Teorema de Bayes

library(readr)

###Probabilidades de fabricación por proveedor

PA1 = 0.65

PA2 = 0.35

###Probabilidades condicionales Proveedor 1

PG.PA1 = 0.98

PB.PA1 = 0.05

Probabilidades condicionales Proveedor 2

PG.PA2 = 0.95
PB.PA2 = 0.09

Calculo de probabilidades para Proovedor 1

PA1.I.G <- PA1 * PG.PA1
PA1.I.B <- PA1 * PB.PA1

cat("La probabilidad de que sea del proveedor 1 y que la pieza sea buena es: ",PA1.I.G)
## La probabilidad de que sea del proveedor 1 y que la pieza sea buena es:  0.637
cat("La probabilidad de que sea del proveedor 1 y que la pieza sea mala es: ",PA1.I.B)
## La probabilidad de que sea del proveedor 1 y que la pieza sea mala es:  0.0325

Calculo de probablidad Proveedor 2

PA2.I.G <- PA2 * PG.PA2
PA2.I.B <- PA2 * PB.PA2

cat("La probabilidad de que sea del proveedor 1 y que la pieza sea buena es: ",PA2.I.G)
## La probabilidad de que sea del proveedor 1 y que la pieza sea buena es:  0.3325
cat("La probabilidad de que sea del proveedor 1 y que la pieza sea mala es: ",PA2.I.B)
## La probabilidad de que sea del proveedor 1 y que la pieza sea mala es:  0.0315

Proveedor 1

TB.PA1.B <- (PA1 * PB.PA1) / (PA1 * PB.PA1 + PA2 * PB.PA2)

cat("Conforme al teorema de Bayes (TB), la probabilidad de que sea una pieza mala (Bad) condicionada a que sea primero del proveedor1 es: ", TB.PA1.B)
## Conforme al teorema de Bayes (TB), la probabilidad de que sea una pieza mala (Bad) condicionada a que sea primero del proveedor1 es:  0.5078125

Proveedor 2

TB.PA2.B <- (PA2 * PB.PA2) / (PA1 * PB.PA1 + PA2 * PB.PA2)

cat("Conforme al teorema de Bayes (TB), la probabilidad de que sea una pieza mala (Bad) condicionada a que sea primero del proveedor2 es: ", TB.PA2.B)
## Conforme al teorema de Bayes (TB), la probabilidad de que sea una pieza mala (Bad) condicionada a que sea primero del proveedor2 es:  0.4921875

#Tabulaciones

Se muestran los valores para las piezas malas solamente.

tabular <- data.frame('Eventos'=c('A1', 'A2'),
            'Prob.Previas'=c(PA1, PA2),
            'Prob.Condicionales'=c(PB.PA1, PB.PA2),
            'Prob.Conjuntas'=c(PA1.I.B, PA2.I.B),
            'Prob.Posteriores'=c(TB.PA1.B, TB.PA2.B))
tabular
##   Eventos Prob.Previas Prob.Condicionales Prob.Conjuntas Prob.Posteriores
## 1      A1         0.65               0.05         0.0325        0.5078125
## 2      A2         0.35               0.09         0.0315        0.4921875
totales <- apply(tabular[-1], 2, sum)
totales <- as.array(c(NA,as.vector(totales))) 

tabular <- rbind(tabular, totales)
tabular
##   Eventos Prob.Previas Prob.Condicionales Prob.Conjuntas Prob.Posteriores
## 1      A1         0.65               0.05         0.0325        0.5078125
## 2      A2         0.35               0.09         0.0315        0.4921875
## 3    <NA>         1.00               0.14         0.0640        1.0000000