Homework #1 is worth 100 points and each question is worth 6.5 points each.

Submission Instructions: save the .HTML file as ‘Familiar_ Categorical_Data_Assignmentyourlastname.HTML’ and upload the HTML file to the assignment entitled ‘Getting Familiar with Categorical Data in R’ on Canvas on or before Thursday April 02, 2020 by 11:59p.m. EST. No late assignments are accepted.

  1. #2.1 p.p. 60-61

Run the code chunk below.

library(vcd)
## Warning: package 'vcd' was built under R version 3.6.3
## Loading required package: grid
library(grid)
library(gnm)
## Warning: package 'gnm' was built under R version 3.6.3
library(vcdExtra)
## Warning: package 'vcdExtra' was built under R version 3.6.3
ds <- datasets(package = c("vcd", "vcdExtra"))
str(ds, vec.len=2)
## 'data.frame':    76 obs. of  5 variables:
##  $ Package: chr  "vcd" "vcd" ...
##  $ Item   : chr  "Arthritis" "Baseball" ...
##  $ class  : chr  "data.frame" "data.frame" ...
##  $ dim    : chr  "84x5" "322x25" ...
##  $ Title  : chr  "Arthritis Treatment Data" "Baseball Data" ...
head(ds)
##   Package           Item      class     dim
## 1     vcd      Arthritis data.frame    84x5
## 2     vcd       Baseball data.frame  322x25
## 3     vcd BrokenMarriage data.frame    20x4
## 4     vcd     Bundesliga data.frame 14018x7
## 5     vcd  Bundestag2005      table    16x5
## 6     vcd      Butterfly      table      24
##                                     Title
## 1                Arthritis Treatment Data
## 2                           Baseball Data
## 3                    Broken Marriage Data
## 4      Ergebnisse der Fussball-Bundesliga
## 5 Votes in German Bundestag Election 2005
## 6             Butterfly Species in Malaya
head(UCBAdmissions)
## [1] 512 313  89  19 353 207
str(UCBAdmissions)
##  'table' num [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
##  - attr(*, "dimnames")=List of 3
##   ..$ Admit : chr [1:2] "Admitted" "Rejected"
##   ..$ Gender: chr [1:2] "Male" "Female"
##   ..$ Dept  : chr [1:6] "A" "B" "C" "D" ...
ds
##     Package            Item      class             dim
## 1       vcd       Arthritis data.frame            84x5
## 2       vcd        Baseball data.frame          322x25
## 3       vcd  BrokenMarriage data.frame            20x4
## 4       vcd      Bundesliga data.frame         14018x7
## 5       vcd   Bundestag2005      table            16x5
## 6       vcd       Butterfly      table              24
## 7       vcd      CoalMiners      table           2x2x9
## 8       vcd   DanishWelfare data.frame           180x5
## 9       vcd      Employment      table           2x6x2
## 10      vcd      Federalist      table               7
## 11      vcd         Hitters data.frame           154x4
## 12      vcd      HorseKicks      table               5
## 13      vcd        Hospital      table             3x3
## 14      vcd JobSatisfaction data.frame             8x4
## 15      vcd     JointSports data.frame            40x5
## 16      vcd       Lifeboats data.frame            18x8
## 17      vcd      MSPatients      array           4x4x2
## 18      vcd     NonResponse data.frame            12x4
## 19      vcd     OvaryCancer data.frame            16x5
## 20      vcd          PreSex      table         2x2x2x2
## 21      vcd      Punishment data.frame            36x5
## 22      vcd         RepVict      table             8x8
## 23      vcd        Rochdale      table 2x2x2x2x2x2x2x2
## 24      vcd          Saxony      table              13
## 25      vcd       SexualFun      table             4x4
## 26      vcd    SpaceShuttle data.frame            24x6
## 27      vcd         Suicide data.frame           306x6
## 28      vcd          Trucks data.frame            24x5
## 29      vcd        UKSoccer      table             5x5
## 30      vcd    VisualAcuity data.frame            32x4
## 31      vcd         VonBort data.frame           280x4
## 32      vcd      WeldonDice      table              11
## 33      vcd      WomenQueue      table              11
## 34 vcdExtra        Abortion      table           2x2x2
## 35 vcdExtra        Accident data.frame            80x5
## 36 vcdExtra        AirCrash data.frame           439x5
## 37 vcdExtra       Alligator data.frame            80x5
## 38 vcdExtra        Bartlett      table           2x2x2
## 39 vcdExtra            Burt data.frame            36x5
## 40 vcdExtra          Caesar      table         3x2x2x2
## 41 vcdExtra          Cancer      table           2x2x2
## 42 vcdExtra      Cormorants data.frame           343x8
## 43 vcdExtra   CyclingDeaths data.frame           208x2
## 44 vcdExtra    DaytonSurvey data.frame            32x6
## 45 vcdExtra         Depends      table              15
## 46 vcdExtra       Detergent      table         2x2x2x3
## 47 vcdExtra          Donner data.frame            90x5
## 48 vcdExtra       Draft1970 data.frame           366x3
## 49 vcdExtra  Draft1970table      table            12x3
## 50 vcdExtra            Dyke      table       2x2x2x2x2
## 51 vcdExtra       Fungicide      array         2x2x2x2
## 52 vcdExtra             GSS data.frame             6x3
## 53 vcdExtra        Geissler data.frame            90x4
## 54 vcdExtra           Gilby      table             6x4
## 55 vcdExtra           Glass data.frame            25x3
## 56 vcdExtra    HairEyePlace      array           4x5x2
## 57 vcdExtra        Hauser79 data.frame            25x3
## 58 vcdExtra           Heart      table           2x2x3
## 59 vcdExtra         Heckman      table       2x2x2x2x2
## 60 vcdExtra      HospVisits      table             3x3
## 61 vcdExtra            Hoyt      table         4x3x7x2
## 62 vcdExtra             ICU data.frame          200x22
## 63 vcdExtra          JobSat      table             4x4
## 64 vcdExtra      Mammograms     matrix             4x4
## 65 vcdExtra          Mental data.frame            24x3
## 66 vcdExtra            Mice data.frame            30x4
## 67 vcdExtra        Mobility      table             5x5
## 68 vcdExtra         PhdPubs data.frame           915x6
## 69 vcdExtra      ShakeWords data.frame           100x2
## 70 vcdExtra              TV      array          5x11x3
## 71 vcdExtra        Titanicp data.frame          1309x6
## 72 vcdExtra        Toxaemia data.frame            60x5
## 73 vcdExtra         Vietnam data.frame            40x4
## 74 vcdExtra        Vote1980 data.frame            28x4
## 75 vcdExtra       WorkerSat data.frame             8x4
## 76 vcdExtra     Yamaguchi87 data.frame            75x4
##                                                    Title
## 1                               Arthritis Treatment Data
## 2                                          Baseball Data
## 3                                   Broken Marriage Data
## 4                     Ergebnisse der Fussball-Bundesliga
## 5                Votes in German Bundestag Election 2005
## 6                            Butterfly Species in Malaya
## 7               Breathlessness and Wheeze in Coal Miners
## 8                              Danish Welfare Study Data
## 9                                      Employment Status
## 10                            'May' in Federalist Papers
## 11                                          Hitters Data
## 12                                  Death by Horse Kicks
## 13                                         Hospital data
## 14                                 Job Satisfaction Data
## 15                           Opinions About Joint Sports
## 16                              Lifeboats on the Titanic
## 17                       Diagnosis of Multiple Sclerosis
## 18                              Non-Response Survey Data
## 19                                     Ovary Cancer Data
## 20                           Pre-marital Sex and Divorce
## 21                              Corporal Punishment Data
## 22                             Repeat Victimization Data
## 23                                         Rochdale Data
## 24                                    Families in Saxony
## 25                                            Sex is Fun
## 26                         Space Shuttle O-ring Failures
## 27                              Suicide Rates in Germany
## 28                                  Truck Accidents Data
## 29                                      UK Soccer Scores
## 30                  Visual Acuity in Left and Right Eyes
## 31                      Von Bortkiewicz Horse Kicks Data
## 32                                    Weldon's Dice Data
## 33                                       Women in Queues
## 34                                 Abortion Opinion Data
## 35            Traffic Accident Victims in France in 1958
## 36                                        Air Crash Data
## 37                                 Alligator Food Choice
## 38                   Bartlett data on plum root cuttings
## 39      Burt (1950) Data on Hair, Eyes, Head and Stature
## 40        Risk Factors for Infection in Caesarian Births
## 41                    Survival of Breast Cancer Patients
## 42              Advertising Behavior by Males Cormorants
## 43                                 London Cycling Deaths
## 44                Dayton Student Survey on Substance Use
## 45                            Dependencies of R Packages
## 46                             Detergent preference data
## 47                          Survival in the Donner Party
## 48                           USA 1970 Draft Lottery Data
## 49                          USA 1970 Draft Lottery Table
## 50                        Sources of Knowledge of Cancer
## 51                   Carcinogenic Effects of a Fungicide
## 52      General Social Survey- Sex and Party affiliation
## 53                Geissler's Data on the Human Sex Ratio
## 54          Clothing and Intelligence Rating of Children
## 55              British Social Mobility from Glass(1954)
## 56    Hair Color and Eye Color in Caithness and Aberdeen
## 57                 Hauser (1979) Data on Social Mobility
## 58                     Sex, Occupation and Heart Disease
## 59 Labour Force Participation of Married Women 1967-1971
## 60                                  Hospital Visits Data
## 61                       Minnesota High School Graduates
## 62                                          ICU data set
## 63    Cross-classification of job satisfaction by income
## 64                                     Mammogram Ratings
## 65                     Mental impariment and parents SES
## 66                                   Mice Depletion Data
## 67                                  Social Mobility data
## 68                        Publications of PhD Candidates
## 69                   Shakespeare's Word Type Frequencies
## 70                                       TV Viewing Data
## 71                             Passengers on the Titanic
## 72                        Toxaemia Symptoms in Pregnancy
## 73                 Student Opinion about the Vietnam War
## 74       Race and Politics in the 1980 Presidential Vote
## 75                              Worker Satisfaction Data
## 76              Occupational Mobility in Three Countries
  1. How many data sets are there altogether? How many are there in each package?
nrow(ds)
## [1] 76
ds_vcd <- datasets(package = "vcd")
ds_vcdExtra <- datasets(package = "vcdExtra")
nrow(ds_vcd)
## [1] 33
nrow(ds_vcdExtra)
## [1] 43
## There are 76 data sets in total. 33 in package vcd. And 43 in package vcdExtra
  1. Make a tabular display of the frequencies by Package and class.
table(ds$Package, ds$class)
##           
##            array data.frame matrix table
##   vcd          1         17      0    15
##   vcdExtra     3         24      1    15
  1. Choose one or two data sets from this list, and examine their help files (e.g., help(Arthritis) or ?Arthritis). You can use, e.g., example(Arthritis) to run the R code for a given example.
help(Butterfly)
## starting httpd help server ... done
example(Butterfly)
## 
## Bttrfl> data("Butterfly")
## 
## Bttrfl> Ord_plot(Butterfly)

help(BrokenMarriage)
example(BrokenMarriage)
## 
## BrknMr> data("BrokenMarriage")
## 
## BrknMr> structable(~ ., data = BrokenMarriage)
##               rank   I  II III  IV   V
## gender broken                         
## male   yes          14  39  42  79  66
##        no          102 151 292 293 261
## female yes          12  23  37 102  58
##        no           25  79 151 557 321
  1. p. 61 #2.3
  1. Find the total number of cases contained in this table.
sum(UCBAdmissions)
## [1] 4526
  1. For each department, find the total number of applicants.
margin.table(UCBAdmissions,3)
## Dept
##   A   B   C   D   E   F 
## 933 585 918 792 584 714
  1. For each department, find the overall proportion of applicants who were admitted.
ucb <-as.data.frame(UCBAdmissions)
ucb_cont <- xtabs(Freq~Dept + Admit, data = ucb)
prop.table(ucb_cont)
##     Admit
## Dept   Admitted   Rejected
##    A 0.13278833 0.07335395
##    B 0.08174989 0.04750331
##    C 0.07114450 0.13168361
##    D 0.05943438 0.11555457
##    E 0.03247901 0.09655325
##    F 0.01016350 0.14759169
  1. Construct a tabular display of department (rows) and gender (columns), showing the proportion of applicants in each cell who were admitted relative to the total applicants in that cell.
sum(UCBAdmissions)
## [1] 4526
flat_ucb <- ftable(Gender ~ Admit + Dept, data = UCBAdmissions)
flat_ucb
##               Gender Male Female
## Admit    Dept                   
## Admitted A            512     89
##          B            353     17
##          C            120    202
##          D            138    131
##          E             53     94
##          F             22     24
## Rejected A            313     19
##          B            207      8
##          C            205    391
##          D            279    244
##          E            138    299
##          F            351    317
prop_ucb <- prop.table(flat_ucb)
prop_ucb
##               Gender        Male      Female
## Admit    Dept                               
## Admitted A           0.113124171 0.019664163
##          B           0.077993814 0.003756076
##          C           0.026513478 0.044631021
##          D           0.030490499 0.028943880
##          E           0.011710119 0.020768891
##          F           0.004860804 0.005302696
## Rejected A           0.069155988 0.004197967
##          B           0.045735749 0.001767565
##          C           0.045293858 0.086389748
##          D           0.061643836 0.053910738
##          E           0.030490499 0.066062749
##          F           0.077551922 0.070039770
  1. p. 61 #2.4 a, c, e
  1. Find the total number of cases represented in this table.
sum(DanishWelfare$Freq)
## [1] 5144
  1. Convert this data frame to table form, DanishWelfare.tab, a 4-way array containing the frequencies with appropriate variable names and level names.
DanishWelfare.tab <- xtabs(Freq ~., data = DanishWelfare)
str(DanishWelfare.tab)
##  'xtabs' num [1:3, 1:4, 1:3, 1:5] 1 3 2 8 1 3 2 5 2 42 ...
##  - attr(*, "dimnames")=List of 4
##   ..$ Alcohol: chr [1:3] "<1" "1-2" ">2"
##   ..$ Income : chr [1:4] "0-50" "50-100" "100-150" ">150"
##   ..$ Status : chr [1:3] "Widow" "Married" "Unmarried"
##   ..$ Urban  : chr [1:5] "Copenhagen" "SubCopenhagen" "LargeCity" "City" ...
##  - attr(*, "call")= language xtabs(formula = Freq ~ ., data = DanishWelfare)
  1. Use structable () or ftable () to produce a pleasing flattened display of the frequencies in the 4-way table. Choose the variables used as row and column variables to make it easier to compare levels of Alcohol across the other factors.
ftable(xtabs(Freq ~., data = DanishWelfare))
##                           Urban Copenhagen SubCopenhagen LargeCity City Country
## Alcohol Income  Status                                                         
## <1      0-50    Widow                    1             4         1    8       6
##                 Married                 14             8        41  100     175
##                 Unmarried                6             1         2    6       9
##         50-100  Widow                    8             2         7   14       5
##                 Married                 42            51        62  234     255
##                 Unmarried                7             5         9   20      27
##         100-150 Widow                    2             3         1    5       2
##                 Married                 21            30        23   87      77
##                 Unmarried                3             2         1   12       4
##         >150    Widow                   42            29        17   95      46
##                 Married                 24            30        50  167     232
##                 Unmarried               33            24        15   64      68
## 1-2     0-50    Widow                    3             0         1    4       2
##                 Married                 15             7        15   25      48
##                 Unmarried                2             3         9    9       7
##         50-100  Widow                    1             1         3    8       4
##                 Married                 39            59        68  172     143
##                 Unmarried               12             3        11   20      23
##         100-150 Widow                    5             4         1    9       4
##                 Married                 32            68        43  128      86
##                 Unmarried                6            10         5   21      15
##         >150    Widow                   26            34        14   48      24
##                 Married                 43            76        70  198     136
##                 Unmarried               36            23        48   89      64
## >2      0-50    Widow                    2             0         2    1       0
##                 Married                  1             2         2    7       7
##                 Unmarried                3             0         1    5       1
##         50-100  Widow                    3             0         2    1       3
##                 Married                 14            21        14   38      35
##                 Unmarried                2             0         3   12      13
##         100-150 Widow                    2             1         1    1       0
##                 Married                 20            31        10   36      21
##                 Unmarried                0             2         3    9       7
##         >150    Widow                   21            13         5   20       8
##                 Married                 23            47        21   53      36
##                 Unmarried               38            20        13   39      26
  1. p. 62 #2.5 a, b, c
data("UKSoccer", package = "vcd") 
ftable(UKSoccer)
##      Away  0  1  2  3  4
## Home                    
## 0         27 29 10  8  2
## 1         59 53 14 12  4
## 2         28 32 14 12  4
## 3         19 14  7  4  1
## 4          7  8 10  2  0
    1. Verify that the total number of games represented in this table is 380.
sum(UKSoccer)
## [1] 380
  1. Find the marginal total of the number of goals scored by each of the home and away teams.
prop.table(UKSoccer,1)
##     Away
## Home          0          1          2          3          4
##    0 0.35526316 0.38157895 0.13157895 0.10526316 0.02631579
##    1 0.41549296 0.37323944 0.09859155 0.08450704 0.02816901
##    2 0.31111111 0.35555556 0.15555556 0.13333333 0.04444444
##    3 0.42222222 0.31111111 0.15555556 0.08888889 0.02222222
##    4 0.25925926 0.29629630 0.37037037 0.07407407 0.00000000
prop.table(UKSoccer,2)
##     Away
## Home          0          1          2          3          4
##    0 0.19285714 0.21323529 0.18181818 0.21052632 0.18181818
##    1 0.42142857 0.38970588 0.25454545 0.31578947 0.36363636
##    2 0.20000000 0.23529412 0.25454545 0.31578947 0.36363636
##    3 0.13571429 0.10294118 0.12727273 0.10526316 0.09090909
##    4 0.05000000 0.05882353 0.18181818 0.05263158 0.00000000
  1. Express each of the marginal totals as proportions.
prop.table(margin.table(UKSoccer,1))
## Home
##          0          1          2          3          4 
## 0.20000000 0.37368421 0.23684211 0.11842105 0.07105263
prop.table(margin.table(UKSoccer,2))
## Away
##          0          1          2          3          4 
## 0.36842105 0.35789474 0.14473684 0.10000000 0.02894737
  1. Run the code below and notice there is a data frame entitled SpaceShuttle. Using the R help, read about the details of this data frame. That is, familiarize yourself with the context and understand the meaning of the different rows.
library(vcd)
library(vcdExtra)

ds <- datasets(package = c("vcd", "vcdExtra"))
str(ds)
## 'data.frame':    76 obs. of  5 variables:
##  $ Package: chr  "vcd" "vcd" "vcd" "vcd" ...
##  $ Item   : chr  "Arthritis" "Baseball" "BrokenMarriage" "Bundesliga" ...
##  $ class  : chr  "data.frame" "data.frame" "data.frame" "data.frame" ...
##  $ dim    : chr  "84x5" "322x25" "20x4" "14018x7" ...
##  $ Title  : chr  "Arthritis Treatment Data" "Baseball Data" "Broken Marriage Data" "Ergebnisse der Fussball-Bundesliga" ...
head(ds)
##   Package           Item      class     dim
## 1     vcd      Arthritis data.frame    84x5
## 2     vcd       Baseball data.frame  322x25
## 3     vcd BrokenMarriage data.frame    20x4
## 4     vcd     Bundesliga data.frame 14018x7
## 5     vcd  Bundestag2005      table    16x5
## 6     vcd      Butterfly      table      24
##                                     Title
## 1                Arthritis Treatment Data
## 2                           Baseball Data
## 3                    Broken Marriage Data
## 4      Ergebnisse der Fussball-Bundesliga
## 5 Votes in German Bundestag Election 2005
## 6             Butterfly Species in Malaya
ds
##     Package            Item      class             dim
## 1       vcd       Arthritis data.frame            84x5
## 2       vcd        Baseball data.frame          322x25
## 3       vcd  BrokenMarriage data.frame            20x4
## 4       vcd      Bundesliga data.frame         14018x7
## 5       vcd   Bundestag2005      table            16x5
## 6       vcd       Butterfly      table              24
## 7       vcd      CoalMiners      table           2x2x9
## 8       vcd   DanishWelfare data.frame           180x5
## 9       vcd      Employment      table           2x6x2
## 10      vcd      Federalist      table               7
## 11      vcd         Hitters data.frame           154x4
## 12      vcd      HorseKicks      table               5
## 13      vcd        Hospital      table             3x3
## 14      vcd JobSatisfaction data.frame             8x4
## 15      vcd     JointSports data.frame            40x5
## 16      vcd       Lifeboats data.frame            18x8
## 17      vcd      MSPatients      array           4x4x2
## 18      vcd     NonResponse data.frame            12x4
## 19      vcd     OvaryCancer data.frame            16x5
## 20      vcd          PreSex      table         2x2x2x2
## 21      vcd      Punishment data.frame            36x5
## 22      vcd         RepVict      table             8x8
## 23      vcd        Rochdale      table 2x2x2x2x2x2x2x2
## 24      vcd          Saxony      table              13
## 25      vcd       SexualFun      table             4x4
## 26      vcd    SpaceShuttle data.frame            24x6
## 27      vcd         Suicide data.frame           306x6
## 28      vcd          Trucks data.frame            24x5
## 29      vcd        UKSoccer      table             5x5
## 30      vcd    VisualAcuity data.frame            32x4
## 31      vcd         VonBort data.frame           280x4
## 32      vcd      WeldonDice      table              11
## 33      vcd      WomenQueue      table              11
## 34 vcdExtra        Abortion      table           2x2x2
## 35 vcdExtra        Accident data.frame            80x5
## 36 vcdExtra        AirCrash data.frame           439x5
## 37 vcdExtra       Alligator data.frame            80x5
## 38 vcdExtra        Bartlett      table           2x2x2
## 39 vcdExtra            Burt data.frame            36x5
## 40 vcdExtra          Caesar      table         3x2x2x2
## 41 vcdExtra          Cancer      table           2x2x2
## 42 vcdExtra      Cormorants data.frame           343x8
## 43 vcdExtra   CyclingDeaths data.frame           208x2
## 44 vcdExtra    DaytonSurvey data.frame            32x6
## 45 vcdExtra         Depends      table              15
## 46 vcdExtra       Detergent      table         2x2x2x3
## 47 vcdExtra          Donner data.frame            90x5
## 48 vcdExtra       Draft1970 data.frame           366x3
## 49 vcdExtra  Draft1970table      table            12x3
## 50 vcdExtra            Dyke      table       2x2x2x2x2
## 51 vcdExtra       Fungicide      array         2x2x2x2
## 52 vcdExtra             GSS data.frame             6x3
## 53 vcdExtra        Geissler data.frame            90x4
## 54 vcdExtra           Gilby      table             6x4
## 55 vcdExtra           Glass data.frame            25x3
## 56 vcdExtra    HairEyePlace      array           4x5x2
## 57 vcdExtra        Hauser79 data.frame            25x3
## 58 vcdExtra           Heart      table           2x2x3
## 59 vcdExtra         Heckman      table       2x2x2x2x2
## 60 vcdExtra      HospVisits      table             3x3
## 61 vcdExtra            Hoyt      table         4x3x7x2
## 62 vcdExtra             ICU data.frame          200x22
## 63 vcdExtra          JobSat      table             4x4
## 64 vcdExtra      Mammograms     matrix             4x4
## 65 vcdExtra          Mental data.frame            24x3
## 66 vcdExtra            Mice data.frame            30x4
## 67 vcdExtra        Mobility      table             5x5
## 68 vcdExtra         PhdPubs data.frame           915x6
## 69 vcdExtra      ShakeWords data.frame           100x2
## 70 vcdExtra              TV      array          5x11x3
## 71 vcdExtra        Titanicp data.frame          1309x6
## 72 vcdExtra        Toxaemia data.frame            60x5
## 73 vcdExtra         Vietnam data.frame            40x4
## 74 vcdExtra        Vote1980 data.frame            28x4
## 75 vcdExtra       WorkerSat data.frame             8x4
## 76 vcdExtra     Yamaguchi87 data.frame            75x4
##                                                    Title
## 1                               Arthritis Treatment Data
## 2                                          Baseball Data
## 3                                   Broken Marriage Data
## 4                     Ergebnisse der Fussball-Bundesliga
## 5                Votes in German Bundestag Election 2005
## 6                            Butterfly Species in Malaya
## 7               Breathlessness and Wheeze in Coal Miners
## 8                              Danish Welfare Study Data
## 9                                      Employment Status
## 10                            'May' in Federalist Papers
## 11                                          Hitters Data
## 12                                  Death by Horse Kicks
## 13                                         Hospital data
## 14                                 Job Satisfaction Data
## 15                           Opinions About Joint Sports
## 16                              Lifeboats on the Titanic
## 17                       Diagnosis of Multiple Sclerosis
## 18                              Non-Response Survey Data
## 19                                     Ovary Cancer Data
## 20                           Pre-marital Sex and Divorce
## 21                              Corporal Punishment Data
## 22                             Repeat Victimization Data
## 23                                         Rochdale Data
## 24                                    Families in Saxony
## 25                                            Sex is Fun
## 26                         Space Shuttle O-ring Failures
## 27                              Suicide Rates in Germany
## 28                                  Truck Accidents Data
## 29                                      UK Soccer Scores
## 30                  Visual Acuity in Left and Right Eyes
## 31                      Von Bortkiewicz Horse Kicks Data
## 32                                    Weldon's Dice Data
## 33                                       Women in Queues
## 34                                 Abortion Opinion Data
## 35            Traffic Accident Victims in France in 1958
## 36                                        Air Crash Data
## 37                                 Alligator Food Choice
## 38                   Bartlett data on plum root cuttings
## 39      Burt (1950) Data on Hair, Eyes, Head and Stature
## 40        Risk Factors for Infection in Caesarian Births
## 41                    Survival of Breast Cancer Patients
## 42              Advertising Behavior by Males Cormorants
## 43                                 London Cycling Deaths
## 44                Dayton Student Survey on Substance Use
## 45                            Dependencies of R Packages
## 46                             Detergent preference data
## 47                          Survival in the Donner Party
## 48                           USA 1970 Draft Lottery Data
## 49                          USA 1970 Draft Lottery Table
## 50                        Sources of Knowledge of Cancer
## 51                   Carcinogenic Effects of a Fungicide
## 52      General Social Survey- Sex and Party affiliation
## 53                Geissler's Data on the Human Sex Ratio
## 54          Clothing and Intelligence Rating of Children
## 55              British Social Mobility from Glass(1954)
## 56    Hair Color and Eye Color in Caithness and Aberdeen
## 57                 Hauser (1979) Data on Social Mobility
## 58                     Sex, Occupation and Heart Disease
## 59 Labour Force Participation of Married Women 1967-1971
## 60                                  Hospital Visits Data
## 61                       Minnesota High School Graduates
## 62                                          ICU data set
## 63    Cross-classification of job satisfaction by income
## 64                                     Mammogram Ratings
## 65                     Mental impariment and parents SES
## 66                                   Mice Depletion Data
## 67                                  Social Mobility data
## 68                        Publications of PhD Candidates
## 69                   Shakespeare's Word Type Frequencies
## 70                                       TV Viewing Data
## 71                             Passengers on the Titanic
## 72                        Toxaemia Symptoms in Pregnancy
## 73                 Student Opinion about the Vietnam War
## 74       Race and Politics in the 1980 Presidential Vote
## 75                              Worker Satisfaction Data
## 76              Occupational Mobility in Three Countries
  1. Using the structable() function, create a “flat” table that has the Damage Index on the columns and whether the O-ring failed and how many failures on the rows.
structable(Damage ~ Fail + nFailures, data = SpaceShuttle)
##                Damage  0  2  4 11
## Fail nFailures                   
## no   0                15  0  1  0
##      1                 0  0  0  0
##      2                 0  0  0  0
## yes  0                 0  0  0  0
##      1                 0  1  4  0
##      2                 0  0  1  1
  1. Construct the same formatted table that you did in part a, but now use the xtabs() and ftable() functions.
ftable(Damage ~ Fail + nFailures, data = SpaceShuttle)
##                Damage  0  2  4 11
## Fail nFailures                   
## no   0                15  0  1  0
##      1                 0  0  0  0
##      2                 0  0  0  0
## yes  0                 0  0  0  0
##      1                 0  1  4  0
##      2                 0  0  1  1