library(pacman)
p_load(plotly,
crosstalk,
tidyverse,
gapminder)
#p_up()
theme_set(theme_minimal())
gapminder
## # A tibble: 1,704 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # … with 1,694 more rows
p <- ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
size = pop,
color = continent))
p +
geom_point() +
scale_x_log10() +
labs(
x = "log GDP",
y = "life Expectancy",
title = "A Gapminder Plot")

fig <- p +
geom_point() +
scale_x_log10()
ggplotly(fig)
fig_animate <- ggplot(data = gapminder,
mapping = aes(x = gdpPercap,
y = lifeExp,
color = continent)) +
geom_point(aes(size = pop,
frame = year,
ids = country),
alpha = 0.7) + scale_x_log10()
## Warning: Ignoring unknown aesthetics: frame, ids
ggplotly(fig_animate)