Obtained via: https://a816-health.nyc.gov/hdi/epiquery/visualizations?PageType=ts&PopulationSource=Syndromic&Topic=1&Subtopic=39
Package Loading & Data Prep
library(readr)
library(dplyr)
library(ggplot2)
library(scales)
library(lubridate)
library(tidyr)
library(knitr)
flu<-readr::read_csv("/Users/Brett/Desktop/FluLike.csv",
col_types = cols(Date = col_date(format = "%b-%y")))%>% #Making sure date imports as a date.
select(IllnessType = "Ind1Name",
Borough ="Dim1Value",
Age = "Dim2Value",
count = "X9",
Date)%>%
mutate(Year = year(Date), #Creating a column for just "Year"
Month = month(Date, label = TRUE))%>% #Creating a column for just "Month"
filter(Borough !="Citywide", #Filtering out aggregate rows.
Age !="All age groups")
head(flu)%>%
kable()
| Influenza-like illness (ILI) |
Bronx |
Ages 0-4 years |
849 |
2016-01-01 |
2016 |
Jan |
| Influenza-like illness (ILI) |
Bronx |
Ages 0-4 years |
758 |
2016-02-01 |
2016 |
Feb |
| Influenza-like illness (ILI) |
Bronx |
Ages 0-4 years |
661 |
2016-03-01 |
2016 |
Mar |
| Influenza-like illness (ILI) |
Bronx |
Ages 0-4 years |
494 |
2016-04-01 |
2016 |
Apr |
| Influenza-like illness (ILI) |
Bronx |
Ages 0-4 years |
445 |
2016-05-01 |
2016 |
May |
| Influenza-like illness (ILI) |
Bronx |
Ages 0-4 years |
395 |
2016-06-01 |
2016 |
Jun |
Number of Flu-like Illness Reports
Jan-Mar Number of Reports of Flu-like Illness, by Borough & Year
flu%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(Borough, Year)%>%
summarize(count=sum(count))%>%
ggplot()+
geom_col(aes(x=Year,y=count, fill=count))+
geom_label(aes(x=Year,y=count, label=count))+
facet_wrap(~Borough)+
theme_minimal()+
theme(legend.position = "none")

Jan-Mar Number of Reports of Flu-like Illness, by Age & Year
flu%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(Age, Year)%>%
summarize(count=sum(count))%>%
ggplot()+
geom_col(aes(x=Year,y=count, fill=count))+
geom_label(aes(x=Year,y=count, label=count))+
facet_wrap(~Age)+
theme_minimal()+
theme(legend.position = "none")

YOY % Change
Percent Change in Flu-like Illness from 2019-2020 (Jan-Mar), by Age
flu%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(Age, Year)%>%
summarize(count=sum(count))%>%
spread(Year,count)%>%
mutate(YOYChange = percent((`2020` - `2019`)/(`2020`)))%>%
kable()
| Ages 0-4 years |
9952 |
9223 |
13403 |
9714 |
14155 |
31.4% |
| Ages 18-64 years |
12652 |
10829 |
23367 |
13412 |
42814 |
68.7% |
| Ages 5-17 years |
8365 |
9921 |
15627 |
9904 |
14844 |
33.3% |
| Ages 65+ years |
1328 |
1890 |
3935 |
2118 |
5905 |
64.1% |
Percent Change in Flu-like Illness from 2019-2020 (Jan-Mar), by Borough
flu%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(Borough, Year)%>%
summarize(count=sum(count))%>%
spread(Year,count)%>%
mutate(YOYChange = percent((`2020` - `2019`)/(`2020`)))%>%
kable()
| Bronx |
6806 |
6783 |
12605 |
7938 |
19378 |
59.0% |
| Brooklyn |
8151 |
9464 |
15767 |
9752 |
20405 |
52.2% |
| Manhattan |
4526 |
4428 |
8027 |
4377 |
10542 |
58.5% |
| Queens |
10492 |
9053 |
15948 |
10807 |
21985 |
50.8% |
| Staten Island |
1406 |
1214 |
2248 |
1187 |
2666 |
55.5% |
| Unknown |
916 |
921 |
1737 |
1087 |
2742 |
60.4% |
Introducing Zip Code
fluzip<-readr::read_csv("/Users/Brett/Desktop/Flulike by zip.csv",
col_types = cols(Date = col_date(format = "%b-%y"),
Zip = col_character()))%>% #Making sure date imports as a date.
select(Zip ="Zip",
Age = "Dim2Value",
Count,
Date)%>%
mutate(Year = year(Date), #Creating a column for just "Year"
Month = month(Date, label = TRUE))%>% #Creating a column for just "Month"
filter(Zip !="Citwide", #Filtering out aggregate rows.
Age !="All age groups")
Number of Flulike Illness Reports
Jan-Mar N Flu-like Illness Reports, by Zip & Year
fluzip%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(Zip, Year)%>%
summarize(Count=sum(Count))%>%
arrange(-Count)%>%
head(20)%>%
kable()
| 11368 |
2020 |
2735 |
| 11373 |
2020 |
1832 |
| 11368 |
2018 |
1819 |
| 10467 |
2020 |
1783 |
| 10456 |
2020 |
1596 |
| 10030 |
2020 |
1438 |
| 11206 |
2020 |
1345 |
| 10452 |
2020 |
1297 |
| 11432 |
2020 |
1270 |
| 11220 |
2020 |
1255 |
| 11368 |
2019 |
1234 |
| 11368 |
2016 |
1193 |
| 10456 |
2018 |
1172 |
| 10466 |
2020 |
1171 |
| 11373 |
2018 |
1168 |
| 11208 |
2020 |
1161 |
| 11372 |
2020 |
1146 |
| 10457 |
2020 |
1140 |
| 10453 |
2020 |
1139 |
| 10029 |
2020 |
1116 |
% Change YOY
% Change in Flu-like Illness from 2019-2020 (Jan-Mar), by Borough
fluzip%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(Zip, Year)%>%
summarize(Count=sum(Count))%>%
spread(Year,Count)%>%
mutate(YOYChange = 100*round((`2020` - `2019`)/(`2020`),2))%>%
arrange(-YOYChange)%>%
kable()
| 88888 |
NA |
0 |
5 |
2 |
27 |
93 |
| 10021 |
27 |
28 |
50 |
27 |
115 |
77 |
| 11426 |
29 |
38 |
64 |
28 |
108 |
74 |
| 10022 |
13 |
21 |
38 |
24 |
89 |
73 |
| 10028 |
37 |
39 |
108 |
37 |
138 |
73 |
| 11003 |
39 |
31 |
72 |
26 |
97 |
73 |
| 11040 |
41 |
34 |
66 |
35 |
128 |
73 |
| 10464 |
0 |
6 |
9 |
8 |
28 |
71 |
| 11102 |
135 |
82 |
139 |
71 |
246 |
71 |
| 10461 |
129 |
129 |
178 |
153 |
498 |
69 |
| 10475 |
63 |
47 |
117 |
83 |
271 |
69 |
| 11375 |
85 |
68 |
159 |
79 |
258 |
69 |
| 10030 |
502 |
530 |
918 |
462 |
1438 |
68 |
| 10014 |
26 |
22 |
65 |
17 |
52 |
67 |
| 10023 |
43 |
42 |
118 |
47 |
143 |
67 |
| 10065 |
16 |
12 |
38 |
23 |
70 |
67 |
| 10467 |
466 |
411 |
858 |
587 |
1783 |
67 |
| 10019 |
54 |
52 |
136 |
65 |
191 |
66 |
| 11209 |
91 |
125 |
252 |
136 |
404 |
66 |
| 11220 |
330 |
354 |
751 |
426 |
1255 |
66 |
| 10469 |
170 |
138 |
344 |
266 |
750 |
65 |
| 10026 |
167 |
135 |
226 |
121 |
336 |
64 |
| 10473 |
158 |
159 |
328 |
216 |
593 |
64 |
| 11214 |
151 |
137 |
294 |
174 |
479 |
64 |
| 11219 |
88 |
87 |
182 |
105 |
295 |
64 |
| 10035 |
235 |
219 |
390 |
210 |
575 |
63 |
| 10128 |
62 |
71 |
135 |
72 |
193 |
63 |
| 10306 |
93 |
92 |
205 |
99 |
266 |
63 |
| 10314 |
170 |
148 |
255 |
135 |
365 |
63 |
| 10016 |
98 |
138 |
247 |
166 |
434 |
62 |
| 10304 |
197 |
151 |
339 |
141 |
372 |
62 |
| 10462 |
258 |
271 |
474 |
320 |
838 |
62 |
| 10463 |
224 |
230 |
415 |
204 |
536 |
62 |
| 10465 |
44 |
72 |
102 |
107 |
284 |
62 |
| 10472 |
314 |
352 |
661 |
399 |
1057 |
62 |
| 11204 |
88 |
96 |
161 |
125 |
327 |
62 |
| 11355 |
301 |
297 |
433 |
257 |
676 |
62 |
| 10027 |
265 |
256 |
426 |
222 |
573 |
61 |
| 11378 |
110 |
81 |
169 |
119 |
303 |
61 |
| 10013 |
33 |
49 |
87 |
42 |
105 |
60 |
| 10040 |
169 |
213 |
354 |
188 |
475 |
60 |
| 10309 |
82 |
66 |
122 |
77 |
194 |
60 |
| 10458 |
346 |
359 |
603 |
404 |
1004 |
60 |
| 11106 |
106 |
92 |
159 |
86 |
215 |
60 |
| 11228 |
33 |
43 |
150 |
70 |
176 |
60 |
| 10034 |
156 |
184 |
329 |
163 |
395 |
59 |
| 10305 |
129 |
110 |
203 |
104 |
255 |
59 |
| 11213 |
190 |
294 |
459 |
264 |
637 |
59 |
| 11215 |
72 |
101 |
219 |
115 |
283 |
59 |
| 11218 |
139 |
166 |
272 |
176 |
434 |
59 |
| 11225 |
160 |
244 |
393 |
191 |
470 |
59 |
| 11234 |
258 |
250 |
386 |
224 |
543 |
59 |
| 11379 |
68 |
46 |
110 |
66 |
162 |
59 |
| 11413 |
231 |
196 |
361 |
182 |
445 |
59 |
| 10011 |
62 |
55 |
128 |
54 |
128 |
58 |
| 10025 |
168 |
159 |
288 |
131 |
313 |
58 |
| 10031 |
249 |
241 |
412 |
238 |
569 |
58 |
| 10036 |
121 |
85 |
201 |
120 |
289 |
58 |
| 10453 |
473 |
414 |
906 |
475 |
1139 |
58 |
| 10459 |
277 |
281 |
534 |
287 |
686 |
58 |
| 10468 |
336 |
361 |
679 |
405 |
966 |
58 |
| 11217 |
69 |
96 |
181 |
119 |
285 |
58 |
| 10312 |
152 |
132 |
234 |
134 |
310 |
57 |
| 11367 |
130 |
126 |
190 |
117 |
275 |
57 |
| 11374 |
79 |
87 |
199 |
102 |
238 |
57 |
| 10033 |
209 |
322 |
427 |
269 |
606 |
56 |
| 10454 |
442 |
495 |
747 |
470 |
1072 |
56 |
| 10456 |
656 |
676 |
1172 |
707 |
1596 |
56 |
| 11103 |
75 |
67 |
112 |
75 |
171 |
56 |
| 11223 |
180 |
184 |
325 |
208 |
476 |
56 |
| 11238 |
121 |
167 |
270 |
156 |
353 |
56 |
| 11369 |
350 |
321 |
451 |
297 |
670 |
56 |
| 10451 |
441 |
529 |
718 |
456 |
1023 |
55 |
| 10452 |
567 |
569 |
1000 |
580 |
1297 |
55 |
| 10457 |
494 |
449 |
961 |
515 |
1140 |
55 |
| 10460 |
276 |
258 |
541 |
354 |
782 |
55 |
| 11236 |
418 |
462 |
711 |
391 |
862 |
55 |
| 11364 |
23 |
24 |
51 |
27 |
60 |
55 |
| 11368 |
1193 |
1043 |
1819 |
1234 |
2735 |
55 |
| 11427 |
110 |
88 |
205 |
111 |
245 |
55 |
| 10024 |
40 |
41 |
73 |
54 |
117 |
54 |
| 10455 |
381 |
432 |
602 |
400 |
866 |
54 |
| 10466 |
399 |
154 |
663 |
544 |
1171 |
54 |
| 11201 |
118 |
141 |
238 |
151 |
325 |
54 |
| 11203 |
328 |
388 |
667 |
362 |
793 |
54 |
| 11211 |
160 |
220 |
361 |
236 |
515 |
54 |
| 11226 |
392 |
535 |
831 |
437 |
943 |
54 |
| 11233 |
267 |
389 |
680 |
394 |
860 |
54 |
| 11357 |
174 |
132 |
287 |
190 |
412 |
54 |
| 10032 |
340 |
394 |
617 |
353 |
755 |
53 |
| 11435 |
469 |
398 |
612 |
421 |
904 |
53 |
| 11212 |
477 |
616 |
732 |
438 |
921 |
52 |
| 11370 |
157 |
150 |
214 |
173 |
358 |
52 |
| 11422 |
62 |
35 |
109 |
71 |
148 |
52 |
| 10003 |
54 |
50 |
125 |
69 |
142 |
51 |
| 10029 |
490 |
489 |
966 |
552 |
1116 |
51 |
| 11105 |
59 |
47 |
74 |
52 |
107 |
51 |
| 11210 |
186 |
216 |
334 |
212 |
430 |
51 |
| 11229 |
182 |
148 |
284 |
196 |
398 |
51 |
| 11354 |
154 |
138 |
249 |
160 |
327 |
51 |
| 11417 |
194 |
160 |
339 |
201 |
409 |
51 |
| 11434 |
408 |
347 |
624 |
395 |
813 |
51 |
| 11216 |
192 |
226 |
393 |
209 |
418 |
50 |
| 11373 |
880 |
715 |
1168 |
924 |
1832 |
50 |
| 11418 |
573 |
455 |
820 |
513 |
1023 |
50 |
| 10301 |
191 |
173 |
294 |
160 |
311 |
49 |
| 11231 |
83 |
116 |
206 |
138 |
271 |
49 |
| 11235 |
253 |
209 |
440 |
305 |
601 |
49 |
| 11432 |
634 |
550 |
935 |
654 |
1270 |
49 |
| 10002 |
268 |
236 |
452 |
247 |
478 |
48 |
| 11365 |
133 |
141 |
200 |
141 |
273 |
48 |
| 11420 |
255 |
199 |
442 |
268 |
518 |
48 |
| 11222 |
41 |
63 |
103 |
67 |
126 |
47 |
| 11207 |
580 |
653 |
963 |
583 |
1080 |
46 |
| 11361 |
34 |
33 |
67 |
39 |
72 |
46 |
| 11385 |
443 |
389 |
760 |
458 |
854 |
46 |
| 10010 |
19 |
48 |
67 |
43 |
78 |
45 |
| 11101 |
214 |
190 |
302 |
243 |
439 |
45 |
| 10009 |
239 |
233 |
476 |
256 |
458 |
44 |
| 11205 |
155 |
215 |
359 |
246 |
442 |
44 |
| 11208 |
665 |
642 |
1083 |
647 |
1161 |
44 |
| 11224 |
224 |
223 |
375 |
256 |
454 |
44 |
| 11372 |
595 |
513 |
758 |
643 |
1146 |
44 |
| 11419 |
287 |
270 |
540 |
362 |
651 |
44 |
| 11421 |
269 |
196 |
365 |
268 |
479 |
44 |
| 10302 |
407 |
342 |
596 |
337 |
593 |
43 |
| 11221 |
436 |
530 |
877 |
594 |
1045 |
43 |
| 11433 |
266 |
222 |
445 |
298 |
524 |
43 |
| 11693 |
72 |
59 |
113 |
78 |
136 |
43 |
| 10038 |
94 |
65 |
133 |
106 |
184 |
42 |
| 11206 |
462 |
609 |
995 |
785 |
1345 |
42 |
| 11377 |
535 |
460 |
680 |
646 |
1105 |
42 |
| 11691 |
372 |
354 |
721 |
425 |
729 |
42 |
| 11237 |
378 |
345 |
606 |
395 |
673 |
41 |
| 11412 |
137 |
89 |
224 |
161 |
274 |
41 |
| 11230 |
119 |
174 |
239 |
222 |
373 |
40 |
| 11358 |
105 |
90 |
142 |
111 |
163 |
32 |
| 10271 |
NA |
0 |
0 |
0 |
0 |
NaN |
| 10278 |
NA |
0 |
0 |
0 |
0 |
NaN |
| 10279 |
NA |
0 |
0 |
0 |
0 |
NaN |
Adding Neighborhood Names to the Data
zipmap<-read_csv("/Users/Brett/Library/Mobile Documents/com~apple~CloudDocs/All Files/Employers/NYSCI/Datasets/Outbound Data/US Postal Codes copy 2.csv")%>%
rename(Zip = "Postal Code")%>%
mutate(Zip = as.character(Zip))
## Parsed with column specification:
## cols(
## `Postal Code` = col_double(),
## `Place Name` = col_character(),
## State = col_character(),
## `State Abbreviation` = col_character(),
## County = col_character(),
## Latitude = col_double(),
## Longitude = col_double(),
## `Place Name, State Abbreviation` = col_character()
## )
fluzip_Named<-left_join(fluzip,zipmap)
## Joining, by = "Zip"
This is the same table as above, but with neighborhood names instead of Zips (The source for neighborhood names might be incomplete hereā¦better to replace with your own source for zip/neighborhood names)
fluzip_Named%>%
filter(Month %in% c("Jan","Feb","Mar"))%>%
group_by(`Place Name`, Year)%>%
summarize(Count=sum(Count))%>%
spread(Year,Count)%>%
mutate(YOYChange = 100*round((`2020` - `2019`)/(`2020`),2))%>%
arrange(-YOYChange)%>%
kable()
| NA |
NA |
0 |
5 |
2 |
27 |
93 |
| Bellerose |
29 |
38 |
64 |
28 |
108 |
74 |
| Elmont |
39 |
31 |
72 |
26 |
97 |
73 |
| New Hyde Park |
41 |
34 |
66 |
35 |
128 |
73 |
| Forest Hills |
85 |
68 |
159 |
79 |
258 |
69 |
| Astoria |
375 |
288 |
484 |
284 |
739 |
62 |
| Maspeth |
110 |
81 |
169 |
119 |
303 |
61 |
| Bronx |
6914 |
6792 |
12612 |
7940 |
19380 |
59 |
| Middle Village |
68 |
46 |
110 |
66 |
162 |
59 |
| New York City |
4256 |
4429 |
8030 |
4378 |
10555 |
59 |
| Springfield Gardens |
231 |
196 |
361 |
182 |
445 |
59 |
| Rego Park |
79 |
87 |
199 |
102 |
238 |
57 |
| Corona |
1193 |
1043 |
1819 |
1234 |
2735 |
55 |
| Flushing |
690 |
651 |
1014 |
645 |
1441 |
55 |
| Oakland Gardens |
23 |
24 |
51 |
27 |
60 |
55 |
| Queens Village |
110 |
88 |
205 |
111 |
245 |
55 |
| Staten Island |
1421 |
1214 |
2248 |
1187 |
2666 |
55 |
| East Elmhurst |
507 |
471 |
665 |
470 |
1028 |
54 |
| Whitestone |
174 |
132 |
287 |
190 |
412 |
54 |
| Brooklyn |
8086 |
9464 |
15772 |
9753 |
20453 |
52 |
| Rosedale |
62 |
35 |
109 |
71 |
148 |
52 |
| Ozone Park |
194 |
160 |
339 |
201 |
409 |
51 |
| Elmhurst |
880 |
715 |
1168 |
924 |
1832 |
50 |
| Jamaica |
1777 |
1517 |
2616 |
1768 |
3511 |
50 |
| Richmond Hill |
573 |
455 |
820 |
513 |
1023 |
50 |
| Fresh Meadows |
133 |
141 |
200 |
141 |
273 |
48 |
| South Ozone Park |
255 |
199 |
442 |
268 |
518 |
48 |
| Bayside |
34 |
33 |
67 |
39 |
72 |
46 |
| Ridgewood |
443 |
389 |
760 |
458 |
854 |
46 |
| Long Island City |
214 |
190 |
302 |
243 |
439 |
45 |
| Jackson Heights |
595 |
513 |
758 |
643 |
1146 |
44 |
| South Richmond Hill |
287 |
270 |
540 |
362 |
651 |
44 |
| Woodhaven |
269 |
196 |
365 |
268 |
479 |
44 |
| Far Rockaway |
444 |
413 |
834 |
503 |
865 |
42 |
| Woodside |
535 |
460 |
680 |
646 |
1105 |
42 |
| Saint Albans |
137 |
89 |
224 |
161 |
274 |
41 |