After our Intro to Stan lecture I think it would be valuable to have you go through a similar exercise. Let’s test a second research question.
Research question: Is sea ice extent declining in the Southern Hemisphere over time? Is the same pattern happening in the Antarctic as in the Arctic? Fit a Stan model to find out!
Make sure you follow the steps we used in class.
What do your Stan model results indicate so far?
#place the code here
sea_ice <- read.csv("seaice.csv", stringsAsFactors = F)
colnames(sea_ice) <- c("year", "extent_north", "extent_south")
#plot data
plot(extent_south ~ year, pch = 20, col='red',main="sea ice extent in the Southern Hemisphere over time ", data = sea_ice)
#write the code
lm1 <- lm(extent_south ~ year, data = sea_ice)
summary(lm1)
##
## Call:
## lm(formula = extent_south ~ year, data = sea_ice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23372 -0.18142 0.01587 0.18465 0.88814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.199551 10.925576 -1.300 0.2018
## year 0.012953 0.005468 2.369 0.0232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3843 on 37 degrees of freedom
## Multiple R-squared: 0.1317, Adjusted R-squared: 0.1082
## F-statistic: 5.611 on 1 and 37 DF, p-value: 0.02318
#write the code here
x <- I(sea_ice$year - 1978)#this is to give numeric values to year starting from 1
y <- sea_ice$extent_south
N <- length(sea_ice$year)
lm2 <- lm(y ~ x)
summary(lm2)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23372 -0.18142 0.01587 0.18465 0.88814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.421555 0.125490 91.015 <2e-16 ***
## x 0.012953 0.005468 2.369 0.0232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3843 on 37 degrees of freedom
## Multiple R-squared: 0.1317, Adjusted R-squared: 0.1082
## F-statistic: 5.611 on 1 and 37 DF, p-value: 0.02318
lm_alpha <- summary(lm2)$coeff[1]
lm_beta <- summary(lm2)$coeff[2]
lm_sigma <- sigma(lm2)
#input data in the form of a list for stan model
stan_input_data <- list(N=N,x=x,y=y)
#write the code
write("// Stan model for simple linear regression
data {
int < lower = 1 > N; // Sample size
vector[N] x; // Predictor
vector[N] y; // Outcome
}
parameters {
real alpha; // Intercept
real beta; // Slope (regression coefficients)
real < lower = 0 > sigma; // Error SD
}
model {
y ~ normal(alpha + x * beta , sigma);
}
generated quantities {
} // The posterior predictive distribution",
"stan_model1.stan")
stan_model1 <- "stan_model1.stan"
#code here
stan_model1 <- "stan_model1.stan"
#run the model
fit <- stan(file = stan_model1, data = stan_input_data, warmup = 400, iter = 1500, chains = 4, cores = 2, thin = 1)
fit
## Inference for Stan model: stan_model1.
## 4 chains, each with iter=1500; warmup=400; thin=1;
## post-warmup draws per chain=1100, total post-warmup draws=4400.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## alpha 11.42 0.00 0.13 11.16 11.34 11.42 11.51 11.68 1627 1
## beta 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.02 1728 1
## sigma 0.40 0.00 0.05 0.32 0.36 0.39 0.43 0.50 2118 1
## lp__ 16.31 0.03 1.24 13.10 15.74 16.62 17.21 17.73 1501 1
##
## Samples were drawn using NUTS(diag_e) at Mon Mar 30 21:43:42 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
#code here
posterior <- extract(fit)
str(posterior)
## List of 4
## $ alpha: num [1:4400(1d)] 11.5 11.4 11.5 11.4 11.2 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ beta : num [1:4400(1d)] 0.00952 0.01618 0.01013 0.0136 0.01918 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ sigma: num [1:4400(1d)] 0.441 0.414 0.37 0.382 0.477 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ lp__ : num [1:4400(1d)] 16.8 17.4 17.6 17.8 13.9 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
#code here
plot(y ~ x, pch = 20, main="Comaring the resut of Linear and Stan Model")
abline(lm2, col = "navy", pch=22, lty = 2, lw = 3)
abline( mean(posterior$alpha), mean(posterior$beta), col = "red", lw = 1)
legend("topleft",c("Linear Model","Stan Model"),fill=c("navy","red"))
#code here
plot(y ~ x, pch = 20, main="Comaring the result of Linear and 'All' Stan Models")
for (i in 1:500) {
abline(posterior$alpha[i], posterior$beta[i], col = "gray", lty = 1)
}
abline(lm2, col = "navy", pch=22, lty = 2, lw = 3)
abline( mean(posterior$alpha), mean(posterior$beta), col = "red", lw = 1)
legend("topleft",c("Linear Model","Mean Stan Model", "All stan Models"),fill=c("navy","red","grey"))
We can clearly see from the output visualization of stan model and linear model for southern hemisphere the ice extent is not declining.