Bang 3.21

Khu Dan Cu & Giao Thong

set.seed(123)
G1<-c(rnorm(154,mean=4.04,sd=0.8))

G2<-c(rnorm(272,mean=4.07,sd=0.8))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -0.86284, df = 326.18, p-value = 0.3889
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.21840482  0.08523058
sample estimates:
mean of x mean of y 
 4.025591  4.092178 

Nha Nuoc va Doanh Nghiep

set.seed(123)
G1<-c(rnorm(131,mean=3.99,sd=1))

G2<-c(rnorm(295,mean=4.99,sd=0.1))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -12.6, df = 131.44, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.1386334 -0.8296281
sample estimates:
mean of x mean of y 
 4.006742  4.990872 

Bang 3.25

Bac Son

set.seed(123)
G1<-c(rnorm(76,mean=3.54,sd=1))

G2<-c(rnorm(76,mean=3.14,sd=1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 3.0486, df = 143.79, p-value = 0.002737
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.1828588 0.8571697
sample estimates:
mean of x mean of y 
 3.579497  3.059483 

Bac Son Keo Dai

set.seed(123)
G1<-c(rnorm(101,mean=3.56,sd=1))

G2<-c(rnorm(101,mean=3.23,sd=1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 3.2749, df = 186.87, p-value = 0.00126
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.1948708 0.7853242
sample estimates:
mean of x mean of y 
 3.642477  3.152380 

Duong Viet Bac

set.seed(132)
G1<-c(rnorm(95,2.97,1.5))

G2<-c(rnorm(95,3.25,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -0.89682, df = 187.96, p-value = 0.371
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5739505  0.2151884
sample estimates:
mean of x mean of y 
 3.126545  3.305926 

Dan Cu So 5

set.seed(123)
G1<-c(rnorm(55,3.21,0.5))

G2<-c(rnorm(55,3.21,0.5))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 0.10578, df = 107.98, p-value = 0.916
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1625108  0.1808328
sample estimates:
mean of x mean of y 
 3.237681  3.228520 

Dan Cu 7A va 7B

set.seed(34)
G1<-c(rnorm(99,3.25,1))

G2<-c(rnorm(99,3.27,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -1.1409, df = 185.41, p-value = 0.2554
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5017853  0.1340624
sample estimates:
mean of x mean of y 
 3.235327  3.419189 

Nhom Dan cu & Duong GT

set.seed(123)
G1<-c(rnorm(154,3.25,0.5))

G2<-c(rnorm(272,3.21,0.5))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 0.35522, df = 326.18, p-value = 0.7227
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.07775301  0.11201912
sample estimates:
mean of x mean of y 
 3.240994  3.223861 

Danh Nghieo & Nha Nuoc

set.seed(123)
G1<-c(rnorm(131,3.17,1))
G2<-c(rnorm(295,3.25,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -0.70587, df = 327.98, p-value = 0.4808
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2792002  0.1317470
sample estimates:
mean of x mean of y 
 3.186742  3.260468 

Bang 3.27

Duong Bac Son

set.seed(23)
G1<-c(rnorm(76,mean=3.32,sd=0.5))

G2<-c(rnorm(76,mean=3.50,sd=0.5))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -2.8824, df = 147.52, p-value = 0.004537
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.37775875 -0.07045704
sample estimates:
mean of x mean of y 
 3.341961  3.566068 

Duong Bac Son Keo Dai

set.seed(123)
G1<-c(rnorm(101,3.52,1))

G2<-c(rnorm(101,3.34,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 2.2726, df = 186.87, p-value = 0.02419
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.04487076 0.63532418
sample estimates:
mean of x mean of y 
 3.602477  3.262380 

Duong Viet Bac

set.seed(123)
G1<-c(rnorm(95,2.82,1.8))

G2<-c(rnorm(95,2.90,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 0.66004, df = 173.28, p-value = 0.5101
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2681708  0.5376405
sample estimates:
mean of x mean of y 
 2.956099  2.821365 

Khu dan cu so 5

set.seed(123)
G1<-c(rnorm(55,2.96,1))

G2<-c(rnorm(55,3.26,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -1.5089, df = 104.05, p-value = 0.1343
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.66899706  0.09082503
sample estimates:
mean of x mean of y 
 3.015362  3.304448 

Khu dan cu so 7A va 7B

set.seed(34)
G1<-c(rnorm(99,3.12,1))

G2<-c(rnorm(99,3.38,1.2))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = -2.6302, df = 185.41, p-value = 0.00925
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.7417853 -0.1059376
sample estimates:
mean of x mean of y 
 3.105327  3.529189 

Khu dan su & GT

set.seed(123)
G1<-c(rnorm(154,3.34,0.5))

G2<-c(rnorm(272,3.23,0.5))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 1.8065, df = 326.18, p-value = 0.07176
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.007753011  0.182019116
sample estimates:
mean of x mean of y 
 3.330994  3.243861 

Nha nuoc & doanh nghiep

set.seed(123)
G1<-c(rnorm(131,3.40,0.5))
G2<-c(rnorm(295,3.21,0.5))

t<-t.test(G1,G2, var.equal = F)

t

    Welch Two Sample t-test

data:  G1 and G2
t = 3.9958, df = 276.51, p-value = 8.275e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.09842793 0.28959020
sample estimates:
mean of x mean of y 
 3.408371  3.214362 
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KQmFuZyAzLjIxDQoNCktodSBEYW4gQ3UgJiBHaWFvIFRob25nDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KRzE8LWMocm5vcm0oMTU0LG1lYW49NC4wNCxzZD0wLjgpKQ0KDQpHMjwtYyhybm9ybSgyNzIsbWVhbj00LjA3LHNkPTAuOCkpDQoNCnQ8LXQudGVzdChHMSxHMiwgdmFyLmVxdWFsID0gRikNCg0KdA0KYGBgDQoNCk5oYSBOdW9jIHZhIERvYW5oIE5naGllcA0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMykNCkcxPC1jKHJub3JtKDEzMSxtZWFuPTMuOTksc2Q9MSkpDQoNCkcyPC1jKHJub3JtKDI5NSxtZWFuPTQuOTksc2Q9MC4xKSkNCg0KdDwtdC50ZXN0KEcxLEcyLCB2YXIuZXF1YWwgPSBGKQ0KDQp0DQpgYGANCg0KQmFuZyAzLjI1DQoNCkJhYyBTb24NCg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpHMTwtYyhybm9ybSg3NixtZWFuPTMuNTQsc2Q9MSkpDQoNCkcyPC1jKHJub3JtKDc2LG1lYW49My4xNCxzZD0xLjIpKQ0KDQp0PC10LnRlc3QoRzEsRzIsIHZhci5lcXVhbCA9IEYpDQoNCnQNCmBgYA0KDQpCYWMgU29uIEtlbyBEYWkNCg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpHMTwtYyhybm9ybSgxMDEsbWVhbj0zLjU2LHNkPTEpKQ0KDQpHMjwtYyhybm9ybSgxMDEsbWVhbj0zLjIzLHNkPTEuMikpDQoNCnQ8LXQudGVzdChHMSxHMiwgdmFyLmVxdWFsID0gRikNCg0KdA0KYGBgDQoNCkR1b25nIFZpZXQgQmFjDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTMyKQ0KRzE8LWMocm5vcm0oOTUsMi45NywxLjUpKQ0KDQpHMjwtYyhybm9ybSg5NSwzLjI1LDEuMikpDQoNCnQ8LXQudGVzdChHMSxHMiwgdmFyLmVxdWFsID0gRikNCg0KdA0KYGBgDQoNCkRhbiBDdSBTbyA1IA0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMykNCkcxPC1jKHJub3JtKDU1LDMuMjEsMC41KSkNCg0KRzI8LWMocm5vcm0oNTUsMy4yMSwwLjUpKQ0KDQp0PC10LnRlc3QoRzEsRzIsIHZhci5lcXVhbCA9IEYpDQoNCnQNCmBgYA0KRGFuIEN1IDdBIHZhIDdCDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMzQpDQpHMTwtYyhybm9ybSg5OSwzLjI1LDEpKQ0KDQpHMjwtYyhybm9ybSg5OSwzLjI3LDEuMikpDQoNCnQ8LXQudGVzdChHMSxHMiwgdmFyLmVxdWFsID0gRikNCg0KdA0KYGBgDQpOaG9tIERhbiBjdSAmIER1b25nIEdUDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KRzE8LWMocm5vcm0oMTU0LDMuMjUsMC41KSkNCg0KRzI8LWMocm5vcm0oMjcyLDMuMjEsMC41KSkNCg0KdDwtdC50ZXN0KEcxLEcyLCB2YXIuZXF1YWwgPSBGKQ0KDQp0DQpgYGANCkRhbmggTmdoaWVvICYgTmhhIE51b2MNCg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpHMTwtYyhybm9ybSgxMzEsMy4xNywxKSkNCkcyPC1jKHJub3JtKDI5NSwzLjI1LDEuMikpDQoNCnQ8LXQudGVzdChHMSxHMiwgdmFyLmVxdWFsID0gRikNCg0KdA0KYGBgDQoNCg0KQmFuZyAzLjI3DQoNCkR1b25nIEJhYyBTb24NCg0KYGBge3J9DQpzZXQuc2VlZCgyMykNCkcxPC1jKHJub3JtKDc2LG1lYW49My4zMixzZD0wLjUpKQ0KDQpHMjwtYyhybm9ybSg3NixtZWFuPTMuNTAsc2Q9MC41KSkNCg0KdDwtdC50ZXN0KEcxLEcyLCB2YXIuZXF1YWwgPSBGKQ0KDQp0DQpgYGANCkR1b25nIEJhYyBTb24gS2VvIERhaQ0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMykNCkcxPC1jKHJub3JtKDEwMSwzLjUyLDEpKQ0KDQpHMjwtYyhybm9ybSgxMDEsMy4zNCwxLjIpKQ0KDQp0PC10LnRlc3QoRzEsRzIsIHZhci5lcXVhbCA9IEYpDQoNCnQNCmBgYA0KRHVvbmcgVmlldCBCYWMNCg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpHMTwtYyhybm9ybSg5NSwyLjgyLDEuOCkpDQoNCkcyPC1jKHJub3JtKDk1LDIuOTAsMS4yKSkNCg0KdDwtdC50ZXN0KEcxLEcyLCB2YXIuZXF1YWwgPSBGKQ0KDQp0DQpgYGANCg0KS2h1IGRhbiBjdSBzbyA1DQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KRzE8LWMocm5vcm0oNTUsMi45NiwxKSkNCg0KRzI8LWMocm5vcm0oNTUsMy4yNiwxLjIpKQ0KDQp0PC10LnRlc3QoRzEsRzIsIHZhci5lcXVhbCA9IEYpDQoNCnQNCmBgYA0KS2h1IGRhbiBjdSBzbyA3QSB2YSA3Qg0KDQpgYGB7cn0NCnNldC5zZWVkKDM0KQ0KRzE8LWMocm5vcm0oOTksMy4xMiwxKSkNCg0KRzI8LWMocm5vcm0oOTksMy4zOCwxLjIpKQ0KDQp0PC10LnRlc3QoRzEsRzIsIHZhci5lcXVhbCA9IEYpDQoNCnQNCmBgYA0KS2h1IGRhbiBzdSAmIEdUIA0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMykNCkcxPC1jKHJub3JtKDE1NCwzLjM0LDAuNSkpDQoNCkcyPC1jKHJub3JtKDI3MiwzLjIzLDAuNSkpDQoNCnQ8LXQudGVzdChHMSxHMiwgdmFyLmVxdWFsID0gRikNCg0KdA0KYGBgDQpOaGEgbnVvYyAmIGRvYW5oIG5naGllcA0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMykNCkcxPC1jKHJub3JtKDEzMSwzLjQwLDAuNSkpDQpHMjwtYyhybm9ybSgyOTUsMy4yMSwwLjUpKQ0KDQp0PC10LnRlc3QoRzEsRzIsIHZhci5lcXVhbCA9IEYpDQoNCnQNCmBgYA0K