02 23:20:16 44.841 sec 1506 obs/sec 530.00000
## 9 2020-04-02 23:20:21 50.085 sec 1546 obs/sec 620.00000
## 10 2020-04-02 23:20:26 55.198 sec 1584 obs/sec 710.00000
## 11 2020-04-02 23:20:31 1 min 0.291 sec 1614 obs/sec 800.00000
## 12 2020-04-02 23:20:37 1 min 5.479 sec 1637 obs/sec 890.00000
## 13 2020-04-02 23:20:42 1 min 10.688 sec 1654 obs/sec 980.00000
## 14 2020-04-02 23:20:47 1 min 15.758 sec 1672 obs/sec 1070.00000
## 15 2020-04-02 23:20:47 1 min 16.157 sec 1671 obs/sec 1070.00000
## iterations samples training_rmse training_deviance training_mae
## 1 0 0.000000 NA NA NA
## 2 1 1000.000000 2.10449 4.42889 1.62811
## 3 12 12000.000000 0.48041 0.23079 0.34755
## 4 20 20000.000000 0.42530 0.18088 0.35386
## 5 28 28000.000000 0.39593 0.15676 0.32210
## 6 36 36000.000000 0.44419 0.19731 0.37665
## 7 45 45000.000000 0.37747 0.14249 0.31119
## 8 53 53000.000000 0.44452 0.19759 0.37912
## 9 62 62000.000000 0.41428 0.17162 0.34445
## 10 71 71000.000000 0.50424 0.25425 0.42524
## 11 80 80000.000000 0.57661 0.33247 0.48326
## 12 89 89000.000000 0.61142 0.37384 0.47504
## 13 98 98000.000000 0.74022 0.54792 0.59955
## 14 107 107000.000000 0.83277 0.69350 0.64620
## 15 107 107000.000000 0.37747 0.14249 0.31119
## training_r2
## 1 NA
## 2 0.50992
## 3 0.97446
## 4 0.97998
## 5 0.98265
## 6 0.97817
## 7 0.98423
## 8 0.97814
## 9 0.98101
## 10 0.97187
## 11 0.96321
## 12 0.95863
## 13 0.93937
## 14 0.92326
## 15 0.98423
##
## Variable Importances: (Extract with `h2o.varimp`)
## =================================================
##
## Variable Importances:
## variable relative_importance scaled_importance percentage
## 1 V265 1.000000 1.000000 0.002680
## 2 V321 0.985851 0.985851 0.002642
## 3 V297 0.969178 0.969178 0.002598
## 4 V410 0.961629 0.961629 0.002578
## 5 V382 0.955033 0.955033 0.002560
##
## ---
## variable relative_importance scaled_importance percentage
## 496 V482 0.599362 0.599362 0.001607
## 497 V425 0.596363 0.596363 0.001598
## 498 V283 0.583113 0.583113 0.001563
## 499 V419 0.575406 0.575406 0.001542
## 500 V538 0.571190 0.571190 0.001531
## 501 V748 0.559620 0.559620 0.001500
Prediksi data testing
preds=h2o.predict(model,
as.h2o(test_mnist))
##
|
| | 0%
|
|=================================================================| 100%
##
|
| | 0%
|
|=================================================================| 100%
head(preds)
## predict
## 1 7.155077
## 2 3.686206
## 3 1.294710
## 4 0.557270
## 5 4.313547
## 6 1.204334
Performa dari prediksi data testing
perfoma=h2o.performance(model,
as.h2o(test_mnist))
##
|
| | 0%
|
|=================================================================| 100%
perfoma
## H2ORegressionMetrics: deeplearning
##
## MSE: 3.549605
## RMSE: 1.884039
## MAE: 1.195061
## RMSLE: 0.3033348
## Mean Residual Deviance : 3.549605
Membuat data untuk hasil prediksi
predictions = cbind(as.data.frame(seq(1,10)),
test_mnist[,1],
as.data.frame(preds[,1]))
names(predictions) = c("Number","Actual","Predicted")
as.matrix(predictions)
## Number Actual Predicted
## [1,] 1 7 7.155077
## [2,] 2 3 3.686206
## [3,] 3 1 1.294710
## [4,] 4 0 0.557270
## [5,] 5 6 4.313547
## [6,] 6 1 1.204334
## [7,] 7 6 6.037937
## [8,] 8 9 3.951905
## [9,] 9 5 4.012503
## [10,] 10 9 6.706971