library(pacman)
p_load(plotly, 
       crosstalk, 
       tidyverse, 
       gapminder)
#p_up()

theme_set(theme_minimal())

gapminder
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # … with 1,694 more rows
p <- ggplot(data = gapminder, 
            mapping = aes(x = gdpPercap, 
                          y = lifeExp, 
                          size = pop, 
                          color = continent))

p + 
  geom_point() + 
  scale_x_log10() + 
  labs( 
    x = "log GDP", 
    y = "life Expectancy", 
    title = "A Gapminder Plot")

fig <- p + 
  geom_point() + 
  scale_x_log10() 

ggplotly(fig)
fig_animate <- ggplot(data = gapminder, 
                      mapping = aes(x = gdpPercap, 
                                    y = lifeExp, 
                                    color = continent)) + 
  geom_point(aes(size = pop, 
                 frame = year, 
                 ids = country), 
             alpha = 0.7) + scale_x_log10()
## Warning: Ignoring unknown aesthetics: frame, ids
ggplotly(fig_animate)