Metode deep learning yang digunakan adalah metode recurrent neural network(RNN). RNN adalah jenis arsitektur jaringan saraf tiruan yang pemrosesannya dipanggil berulang-ulang untuk memroses masukan yang biasanya adalah data sekuensial.

Mengatifkan H2O

library("h2o")
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit http://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
h2o.init(nthreads=-1,max_mem_size="3G")
## 
## H2O is not running yet, starting it now...
## 
## Note:  In case of errors look at the following log files:
##     C:\Users\Hellan\AppData\Local\Temp\RtmpSeXob7/h2o_Hellan_started_from_r.out
##     C:\Users\Hellan\AppData\Local\Temp\RtmpSeXob7/h2o_Hellan_started_from_r.err
## 
## 
## Starting H2O JVM and connecting: .. Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         11 seconds 464 milliseconds 
##     H2O cluster timezone:       Asia/Bangkok 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.20.0.8 
##     H2O cluster version age:    1 year, 6 months and 12 days !!! 
##     H2O cluster name:           H2O_started_from_R_Hellan_lxa421 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   2.67 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  4 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     H2O API Extensions:         Algos, AutoML, Core V3, Core V4 
##     R Version:                  R version 3.5.1 (2018-07-02)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is too old (1 year, 6 months and 12 days)!
## Please download and install the latest version from http://h2o.ai/download/

Membaca data mnist untuk training dan testing

train_mnist=read.csv("mnist_train_100.csv", header=FALSE)
head(train_mnist)
##   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 1  7  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
## 2  8  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
## 3  3  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
## 4  1  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
## 5  4  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
## 6  1  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
##   V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38
## 1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56
## 1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   V57 V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74
## 1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   V75 V76 V77 V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92
## 1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   V93 V94 V95 V96 V97 V98 V99 V100 V101 V102 V103 V104 V105 V106 V107 V108
## 1   0   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
## 2   0   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
## 3   0   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
## 4   0   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
## 5   0   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
## 6   0   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
##   V109 V110 V111 V112 V113 V114 V115 V116 V117 V118 V119 V120 V121 V122
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V123 V124 V125 V126 V127 V128 V129 V130 V131 V132 V133 V134 V135 V136
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0  145  255  211   31    0    0    0    0    0    0    0
##   V137 V138 V139 V140 V141 V142 V143 V144 V145 V146 V147 V148 V149 V150
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V151 V152 V153 V154 V155 V156 V157 V158 V159 V160 V161 V162 V163 V164
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0   13   29   29   66   28    0    0   10  179  242   47
## 3    0   15  108  233  253  255  180  101    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0   85  255  103    1    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0   67  232   39
## 6    0    0   32  237  253  252   71    0    0    0    0    0    0    0
##   V165 V166 V167 V168 V169 V170 V171 V172 V173 V174 V175 V176 V177 V178
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0   62   81    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V179 V180 V181 V182 V183 V184 V185 V186 V187 V188 V189 V190 V191 V192
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0   19  144  253  252  252  215  170   82   28  209  253   84
## 3   36  219  252  252  252  253  252  227   50    0    0    0    0    0
## 4    0    0    0    0    0    0    0  205  253  253   30    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0  120  180   39
## 6    0    0   11  175  253  252   71    0    0    0    0    0    0    0
##   V193 V194 V195 V196 V197 V198 V199 V200 V201 V202 V203 V204 V205 V206
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0   85
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0  126  163    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V207 V208 V209 V210 V211 V212 V213 V214 V215 V216 V217 V218 V219 V220
## 1    0    0    0    0    7   67  141  205  255  255  153    0    0    0
## 2    0    0  123  252  253  252  252  252  253  240   72  210  253   84
## 3  222  252  233  141   69   79  227  252  160    0    0    0    0    0
## 4    0    0    0    0    0    0    0  205  253  253   30    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    2  153  210   40
## 6    0    0    0  144  253  252   71    0    0    0    0    0    0    0
##   V221 V222 V223 V224 V225 V226 V227 V228 V229 V230 V231 V232 V233 V234
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0  116
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0  220  163    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V235 V236 V237 V238 V239 V240 V241 V242 V243 V244 V245 V246 V247 V248
## 1    0   45   57  121  188  253  253  254  253  253  253    0    0    0
## 2    0  151  246  252  178   28   28   28  253  151   91  252  253   84
## 3  253  235   64    0    0    0  161  252  160    0    0    0    0    0
## 4    0    0    0    0    0    0   44  233  253  244   27    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0   27  254  162    0
## 6    0    0   16  191  253  252   71    0    0    0    0    0    0    0
##   V249 V250 V251 V252 V253 V254 V255 V256 V257 V258 V259 V260 V261 V262
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0  111
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0   11
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0  222  163    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V263 V264 V265 V266 V267 V268 V269 V270 V271 V272 V273 V274 V275 V276
## 1  198  241  253  254  253  253  215  179  253  253  165    0    0    0
## 2   16  179  253  178    0    0    0    0  166   91  229  253  201    0
## 3  128   18    0    0    0   22  244  252  108    0    0    0    0    0
## 4    0    0    0    0    0    0  135  253  253  100    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0  183  254  125    0
## 6    0    0   26  221  253  252  124   31    0    0    0    0    0    0
##   V277 V278 V279 V280 V281 V282 V283 V284 V285 V286 V287 V288 V289 V290
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0  242
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0   46  245  163    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V291 V292 V293 V294 V295 V296 V297 V298 V299 V300 V301 V302 V303 V304
## 1  253  253  253  191  116   28   16   79  253  253   40    0    0    0
## 2   47  196  252  103    0    0    0    0   16  215  252  252    0    0
## 3    0    0    0    0    0   97  253  184    0    0    0    0    0    0
## 4    0    0    0    0    0    0  153  253  240   76    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0  198  254   56    0
## 6    0    0    0  125  253  252  252  108    0    0    0    0    0    0
##   V305 V306 V307 V308 V309 V310 V311 V312 V313 V314 V315 V316 V317 V318
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0   64
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  120  254  163    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V319 V320 V321 V322 V323 V324 V325 V326 V327 V328 V329 V330 V331 V332
## 1  114  114   13    0    0    0    0  142  254  207   13    0    0    0
## 2    0  131  252  228   38    0    0    0  204  252  252  127    0    0
## 3    0    0    0   38   99  253  244   98    0    0    0    0    0    0
## 4    0    0    0    0    0   12  208  253  166    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0   23  231  254   29    0
## 6    0    0    0    0  253  252  252  108    0    0    0    0    0    0
##   V333 V334 V335 V336 V337 V338 V339 V340 V341 V342 V343 V344 V345 V346
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  159  254  120    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V347 V348 V349 V350 V351 V352 V353 V354 V355 V356 V357 V358 V359 V360
## 1    0    0    0    0    0    0   26  217  253  143    0    0    0    0
## 2    0   32  228  252  226   38   38  213  253  252  127    3    0    0
## 3    0   13  153  240  252  253  240  101   13    0    0    0    0    0
## 4    0    0    0    0    0   69  253  253  142    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0  163  254  216   16    0
## 6    0    0    0    0  255  253  253  108    0    0    0    0    0    0
##   V361 V362 V363 V364 V365 V366 V367 V368 V369 V370 V371 V372 V373 V374
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  159  254   67    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V375 V376 V377 V378 V379 V380 V381 V382 V383 V384 V385 V386 V387 V388
## 1    0    0    0    0    0    0  151  254  234   37    0    0    0    0
## 2    0    0   85  253  255  203  253  253  214   38    0    0    0    0
## 3    0   99  252  252  252  253  252  252  215   19    0    0    0    0
## 4    0    0    0    0   14  110  253  235   33    0    0    0    0    0
## 5    0    0    0    0    0    0   14   86  178  248  254   91    0    0
## 6    0    0    0    0  253  252  252  108    0    0    0    0    0    0
##   V389 V390 V391 V392 V393 V394 V395 V396 V397 V398 V399 V400 V401 V402
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  159  254   85    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V403 V404 V405 V406 V407 V408 V409 V410 V411 V412 V413 V414 V415 V416
## 1    0    0    0    0    0    0  226  254  197    0    0    0    0    0
## 2    0    0   28  184  253  252  252  202    0    0    0    0    0    0
## 3    0   26  221  210  137   23   96  221  252  128    0    0    0    0
## 4    0    0    0    0   63  223  235  130    0    0    0    0    0    0
## 5   47   49  116  144  150  241  243  234  179  241  252   40    0    0
## 6    0    0    0    0  253  252  252  108    0    0    0    0    0    0
##   V417 V418 V419 V420 V421 V422 V423 V424 V425 V426 V427 V428 V429 V430
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  150  253  237  207  207  207
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V431 V432 V433 V434 V435 V436 V437 V438 V439 V440 V441 V442 V443 V444
## 1    0    0    0    0    0   48  242  252   75    0    0    0    0    0
## 2    0    0   29  184  253  252  252   28    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0   70  253  253   64    0    0    0
## 4    0    0    0    0  186  253  235   37    0    0    0    0    0    0
## 5  253  254  250  240  198  143   91   28    5  233  250    0    0    0
## 6    0    0    0    0  253  252  252  108    0    0    0    0    0    0
##   V445 V446 V447 V448 V449 V450 V451 V452 V453 V454 V455 V456 V457 V458
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0  119  177  177  177  177
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V459 V460 V461 V462 V463 V464 V465 V466 V467 V468 V469 V470 V471 V472
## 1    0    0    0    0    0  160  253  201    0    0    0    0    0    0
## 2    0   26  159  252  253  252  252  178    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0   25  223  252  116    0    0    0
## 4    0    0    0   17  145  253  231   35    0    0    0    0    0    0
## 5  177   98   56    0    0    0    0    0  102  254  220    0    0    0
## 6    0    0    0    0  255  253  253  170    0    0    0    0    0    0
##   V473 V474 V475 V476 V477 V478 V479 V480 V481 V482 V483 V484 V485 V486
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V487 V488 V489 V490 V491 V492 V493 V494 V495 V496 V497 V498 V499 V500
## 1    0    0    0    0   45  241  253  114    0    0    0    0    0    0
## 2    0  120  253  253  114  194  253  253   63    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0  207  252  116    0    0    0
## 4    0    0    0   69  220  231  123    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  254  137    0    0    0
## 6    0    0    0    0  253  252  252  252   42    0    0    0    0    0
##   V501 V502 V503 V504 V505 V506 V507 V508 V509 V510 V511 V512 V513 V514
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V515 V516 V517 V518 V519 V520 V521 V522 V523 V524 V525 V526 V527 V528
## 1    0    0    0    0   57  253  253  114    0    0    0    0    0    0
## 2  170  225  233   96    0  131  252  252   38    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0  207  252  116    0    0    0
## 4    0    0   18  205  253  176   27    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  254   57    0    0    0
## 6    0    0    0    0  149  252  252  252  144    0    0    0    0    0
##   V529 V530 V531 V532 V533 V534 V535 V536 V537 V538 V539 V540 V541 V542
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0   89
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V543 V544 V545 V546 V547 V548 V549 V550 V551 V552 V553 V554 V555 V556
## 1    0    0    0    4  180  254  242    0    0    0    0    0    0    0
## 2  253  252   80    0   13  206  252  202    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0   64  248  252  116    0    0    0
## 4    0   17  125  253  185   39    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  254   57    0    0    0
## 6    0    0    0    0  109  252  252  252  144    0    0    0    0    0
##   V557 V558 V559 V560 V561 V562 V563 V564 V565 V566 V567 V568 V569 V570
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0   38  225
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V571 V572 V573 V574 V575 V576 V577 V578 V579 V580 V581 V582 V583 V584
## 1    0    0    0   54  253  253  116    0    0    0    0    0    0    0
## 2  253  102    6    0   13  206  252  102    0    0    0    0    0    0
## 3    0    0    0    0    0    0    5  138  253  253   53    0    0    0
## 4    0   71  214  231   41    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  255   94    0    0    0
## 6    0    0    0    0    0  218  253  253  255   35    0    0    0    0
##   V585 V586 V587 V588 V589 V590 V591 V592 V593 V594 V595 V596 V597 V598
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0   86  253
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V599 V600 V601 V602 V603 V604 V605 V606 V607 V608 V609 V610 V611 V612
## 1    0    0    0  141  253  253   28    0    0    0    0    0    0    0
## 2  251   75    0    0  104  253  206   13    0    0    0    0    0    0
## 3    5   47   34    0    0    5  136  252  252  157    0    0    0    0
## 4    0  167  253  225   33    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  254   96    0    0    0
## 6    0    0    0    0    0  175  252  252  253   35    0    0    0    0
##   V613 V614 V615 V616 V617 V618 V619 V620 V621 V622 V623 V624 V625 V626
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0  110  252
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V627 V628 V629 V630 V631 V632 V633 V634 V635 V636 V637 V638 V639 V640
## 1    0    0    0  141  253  177    3    0    0    0    0    0    0    0
## 2  244  144   95  169  253  252  142    0    0    0    0    0    0    0
## 3   24  252  234   90   70  191  252  252  227   16    0    0    0    0
## 4   72  205  207   14    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  254  153    0    0    0
## 6    0    0    0    0    0   73  252  252  253   35    0    0    0    0
##   V641 V642 V643 V644 V645 V646 V647 V648 V649 V650 V651 V652 V653 V654
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0  110  252
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0   30
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V655 V656 V657 V658 V659 V660 V661 V662 V663 V664 V665 V666 V667 V668
## 1    0    0    0  205  254   56    0    0    0    0    0    0    0    0
## 2  253  252  252  252  244   93   13    0    0    0    0    0    0    0
## 3   24  252  252  252  252  253  235  128   29    0    0    0    0    0
## 4  249  233   49    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0  169  255  153    0    0    0
## 6    0    0    0    0    0   31  211  252  253   35    0    0    0    0
##   V669 V670 V671 V672 V673 V674 V675 V676 V677 V678 V679 V680 V681 V682
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0   10  128
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0   32
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V683 V684 V685 V686 V687 V688 V689 V690 V691 V692 V693 V694 V695 V696
## 1    0    0   26  254  253   81    0    0    0    0    0    0    0    0
## 2  253  252  202  102   25    0    0    0    0    0    0    0    0    0
## 3   13  211  252  252  252  137   60    0    0    0    0    0    0    0
## 4  253   89    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0   96  254  153    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V697 V698 V699 V700 V701 V702 V703 V704 V705 V706 V707 V708 V709 V710
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V711 V712 V713 V714 V715 V716 V717 V718 V719 V720 V721 V722 V723 V724
## 1    0    0   25  254  253  235   22    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V725 V726 V727 V728 V729 V730 V731 V732 V733 V734 V735 V736 V737 V738
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V739 V740 V741 V742 V743 V744 V745 V746 V747 V748 V749 V750 V751 V752
## 1    0    0    0  204  228  103    3    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V753 V754 V755 V756 V757 V758 V759 V760 V761 V762 V763 V764 V765 V766
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V767 V768 V769 V770 V771 V772 V773 V774 V775 V776 V777 V778 V779 V780
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   V781 V782 V783 V784 V785
## 1    0    0    0    0    0
## 2    0    0    0    0    0
## 3    0    0    0    0    0
## 4    0    0    0    0    0
## 5    0    0    0    0    0
## 6    0    0    0    0    0
train_mnist[10,-1]
##    V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21
## 10  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0
##    V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39
## 10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##    V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57
## 10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##    V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74 V75
## 10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##    V76 V77 V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92 V93
## 10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##    V94 V95 V96 V97 V98 V99 V100 V101 V102 V103 V104 V105 V106 V107 V108
## 10   0   0   0   0   0   0    0    0    0    0    0    0    0    0    0
##    V109 V110 V111 V112 V113 V114 V115 V116 V117 V118 V119 V120 V121 V122
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V123 V124 V125 V126 V127 V128 V129 V130 V131 V132 V133 V134 V135 V136
## 10    0    0    0    0    0    0   51  159  253  159   50    0    0    0
##    V137 V138 V139 V140 V141 V142 V143 V144 V145 V146 V147 V148 V149 V150
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V151 V152 V153 V154 V155 V156 V157 V158 V159 V160 V161 V162 V163 V164
## 10    0    0    0    0    0   48  238  252  252  252  237    0    0    0
##    V165 V166 V167 V168 V169 V170 V171 V172 V173 V174 V175 V176 V177 V178
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V179 V180 V181 V182 V183 V184 V185 V186 V187 V188 V189 V190 V191 V192
## 10    0    0    0    0   54  227  253  252  239  233  252   57    6    0
##    V193 V194 V195 V196 V197 V198 V199 V200 V201 V202 V203 V204 V205 V206
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V207 V208 V209 V210 V211 V212 V213 V214 V215 V216 V217 V218 V219 V220
## 10    0    0   10   60  224  252  253  252  202   84  252  253  122    0
##    V221 V222 V223 V224 V225 V226 V227 V228 V229 V230 V231 V232 V233 V234
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V235 V236 V237 V238 V239 V240 V241 V242 V243 V244 V245 V246 V247 V248
## 10    0    0  163  252  252  252  253  252  252   96  189  253  167    0
##    V249 V250 V251 V252 V253 V254 V255 V256 V257 V258 V259 V260 V261 V262
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V263 V264 V265 V266 V267 V268 V269 V270 V271 V272 V273 V274 V275 V276
## 10    0   51  238  253  253  190  114  253  228   47   79  255  168    0
##    V277 V278 V279 V280 V281 V282 V283 V284 V285 V286 V287 V288 V289 V290
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V291 V292 V293 V294 V295 V296 V297 V298 V299 V300 V301 V302 V303 V304
## 10   48  238  252  252  179   12   75  121   21    0    0  253  243   50
##    V305 V306 V307 V308 V309 V310 V311 V312 V313 V314 V315 V316 V317 V318
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0   38
##    V319 V320 V321 V322 V323 V324 V325 V326 V327 V328 V329 V330 V331 V332
## 10  165  253  233  208   84    0    0    0    0    0    0  253  252  165
##    V333 V334 V335 V336 V337 V338 V339 V340 V341 V342 V343 V344 V345 V346
## 10    0    0    0    0    0    0    0    0    0    0    0    0    7  178
##    V347 V348 V349 V350 V351 V352 V353 V354 V355 V356 V357 V358 V359 V360
## 10  252  240   71   19   28    0    0    0    0    0    0  253  252  195
##    V361 V362 V363 V364 V365 V366 V367 V368 V369 V370 V371 V372 V373 V374
## 10    0    0    0    0    0    0    0    0    0    0    0    0   57  252
##    V375 V376 V377 V378 V379 V380 V381 V382 V383 V384 V385 V386 V387 V388
## 10  252   63    0    0    0    0    0    0    0    0    0  253  252  195
##    V389 V390 V391 V392 V393 V394 V395 V396 V397 V398 V399 V400 V401 V402
## 10    0    0    0    0    0    0    0    0    0    0    0    0  198  253
##    V403 V404 V405 V406 V407 V408 V409 V410 V411 V412 V413 V414 V415 V416
## 10  190    0    0    0    0    0    0    0    0    0    0  255  253  196
##    V417 V418 V419 V420 V421 V422 V423 V424 V425 V426 V427 V428 V429 V430
## 10    0    0    0    0    0    0    0    0    0    0    0   76  246  252
##    V431 V432 V433 V434 V435 V436 V437 V438 V439 V440 V441 V442 V443 V444
## 10  112    0    0    0    0    0    0    0    0    0    0  253  252  148
##    V445 V446 V447 V448 V449 V450 V451 V452 V453 V454 V455 V456 V457 V458
## 10    0    0    0    0    0    0    0    0    0    0    0   85  252  230
##    V459 V460 V461 V462 V463 V464 V465 V466 V467 V468 V469 V470 V471 V472
## 10   25    0    0    0    0    0    0    0    0    7  135  253  186   12
##    V473 V474 V475 V476 V477 V478 V479 V480 V481 V482 V483 V484 V485 V486
## 10    0    0    0    0    0    0    0    0    0    0    0   85  252  223
##    V487 V488 V489 V490 V491 V492 V493 V494 V495 V496 V497 V498 V499 V500
## 10    0    0    0    0    0    0    0    0    7  131  252  225   71    0
##    V501 V502 V503 V504 V505 V506 V507 V508 V509 V510 V511 V512 V513 V514
## 10    0    0    0    0    0    0    0    0    0    0    0   85  252  145
##    V515 V516 V517 V518 V519 V520 V521 V522 V523 V524 V525 V526 V527 V528
## 10    0    0    0    0    0    0    0   48  165  252  173    0    0    0
##    V529 V530 V531 V532 V533 V534 V535 V536 V537 V538 V539 V540 V541 V542
## 10    0    0    0    0    0    0    0    0    0    0    0   86  253  225
##    V543 V544 V545 V546 V547 V548 V549 V550 V551 V552 V553 V554 V555 V556
## 10    0    0    0    0    0    0  114  238  253  162    0    0    0    0
##    V557 V558 V559 V560 V561 V562 V563 V564 V565 V566 V567 V568 V569 V570
## 10    0    0    0    0    0    0    0    0    0    0    0   85  252  249
##    V571 V572 V573 V574 V575 V576 V577 V578 V579 V580 V581 V582 V583 V584
## 10  146   48   29   85  178  225  253  223  167   56    0    0    0    0
##    V585 V586 V587 V588 V589 V590 V591 V592 V593 V594 V595 V596 V597 V598
## 10    0    0    0    0    0    0    0    0    0    0    0   85  252  252
##    V599 V600 V601 V602 V603 V604 V605 V606 V607 V608 V609 V610 V611 V612
## 10  252  229  215  252  252  252  196  130    0    0    0    0    0    0
##    V613 V614 V615 V616 V617 V618 V619 V620 V621 V622 V623 V624 V625 V626
## 10    0    0    0    0    0    0    0    0    0    0    0   28  199  252
##    V627 V628 V629 V630 V631 V632 V633 V634 V635 V636 V637 V638 V639 V640
## 10  252  253  252  252  233  145    0    0    0    0    0    0    0    0
##    V641 V642 V643 V644 V645 V646 V647 V648 V649 V650 V651 V652 V653 V654
## 10    0    0    0    0    0    0    0    0    0    0    0    0   25  128
##    V655 V656 V657 V658 V659 V660 V661 V662 V663 V664 V665 V666 V667 V668
## 10  252  253  252  141   37    0    0    0    0    0    0    0    0    0
##    V669 V670 V671 V672 V673 V674 V675 V676 V677 V678 V679 V680 V681 V682
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V683 V684 V685 V686 V687 V688 V689 V690 V691 V692 V693 V694 V695 V696
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V697 V698 V699 V700 V701 V702 V703 V704 V705 V706 V707 V708 V709 V710
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V711 V712 V713 V714 V715 V716 V717 V718 V719 V720 V721 V722 V723 V724
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V725 V726 V727 V728 V729 V730 V731 V732 V733 V734 V735 V736 V737 V738
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V739 V740 V741 V742 V743 V744 V745 V746 V747 V748 V749 V750 V751 V752
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V753 V754 V755 V756 V757 V758 V759 V760 V761 V762 V763 V764 V765 V766
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V767 V768 V769 V770 V771 V772 V773 V774 V775 V776 V777 V778 V779 V780
## 10    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##    V781 V782 V783 V784 V785
## 10    0    0    0    0    0
test_mnist=read.csv("mnist_test_10.csv", header=FALSE)

Membangun data matrix

m = matrix(unlist(train_mnist[10,-1]), 
           nrow = 28, 
           byrow = TRUE)

Visualisasi dari data m

image(m,col=grey.colors(255))

Membalikan visualisasi dari data m

rotate = function(x) t(apply(x, 2, rev)) 
image(rotate(m),col=grey.colors(255))

Visualisasi dari data train_mnist

par(mfrow=c(2,3))
lapply(1:6, 
       function(x) image(
         rotate(matrix(unlist(train_mnist[x,-1]),
                       nrow = 28, 
                       byrow = TRUE)),
         col=grey.colors(255),
         xlab=train_mnist[x,1]
       )
)

## [[1]]
## NULL
## 
## [[2]]
## NULL
## 
## [[3]]
## NULL
## 
## [[4]]
## NULL
## 
## [[5]]
## NULL
## 
## [[6]]
## NULL
par(mfrow=c(1,1))

str(train_mnist)
## 'data.frame':    100 obs. of  785 variables:
##  $ V1  : int  7 8 3 1 4 1 1 4 3 0 ...
##  $ V2  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V3  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V4  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V5  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V6  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V7  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V8  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V9  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V10 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V11 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V12 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V13 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V14 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V15 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V16 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V17 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V18 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V19 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V20 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V21 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V22 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V23 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V24 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V25 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V26 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V27 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V28 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V29 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V30 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V31 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V32 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V33 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V34 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V35 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V36 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V37 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V38 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V39 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V40 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V41 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V42 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V43 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V44 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V45 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V46 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V47 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V48 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V49 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V50 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V51 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V52 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V53 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V54 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V55 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V56 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V57 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V58 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V59 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V60 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V61 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V62 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V63 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V64 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V65 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V66 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V67 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V68 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V69 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V70 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V71 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V72 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V73 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V74 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V75 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V76 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V77 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V78 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V79 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V80 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V81 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V82 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V83 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V84 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V85 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V86 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V87 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V88 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V89 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V90 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V91 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V92 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V93 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V94 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V95 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V96 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V97 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V98 : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ V99 : int  0 0 0 0 0 0 0 0 0 0 ...
##   [list output truncated]
x=2:785
y=1

table(train_mnist[,y])
## 
##  0  1  2  3  4  5  6  7  8  9 
## 13 14  6 11 11  5 11 10  8 11

Membuat Model Deep Learning

model=h2o.deeplearning(x,
                       y,
                       as.h2o(train_mnist),
                       model_id="MNIST_deeplearning",
                       seed=405,
                       activation="RectifierWithDropout",
                       l1=0.00001,
                       input_dropout_ratio=0.2,
                       classification_stop = -1,
                       epochs=2500
                       )
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
## Warning in .h2o.startModelJob(algo, params, h2oRestApiVersion): Dropping bad and constant columns: [V256, V254, V253, V252, V119, V118, V117, V116, V479, V481, V480, V368, V367, V366, V365, V122, V364, V121, V363, V120, V706, V705, V704, V703, V702, V701, V700, V707, V393, V392, V391, V396, V395, V394, V139, V138, V140, V144, V143, V142, V141, V728, V727, V726, V725, V724, V723, V729, V172, V171, V170, V731, V730, V2, V3, V4, V5, V6, V7, V8, V9, V282, V281, V280, V169, V168, V167, V166, V284, V508, V507, V749, V506, V505, V504, V503, V509, V753, V752, V751, V750, V199, V198, V197, V196, V618, V617, V616, V615, V734, V733, V732, V619, V10, V12, V11, V14, V621, V13, V620, V16, V15, V18, V17, V19, V649, V648, V769, V647, V768, V646, V767, V645, V644, V21, V20, V23, V22, V25, V533, V775, V24, V532, V774, V27, V531, V773, V26, V772, V29, V771, V28, V770, V759, V758, V757, V756, V755, V754, V30, V32, V31, V34, V33, V36, V643, V35, V642, V38, V762, V37, V761, V760, V39, V309, V308, V307, V424, V41, V40, V43, V42, V45, V44, V47, V676, V46, V312, V675, V49, V311, V674, V48, V310, V673, V672, V671, V670, V537, V779, V536, V778, V535, V777, V534, V776, V50, V52, V51, V54, V53, V56, V55, V58, V423, V57, V422, V785, V421, V784, V59, V420, V783, V782, V781, V780, V449, V448, V61, V60, V63, V62, V65, V64, V67, V66, V69, V335, V698, V68, V453, V452, V451, V450, V559, V677, V70, V71, V79, V565, V564, V200, V563, V562, V561, V560, V109, V108, V107, V228, V227, V226, V589, V81, V80, V83, V591, V82, V590, V85, V84, V87, V86, V89, V88, V115, V478, V114, V477, V113, V476, V112, V475, V111, V110, V593, V592, V339, V338, V337, V336, V699, V90, V92, V91, V94, V93, V95, V225, V588, V224, V587, V340].
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=                                                                |   1%
  |                                                                       
  |=                                                                |   2%
  |                                                                       
  |==                                                               |   3%
  |                                                                       
  |==                                                               |   4%
  |                                                                       
  |===                                                              |   4%
  |                                                                       
  |====                                                             |   6%
  |                                                                       
  |=====                                                            |   7%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |======                                                           |   9%
  |                                                                       
  |======                                                           |  10%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |=========                                                        |  14%
  |                                                                       
  |==========                                                       |  15%
  |                                                                       
  |===========                                                      |  16%
  |                                                                       
  |===========                                                      |  18%
  |                                                                       
  |============                                                     |  18%
  |                                                                       
  |=============                                                    |  20%
  |                                                                       
  |==============                                                   |  21%
  |                                                                       
  |===============                                                  |  22%
  |                                                                       
  |===============                                                  |  24%
  |                                                                       
  |================                                                 |  24%
  |                                                                       
  |================                                                 |  25%
  |                                                                       
  |=================                                                |  26%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |===================                                              |  30%
  |                                                                       
  |====================                                             |  30%
  |                                                                       
  |=====================                                            |  32%
  |                                                                       
  |=====================                                            |  33%
  |                                                                       
  |======================                                           |  34%
  |                                                                       
  |=======================                                          |  35%
  |                                                                       
  |=======================                                          |  36%
  |                                                                       
  |========================                                         |  36%
  |                                                                       
  |========================                                         |  38%
  |                                                                       
  |=========================                                        |  39%
  |                                                                       
  |===========================                                      |  41%
  |                                                                       
  |============================                                     |  42%
  |                                                                       
  |=================================================================| 100%

Data Statistik model

summary(model)
## Model Details:
## ==============
## 
## H2ORegressionModel: deeplearning
## Model Key:  MNIST_deeplearning 
## Status of Neuron Layers: predicting V1, regression, gaussian distribution, Quadratic loss, 140.801 weights/biases, 1,7 MB, 107.000 training samples, mini-batch size 1
##   layer units             type dropout       l1       l2 mean_rate
## 1     1   501            Input 20.00 %       NA       NA        NA
## 2     2   200 RectifierDropout 50.00 % 0.000010 0.000000  0.065506
## 3     3   200 RectifierDropout 50.00 % 0.000010 0.000000  0.023710
## 4     4     1           Linear      NA 0.000010 0.000000  0.001079
##   rate_rms momentum mean_weight weight_rms mean_bias bias_rms
## 1       NA       NA          NA         NA        NA       NA
## 2 0.065640 0.000000    0.004261   0.054040  0.423469 0.053351
## 3 0.019530 0.000000   -0.018238   0.067772  0.960785 0.053868
## 4 0.000374 0.000000    0.001479   0.039133 -0.063746 0.000000
## 
## H2ORegressionMetrics: deeplearning
## ** Reported on training data. **
## ** Metrics reported on full training frame **
## 
## MSE:  0.1424873
## RMSE:  0.3774749
## MAE:  0.3111871
## RMSLE:  0.1275395
## Mean Residual Deviance :  0.1424873
## 
## 
## 
## 
## 
## Scoring History: 
##              timestamp          duration training_speed     epochs
## 1  2020-04-02 23:19:37         0.000 sec             NA    0.00000
## 2  2020-04-02 23:19:39         8.717 sec    641 obs/sec   10.00000
## 3  2020-04-02 23:19:49        17.717 sec   1185 obs/sec  120.00000
## 4  2020-04-02 23:19:54        23.132 sec   1323 obs/sec  200.00000
## 5  2020-04-02 23:20:00        28.724 sec   1385 obs/sec  280.00000
## 6  2020-04-02 23:20:05        34.079 sec   1429 obs/sec  360.00000
## 7  2020-04-02 23:20:11        39.583 sec   1484 obs/sec  450.00000
## 8  2020-04-02 23:20:16        44.841 sec   1506 obs/sec  530.00000
## 9  2020-04-02 23:20:21        50.085 sec   1546 obs/sec  620.00000
## 10 2020-04-02 23:20:26        55.198 sec   1584 obs/sec  710.00000
## 11 2020-04-02 23:20:31  1 min  0.291 sec   1614 obs/sec  800.00000
## 12 2020-04-02 23:20:37  1 min  5.479 sec   1637 obs/sec  890.00000
## 13 2020-04-02 23:20:42  1 min 10.688 sec   1654 obs/sec  980.00000
## 14 2020-04-02 23:20:47  1 min 15.758 sec   1672 obs/sec 1070.00000
## 15 2020-04-02 23:20:47  1 min 16.157 sec   1671 obs/sec 1070.00000
##    iterations       samples training_rmse training_deviance training_mae
## 1           0      0.000000            NA                NA           NA
## 2           1   1000.000000       2.10449           4.42889      1.62811
## 3          12  12000.000000       0.48041           0.23079      0.34755
## 4          20  20000.000000       0.42530           0.18088      0.35386
## 5          28  28000.000000       0.39593           0.15676      0.32210
## 6          36  36000.000000       0.44419           0.19731      0.37665
## 7          45  45000.000000       0.37747           0.14249      0.31119
## 8          53  53000.000000       0.44452           0.19759      0.37912
## 9          62  62000.000000       0.41428           0.17162      0.34445
## 10         71  71000.000000       0.50424           0.25425      0.42524
## 11         80  80000.000000       0.57661           0.33247      0.48326
## 12         89  89000.000000       0.61142           0.37384      0.47504
## 13         98  98000.000000       0.74022           0.54792      0.59955
## 14        107 107000.000000       0.83277           0.69350      0.64620
## 15        107 107000.000000       0.37747           0.14249      0.31119
##    training_r2
## 1           NA
## 2      0.50992
## 3      0.97446
## 4      0.97998
## 5      0.98265
## 6      0.97817
## 7      0.98423
## 8      0.97814
## 9      0.98101
## 10     0.97187
## 11     0.96321
## 12     0.95863
## 13     0.93937
## 14     0.92326
## 15     0.98423
## 
## Variable Importances: (Extract with `h2o.varimp`) 
## =================================================
## 
## Variable Importances: 
##   variable relative_importance scaled_importance percentage
## 1     V265            1.000000          1.000000   0.002680
## 2     V321            0.985851          0.985851   0.002642
## 3     V297            0.969178          0.969178   0.002598
## 4     V410            0.961629          0.961629   0.002578
## 5     V382            0.955033          0.955033   0.002560
## 
## ---
##     variable relative_importance scaled_importance percentage
## 496     V482            0.599362          0.599362   0.001607
## 497     V425            0.596363          0.596363   0.001598
## 498     V283            0.583113          0.583113   0.001563
## 499     V419            0.575406          0.575406   0.001542
## 500     V538            0.571190          0.571190   0.001531
## 501     V748            0.559620          0.559620   0.001500

Prediksi data testing

preds=h2o.predict(model, 
                      as.h2o(test_mnist))
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
head(preds)
##    predict
## 1 7.155077
## 2 3.686206
## 3 1.294710
## 4 0.557270
## 5 4.313547
## 6 1.204334

Performa dari prediksi data testing

perfoma=h2o.performance(model, 
                      as.h2o(test_mnist))
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
perfoma
## H2ORegressionMetrics: deeplearning
## 
## MSE:  3.549605
## RMSE:  1.884039
## MAE:  1.195061
## RMSLE:  0.3033348
## Mean Residual Deviance :  3.549605

Membuat data untuk hasil prediksi

predictions = cbind(as.data.frame(seq(1,10)),
                    test_mnist[,1],
                    as.data.frame(preds[,1]))

names(predictions) = c("Number","Actual","Predicted")
as.matrix(predictions)
##       Number Actual Predicted
##  [1,]      1      7  7.155077
##  [2,]      2      3  3.686206
##  [3,]      3      1  1.294710
##  [4,]      4      0  0.557270
##  [5,]      5      6  4.313547
##  [6,]      6      1  1.204334
##  [7,]      7      6  6.037937
##  [8,]      8      9  3.951905
##  [9,]      9      5  4.012503
## [10,]     10      9  6.706971