2013/05/04: TSIR Measles in Baltimore 1920-1950

## data mangement stuff

BAL <- read.csv("C:/Users/Lisa/Desktop/677/Baltimore.BWK.csv", header = T, stringsAsFactors = FALSE)

BAL <- BAL[seq(1, length(BAL$CASES), by = 2), ]

BAL <- BAL[c(1:744), ]

BAL$CASES <- as.numeric(BAL$CASES)
## Warning: NAs introduced by coercion
BAL$CASES.i <- as.numeric(BAL$CASES.i)
BAL$TMAX <- as.numeric(BAL$TMAX)
BAL$TMIN <- as.numeric(BAL$TMIN)
BAL$WEEK <- as.numeric(BAL$WEEK)
BAL$BWK <- as.numeric(BAL$BWK)
BAL$BWK.c <- as.numeric(BAL$BWK.c)

## this is what the data looks like
head(BAL)
##    YEAR WEEK BWK.c CASES CASES.i    TMAX   TMIN    RATE    B     POP BWK
## 1  1920    1     1   181     181  24.214 -46.14 0.01970 1447 1914686   1
## 3  1920    3     2   274     274   4.429 -61.79 0.01970 1447 1914686   2
## 5  1920    5     3   270     270  47.929 -32.14 0.01977 1454 1914691   3
## 7  1920    7     4   323     323  46.786 -26.57 0.01982 1456 1914666   4
## 9  1920    9     5   308     308  46.786 -48.86 0.01971 1444 1914656   5
## 11 1920   11     6   372     372 133.357  23.00 0.01962 1441 1914647   6

## plot cumulative births (x) and cumulative cases (y). 1 to 1 is plotted
## in red
plot(cumsum(BAL$B), cumsum(BAL$CASES.i), type = "l")
x <- c(1:1e+06)
lines(x, x, col = "red")

plot of chunk unnamed-chunk-1


## fit a smooth spline of cumulative measles on cumulative births with 2.5
## degrees of freedom

cum.reg <- smooth.spline(cumsum(BAL$B), cumsum(BAL$CASES.i), df = 2.5)

## predict points using the smooth spline and calculate residuals, D
D <- predict(cum.reg)$y - cumsum(BAL$CASES.i)

B <- BAL$B

plot(D, type = "l")

plot of chunk unnamed-chunk-1


## under reporting is given by slope of smooth spline
u <- predict(cum.reg, deriv = 1)$y

## Ic are actual cases - reported cases divided by u
Ic = BAL$CASES.i/u

plot(Ic, type = "l")

plot of chunk unnamed-chunk-1


lIt = log(Ic[2:745])
lItm1 = log(Ic[1:744])
Dtm1 = D[1:744]

## remove values of -Inf from I - glm function does not like these!
for (i in 1:743) {
    if (lIt[i] == -Inf) {
        lIt[i] <- 0
    }
}

for (i in 1:length(lItm1)) {
    if (lItm1[i] == -Inf) {
        lItm1[i] <- 0
    }
}

## mean populaiton estimate
pop = mean(BAL$POP)
seas = rep(1:26, length(BAL$CASES))[1:744]

seas <- as.factor(seas)

## test Smeans from 1% to whole population
Smean = seq(0.01, 1, by = 0.001) * pop

## this is a place to store the likelihoods of the data for each setting
## of Smean
llik = rep(NA, length(Smean))

## now perform the log linear regressions at each Smean
for (i in 1:length(Smean)) {
    lStm1 = log(Smean[i] + Dtm1)
    glmfit = glm(lIt ~ -1 + as.factor(seas) + lItm1 + offset(lStm1))
    llik[i] = glmfit$deviance
}

## plot likelihood curve
plot(Smean, llik, type = "l", xlim = c(0, 2e+05))

plot of chunk unnamed-chunk-1


## The Smean we want to use is the one that minimizes the log likelihood
sbar <- Smean[which(llik == min(llik))]
sbar
## [1] 46576

plot(D + sbar, type = "l")

plot of chunk unnamed-chunk-1


sbar.def <- sbar
D.def <- D
B.def <- BAL$B
alpha.def <- 0.95


## TSIR code

## pass B, sbar, and D results from above and guess at coefficients for
## Beta function

runTSIR <- function(alpha = alpha.def, B = B.def, sbar = sbar.def, D = D.def, 
    guess = c(x1 = 3.8e-05, x2 = -0.4), initial.state = c(S = sbar.def - 181, 
        I = 181, R = BAL$POP[1] - 60000 - 181, CI = 181)) {

    ## create empty vectors to store S, I, R, B, Beta estimates
    S <- rep(NA, length(BAL$CASES))
    I <- rep(NA, length(BAL$CASES))
    R <- rep(NA, length(BAL$CASES))
    CI <- rep(NA, length(BAL$CASES))
    Beta <- rep(NA, length(BAL$CASES))
    Rt <- rep(NA, length(BAL$CASES))

    ## set time = 1 values to initial states
    S[1] <- D[1] + sbar
    I[1] <- initial.state["I"]
    R[1] <- initial.state["R"]
    CI[1] <- initial.state["CI"]

    ## betas are a function of the normalized climate data - I used tmax here.
    ## The x1-x3 are parameters to fit the seasonal forcing equation.
    tmax <- (BAL$TMAX - 192.8)/192.8
    Beta <- guess["x1"] * (1 + (guess["x2"] * (tmax)))

    for (t in 2:length(BAL$CASES)) {
        S[t] <- D[t] + sbar
        I[t] <- Beta[t] * S[t - 1] * (I[t - 1]^alpha)
        R[t] <- I[t - 1] + R[t - 1]
        CI[t] <- I[t] + CI[t - 1]
    }

    tsir.output <- data.frame(S, I, R, CI, Beta, C.t = BAL$CASES.i/u)
}

out <- runTSIR()
head(out, 52)
##        S       I       R       CI      Beta     C.t
## 1  43773   181.0 1854505    181.0 5.129e-05 1043.50
## 2  43750   322.9 1854686    503.9 5.285e-05 1579.67
## 3  43733   523.0 1855008   1026.9 4.942e-05 1556.60
## 4  43662   828.1 1855531   1855.0 4.951e-05 1862.16
## 5  43605  1279.4 1856360   3134.4 4.951e-05 1775.68
## 6  43483  1665.2 1857639   4799.6 4.269e-05 2144.65
## 7  43338  1980.2 1859304   6779.8 3.963e-05 2190.78
## 8  43034  2405.5 1861284   9185.3 4.097e-05 3044.02
## 9  42702  2715.5 1863690  11900.8 3.872e-05 3228.51
## 10 42374  2952.6 1866405  14853.4 3.781e-05 3228.51
## 11 42105  2849.7 1869358  17703.2 3.396e-05 2899.89
## 12 42042  2540.8 1872208  20244.0 3.152e-05 1764.15
## 13 42129  2269.8 1874749  22513.8 3.145e-05  910.90
## 14 42289  1946.3 1877018  24460.1 2.995e-05  576.52
## 15 42507  1739.3 1878965  26199.4 3.086e-05  242.14
## 16 42749  1550.6 1880704  27750.0 3.046e-05  103.77
## 17 42993  1457.3 1882254  29207.3 3.174e-05   92.24
## 18 43233  1426.7 1883712  30634.0 3.278e-05   92.24
## 19 43472  1434.2 1885138  32068.2 3.343e-05   86.48
## 20 43713  1495.5 1886573  33563.7 3.450e-05   34.59
## 21 43942  1517.3 1888068  35081.1 3.345e-05   69.18
## 22 44161  1700.0 1889586  36781.0 3.677e-05  109.54
## 23 44377  2292.6 1891286  39073.6 4.430e-05   86.48
## 24 44582  3107.2 1893578  42180.8 4.497e-05  149.89
## 25 44777  4221.1 1896685  46401.8 4.555e-05  219.07
## 26 44981  6164.0 1900906  52565.9 4.951e-05  167.18
## 27 45172  8244.0 1907070  60809.9 4.600e-05  368.95
## 28 45372 11723.8 1915314  72533.7 4.942e-05  322.83
## 29 45554 15866.9 1927038  88400.6 4.765e-05  426.60
## 30 45666 20779.9 1942905 109180.5 4.663e-05  835.90
## 31 45822 24653.0 1963685 133833.5 4.271e-05  564.95
## 32 45973 26819.5 1988338 160653.0 3.936e-05  593.77
## 33 46108 27719.4 2015158 188372.4 3.743e-05  605.29
## 34 46205 29600.5 2042877 217973.0 3.863e-05  755.17
## 35 46249 30844.9 2072477 248817.8 3.774e-05 1077.97
## 36 46251 31100.0 2103322 279917.8 3.655e-05 1343.13
## 37 46253 28472.7 2134422 308390.5 3.320e-05 1360.41
## 38 46336 25153.5 2162895 333544.0 3.190e-05  951.13
## 39 46499 19955.3 2188048 353499.3 2.842e-05  489.97
## 40 46716 16432.1 2208004 369931.4 2.905e-05  276.69
## 41 46963 13604.3 2224436 383535.7 2.879e-05  103.76
## 42 47207 12102.8 2238040 395638.5 3.049e-05  115.28
## 43 47462 11190.2 2250143 406828.7 3.134e-05   51.88
## 44 47708 10034.1 2261333 416862.8 3.011e-05   86.46
## 45 47962  9556.0 2271367 426418.8 3.164e-05   23.06
## 46 48208  9901.2 2280923 436320.0 3.416e-05   34.58
## 47 48436 11088.8 2290824 447408.8 3.680e-05   92.22
## 48 48665 13256.0 2301913 460664.8 3.932e-05   74.93
## 49 48854 17936.1 2315169 478601.0 4.469e-05  265.12
## 50 48983 22721.4 2333105 501322.4 4.231e-05  616.69
## 51 49080 31700.3 2355827 533022.7 4.703e-05  806.87
## 52 49201 45070.5 2387527 578093.1 4.864e-05  668.54

plot(BAL$BWK, out$S, type = "l")

plot of chunk unnamed-chunk-1

plot(BAL$BWK, out$I, type = "l")

plot of chunk unnamed-chunk-1

plot(BAL$BWK, out$R, type = "l")

plot of chunk unnamed-chunk-1

plot(BAL$BWK, out$CI, type = "l")

plot of chunk unnamed-chunk-1

plot(BAL$BWK, out$Beta, type = "l")

plot of chunk unnamed-chunk-1


## optimizing for beta parameters sbar and x1-x3

LS1 <- function(x) {
    sum((runTSIR(guess = x)$I - BAL$CASES.i/u)^2)
}

g <- c(x1 = 3.8e-05, x2 = -0.4)
p <- optim(g, LS1)

## show optimal values
p$par
##         x1         x2 
##  2.717e-05 -3.600e-01

## show MSE
LS1(p$par)
## [1] 5.398e+09

optimal <- as.vector(p$par)

out.opt <- runTSIR(guess = c(x1 = as.numeric(p$par[1]), x2 = as.numeric(p$par[2])))

## plot of our predicted incidences (in red) versus actuall incidences (in
## black) - alpha is 0.95

plot(BAL$BWK, out.opt$I, col = "red", type = "l", lwd = 2, ylim = c(0, 4000))
lines(BAL$BWK, BAL$CASES.i, col = "black", lwd = 1)

plot of chunk unnamed-chunk-1