Vector Autorregresivo (Var)

Propuesta de modelo multivariante para el análisis macroeconómico de la inflación monetaria en Venezuela período 2015-2019. Análisis técnico realizado con las series históricas de cada variable (INPC, Base Monetaria, Tipo de Cambio) llevadas a números índice (Base 100 -2015-) y con aplicación logarítmica.

Dicho código fue realizado en el lenguaje de programación R para ser utilizado en RStudio o en herramientas avanzadas de Business Intelligence como Power BI. La prueba del modelo se realizó desde RMarkdown en RStudio.

Var.data <- read.csv("C:/Users/Personal/Desktop/Modelo en R/Modelo VAR/Var data.csv", sep=";")
Varcor<-Var.data
INPC<-Varcor[,1]
IBM<-Varcor[,2]
IDP<-Varcor[,3]
Var.lin<-data.frame(INPC,IBM,IDP)

Matriz de correlación simple y aplicación de logaritmo

cor(Var.lin)
##           INPC       IBM       IDP
## INPC 1.0000000 0.9962789 0.9905231
## IBM  0.9962789 1.0000000 0.9856439
## IDP  0.9905231 0.9856439 1.0000000
cor(log(Var.lin))
##           INPC       IBM       IDP
## INPC 1.0000000 0.9984334 0.9976446
## IBM  0.9984334 1.0000000 0.9946901
## IDP  0.9976446 0.9946901 1.0000000
plot(log(Var.lin))

Correlación parcial

library(ggm)
## Warning: package 'ggm' was built under R version 3.6.3
parcor(cov(Var.lin))
##           INPC        IBM        IDP
## INPC 1.0000000  0.8614287  0.5873454
## IBM  0.8614287  1.0000000 -0.1008126
## IDP  0.5873454 -0.1008126  1.0000000

Modelizacion del Vector autorregresivo multivariante Var(p):

Creación de series de tiempo y gráfica.

tinpc=ts(log(Var.lin[,1]), start=c(2015,12),end=c(2019,12),freq=12)
tibm=ts(log(Var.lin[,2]), start=c(2015,12),end=c(2019,12),freq=12)
timaxdp=ts(log(Var.lin[,3]), start=c(2015,12),end=c(2019,12),freq=12)
ts.plot(tinpc,tibm,timaxdp,col=c("blue", "red","black"), main="Log's del INPC,  IBM e IDP en Venezuela 2015-2019",xlab="Años",ylab="Logaritmo")
bandas<-expression("INPC","Índice Base Monetaria ","Índice Dólar Paralelo")
legend(2016,10,bandas,lty=1,col=c("blue","red","black"),cex=.8)

Pruebas de hipótesis de Dickey Fuller al Índice de Precios al Consumidor (INPC).

library(vars)
## Loading required package: MASS
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: urca
## Loading required package: lmtest
adf1_ltip<-summary(ur.df(tinpc, lags=1))
adf1_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.17774 -0.08581 -0.04155  0.02948  0.33063 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## z.lag.1    0.015511   0.004963   3.125  0.00311 ** 
## z.diff.lag 0.622931   0.130525   4.772 1.95e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1175 on 45 degrees of freedom
## Multiple R-squared:  0.8845, Adjusted R-squared:  0.8794 
## F-statistic: 172.4 on 2 and 45 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: 3.125 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltip<-summary(ur.df(tinpc, type="drift", lags=12))
adf2_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.15842 -0.05021 -0.01037  0.04089  0.21420 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -0.28492    0.40407  -0.705   0.4881  
## z.lag.1       0.07144    0.09469   0.755   0.4585  
## z.diff.lag1   0.35843    0.27168   1.319   0.2006  
## z.diff.lag2  -0.13694    0.22618  -0.605   0.5511  
## z.diff.lag3  -0.28656    0.24234  -1.182   0.2496  
## z.diff.lag4  -0.19422    0.26517  -0.732   0.4716  
## z.diff.lag5   0.32148    0.27191   1.182   0.2497  
## z.diff.lag6  -0.14093    0.22866  -0.616   0.5440  
## z.diff.lag7  -0.42747    0.21775  -1.963   0.0624 .
## z.diff.lag8   0.28949    0.29083   0.995   0.3304  
## z.diff.lag9  -0.15696    0.26843  -0.585   0.5647  
## z.diff.lag10  0.24084    0.24977   0.964   0.3454  
## z.diff.lag11 -0.52776    0.24579  -2.147   0.0431 *
## z.diff.lag12  0.61485    0.28551   2.154   0.0425 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09227 on 22 degrees of freedom
## Multiple R-squared:  0.9023, Adjusted R-squared:  0.8446 
## F-statistic: 15.64 on 13 and 22 DF,  p-value: 3.432e-08
## 
## 
## Value of test-statistic is: 0.7545 0.54 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltip<-summary(ur.df(tinpc, type="trend", lags=1))
adf3_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.18996 -0.04537 -0.01993  0.02950  0.34793 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.219658   0.058765  -3.738 0.000543 ***
## z.lag.1      0.048186   0.015594   3.090 0.003504 ** 
## tt           0.002539   0.002873   0.884 0.381851    
## z.diff.lag   0.142487   0.160767   0.886 0.380388    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1012 on 43 degrees of freedom
## Multiple R-squared:  0.8226, Adjusted R-squared:  0.8103 
## F-statistic: 66.48 on 3 and 43 DF,  p-value: 3.441e-16
## 
## 
## Value of test-statistic is: 3.09 10.2689 13.8257 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Primera diferencia REGULAR del logaritmo del Índice de precios INPC.

ten<-diff(tinpc,lag=1,difference=1)
ten
##              Jan         Feb         Mar         Apr         May         Jun
## 2016 0.069805874 0.004837669 0.021575315 0.056502229 0.104553323 0.006934306
## 2017 0.037460805 0.014572122 0.009536668 0.100057130 0.071890121 0.081402619
## 2018 0.091161863 0.058269130 0.133888495 0.217536463 0.185859924 0.266832011
## 2019 0.340593755 0.401124048 0.467381404 0.455463239 0.309372780 0.700741969
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2016 0.013801736 0.013763238 0.107337944 0.232957697 0.054204281 0.027068276
## 2017 0.075570623 0.135845753 0.161751520 0.346865849 0.149999197 0.152760632
## 2018 0.122223510 0.269757097 0.324760804 0.662086424 0.425640736 0.335392341
## 2019 0.583862268 0.745046055 0.499693632 0.509963938 0.739274057 0.838453380
layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
ts.plot(ten,main="Primera  diferencia Regular del Log INPC en Venezuela",xlab="año",ylab="")
acf(ten,main="Autocorrelación simple",ci.col="blue",ylab="",ylim=c(-.5,.5),lag.max=100)
pacf(ten,main="Autocorrelación parcial",ci.col="red",ylab="",ylim=c(-.5,.5),lag.max=100)

Aplicación de pruebas para determinar el nivel de estacionariedad.

adf1_ltip<-summary(ur.df(ten, lags=1))
adf1_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.22013 -0.06547 -0.00236  0.08376  0.34276 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)  
## z.lag.1     0.04503    0.06053   0.744   0.4609  
## z.diff.lag -0.36463    0.15153  -2.406   0.0204 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1228 on 44 degrees of freedom
## Multiple R-squared:  0.1164, Adjusted R-squared:  0.07628 
## F-statistic: 2.899 on 2 and 44 DF,  p-value: 0.06564
## 
## 
## Value of test-statistic is: 0.7439 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltip<-summary(ur.df(ten, type="drift", lags=12))
adf2_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.179246 -0.050516  0.006357  0.040489  0.197650 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.02165    0.02819   0.768  0.45112   
## z.lag.1       0.30982    0.16917   1.831  0.08127 . 
## z.diff.lag1  -0.67271    0.33074  -2.034  0.05479 . 
## z.diff.lag2  -0.79810    0.30690  -2.601  0.01670 * 
## z.diff.lag3  -0.88907    0.33281  -2.671  0.01429 * 
## z.diff.lag4  -0.93335    0.36159  -2.581  0.01742 * 
## z.diff.lag5  -0.42638    0.38699  -1.102  0.28302   
## z.diff.lag6  -0.53521    0.33223  -1.611  0.12212   
## z.diff.lag7  -0.89990    0.33117  -2.717  0.01290 * 
## z.diff.lag8  -0.38345    0.36415  -1.053  0.30431   
## z.diff.lag9  -0.46858    0.30797  -1.522  0.14305   
## z.diff.lag10 -0.16005    0.27703  -0.578  0.56958   
## z.diff.lag11 -0.68013    0.23301  -2.919  0.00821 **
## z.diff.lag12  0.23526    0.25895   0.908  0.37392   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09283 on 21 degrees of freedom
## Multiple R-squared:  0.7268, Adjusted R-squared:  0.5577 
## F-statistic: 4.298 on 13 and 21 DF,  p-value: 0.001542
## 
## 
## Value of test-statistic is: 1.8314 3.0204 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltip<-summary(ur.df(ten, type="trend", lags=1))
adf3_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.18486 -0.06602 -0.01148  0.03134  0.29958 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -0.059961   0.039086  -1.534  0.13250   
## z.lag.1     -0.509750   0.180742  -2.820  0.00729 **
## tt           0.008143   0.002712   3.003  0.00449 **
## z.diff.lag  -0.099675   0.161346  -0.618  0.54006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1126 on 42 degrees of freedom
## Multiple R-squared:  0.2773, Adjusted R-squared:  0.2257 
## F-statistic: 5.372 on 3 and 42 DF,  p-value: 0.003196
## 
## 
## Value of test-statistic is: -2.8203 3.6867 4.5687 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Segunda diferencia REGULAR.

ten3<-diff(ten,lag=1,difference=1)
ten3
##                Jan           Feb           Mar           Apr           May
## 2016               -6.496821e-02  1.673765e-02  3.492691e-02  4.805109e-02
## 2017  1.039253e-02 -2.288868e-02 -5.035454e-03  9.052046e-02 -2.816701e-02
## 2018 -6.159877e-02 -3.289273e-02  7.561937e-02  8.364797e-02 -3.167654e-02
## 2019  5.201414e-03  6.053029e-02  6.625736e-02 -1.191817e-02 -1.460905e-01
##                Jun           Jul           Aug           Sep           Oct
## 2016 -9.761902e-02  6.867430e-03 -3.849889e-05  9.357471e-02  1.256198e-01
## 2017  9.512498e-03 -5.831996e-03  6.027513e-02  2.590577e-02  1.851143e-01
## 2018  8.097209e-02 -1.446085e-01  1.475336e-01  5.500371e-02  3.373256e-01
## 2019  3.913692e-01 -1.168797e-01  1.611838e-01 -2.453524e-01  1.027031e-02
##                Nov           Dec
## 2016 -1.787534e-01 -2.713600e-02
## 2017 -1.968667e-01  2.761435e-03
## 2018 -2.364457e-01 -9.024840e-02
## 2019  2.293101e-01  9.917932e-02
layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
ts.plot(ten3,main="Segunda Diferencia Regular del log del INPC en Venezuela",xlab="año",ylab="")
acf(ten3,main="Autocorrelación simple",ci.col="blue",ylab="",ylim=c(-.5,.5),lag.max=100)
pacf(ten3,main="Autocorrelación parcial",ci.col="red",ylab="",ylim=c(-.5,.5),lag.max=100)

Aplicación de Dickey Fuller.

adf1_ltip<-summary(ur.df(ten3, lags=1))
adf1_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.19754 -0.05454  0.00680  0.08817  0.36874 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## z.lag.1    -1.43558    0.26251  -5.469 2.15e-06 ***
## z.diff.lag  0.08056    0.16122   0.500     0.62    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1247 on 43 degrees of freedom
## Multiple R-squared:  0.6618, Adjusted R-squared:  0.6461 
## F-statistic: 42.08 on 2 and 43 DF,  p-value: 7.521e-11
## 
## 
## Value of test-statistic is: -5.4686 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltip<-summary(ur.df(ten3, type="drift", lags=12))
adf2_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.150595 -0.063221  0.001033  0.051496  0.189307 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)   0.04683    0.02994   1.564    0.134
## z.lag.1      -2.65037    1.88425  -1.407    0.175
## z.diff.lag1   1.44812    1.82084   0.795    0.436
## z.diff.lag2   1.09227    1.71415   0.637    0.531
## z.diff.lag3   0.66798    1.61252   0.414    0.683
## z.diff.lag4   0.27861    1.49766   0.186    0.854
## z.diff.lag5   0.41564    1.36057   0.305    0.763
## z.diff.lag6   0.34767    1.20626   0.288    0.776
## z.diff.lag7  -0.12822    1.07059  -0.120    0.906
## z.diff.lag8  -0.05399    0.90731  -0.060    0.953
## z.diff.lag9  -0.14925    0.70665  -0.211    0.835
## z.diff.lag10 -0.01472    0.53611  -0.027    0.978
## z.diff.lag11 -0.48267    0.37548  -1.285    0.213
## z.diff.lag12 -0.02683    0.27094  -0.099    0.922
## 
## Residual standard error: 0.1015 on 20 degrees of freedom
## Multiple R-squared:  0.8865, Adjusted R-squared:  0.8128 
## F-statistic: 12.02 on 13 and 20 DF,  p-value: 9.661e-07
## 
## 
## Value of test-statistic is: -1.4066 1.2527 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltip<-summary(ur.df(ten3, type="trend", lags=1))
adf3_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.24778 -0.08378 -0.00913  0.06367  0.34045 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.009011   0.038645  -0.233    0.817    
## z.lag.1     -1.533355   0.265997  -5.765 9.35e-07 ***
## tt           0.001461   0.001426   1.024    0.312    
## z.diff.lag   0.124442   0.161585   0.770    0.446    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1234 on 41 degrees of freedom
## Multiple R-squared:  0.6843, Adjusted R-squared:  0.6612 
## F-statistic: 29.63 on 3 and 41 DF,  p-value: 2.361e-10
## 
## 
## Value of test-statistic is: -5.7646 11.1569 16.6801 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Aplicación de pruebas para el índice de la Base Monetaria.

adf1_ltibm<-summary(ur.df(tibm, lags=1))
adf1_ltibm
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.20491 -0.05278 -0.02136  0.00146  0.36966 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## z.lag.1    0.007681   0.004241   1.811   0.0768 .  
## z.diff.lag 0.883964   0.107848   8.196 1.79e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09987 on 45 degrees of freedom
## Multiple R-squared:  0.9315, Adjusted R-squared:  0.9284 
## F-statistic: 305.9 on 2 and 45 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: 1.8111 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltibm<-summary(ur.df(tibm, type="drift", lags=12))
adf2_ltibm
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.105203 -0.025630 -0.003817  0.039713  0.116176 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.2005137  0.1139912  -1.759 0.092476 .  
## z.lag.1       0.0463197  0.0228398   2.028 0.054838 .  
## z.diff.lag1   0.8168759  0.2181718   3.744 0.001123 ** 
## z.diff.lag2  -0.1611196  0.2793431  -0.577 0.569943    
## z.diff.lag3  -0.8003184  0.2962033  -2.702 0.013022 *  
## z.diff.lag4   1.4555967  0.3758122   3.873 0.000821 ***
## z.diff.lag5  -0.9641344  0.4971157  -1.939 0.065375 .  
## z.diff.lag6   0.2543001  0.5234564   0.486 0.631906    
## z.diff.lag7  -0.0008826  0.5343894  -0.002 0.998697    
## z.diff.lag8   0.6235829  0.5409468   1.153 0.261380    
## z.diff.lag9  -1.4356544  0.5929135  -2.421 0.024159 *  
## z.diff.lag10  0.9036597  0.7100823   1.273 0.216441    
## z.diff.lag11 -0.0013671  0.7122832  -0.002 0.998486    
## z.diff.lag12 -0.6212151  0.4644659  -1.337 0.194729    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06329 on 22 degrees of freedom
## Multiple R-squared:  0.9664, Adjusted R-squared:  0.9465 
## F-statistic: 48.61 on 13 and 22 DF,  p-value: 3.921e-13
## 
## 
## Value of test-statistic is: 2.028 2.9118 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltibm<-summary(ur.df(tibm, type="trend", lags=1))
adf3_ltibm
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.226649 -0.056102  0.002263  0.030275  0.266949 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.274232   0.066482  -4.125 0.000167 ***
## z.lag.1      0.067678   0.017084   3.962 0.000276 ***
## tt          -0.003040   0.002415  -1.259 0.214921    
## z.diff.lag   0.317315   0.164710   1.927 0.060667 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08621 on 43 degrees of freedom
## Multiple R-squared:  0.8966, Adjusted R-squared:  0.8894 
## F-statistic: 124.3 on 3 and 43 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: 3.9616 7.2652 10.613 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Primera Diferencia REGULAR.

ten4<-diff(tibm,lag=1,difference=1)
ten4
##             Jan        Feb        Mar        Apr        May        Jun
## 2016 0.04774200 0.05246526 0.06165645 0.07683818 0.09369061 0.10230774
## 2017 0.08360494 0.10014960 0.13441501 0.16952133 0.17563952 0.08350317
## 2018 0.11965284 0.09865954 0.07932219 0.11060496 0.11642194 0.12828109
## 2019 0.36929184 0.34316448 0.44342209 0.74344590 0.67651467 0.59549579
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2016 0.11688338 0.10924696 0.10770233 0.10551816 0.08372704 0.08866331
## 2017 0.06903614 0.08844441 0.07701106 0.10943665 0.14063823 0.16189345
## 2018 0.17436736 0.23158471 0.27705126 0.32459447 0.44206693 0.50689054
## 2019 0.56540473 0.82303005 0.63179292 0.80282636 0.67007301 1.08732213
layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
ts.plot(ten4,main="Primera  diferencia Regular del Log del IBM",xlab="año",ylab="")
acf(ten4,main="Autocorrelación simple",lag.max=100)
pacf(ten4,main="Autocorrelación parcial",ci.col="red",ylab="",ylim=c(-.5,.5),lag.max=100)

Dickey Fuller.

adf1_ltibm<-summary(ur.df(ten4, lags=1))
adf1_ltibm
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.184129 -0.029305  0.007436  0.036043  0.307733 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)   
## z.lag.1     0.10073    0.04299   2.343  0.02371 * 
## z.diff.lag -0.52241    0.17373  -3.007  0.00435 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09529 on 44 degrees of freedom
## Multiple R-squared:  0.2056, Adjusted R-squared:  0.1695 
## F-statistic: 5.695 on 2 and 44 DF,  p-value: 0.006317
## 
## 
## Value of test-statistic is: 2.343 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltibm<-summary(ur.df(ten4, type="drift", lags=12))
adf2_ltibm
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.103682 -0.026350 -0.002322  0.021694  0.125461 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.05540    0.02574   2.153  0.04313 * 
## z.lag.1      -0.40053    0.21770  -1.840  0.07997 . 
## z.diff.lag1   0.37569    0.28792   1.305  0.20606   
## z.diff.lag2   0.25660    0.31628   0.811  0.42629   
## z.diff.lag3  -0.39314    0.29773  -1.320  0.20089   
## z.diff.lag4   1.18352    0.38147   3.102  0.00539 **
## z.diff.lag5   0.10249    0.42862   0.239  0.81333   
## z.diff.lag6   0.73869    0.43335   1.705  0.10302   
## z.diff.lag7   0.58712    0.44898   1.308  0.20512   
## z.diff.lag8   1.25587    0.46020   2.729  0.01257 * 
## z.diff.lag9  -0.20946    0.46654  -0.449  0.65806   
## z.diff.lag10  0.88728    0.49348   1.798  0.08657 . 
## z.diff.lag11  0.29487    0.46480   0.634  0.53267   
## z.diff.lag12  1.03409    0.57007   1.814  0.08400 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.065 on 21 degrees of freedom
## Multiple R-squared:  0.8123, Adjusted R-squared:  0.6961 
## F-statistic: 6.989 on 13 and 21 DF,  p-value: 5.136e-05
## 
## 
## Value of test-statistic is: -1.8398 2.328 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltibm<-summary(ur.df(ten4, type="trend", lags=1))
adf3_ltibm
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.160023 -0.035733  0.005768  0.032851  0.289496 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.027849   0.031297  -0.890   0.3786  
## z.lag.1     -0.072111   0.115357  -0.625   0.5353  
## tt           0.003053   0.001930   1.582   0.1212  
## z.diff.lag  -0.455286   0.177239  -2.569   0.0138 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09455 on 42 degrees of freedom
## Multiple R-squared:  0.2172, Adjusted R-squared:  0.1613 
## F-statistic: 3.884 on 3 and 42 DF,  p-value: 0.01544
## 
## 
## Value of test-statistic is: -0.6251 2.7548 2.0683 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Segunda diferencia REGULAR.

ten5<-diff(ten4,lag=1,difference=1)
ten5
##               Jan          Feb          Mar          Apr          May
## 2016               0.004723268  0.009191190  0.015181721  0.016852432
## 2017 -0.005058374  0.016544660  0.034265416  0.035106320  0.006118181
## 2018 -0.042240617 -0.020993300 -0.019337345  0.031282766  0.005816987
## 2019 -0.137598699 -0.026127356  0.100257611  0.300023813 -0.066931238
##               Jun          Jul          Aug          Sep          Oct
## 2016  0.008617129  0.014575647 -0.007636420 -0.001544634 -0.002184170
## 2017 -0.092136344 -0.014467033  0.019408271 -0.011433347  0.032425589
## 2018  0.011859142  0.046086278  0.057217343  0.045466551  0.047543207
## 2019 -0.081018872 -0.030091068  0.257625327 -0.191237136  0.171033439
##               Nov          Dec
## 2016 -0.021791120  0.004936273
## 2017  0.031201583  0.021255219
## 2018  0.117472462  0.064823608
## 2019 -0.132753348  0.417249120
layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
ts.plot(ten5,main="Segunda Diferencia Regular del log del IBM",xlab="año",ylab="")
acf(ten5,main="Autocorrelación simple",lag.max=100)
pacf(ten5,main="Autocorrelación parcial",ci.col="red",ylab="",ylim=c(-.5,.5),lag.max=100)

Pruebas:

adf1_ltip<-summary(ur.df(ten5, lags=1))
adf1_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.14316 -0.02199  0.01572  0.04590  0.34638 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -1.2512     0.2921  -4.284 0.000101 ***
## z.diff.lag  -0.1235     0.1879  -0.657 0.514382    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1017 on 43 degrees of freedom
## Multiple R-squared:  0.5946, Adjusted R-squared:  0.5758 
## F-statistic: 31.54 on 2 and 43 DF,  p-value: 3.703e-09
## 
## 
## Value of test-statistic is: -4.2838 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltip<-summary(ur.df(ten5, type="drift", lags=12))
adf2_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.093982 -0.025862 -0.004047  0.018622  0.142221 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.01749    0.01556   1.124   0.2744  
## z.lag.1      -0.82155    0.72074  -1.140   0.2678  
## z.diff.lag1  -0.09378    0.73508  -0.128   0.8998  
## z.diff.lag2  -0.23447    0.74801  -0.313   0.7572  
## z.diff.lag3  -0.99578    0.73969  -1.346   0.1933  
## z.diff.lag4  -0.19246    0.81199  -0.237   0.8150  
## z.diff.lag5  -0.60706    0.80363  -0.755   0.4588  
## z.diff.lag6  -0.25958    0.80583  -0.322   0.7507  
## z.diff.lag7  -0.30054    0.77654  -0.387   0.7028  
## z.diff.lag8   0.44078    0.75826   0.581   0.5675  
## z.diff.lag9  -0.24445    0.64524  -0.379   0.7088  
## z.diff.lag10  0.26283    0.58449   0.450   0.6578  
## z.diff.lag11  0.10941    0.47844   0.229   0.8214  
## z.diff.lag12  0.89945    0.47609   1.889   0.0734 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06598 on 20 degrees of freedom
## Multiple R-squared:  0.9201, Adjusted R-squared:  0.8682 
## F-statistic: 17.72 on 13 and 20 DF,  p-value: 3.472e-08
## 
## 
## Value of test-statistic is: -1.1399 0.7962 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltip<-summary(ur.df(ten5, type="trend", lags=1))
adf3_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.167459 -0.023043  0.008974  0.030716  0.288431 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.022012   0.030129  -0.731   0.4692    
## z.lag.1     -1.545824   0.296672  -5.211 5.68e-06 ***
## tt           0.002184   0.001134   1.926   0.0611 .  
## z.diff.lag   0.042115   0.187652   0.224   0.8235    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09597 on 41 degrees of freedom
## Multiple R-squared:  0.6547, Adjusted R-squared:  0.6294 
## F-statistic: 25.91 on 3 and 41 DF,  p-value: 1.457e-09
## 
## 
## Value of test-statistic is: -5.2106 9.2992 13.8378 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Aplicación de pruebas para el índice de Precios del Dólar Paralelo (Dólartoday).

adf1_ltimaxdp<-summary(ur.df(timaxdp, lags=1))
adf1_ltimaxdp
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4923 -0.2680 -0.0871  0.1420  0.8793 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     0.043155   0.007269   5.937 3.88e-07 ***
## z.diff.lag -0.184301   0.160470  -1.149    0.257    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3179 on 45 degrees of freedom
## Multiple R-squared:  0.5701, Adjusted R-squared:  0.551 
## F-statistic: 29.83 on 2 and 45 DF,  p-value: 5.641e-09
## 
## 
## Value of test-statistic is: 5.9368 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltimaxdp<-summary(ur.df(timaxdp, type="drift", lags=12))
adf2_ltimaxdp
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.36318 -0.23433 -0.05626  0.17632  0.88273 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)   -0.6412     0.5148  -1.246    0.226
## z.lag.1        0.1407     0.1018   1.382    0.181
## z.diff.lag1   -0.3399     0.2615  -1.300    0.207
## z.diff.lag2   -0.1103     0.2735  -0.403    0.691
## z.diff.lag3   -0.2898     0.2746  -1.055    0.303
## z.diff.lag4   -0.3165     0.2814  -1.124    0.273
## z.diff.lag5   -0.1506     0.2919  -0.516    0.611
## z.diff.lag6   -0.2232     0.2869  -0.778    0.445
## z.diff.lag7   -0.0105     0.3001  -0.035    0.972
## z.diff.lag8   -0.1590     0.2787  -0.571    0.574
## z.diff.lag9    0.1974     0.2521   0.783    0.442
## z.diff.lag10  -0.1115     0.2543  -0.438    0.665
## z.diff.lag11  -0.1241     0.2705  -0.459    0.651
## z.diff.lag12   0.1751     0.2859   0.612    0.547
## 
## Residual standard error: 0.3664 on 22 degrees of freedom
## Multiple R-squared:  0.4933, Adjusted R-squared:  0.1939 
## F-statistic: 1.648 on 13 and 22 DF,  p-value: 0.146
## 
## 
## Value of test-statistic is: 1.3818 1.0792 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_timaxdp<-summary(ur.df(timaxdp, type="trend", lags=1))
adf3_timaxdp
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5099 -0.1979 -0.0120  0.1614  0.9695 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.251034   0.137828  -1.821   0.0755 .
## z.lag.1      0.061534   0.035732   1.722   0.0922 .
## tt           0.003012   0.009003   0.335   0.7396  
## z.diff.lag  -0.268990   0.161454  -1.666   0.1030  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3083 on 43 degrees of freedom
## Multiple R-squared:  0.3611, Adjusted R-squared:  0.3166 
## F-statistic: 8.103 on 3 and 43 DF,  p-value: 0.0002175
## 
## 
## Value of test-statistic is: 1.7221 14.1091 11.4526 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Primnera diferencia REGULAR

ten7<-diff(timaxdp,lag=1,difference=1)
ten7
##              Jan         Feb         Mar         Apr         May         Jun
## 2016  0.15691828  0.12856137  0.10025883  0.36534737  0.18559558  0.33599621
## 2017  0.10185301  0.07331491 -0.04998094 -0.09179806  0.02531268 -0.03698567
## 2018  0.19982174 -0.13278301  0.12211795  0.35506289  0.24192205  0.36298007
## 2019 -0.09387410  0.09479015  0.96830927  0.70170838  0.99937891  0.05148103
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2016  0.02980024  0.16435907 -0.04623778  0.12857906 -0.06998568  0.16632654
## 2017  0.02271319  0.04698542  0.33082746  1.10634747 -0.36052786  0.11347651
## 2018  0.46064714  0.49701589  0.34599275  0.85838193  0.13655042  0.74966211
## 2019  0.88890205  0.11714587  0.89000497  0.53113805  0.58671917  1.31325652
layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
ts.plot(ten7,main="Primera  diferencia Regular del Log del IDP",xlab="año",ylab="")
acf(ten7,main="Autocorrelación simple",lag.max=100)
pacf(ten7,main="Autocorrelación parcial",ci.col="red",ylab="",ylim=c(-.5,.5),lag.max=100)

#### Dickey Fuller:

adf1_ltimaxdp<-summary(ur.df(ten7, lags=1))
adf1_ltimaxdp
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.85176 -0.10055  0.05416  0.24264  0.99687 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -0.1508     0.1451  -1.040 0.304239    
## z.diff.lag  -0.5780     0.1396  -4.141 0.000154 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3641 on 44 degrees of freedom
## Multiple R-squared:  0.422,  Adjusted R-squared:  0.3957 
## F-statistic: 16.06 on 2 and 44 DF,  p-value: 5.789e-06
## 
## 
## Value of test-statistic is: -1.0395 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltimaxdp<-summary(ur.df(ten7, type="drift", lags=12))
adf2_ltimaxdp
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5123 -0.1847 -0.0308  0.1962  0.9761 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.07682    0.11525   0.667   0.5123  
## z.lag.1       0.20291    0.44276   0.458   0.6515  
## z.diff.lag1  -1.27693    0.51450  -2.482   0.0216 *
## z.diff.lag2  -1.14461    0.57303  -1.997   0.0589 .
## z.diff.lag3  -1.17977    0.60699  -1.944   0.0655 .
## z.diff.lag4  -1.19034    0.63642  -1.870   0.0754 .
## z.diff.lag5  -1.03470    0.65030  -1.591   0.1265  
## z.diff.lag6  -0.96371    0.64256  -1.500   0.1486  
## z.diff.lag7  -0.63644    0.62562  -1.017   0.3206  
## z.diff.lag8  -0.55488    0.57314  -0.968   0.3440  
## z.diff.lag9  -0.18764    0.51706  -0.363   0.7203  
## z.diff.lag10 -0.19757    0.46493  -0.425   0.6752  
## z.diff.lag11 -0.12871    0.39725  -0.324   0.7491  
## z.diff.lag12  0.21498    0.28131   0.764   0.4532  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3812 on 21 degrees of freedom
## Multiple R-squared:  0.6834, Adjusted R-squared:  0.4874 
## F-statistic: 3.487 on 13 and 21 DF,  p-value: 0.005415
## 
## 
## Value of test-statistic is: 0.4583 1.2425 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_timaxdp<-summary(ur.df(ten7, type="trend", lags=1))
adf3_timaxdp
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.53637 -0.19521  0.00381  0.15685  0.90219 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.073572   0.098563  -0.746 0.459561    
## z.lag.1     -1.002397   0.248298  -4.037 0.000225 ***
## tt           0.015414   0.004705   3.276 0.002114 ** 
## z.diff.lag  -0.159104   0.160757  -0.990 0.327981    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3172 on 42 degrees of freedom
## Multiple R-squared:   0.58,  Adjusted R-squared:   0.55 
## F-statistic: 19.34 on 3 and 42 DF,  p-value: 4.98e-08
## 
## 
## Value of test-statistic is: -4.0371 5.8021 8.4706 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Segunda Diferencia REGULAR.

ten8<-diff(ten7,lag=1,difference=1)
ten8
##              Jan         Feb         Mar         Apr         May         Jun
## 2016             -0.02835690 -0.02830254  0.26508854 -0.17975179  0.15040064
## 2017 -0.06447353 -0.02853811 -0.12329585 -0.04181711  0.11711073 -0.06229835
## 2018  0.08634523 -0.33260476  0.25490097  0.23294494 -0.11314083  0.12105802
## 2019 -0.84353622  0.18866426  0.87351911 -0.26660089  0.29767053 -0.94789787
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2016 -0.30619597  0.13455883 -0.21059685  0.17481684 -0.19856474  0.23631222
## 2017  0.05969886  0.02427223  0.28384204  0.77552000 -1.46687532  0.47400436
## 2018  0.09766707  0.03636875 -0.15102314  0.51238918 -0.72183151  0.61311169
## 2019  0.83742102 -0.77175618  0.77285909 -0.35886692  0.05558112  0.72653735
layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
ts.plot(ten8,main="Segunda Diferencia Regular del log del IDP",xlab="año",ylab="")
acf(ten8,main="Autocorrelación simple",lag.max=100)
pacf(ten8,main="Autocorrelación parcial",ci.col="red",ylab="",ylim=c(-.5,.5),lag.max=100)

adf1_ltip<-summary(ur.df(ten8, lags=1))
adf1_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.77398 -0.11394  0.04363  0.16439  1.02633 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## z.lag.1     -2.1626     0.2799  -7.726 1.16e-09 ***
## z.diff.lag   0.3051     0.1536   1.986   0.0534 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3567 on 43 degrees of freedom
## Multiple R-squared:  0.8301, Adjusted R-squared:  0.8222 
## F-statistic:   105 on 2 and 43 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -7.726 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.62 -1.95 -1.61
adf2_ltip<-summary(ur.df(ten8, type="drift", lags=12))
adf2_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression drift 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4415 -0.2346 -0.0095  0.2164  0.8998 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.13134    0.08275   1.587   0.1282  
## z.lag.1      -8.34002    4.04591  -2.061   0.0525 .
## z.diff.lag1   6.28802    3.95867   1.588   0.1279  
## z.diff.lag2   5.34677    3.77441   1.417   0.1720  
## z.diff.lag3   4.35093    3.52426   1.235   0.2313  
## z.diff.lag4   3.33699    3.21618   1.038   0.3119  
## z.diff.lag5   2.43881    2.85299   0.855   0.4028  
## z.diff.lag6   1.58855    2.46263   0.645   0.5262  
## z.diff.lag7   1.03483    2.06323   0.502   0.6215  
## z.diff.lag8   0.53354    1.67138   0.319   0.7529  
## z.diff.lag9   0.37625    1.30007   0.289   0.7753  
## z.diff.lag10  0.18879    0.94322   0.200   0.8434  
## z.diff.lag11  0.02127    0.60094   0.035   0.9721  
## z.diff.lag12  0.13947    0.27863   0.501   0.6222  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3886 on 20 degrees of freedom
## Multiple R-squared:  0.9016, Adjusted R-squared:  0.8376 
## F-statistic:  14.1 on 13 and 20 DF,  p-value: 2.527e-07
## 
## 
## Value of test-statistic is: -2.0613 2.2451 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau2 -3.58 -2.93 -2.60
## phi1  7.06  4.86  3.94
adf3_ltip<-summary(ur.df(ten8, type="trend", lags=1))
adf3_ltip
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression trend 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.86048 -0.14850  0.02526  0.12098  1.00266 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.034292   0.113001  -0.303   0.7631    
## z.lag.1     -2.179275   0.283582  -7.685 1.81e-09 ***
## tt           0.003028   0.004143   0.731   0.4690    
## z.diff.lag   0.313307   0.155578   2.014   0.0506 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3608 on 41 degrees of freedom
## Multiple R-squared:  0.8342, Adjusted R-squared:  0.8221 
## F-statistic: 68.77 on 3 and 41 DF,  p-value: 4.778e-16
## 
## 
## Value of test-statistic is: -7.6848 19.7999 29.6425 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2  7.02  5.13  4.31
## phi3  9.31  6.73  5.61

Gráficas en segundas diferencias de los índices.

ts.plot(ten3, ten5,ten8,col=c("blue", "red","black"), main="Gráfica de las Segundas Diferencias")
bandas<-expression("2DiffINPC","2DiffIBM","2DiffIDP")
legend(2016,-0.3,bandas,lty=1,col=c("blue","red","black"),cex=.9)

Pruebas de Causalidad en el sentido de Granger.

library(lmtest)

INPC

grangertest(ten3~ten5, order=1)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:1) + Lags(ten5, 1:1)
## Model 2: ten3 ~ Lags(ten3, 1:1)
##   Res.Df Df      F  Pr(>F)  
## 1     43                    
## 2     44 -1 3.4676 0.06943 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten3~ten5, order=2)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:2) + Lags(ten5, 1:2)
## Model 2: ten3 ~ Lags(ten3, 1:2)
##   Res.Df Df      F Pr(>F)
## 1     40                 
## 2     42 -2 1.7418 0.1882
grangertest(ten3~ten5, order=3)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:3) + Lags(ten5, 1:3)
## Model 2: ten3 ~ Lags(ten3, 1:3)
##   Res.Df Df      F Pr(>F)
## 1     37                 
## 2     40 -3 0.2776 0.8412
grangertest(ten3~ten5, order=4)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:4) + Lags(ten5, 1:4)
## Model 2: ten3 ~ Lags(ten3, 1:4)
##   Res.Df Df     F Pr(>F)
## 1     34                
## 2     38 -4 1.547 0.2108
grangertest(ten3~ten5, order=5)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:5) + Lags(ten5, 1:5)
## Model 2: ten3 ~ Lags(ten3, 1:5)
##   Res.Df Df     F Pr(>F)
## 1     31                
## 2     36 -5 1.403 0.2505
grangertest(ten3~ten5, order=6)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:6) + Lags(ten5, 1:6)
## Model 2: ten3 ~ Lags(ten3, 1:6)
##   Res.Df Df      F Pr(>F)
## 1     28                 
## 2     34 -6 1.1949 0.3378
grangertest(ten3~ten5, order=7)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:7) + Lags(ten5, 1:7)
## Model 2: ten3 ~ Lags(ten3, 1:7)
##   Res.Df Df      F Pr(>F)
## 1     25                 
## 2     32 -7 0.6968 0.6743
grangertest(ten3~ten5, order=8)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:8) + Lags(ten5, 1:8)
## Model 2: ten3 ~ Lags(ten3, 1:8)
##   Res.Df Df      F Pr(>F)
## 1     22                 
## 2     30 -8 0.5119 0.8345
grangertest(ten3~ten5, order=9)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:9) + Lags(ten5, 1:9)
## Model 2: ten3 ~ Lags(ten3, 1:9)
##   Res.Df Df      F Pr(>F)
## 1     19                 
## 2     28 -9 0.9422 0.5131
grangertest(ten3~ten5, order=10)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:10) + Lags(ten5, 1:10)
## Model 2: ten3 ~ Lags(ten3, 1:10)
##   Res.Df  Df      F Pr(>F)
## 1     16                  
## 2     26 -10 0.8812 0.5683
grangertest(ten3~ten5, order=11)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:11) + Lags(ten5, 1:11)
## Model 2: ten3 ~ Lags(ten3, 1:11)
##   Res.Df  Df      F Pr(>F)
## 1     13                  
## 2     24 -11 1.6962 0.1812
grangertest(ten3~ten5, order=12)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:12) + Lags(ten5, 1:12)
## Model 2: ten3 ~ Lags(ten3, 1:12)
##   Res.Df  Df      F Pr(>F)
## 1     10                  
## 2     22 -12 1.3874 0.3063

Base Monetaria

grangertest(ten5~ten3, order=1)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:1) + Lags(ten3, 1:1)
## Model 2: ten5 ~ Lags(ten5, 1:1)
##   Res.Df Df      F Pr(>F)
## 1     43                 
## 2     44 -1 0.5615 0.4577
grangertest(ten5~ten3, order=2)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:2) + Lags(ten3, 1:2)
## Model 2: ten5 ~ Lags(ten5, 1:2)
##   Res.Df Df      F    Pr(>F)    
## 1     40                        
## 2     42 -2 10.001 0.0003005 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=3)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:3) + Lags(ten3, 1:3)
## Model 2: ten5 ~ Lags(ten5, 1:3)
##   Res.Df Df      F   Pr(>F)   
## 1     37                      
## 2     40 -3 5.2643 0.003989 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=4)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:4) + Lags(ten3, 1:4)
## Model 2: ten5 ~ Lags(ten5, 1:4)
##   Res.Df Df      F  Pr(>F)  
## 1     34                    
## 2     38 -4 2.5149 0.05957 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=5)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:5) + Lags(ten3, 1:5)
## Model 2: ten5 ~ Lags(ten5, 1:5)
##   Res.Df Df      F Pr(>F)
## 1     31                 
## 2     36 -5 1.8773  0.127
grangertest(ten5~ten3, order=6)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:6) + Lags(ten3, 1:6)
## Model 2: ten5 ~ Lags(ten5, 1:6)
##   Res.Df Df      F  Pr(>F)  
## 1     28                    
## 2     34 -6 2.6273 0.03787 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=7)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:7) + Lags(ten3, 1:7)
## Model 2: ten5 ~ Lags(ten5, 1:7)
##   Res.Df Df     F  Pr(>F)   
## 1     25                    
## 2     32 -7 3.564 0.00855 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=8)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:8) + Lags(ten3, 1:8)
## Model 2: ten5 ~ Lags(ten5, 1:8)
##   Res.Df Df      F  Pr(>F)  
## 1     22                    
## 2     30 -8 2.6424 0.03391 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=9)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:9) + Lags(ten3, 1:9)
## Model 2: ten5 ~ Lags(ten5, 1:9)
##   Res.Df Df      F  Pr(>F)  
## 1     19                    
## 2     28 -9 2.0051 0.09663 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=10)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:10) + Lags(ten3, 1:10)
## Model 2: ten5 ~ Lags(ten5, 1:10)
##   Res.Df  Df      F  Pr(>F)  
## 1     16                     
## 2     26 -10 2.3144 0.06502 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten5~ten3, order=11)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:11) + Lags(ten3, 1:11)
## Model 2: ten5 ~ Lags(ten5, 1:11)
##   Res.Df  Df      F Pr(>F)
## 1     13                  
## 2     24 -11 1.7956  0.157
grangertest(ten5~ten3, order=12)
## Granger causality test
## 
## Model 1: ten5 ~ Lags(ten5, 1:12) + Lags(ten3, 1:12)
## Model 2: ten5 ~ Lags(ten5, 1:12)
##   Res.Df  Df      F Pr(>F)
## 1     10                  
## 2     22 -12 1.3835 0.3079

INPC Vs. Dólar Paralelo

grangertest(ten3~ten8, order=1)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:1) + Lags(ten8, 1:1)
## Model 2: ten3 ~ Lags(ten3, 1:1)
##   Res.Df Df      F Pr(>F)
## 1     43                 
## 2     44 -1 0.2855 0.5959
grangertest(ten3~ten8, order=2)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:2) + Lags(ten8, 1:2)
## Model 2: ten3 ~ Lags(ten3, 1:2)
##   Res.Df Df     F Pr(>F)
## 1     40                
## 2     42 -2 0.581  0.564
grangertest(ten3~ten8, order=3)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:3) + Lags(ten8, 1:3)
## Model 2: ten3 ~ Lags(ten3, 1:3)
##   Res.Df Df      F Pr(>F)
## 1     37                 
## 2     40 -3 0.6153 0.6094
grangertest(ten3~ten8, order=4)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:4) + Lags(ten8, 1:4)
## Model 2: ten3 ~ Lags(ten3, 1:4)
##   Res.Df Df      F  Pr(>F)  
## 1     34                    
## 2     38 -4 2.3361 0.07518 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten3~ten8, order=5)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:5) + Lags(ten8, 1:5)
## Model 2: ten3 ~ Lags(ten3, 1:5)
##   Res.Df Df     F Pr(>F)
## 1     31                
## 2     36 -5 2.001 0.1062
grangertest(ten3~ten8, order=6)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:6) + Lags(ten8, 1:6)
## Model 2: ten3 ~ Lags(ten3, 1:6)
##   Res.Df Df      F Pr(>F)
## 1     28                 
## 2     34 -6 1.9754 0.1032
grangertest(ten3~ten8, order=7)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:7) + Lags(ten8, 1:7)
## Model 2: ten3 ~ Lags(ten3, 1:7)
##   Res.Df Df      F Pr(>F)
## 1     25                 
## 2     32 -7 1.0463 0.4253
grangertest(ten3~ten8, order=8)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:8) + Lags(ten8, 1:8)
## Model 2: ten3 ~ Lags(ten3, 1:8)
##   Res.Df Df      F Pr(>F)
## 1     22                 
## 2     30 -8 0.9351 0.5082
grangertest(ten3~ten8, order=9)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:9) + Lags(ten8, 1:9)
## Model 2: ten3 ~ Lags(ten3, 1:9)
##   Res.Df Df      F Pr(>F)
## 1     19                 
## 2     28 -9 0.9642 0.4974
grangertest(ten3~ten8, order=10)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:10) + Lags(ten8, 1:10)
## Model 2: ten3 ~ Lags(ten3, 1:10)
##   Res.Df  Df      F Pr(>F)
## 1     16                  
## 2     26 -10 0.9871 0.4912
grangertest(ten3~ten8, order=11)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:11) + Lags(ten8, 1:11)
## Model 2: ten3 ~ Lags(ten3, 1:11)
##   Res.Df  Df      F Pr(>F)
## 1     13                  
## 2     24 -11 0.9256 0.5455
grangertest(ten3~ten8, order=12)
## Granger causality test
## 
## Model 1: ten3 ~ Lags(ten3, 1:12) + Lags(ten8, 1:12)
## Model 2: ten3 ~ Lags(ten3, 1:12)
##   Res.Df  Df      F Pr(>F)
## 1     10                  
## 2     22 -12 1.5771 0.2392

Se invierten valores.

grangertest(ten8~ten3, order=1)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:1) + Lags(ten3, 1:1)
## Model 2: ten8 ~ Lags(ten8, 1:1)
##   Res.Df Df      F Pr(>F)
## 1     43                 
## 2     44 -1 1.2992 0.2607
grangertest(ten8~ten3, order=2)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:2) + Lags(ten3, 1:2)
## Model 2: ten8 ~ Lags(ten8, 1:2)
##   Res.Df Df      F Pr(>F)
## 1     40                 
## 2     42 -2 1.2955  0.285
grangertest(ten8~ten3, order=3)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:3) + Lags(ten3, 1:3)
## Model 2: ten8 ~ Lags(ten8, 1:3)
##   Res.Df Df      F Pr(>F)
## 1     37                 
## 2     40 -3 0.9662  0.419
grangertest(ten8~ten3, order=4)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:4) + Lags(ten3, 1:4)
## Model 2: ten8 ~ Lags(ten8, 1:4)
##   Res.Df Df      F Pr(>F)
## 1     34                 
## 2     38 -4 0.7439 0.5688
grangertest(ten8~ten3, order=5)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:5) + Lags(ten3, 1:5)
## Model 2: ten8 ~ Lags(ten8, 1:5)
##   Res.Df Df      F Pr(>F)
## 1     31                 
## 2     36 -5 1.0424 0.4106
grangertest(ten8~ten3, order=6)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:6) + Lags(ten3, 1:6)
## Model 2: ten8 ~ Lags(ten8, 1:6)
##   Res.Df Df      F Pr(>F)
## 1     28                 
## 2     34 -6 1.1629 0.3538
grangertest(ten8~ten3, order=7)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:7) + Lags(ten3, 1:7)
## Model 2: ten8 ~ Lags(ten8, 1:7)
##   Res.Df Df      F Pr(>F)
## 1     25                 
## 2     32 -7 1.0115  0.447
grangertest(ten8~ten3, order=8)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:8) + Lags(ten3, 1:8)
## Model 2: ten8 ~ Lags(ten8, 1:8)
##   Res.Df Df      F Pr(>F)
## 1     22                 
## 2     30 -8 0.7145 0.6766
grangertest(ten8~ten3, order=9)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:9) + Lags(ten3, 1:9)
## Model 2: ten8 ~ Lags(ten8, 1:9)
##   Res.Df Df      F Pr(>F)
## 1     19                 
## 2     28 -9 0.6369 0.7524
grangertest(ten8~ten3, order=10)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:10) + Lags(ten3, 1:10)
## Model 2: ten8 ~ Lags(ten8, 1:10)
##   Res.Df  Df      F Pr(>F)
## 1     16                  
## 2     26 -10 0.8101 0.6235
grangertest(ten8~ten3, order=11)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:11) + Lags(ten3, 1:11)
## Model 2: ten8 ~ Lags(ten8, 1:11)
##   Res.Df  Df      F Pr(>F)
## 1     13                  
## 2     24 -11 0.7878 0.6499
grangertest(ten8~ten3, order=12)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:12) + Lags(ten3, 1:12)
## Model 2: ten8 ~ Lags(ten8, 1:12)
##   Res.Df  Df      F Pr(>F)
## 1     10                  
## 2     22 -12 1.0922 0.4508

Dólar paralelo a través de la Base monetaria.

grangertest(ten8~ten3, order=1)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:1) + Lags(ten3, 1:1)
## Model 2: ten8 ~ Lags(ten8, 1:1)
##   Res.Df Df      F Pr(>F)
## 1     43                 
## 2     44 -1 1.2992 0.2607
grangertest(ten8~ten3, order=2)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:2) + Lags(ten3, 1:2)
## Model 2: ten8 ~ Lags(ten8, 1:2)
##   Res.Df Df      F Pr(>F)
## 1     40                 
## 2     42 -2 1.2955  0.285
grangertest(ten8~ten3, order=3)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:3) + Lags(ten3, 1:3)
## Model 2: ten8 ~ Lags(ten8, 1:3)
##   Res.Df Df      F Pr(>F)
## 1     37                 
## 2     40 -3 0.9662  0.419
grangertest(ten8~ten3, order=4)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:4) + Lags(ten3, 1:4)
## Model 2: ten8 ~ Lags(ten8, 1:4)
##   Res.Df Df      F Pr(>F)
## 1     34                 
## 2     38 -4 0.7439 0.5688
grangertest(ten8~ten3, order=5)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:5) + Lags(ten3, 1:5)
## Model 2: ten8 ~ Lags(ten8, 1:5)
##   Res.Df Df      F Pr(>F)
## 1     31                 
## 2     36 -5 1.0424 0.4106
grangertest(ten8~ten3, order=6)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:6) + Lags(ten3, 1:6)
## Model 2: ten8 ~ Lags(ten8, 1:6)
##   Res.Df Df      F Pr(>F)
## 1     28                 
## 2     34 -6 1.1629 0.3538
grangertest(ten8~ten3, order=7)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:7) + Lags(ten3, 1:7)
## Model 2: ten8 ~ Lags(ten8, 1:7)
##   Res.Df Df      F Pr(>F)
## 1     25                 
## 2     32 -7 1.0115  0.447
grangertest(ten8~ten3, order=8)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:8) + Lags(ten3, 1:8)
## Model 2: ten8 ~ Lags(ten8, 1:8)
##   Res.Df Df      F Pr(>F)
## 1     22                 
## 2     30 -8 0.7145 0.6766
grangertest(ten8~ten3, order=9)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:9) + Lags(ten3, 1:9)
## Model 2: ten8 ~ Lags(ten8, 1:9)
##   Res.Df Df      F Pr(>F)
## 1     19                 
## 2     28 -9 0.6369 0.7524
grangertest(ten8~ten3, order=10)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:10) + Lags(ten3, 1:10)
## Model 2: ten8 ~ Lags(ten8, 1:10)
##   Res.Df  Df      F Pr(>F)
## 1     16                  
## 2     26 -10 0.8101 0.6235
grangertest(ten8~ten3, order=11)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:11) + Lags(ten3, 1:11)
## Model 2: ten8 ~ Lags(ten8, 1:11)
##   Res.Df  Df      F Pr(>F)
## 1     13                  
## 2     24 -11 0.7878 0.6499
grangertest(ten8~ten3, order=12)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:12) + Lags(ten3, 1:12)
## Model 2: ten8 ~ Lags(ten8, 1:12)
##   Res.Df  Df      F Pr(>F)
## 1     10                  
## 2     22 -12 1.0922 0.4508

Invertimos variables.

grangertest(ten8~ten5, order=1)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:1) + Lags(ten5, 1:1)
## Model 2: ten8 ~ Lags(ten8, 1:1)
##   Res.Df Df      F Pr(>F)
## 1     43                 
## 2     44 -1 0.0337 0.8552
grangertest(ten8~ten5, order=2)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:2) + Lags(ten5, 1:2)
## Model 2: ten8 ~ Lags(ten8, 1:2)
##   Res.Df Df      F Pr(>F)
## 1     40                 
## 2     42 -2 1.2477 0.2981
grangertest(ten8~ten5, order=3)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:3) + Lags(ten5, 1:3)
## Model 2: ten8 ~ Lags(ten8, 1:3)
##   Res.Df Df      F  Pr(>F)  
## 1     37                    
## 2     40 -3 2.8009 0.05331 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
grangertest(ten8~ten5, order=4)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:4) + Lags(ten5, 1:4)
## Model 2: ten8 ~ Lags(ten8, 1:4)
##   Res.Df Df      F Pr(>F)
## 1     34                 
## 2     38 -4 1.5524 0.2094
grangertest(ten8~ten5, order=5)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:5) + Lags(ten5, 1:5)
## Model 2: ten8 ~ Lags(ten8, 1:5)
##   Res.Df Df      F Pr(>F)
## 1     31                 
## 2     36 -5 1.0679  0.397
grangertest(ten8~ten5, order=6)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:6) + Lags(ten5, 1:6)
## Model 2: ten8 ~ Lags(ten8, 1:6)
##   Res.Df Df      F Pr(>F)
## 1     28                 
## 2     34 -6 1.0173 0.4344
grangertest(ten8~ten5, order=7)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:7) + Lags(ten5, 1:7)
## Model 2: ten8 ~ Lags(ten8, 1:7)
##   Res.Df Df      F Pr(>F)
## 1     25                 
## 2     32 -7 0.9262 0.5036
grangertest(ten8~ten5, order=8)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:8) + Lags(ten5, 1:8)
## Model 2: ten8 ~ Lags(ten8, 1:8)
##   Res.Df Df      F Pr(>F)
## 1     22                 
## 2     30 -8 1.5383  0.201
grangertest(ten8~ten5, order=9)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:9) + Lags(ten5, 1:9)
## Model 2: ten8 ~ Lags(ten8, 1:9)
##   Res.Df Df      F Pr(>F)
## 1     19                 
## 2     28 -9 1.7783 0.1392
grangertest(ten8~ten5, order=10)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:10) + Lags(ten5, 1:10)
## Model 2: ten8 ~ Lags(ten8, 1:10)
##   Res.Df  Df      F Pr(>F)
## 1     16                  
## 2     26 -10 1.3075 0.3052
grangertest(ten8~ten5, order=11)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:11) + Lags(ten5, 1:11)
## Model 2: ten8 ~ Lags(ten8, 1:11)
##   Res.Df  Df      F Pr(>F)
## 1     13                  
## 2     24 -11 1.0793 0.4422
grangertest(ten8~ten5, order=12)
## Granger causality test
## 
## Model 1: ten8 ~ Lags(ten8, 1:12) + Lags(ten5, 1:12)
## Model 2: ten8 ~ Lags(ten8, 1:12)
##   Res.Df  Df     F Pr(>F)
## 1     10                 
## 2     22 -12 0.796 0.6509

Elaboración del Vector Autorregresivo

model<-ts(Var.lin,start=2015,freq=12)
model1<-diff(diff(model))
var1<-VAR(model1,p=1)
var1
## 
## VAR Estimation Results:
## ======================= 
## 
## Estimated coefficients for equation INPC: 
## ========================================= 
## Call:
## INPC = INPC.l1 + IBM.l1 + IDP.l1 + const 
## 
##       INPC.l1        IBM.l1        IDP.l1         const 
##  8.390897e-01 -6.020032e-02 -4.382424e-02  8.261831e+05 
## 
## 
## Estimated coefficients for equation IBM: 
## ======================================== 
## Call:
## IBM = INPC.l1 + IBM.l1 + IDP.l1 + const 
## 
##      INPC.l1       IBM.l1       IDP.l1        const 
## 3.103139e-01 3.667736e-01 1.220480e-01 1.365071e+06 
## 
## 
## Estimated coefficients for equation IDP: 
## ======================================== 
## Call:
## IDP = INPC.l1 + IBM.l1 + IDP.l1 + const 
## 
##       INPC.l1        IBM.l1        IDP.l1         const 
##  2.235000e+01 -5.229013e+00 -1.083764e+00  7.674906e+06
summary(var1)
## 
## VAR Estimation Results:
## ========================= 
## Endogenous variables: INPC, IBM, IDP 
## Deterministic variables: const 
## Sample size: 57 
## Log Likelihood: -3037.75 
## Roots of the characteristic polynomial:
## 0.9221 0.9221 0.5267
## Call:
## VAR(y = model1, p = 1)
## 
## 
## Estimation results for equation INPC: 
## ===================================== 
## INPC = INPC.l1 + IBM.l1 + IDP.l1 + const 
## 
##           Estimate Std. Error t value Pr(>|t|)    
## INPC.l1  8.391e-01  1.130e-01   7.425 9.36e-10 ***
## IBM.l1  -6.020e-02  3.462e-02  -1.739   0.0879 .  
## IDP.l1  -4.382e-02  4.686e-03  -9.353 8.28e-13 ***
## const    8.262e+05  6.622e+05   1.248   0.2177    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 4759000 on 53 degrees of freedom
## Multiple R-Squared: 0.6365,  Adjusted R-squared: 0.6159 
## F-statistic: 30.94 on 3 and 53 DF,  p-value: 1.071e-11 
## 
## 
## Estimation results for equation IBM: 
## ==================================== 
## IBM = INPC.l1 + IBM.l1 + IDP.l1 + const 
## 
##          Estimate Std. Error t value Pr(>|t|)    
## INPC.l1 3.103e-01  1.748e-01   1.776   0.0815 .  
## IBM.l1  3.668e-01  5.354e-02   6.851 7.85e-09 ***
## IDP.l1  1.220e-01  7.246e-03  16.844  < 2e-16 ***
## const   1.365e+06  1.024e+06   1.333   0.1882    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 7359000 on 53 degrees of freedom
## Multiple R-Squared: 0.9061,  Adjusted R-squared: 0.9008 
## F-statistic: 170.4 on 3 and 53 DF,  p-value: < 2.2e-16 
## 
## 
## Estimation results for equation IDP: 
## ==================================== 
## IDP = INPC.l1 + IBM.l1 + IDP.l1 + const 
## 
##           Estimate Std. Error t value Pr(>|t|)    
## INPC.l1  2.235e+01  1.861e+00  12.009  < 2e-16 ***
## IBM.l1  -5.229e+00  5.701e-01  -9.171 1.58e-12 ***
## IDP.l1  -1.084e+00  7.716e-02 -14.045  < 2e-16 ***
## const    7.675e+06  1.091e+07   0.704    0.485    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 78370000 on 53 degrees of freedom
## Multiple R-Squared: 0.8278,  Adjusted R-squared: 0.8181 
## F-statistic: 84.94 on 3 and 53 DF,  p-value: < 2.2e-16 
## 
## 
## 
## Covariance matrix of residuals:
##            INPC       IBM        IDP
## INPC  2.265e+13 1.858e+13 -2.401e+13
## IBM   1.858e+13 5.416e+13  1.315e+14
## IDP  -2.401e+13 1.315e+14  6.142e+15
## 
## Correlation matrix of residuals:
##          INPC    IBM      IDP
## INPC  1.00000 0.5306 -0.06437
## IBM   0.53058 1.0000  0.22793
## IDP  -0.06437 0.2279  1.00000
plot(var1)

bv.serial <- serial.test(var1, lags.pt = 12, type = "PT.asymptotic")
bv.serial
## 
##  Portmanteau Test (asymptotic)
## 
## data:  Residuals of VAR object var1
## Chi-squared = 193.19, df = 99, p-value = 4.748e-08

Función de impulso respuesta acumulativa

var1_irflp<-irf(var1, response="INPC", n.ahead=40, cumulative=TRUE,boot=TRUE)
var1_irflp
## 
## Impulse response coefficients
## $INPC
##           INPC
##  [1,]  4759123
##  [2,]  8738482
##  [3,]  7933231
##  [4,]  7430578
##  [5,]  9664531
##  [6,]  9896959
##  [7,]  8276683
##  [8,]  8931240
##  [9,] 10147740
## [10,]  9153513
## [11,]  8550083
## [12,]  9654776
## [13,]  9728905
## [14,]  8763763
## [15,]  9093431
## [16,]  9781898
## [17,]  9223636
## [18,]  8864408
## [19,]  9484624
## [20,]  9539238
## [21,]  8989804
## [22,]  9165688
## [23,]  9561736
## [24,]  9251946
## [25,]  9040519
## [26,]  9389486
## [27,]  9428078
## [28,]  9115729
## [29,]  9209288
## [30,]  9437033
## [31,]  9265333
## [32,]  9141145
## [33,]  9337391
## [34,]  9363591
## [35,]  9186118
## [36,]  9235644
## [37,]  9366516
## [38,]  9271452
## [39,]  9198631
## [40,]  9308929
## [41,]  9326225
## 
## $IBM
##              INPC
##  [1,]        0.00
##  [2,] -1437492.68
##  [3,]  -379041.09
##  [4,]   666204.31
##  [5,]  -524443.33
##  [6,]  -861840.12
##  [7,]   323801.79
##  [8,]   150321.44
##  [9,]  -777490.59
## [10,]  -249226.47
## [11,]   328806.17
## [12,]  -352771.67
## [13,]  -567741.00
## [14,]    99209.68
## [15,]    12375.98
## [16,]  -519501.88
## [17,]  -230409.71
## [18,]   104925.85
## [19,]  -276554.74
## [20,]  -407345.04
## [21,]   -30040.88
## [22,]   -71479.49
## [23,]  -375543.49
## [24,]  -217283.81
## [25,]   -22761.30
## [26,]  -236036.06
## [27,]  -315153.43
## [28,]  -101790.06
## [29,]  -120840.28
## [30,]  -294560.83
## [31,]  -208075.52
## [32,]   -95348.11
## [33,]  -214497.65
## [34,]  -262145.29
## [35,]  -141551.47
## [36,]  -149827.13
## [37,]  -249022.77
## [38,]  -201851.73
## [39,]  -136588.37
## [40,]  -203104.29
## [41,]  -231687.36
## 
## $IDP
##             INPC
##  [1,]        0.0
##  [2,] -3258767.6
##  [3,] -3007776.3
##  [4,]  -900554.6
##  [5,] -2262677.8
##  [6,] -3659361.7
##  [7,] -2018171.1
##  [8,] -1537819.9
##  [9,] -3150501.1
## [10,] -2918475.7
## [11,] -1647370.6
## [12,] -2362279.6
## [13,] -3155637.1
## [14,] -2227667.4
## [15,] -1928994.0
## [16,] -2839167.7
## [17,] -2725020.6
## [18,] -1997331.6
## [19,] -2388850.4
## [20,] -2849235.7
## [21,] -2330058.4
## [22,] -2148643.2
## [23,] -2663515.1
## [24,] -2609464.0
## [25,] -2193525.2
## [26,] -2407773.3
## [27,] -2674773.0
## [28,] -2384565.9
## [29,] -2274945.8
## [30,] -2566067.8
## [31,] -2541494.1
## [32,] -2303888.1
## [33,] -2420918.0
## [34,] -2575610.6
## [35,] -2413509.4
## [36,] -2347555.7
## [37,] -2512078.9
## [38,] -2501595.7
## [39,] -2365939.0
## [40,] -2429739.1
## [41,] -2519278.2
## 
## 
## Lower Band, CI= 0.95 
## $INPC
##          INPC
##  [1,] 2699339
##  [2,] 3931013
##  [3,] 3251389
##  [4,] 3561942
##  [5,] 4819239
##  [6,] 4338932
##  [7,] 3418460
##  [8,] 4550426
##  [9,] 4752228
## [10,] 3893291
## [11,] 4115673
## [12,] 4717802
## [13,] 4326070
## [14,] 3820968
## [15,] 4549827
## [16,] 4603475
## [17,] 4074266
## [18,] 4321184
## [19,] 4608278
## [20,] 4340786
## [21,] 4135264
## [22,] 4520996
## [23,] 4516699
## [24,] 4233942
## [25,] 4438504
## [26,] 4549122
## [27,] 4375694
## [28,] 4350622
## [29,] 4523222
## [30,] 4473007
## [31,] 4357761
## [32,] 4474678
## [33,] 4517026
## [34,] 4408559
## [35,] 4453062
## [36,] 4513117
## [37,] 4459594
## [38,] 4425341
## [39,] 4494829
## [40,] 4494045
## [41,] 4433391
## 
## $IBM
##             INPC
##  [1,]        0.0
##  [2,] -4374097.7
##  [3,] -2816985.5
##  [4,]  -243972.9
##  [5,] -2885130.4
##  [6,] -3888660.7
##  [7,] -1508009.5
##  [8,] -1532346.3
##  [9,] -3770440.5
## [10,] -2761545.2
## [11,] -1109570.1
## [12,] -2971209.5
## [13,] -3099108.2
## [14,] -2065324.3
## [15,] -2106220.8
## [16,] -3119636.7
## [17,] -2555514.8
## [18,] -1742312.7
## [19,] -2831292.6
## [20,] -2676325.5
## [21,] -2154838.1
## [22,] -2310967.6
## [23,] -2639370.7
## [24,] -2414607.7
## [25,] -2041709.5
## [26,] -2621310.5
## [27,] -2406165.3
## [28,] -2147687.6
## [29,] -2349841.0
## [30,] -2405528.3
## [31,] -2302941.3
## [32,] -2157975.1
## [33,] -2420120.8
## [34,] -2280486.8
## [35,] -2227527.4
## [36,] -2327378.5
## [37,] -2286436.6
## [38,] -2262923.6
## [39,] -2224278.3
## [40,] -2318066.2
## [41,] -2228646.3
## 
## $IDP
##           INPC
##  [1,]        0
##  [2,] -4072489
##  [3,] -3626020
##  [4,] -1669359
##  [5,] -3004896
##  [6,] -4696401
##  [7,] -2935907
##  [8,] -2538596
##  [9,] -4166709
## [10,] -3900764
## [11,] -2903144
## [12,] -3280686
## [13,] -4095320
## [14,] -3285097
## [15,] -2994383
## [16,] -3862612
## [17,] -3758564
## [18,] -3237023
## [19,] -3355517
## [20,] -3762453
## [21,] -3343133
## [22,] -3180356
## [23,] -3601023
## [24,] -3638677
## [25,] -3296403
## [26,] -3363986
## [27,] -3578408
## [28,] -3346365
## [29,] -3303388
## [30,] -3529669
## [31,] -3494913
## [32,] -3314554
## [33,] -3319992
## [34,] -3510106
## [35,] -3330174
## [36,] -3316314
## [37,] -3506522
## [38,] -3490227
## [39,] -3320782
## [40,] -3394609
## [41,] -3497416
## 
## 
## Upper Band, CI= 0.95 
## $INPC
##           INPC
##  [1,]  5872626
##  [2,] 11731373
##  [3,] 11915280
##  [4,] 11803996
##  [5,] 14717781
##  [6,] 15644579
##  [7,] 14397060
##  [8,] 14879705
##  [9,] 16462063
## [10,] 15610604
## [11,] 15126644
## [12,] 16077407
## [13,] 16256790
## [14,] 15520929
## [15,] 15660615
## [16,] 16449937
## [17,] 15811716
## [18,] 15626994
## [19,] 16072417
## [20,] 16137579
## [21,] 15706006
## [22,] 15802943
## [23,] 16305389
## [24,] 15820374
## [25,] 15750908
## [26,] 16022377
## [27,] 16041156
## [28,] 15773540
## [29,] 15835018
## [30,] 16199944
## [31,] 15825365
## [32,] 15801656
## [33,] 15980191
## [34,] 15974613
## [35,] 15806928
## [36,] 15844881
## [37,] 16113401
## [38,] 15831223
## [39,] 15824814
## [40,] 15943454
## [41,] 15922963
## 
## $IBM
##          INPC
##  [1,]       0
##  [2,] 1152489
##  [3,] 1583464
##  [4,] 1350325
##  [5,] 1217772
##  [6,] 1747107
##  [7,] 1776645
##  [8,] 1337954
##  [9,] 1690346
## [10,] 1779544
## [11,] 1747010
## [12,] 1450428
## [13,] 1737906
## [14,] 1859229
## [15,] 1437672
## [16,] 1625560
## [17,] 1684108
## [18,] 1713669
## [19,] 1495575
## [20,] 1633121
## [21,] 1790673
## [22,] 1491899
## [23,] 1583869
## [24,] 1617429
## [25,] 1679884
## [26,] 1503902
## [27,] 1584272
## [28,] 1721481
## [29,] 1512592
## [30,] 1551987
## [31,] 1584709
## [32,] 1640302
## [33,] 1520700
## [34,] 1566639
## [35,] 1663066
## [36,] 1519997
## [37,] 1548351
## [38,] 1561520
## [39,] 1600132
## [40,] 1531979
## [41,] 1555531
## 
## $IDP
##             INPC
##  [1,]       0.00
##  [2,] -897619.36
##  [3,] -754063.60
##  [4,]  -49208.63
##  [5,] -590662.45
##  [6,] -955946.23
##  [7,] -356977.23
##  [8,] -372025.66
##  [9,] -857399.40
## [10,] -676437.87
## [11,] -323375.24
## [12,] -627218.93
## [13,] -827723.61
## [14,] -422382.90
## [15,] -471612.71
## [16,] -780700.50
## [17,] -567540.62
## [18,] -465048.62
## [19,] -646659.41
## [20,] -748700.75
## [21,] -516118.05
## [22,] -518005.41
## [23,] -739227.75
## [24,] -543762.88
## [25,] -532277.80
## [26,] -658216.53
## [27,] -695726.13
## [28,] -567596.34
## [29,] -541853.67
## [30,] -720762.25
## [31,] -577878.12
## [32,] -552277.30
## [33,] -662628.47
## [34,] -658294.26
## [35,] -571737.07
## [36,] -559456.73
## [37,] -701430.21
## [38,] -575891.94
## [39,] -561994.10
## [40,] -661561.52
## [41,] -630984.03
plot(var1_irflp)

Descomposición de la varianza

var1_fevd_d2lp<-fevd(var1, n.ahead=50)$INPC
var1_fevd_d2lp
##            INPC        IBM       IDP
##  [1,] 1.0000000 0.00000000 0.0000000
##  [2,] 0.7520847 0.04038235 0.2075330
##  [3,] 0.7383268 0.06012396 0.2015493
##  [4,] 0.6699625 0.07279131 0.2572462
##  [5,] 0.6618234 0.08496296 0.2532136
##  [6,] 0.6423337 0.08400640 0.2736599
##  [7,] 0.6200118 0.09508549 0.2849027
##  [8,] 0.6200259 0.09462266 0.2853514
##  [9,] 0.6005969 0.09944647 0.2999566
## [10,] 0.6029491 0.10122875 0.2958222
## [11,] 0.5908417 0.10240163 0.3067567
## [12,] 0.5899587 0.10514527 0.3048960
## [13,] 0.5854568 0.10485670 0.3096865
## [14,] 0.5812648 0.10718527 0.3115499
## [15,] 0.5811462 0.10702525 0.3118285
## [16,] 0.5762877 0.10825510 0.3154572
## [17,] 0.5771137 0.10868092 0.3142054
## [18,] 0.5737256 0.10898822 0.3172862
## [19,] 0.5736461 0.10974450 0.3166094
## [20,] 0.5722642 0.10965572 0.3180801
## [21,] 0.5711406 0.11033123 0.3185281
## [22,] 0.5710721 0.11027312 0.3186548
## [23,] 0.5696378 0.11064744 0.3197148
## [24,] 0.5699032 0.11076601 0.3193308
## [25,] 0.5688500 0.11086548 0.3202845
## [26,] 0.5688554 0.11109301 0.3200516
## [27,] 0.5684032 0.11106678 0.3205300
## [28,] 0.5680748 0.11127724 0.3206480
## [29,] 0.5680411 0.11125660 0.3207023
## [30,] 0.5675969 0.11137698 0.3210261
## [31,] 0.5676814 0.11141111 0.3209075
## [32,] 0.5673442 0.11144507 0.3212108
## [33,] 0.5673528 0.11151533 0.3211318
## [34,] 0.5672023 0.11150781 0.3212899
## [35,] 0.5671039 0.11157472 0.3213213
## [36,] 0.5670890 0.11156751 0.3213435
## [37,] 0.5669495 0.11160685 0.3214436
## [38,] 0.5669763 0.11161671 0.3214070
## [39,] 0.5668674 0.11162845 0.3215041
## [40,] 0.5668721 0.11165030 0.3214776
## [41,] 0.5668218 0.11164821 0.3215300
## [42,] 0.5667922 0.11166960 0.3215382
## [43,] 0.5667860 0.11166711 0.3215469
## [44,] 0.5667421 0.11168002 0.3215779
## [45,] 0.5667505 0.11168286 0.3215667
## [46,] 0.5667152 0.11168691 0.3215978
## [47,] 0.5667173 0.11169371 0.3215890
## [48,] 0.5667005 0.11169316 0.3216063
## [49,] 0.5666916 0.11170000 0.3216084
## [50,] 0.5666892 0.11169916 0.3216117
var1_fevd_d2lm2<-fevd(var1, n.ahead=50)$IBM
var1_fevd_d2lm2
##            INPC       IBM       IDP
##  [1,] 0.2815173 0.7184827 0.0000000
##  [2,] 0.1211240 0.3923734 0.4865026
##  [3,] 0.4512332 0.2283957 0.3203711
##  [4,] 0.4119963 0.2079535 0.3800503
##  [5,] 0.3956079 0.2124219 0.3919702
##  [6,] 0.4064207 0.2078064 0.3857730
##  [7,] 0.3900522 0.2015783 0.4083695
##  [8,] 0.4039120 0.2024282 0.3936598
##  [9,] 0.3880963 0.1987705 0.4131332
## [10,] 0.3973874 0.1993931 0.4032195
## [11,] 0.3912821 0.1971723 0.4115455
## [12,] 0.3919295 0.1971838 0.4108866
## [13,] 0.3931830 0.1964855 0.4103315
## [14,] 0.3893534 0.1957400 0.4149066
## [15,] 0.3930346 0.1958779 0.4110875
## [16,] 0.3891015 0.1949839 0.4159146
## [17,] 0.3916262 0.1952556 0.4131182
## [18,] 0.3898638 0.1946497 0.4154866
## [19,] 0.3901856 0.1946977 0.4151166
## [20,] 0.3904680 0.1944859 0.4150462
## [21,] 0.3894067 0.1942986 0.4162947
## [22,] 0.3904880 0.1943361 0.4151759
## [23,] 0.3893067 0.1940756 0.4166177
## [24,] 0.3900985 0.1941638 0.4157377
## [25,] 0.3895301 0.1939760 0.4164939
## [26,] 0.3896614 0.1939983 0.4163403
## [27,] 0.3897245 0.1939283 0.4163473
## [28,] 0.3894111 0.1938751 0.4167139
## [29,] 0.3897428 0.1938847 0.4163726
## [30,] 0.3893716 0.1938044 0.4168240
## [31,] 0.3896275 0.1938327 0.4165398
## [32,] 0.3894390 0.1937725 0.4167885
## [33,] 0.3894902 0.1937812 0.4167287
## [34,] 0.3895022 0.1937575 0.4167403
## [35,] 0.3894082 0.1937419 0.4168499
## [36,] 0.3895111 0.1937442 0.4167447
## [37,] 0.3893930 0.1937190 0.4168879
## [38,] 0.3894764 0.1937281 0.4167955
## [39,] 0.3894135 0.1937086 0.4168779
## [40,] 0.3894328 0.1937118 0.4168554
## [41,] 0.3894340 0.1937038 0.4168622
## [42,] 0.3894058 0.1936992 0.4168950
## [43,] 0.3894378 0.1936996 0.4168626
## [44,] 0.3894001 0.1936917 0.4169081
## [45,] 0.3894273 0.1936946 0.4168781
## [46,] 0.3894063 0.1936883 0.4169054
## [47,] 0.3894134 0.1936894 0.4168971
## [48,] 0.3894130 0.1936867 0.4169003
## [49,] 0.3894046 0.1936854 0.4169100
## [50,] 0.3894145 0.1936854 0.4169001
var1_fevd_d2lm2d<-fevd(var1, n.ahead=50)$IMAXDP
var1_fevd_d2lm2d
## NULL
var.2c.fevd <- fevd(var1, n.ahead = 12)
plot(var.2c.fevd)

#### Pruebas de estabilidad del modelo

var.2c.stabil <- stability(var1, type = "Rec-CUSUM")
plot(var.2c.stabil)

var.2c.stabil <- stability(var1, type = "OLS-CUSUM")
plot(var.2c.stabil)

var.2c.stabil <- stability(var1, type = "Rec-MOSUM")
plot(var.2c.stabil)

var.2c.stabil <- stability(var1, type = "OLS-MOSUM")
plot(var.2c.stabil)

var.2c.stabil <- stability(var1, type = "RE")
plot(var.2c.stabil)

var.2c.stabil <- stability(var1, type = "fluctuation")
plot(var.2c.stabil)

Predicciones

var.2c.prd <- predict(var1, n.ahead = 8, ci = 0.95)
plot(var.2c.prd)

fanchart(var.2c.prd)

var.2c.prd 
## $INPC
##           fcst     lower    upper       CI
## [1,] -12116937 -21444646 -2789228  9327709
## [2,]  21501169   7480849 35521489 14020320
## [3,]   3535326 -10733729 17804382 14269055
## [4,] -17206565 -32234240 -2178890 15027675
## [5,]   6765431  -9283718 22814580 16049149
## [6,]  14863490  -1437235 31164214 16300725
## [7,]  -8712838 -25787547  8361871 17074709
## [8,]  -6015669 -23167740 11136401 17152071
## 
## $IBM
##           fcst      lower     upper       CI
## [1,]   8204821   -6219343  22628986 14424164
## [2,] -86654970 -112157029 -61152911 25502059
## [3,]  33482013   -7326915  74290941 40808928
## [4,]  67610629   24509056 110712201 43101573
## [5,] -47260859  -96599724   2078006 49338865
## [6,] -29229586  -79317375  20858203 50087789
## [7,]  61456137    7087486 115824789 54368651
## [8,]   9592308  -45963984  65148601 55556293
## 
## $IDP
##            fcst      lower      upper        CI
## [1,] -715040712 -868645542 -561435883 153604830
## [2,]  468894001  162358899  775429103 306535102
## [3,]  433175251  116813537  749536965 316361714
## [4,] -557848371 -944622477 -171074265 386774106
## [5,] -125852363 -526295848  274591123 400443485
## [6,]  542404221  110596917  974211526 431807305
## [7,]  -95122687 -548505043  358259669 453382356
## [8,] -405321332 -867961760   57319096 462640428
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##   method             from    
##   fitted.fracdiff    fracdiff
##   residuals.fracdiff fracdiff
forecast(var1)
## INPC
##          Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## Jan 2020      -12116937 -18215998 -6017876 -21444646 -2789228
## Feb 2020       21501169  12333774 30668563   7480849 35521489
## Mar 2020        3535326  -5794708 12865360 -10733729 17804382
## Apr 2020      -17206565 -27032633 -7380496 -32234240 -2178890
## May 2020        6765431  -3728543 17259405  -9283718 22814580
## Jun 2020       14863490   4205018 25521961  -1437235 31164214
## Jul 2020       -8712838 -19877390  2451714 -25787547  8361871
## Aug 2020       -6015669 -17230806  5199467 -23167740 11136401
## Sep 2020       12963936   1392636 24535236  -4732840 30660713
## Oct 2020        3003703  -8660996 14668401 -14835915 20843320
## 
## IBM
##          Point Forecast      Lo 80     Hi 80      Lo 95     Hi 95
## Jan 2020        8204821   -1226633  17636275   -6219343  22628986
## Feb 2020      -86654970 -103329870 -69980070 -112157029 -61152911
## Mar 2020       33482013    6798489  60165536   -7326915  74290941
## Apr 2020       67610629   39428025  95793232   24509056 110712201
## May 2020      -47260859  -79521809 -14999909  -96599724   2078006
## Jun 2020      -29229586  -61980231   3521059  -79317375  20858203
## Jul 2020       61456137   25906387  97005888    7087486 115824789
## Aug 2020        9592308  -26733999  45918615  -45963984  65148601
## Sep 2020      -46452133  -83906638  -8997628 -103733855  10829590
## Oct 2020       20368534  -18276224  59013291  -38733523  79470590
## 
## IDP
##          Point Forecast      Lo 80      Hi 80      Lo 95      Hi 95
## Jan 2020     -715040712 -815477512 -614603913 -868645542 -561435883
## Feb 2020      468894001  268461471  669326531  162358899  775429103
## Mar 2020      433175251  226317445  640033057  116813537  749536965
## Apr 2020     -557848371 -810746365 -304950376 -944622477 -171074265
## May 2020     -125852363 -387688284  135983559 -526295848  274591123
## Jun 2020      542404221  260060601  824747842  110596917  974211526
## Jul 2020      -95122687 -391573476  201328101 -548505043  358259669
## Aug 2020     -405321332 -707825648 -102817016 -867961760   57319096
## Sep 2020      262339271  -54900738  579579280 -222837455  747515997
## Oct 2020      256003657  -62642763  574650077 -231323989  743331302
plot(forecast(var1,h=12))