——–
19041216 Frida Krystel Herrera Hernández
——–
Objetivo : Realizar cálculo de probabilidades mediante la elaboración de un archivo markdown que permita demostrar las probabilidad de un conjunto de datos.
proceso:
Generar conjuntos de alumnos o personas que practican alguna o varias actividades deportivas
Se identifican las probabilidades por medio del método de frecuencia relativa
Se determina la unión de conjuntos
Se determina la diferencia de conjuntos
Se determinan probabilidad por medio de la ley de la adición con la fórmula. Prob(A ∪ B) = Prob(A) + Prob(B) - Prob(A ∩ B)
Demostrar las igualdades en el cálculo de las probabilidades por ambos métodos.
Usamos las librerias necesarias
library(readr)
Identificar datos de la muestra
datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/practicas%20R/unidad%202/alumnos.deportes.2020.csv")
datos
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1 1 Ana F FALSE FALSE FALSE FALSE FALSE FALSE
## 2 2 Antonio M FALSE FALSE FALSE FALSE FALSE FALSE
## 3 3 Aracely F FALSE FALSE FALSE FALSE FALSE TRUE
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 16 16 Luisa F FALSE FALSE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 19 19 Margarito M FALSE FALSE FALSE FALSE FALSE TRUE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 22 22 Oscar M FALSE FALSE FALSE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 28 28 Rosario F FALSE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 31 31 Sandra F FALSE FALSE FALSE FALSE FALSE FALSE
## 32 32 Sandro M FALSE FALSE FALSE FALSE FALSE TRUE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 35 35 Arturo M FALSE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 47 47 Fernanda F FALSE FALSE FALSE FALSE FALSE FALSE
## 48 48 Gabriela F FALSE FALSE FALSE FALSE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 59 59 Perla F FALSE FALSE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 61 61 Susana F FALSE FALSE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
## 65 65 Teresa F FALSE FALSE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar los conjuntis de observaciones o renglones
n <- nrow(datos)
Se determinan los conjuntos según el género de la persona
hombres <- subset(datos, sexo =='M')
mujeres <- subset(datos, sexo =='F')
hombres
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 2 2 Antonio M FALSE FALSE FALSE FALSE FALSE FALSE
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 19 19 Margarito M FALSE FALSE FALSE FALSE FALSE TRUE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 22 22 Oscar M FALSE FALSE FALSE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 32 32 Sandro M FALSE FALSE FALSE FALSE FALSE TRUE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 35 35 Arturo M FALSE FALSE FALSE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
mujeres
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1 1 Ana F FALSE FALSE FALSE FALSE FALSE FALSE
## 3 3 Aracely F FALSE FALSE FALSE FALSE FALSE TRUE
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 16 16 Luisa F FALSE FALSE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 28 28 Rosario F FALSE FALSE FALSE FALSE FALSE FALSE
## 31 31 Sandra F FALSE FALSE FALSE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 47 47 Fernanda F FALSE FALSE FALSE FALSE FALSE FALSE
## 48 48 Gabriela F FALSE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 59 59 Perla F FALSE FALSE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 61 61 Susana F FALSE FALSE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 65 65 Teresa F FALSE FALSE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Se determinan las frecuencias
¿Cuántos casos hay que son hombres?
¿Cuántos casos hay que son mujeres?
table(datos$sexo)
##
## F M
## 33 34
Se determinan las frecuencias relativas
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos sea hombre?
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos sea mujer?
round(prop.table(table(datos$sexo)),4)
##
## F M
## 0.4925 0.5075
round(prop.table(table(datos$sexo)),4) * 100
##
## F M
## 49.25 50.75
Se determina el conjunto de personas que practican el deporte del fútbol según la disciplina de fubol
futbol <- subset(datos, futbol == TRUE)
futbol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
Se determina la frecuencia de las personas que juegan futbol
¿Cuántas personas hay que practican Fútbol?
table(datos$futbol)
##
## FALSE TRUE
## 34 33
Se determinan las frecuencias relativas de las personas que juegna futbol.
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue fútbol?
round(prop.table(table(datos$futbol)),4)
##
## FALSE TRUE
## 0.5075 0.4925
round(prop.table(table(datos$futbol)),4) * 100
##
## FALSE TRUE
## 50.75 49.25
Se determina el conjunto de personas que practican el deporte del basquetbol según la disciplina de basquetbol
basquetbol <- subset(datos, basquetbol == TRUE)
basquetbol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar las frecuencias de las personas que juegan basquetbol
¿Cuántas personas hay que juegan basquetbol?
table(datos$basquetbol)
##
## FALSE TRUE
## 45 22
Determinar la frecuencia relativa de las personas que juegan basquetbol
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue basquetbol?
round(prop.table(table(datos$basquetbol)),4)
##
## FALSE TRUE
## 0.6716 0.3284
round(prop.table(table(datos$basquetbol)),4) * 100
##
## FALSE TRUE
## 67.16 32.84
Se determina el conjunto de personas que practican el deporte del Voleybol según la disciplina de Voleybol
voleybol <- subset(datos, voleybol == TRUE)
voleybol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Determinar la frecuencia de las personas que juegan voleybol
¿Cuántas personas hay que practican voleybol?
table(datos$voleybol)
##
## FALSE TRUE
## 53 14
Determinar la frecuencia relativa de las personas que juegan voleybol
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue voleybol?
round(prop.table(table(datos$voleybol)),4)
##
## FALSE TRUE
## 0.791 0.209
round(prop.table(table(datos$voleybol)),4) * 100
##
## FALSE TRUE
## 79.1 20.9
Se determina el conjunto de personas que practican el deporte del atletismo según la disciplina de atletismo
atletismo <- subset(datos, atletismo == TRUE)
atletismo
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Se determina la frecuencia de las personas que practican atletismo
¿Cuántas personas hay que practican atletismo?
table(datos$atletismo)
##
## FALSE TRUE
## 55 12
Se determina la frecuencia relativa de las personas que practican atletismo
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue atletismo?
round(prop.table(table(datos$atletismo )),4)
##
## FALSE TRUE
## 0.8209 0.1791
round(prop.table(table(datos$atletismo )),4) * 100
##
## FALSE TRUE
## 82.09 17.91
Se determina el conjunto de personas que practican el deporte del ajedrez según la disciplina de ajedrez
ajedrez <- subset(datos, ajedrez == TRUE)
ajedrez
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
Se determina la frecuencia de las personas que juegan ajedrez
¿Cuántas personas hay que practican ajedrez?
table(datos$ajedrez)
##
## FALSE TRUE
## 62 5
Se determina la frecuencia relativa de las personas que juegan ajedrez.
¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue ajedrez?
round(prop.table(table(datos$ajedrez )),4)
##
## FALSE TRUE
## 0.9254 0.0746
round(prop.table(table(datos$ajedrez )),4) * 100
##
## FALSE TRUE
## 92.54 7.46
Se hace ña unión de las personas que practican futbol y basquetbol
¿Cuántos alumnos hay que juegan fútbol o basquetbol?
¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol basquetbol?
futUbas <- union(futbol$nombres, basquetbol$nombres)
futUbas
## [1] "Eduardo" "Gerardo" "Juan" "Lucy" "Lupita" "Memo"
## [7] "Paco" "Patricia" "Paty" "Raul" "Romualdo" "Rubén"
## [13] "Salvador" "Saul" "Yuri" "Angélica" "Bety" "Carlos"
## [19] "Dany" "Dalia" "Efren" "Ernestina" "Fernando" "Gabriel"
## [25] "Guille" "Jorge" "Lorenzo" "Miguel" "Orlando" "Otilia"
## [31] "Pedro" "Raquel" "Walter" "Carmen" "Ernesto" "Gabino"
## [37] "Javier" "Jeorgina" "Laura" "Margarita" "Maria" "Fabián"
## [43] "Mikaela" "Sandy" "Xóchitl"
Se determina su probabilidad por medio de la frecuencia relativa del conjunto fútbol union con basquetbol
¿Cuántos alumnos hay que juegan fútbol o basquetbol?
¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol basquetbol?
cat("Hay ", length(futUbas), " alumnos que juegan fútbol o basquetbol de un total de ",n)
## Hay 45 alumnos que juegan fútbol o basquetbol de un total de 67
prob.futUbas <- length(futUbas) / n
cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
## 0.6716418
Hacemos una itersección entre los que juegan futbol y basqutebol.
futIbas <- intersect(futbol$nombres, basquetbol$nombres)
futIbas
## [1] "Lupita" "Paty" "Angélica" "Bety" "Dany" "Jorge"
## [7] "Miguel" "Pedro" "Raquel" "Walter"
Se determina su probabilidad por medio de la frecuencia relativa del conjunto fútbol intersección con basquetbol.
cat("Hay ", length(futIbas), " alumnos que juegan fútbol y que también juegan basquetbol de un total de ",n)
## Hay 10 alumnos que juegan fútbol y que también juegan basquetbol de un total de 67
prob.futIbas <- length(futIbas) / n
cat("¿Cuántos alumnos hay que juegan fútbol y basquetbol?", prob.futIbas)
## ¿Cuántos alumnos hay que juegan fútbol y basquetbol? 0.1492537
Al tener elementos en común se determina el cálculo de la probailidad por medio de la ley de la adición Prob(A ∪ B) = Prob(A) + Prob(B) - Prob(A ∩ B)
¿ Cuál es la probabilidad de que juegue futbol o basquetbol una persona por medio de la ley de la adición para conjuntos no excluyentes que significa que hay elementos en común?
prob.futbol <- prop.table(table(datos$futbol))
prob.basquetbol <- prop.table(table(datos$basquetbol))
prob.futbol <- prob.futbol[2]
prob.basquetbol <- prob.basquetbol[2]
prob.futbol
## TRUE
## 0.4925373
prob.basquetbol
## TRUE
## 0.3283582
Se genera la probabailidad de futbol union con basquetbol (prob.futUbas) por medio de la fórmula
Se sustituye en la fórmula de la ley de la adición Prob(A ∪ B) = Prob(A) + Prob(B) - Prob(A ∩ B)
as.numeric(prob.futbol)
## [1] 0.4925373
as.numeric(prob.basquetbol)
## [1] 0.3283582
as.numeric(prob.futIbas)
## [1] 0.1492537
# Prob(A ∪ B) = Prob(A) + Prob(B) - Prob(A ∩ B)
prob.futUbas <- as.numeric(prob.futbol) + as.numeric(prob.basquetbol) - as.numeric(prob.futIbas)
prob.futUbas
## [1] 0.6716418
cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
## 0.6716418
—–
table(datos$futbol, datos$basquetbol)
##
## FALSE TRUE
## FALSE 22 12
## TRUE 23 10
Se determina la frecuencia con las tablas cruzadas
tabla.cruzada <- table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))
tabla.cruzada
## basquetbol
## fútbol FALSE TRUE
## FALSE 22 12
## TRUE 23 10
prob.tabla.cruzada <- round(prop.table(table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))),4)
prob.tabla.cruzada
## basquetbol
## fútbol FALSE TRUE
## FALSE 0.3284 0.1791
## TRUE 0.3433 0.1493
prob.tabla.cruzada <- rbind(prob.tabla.cruzada,apply(prob.tabla.cruzada,2,sum))
prob.tabla.cruzada <- cbind(prob.tabla.cruzada, apply(prob.tabla.cruzada,1,sum))
prob.tabla.cruzada
## FALSE TRUE
## FALSE 0.3284 0.1791 0.5075
## TRUE 0.3433 0.1493 0.4926
## 0.6717 0.3284 1.0001
——–
Analisis Final
Con los datos atenriores podemos comprender y mirar de mejor manera la separación entre las diferentes categorias, como futbol, basquetbol, ajdrez, etc. pudimos reflejar quienes son de genero masculino o femeninos, cual es el deporte que practican e incluso juntarlos gracias a la herramienta de intersección.
——–
——–
——–
——–