dat <- read.csv("https://bit.ly/2vQXaXL")

Is it true that word.dur depends on speaker?

summary(dat)
##   speaker        index            word                time         
##  brs02:163   Min.   :  1.00   d\303\266gg : 19   Min.   :  0.5972  
##  bte03:157   1st Qu.: 41.00   detta       : 15   1st Qu.:154.0102  
##  jj04 :151   Median : 82.50   dult        : 15   Median :285.2568  
##  shg05:160   Mean   : 83.08   feits       : 15   Mean   :304.2501  
##  tt01 :175   3rd Qu.:124.75   feitt       : 15   3rd Qu.:423.7956  
##              Max.   :181.00   f\303\246ddi: 15   Max.   :868.1988  
##                               (Other)     :712                     
##     word.dur      voicing.dur       vowel.dur       cluster.dur    
##  Min.   :229.5   Min.   : 37.98   Min.   : 22.78   Min.   : 41.46  
##  1st Qu.:398.4   1st Qu.: 90.70   1st Qu.: 71.14   1st Qu.:161.62  
##  Median :461.9   Median :113.25   Median : 84.77   Median :192.57  
##  Mean   :456.7   Mean   :128.50   Mean   : 86.68   Mean   :190.10  
##  3rd Qu.:514.7   3rd Qu.:162.57   3rd Qu.: 99.31   3rd Qu.:221.91  
##  Max.   :728.4   Max.   :322.08   Max.   :214.48   Max.   :334.19  
##                                                                    
##  spreading.dur     sonorant.dur     closure.dur          vor        
##  Min.   :  0.00   Min.   : 43.74   Min.   :  0.00   Min.   : 79.44  
##  1st Qu.:  5.95   1st Qu.: 99.52   1st Qu.: 77.90   1st Qu.:240.77  
##  Median : 66.40   Median :118.18   Median : 96.26   Median :276.45  
##  Mean   : 63.11   Mean   :121.77   Mean   :107.24   Mean   :276.73  
##  3rd Qu.: 99.79   3rd Qu.:140.33   3rd Qu.:125.52   3rd Qu.:311.11  
##  Max.   :196.83   Max.   :242.61   Max.   :272.54   Max.   :450.57  
##  NA's   :250      NA's   :247      NA's   :16       NA's   :16      
##      voffr             mor           cond_no    
##  Min.   : 24.57   Min.   :131.2   Min.   : 1.0  
##  1st Qu.:114.68   1st Qu.:180.9   1st Qu.:15.0  
##  Median :149.50   Median :204.1   Median :31.5  
##  Mean   :150.73   Mean   :207.6   Mean   :30.9  
##  3rd Qu.:187.24   3rd Qu.:230.9   3rd Qu.:46.0  
##  Max.   :298.98   Max.   :334.2   Max.   :60.0  
##  NA's   :16       NA's   :263                   
##              ipa             cons1          vowel      height   
##  t\305\223kk         : 19   asp :304   e       :167   diph: 99  
##  celta               : 15   fri : 15   a       :160   high:217  
##  cel\314\245ta       : 15   nasp:133   o       :132   low :160  
##  cetta               : 15   no  : 94   i       : 97   mid :330  
##  c\312\260empa       : 15   vls :142   \312\217: 97             
##  c\312\260emt\311\252: 15   voi :118   ou      : 40             
##  (Other)             :712              (Other) :113             
##  anteroposterior     roundness   consonant            manner   
##  back :172       round    :300   \312\260t:127   geminate: 15  
##  front:634       unrounded:506   tt       : 80   lateral : 84  
##                                  \312\260p: 72   nasal   :189  
##                                  m        : 59   rhotic  : 30  
##                                  p        : 53   stop    :488  
##                                  kk       : 49                 
##                                  (Other)  :366                 
##      place     aspiration syllables  syl_structure        gloss    
##  coronal:467   no :401    di  :409   cvccv  :230   comb      : 71  
##  labial :248   yes:405    mono:397   cvcc   :209   fat       : 30  
##  velar  : 91                         cvncv  : 92   thaw      : 30  
##                                      cvvcc  : 57   feed      : 29  
##                                      cvnc   : 55   decoration: 28  
##                                      vcc    : 36   pound     : 27  
##                                      (Other):127   (Other)   :591  
##   pos      comp    contx   
##  adj:111   c:586   cc:631  
##  adv: 27   x:220   cx:175  
##  n  :358                   
##  v  :310                   
##                            
##                            
## 
boxplot(word.dur ~ speaker, data=dat)

fit <- aov(word.dur ~ speaker, data=dat)
summary(fit)
##              Df  Sum Sq Mean Sq F value Pr(>F)    
## speaker       4 2116328  529082   140.2 <2e-16 ***
## Residuals   801 3021700    3772                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
t.test(dat$word.dur)
## 
##  One Sample t-test
## 
## data:  dat$word.dur
## t = 162.3, df = 805, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  451.2018 462.2493
## sample estimates:
## mean of x 
##  456.7255

\(CI=[\bar x - s, \bar x + s]\) \(s = 1.96 (standard.deviation.of.x) / sqrt(n)\)

Find CI for word.dur.

left <- t.test(dat$word.dur)$conf[1]
right <- t.test(dat$word.dur)$conf[2]
t.test(dat$word.dur, conf.level = 0.95)
## 
##  One Sample t-test
## 
## data:  dat$word.dur
## t = 162.3, df = 805, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  451.2018 462.2493
## sample estimates:
## mean of x 
##  456.7255
install.packages("tidyverse")
## 
## The downloaded binary packages are in
##  /var/folders/79/1y_t9vcx3ws9shyf4nd1vblc0000gn/T//RtmpAKBRgQ/downloaded_packages
library(tidyverse)
## -- Attaching packages -------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1     v purrr   0.3.3
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   1.0.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts ----------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
dat %>% select(speaker, time)
select(dat, speaker, time)
dat %>% select(-speaker) -> dat_without_speaker
dat_without_speaker
dat %>% select(index:time)
dat %>% filter(word=='kokk', 
               speaker=='brs02',
               time > mean(time) * 1.45)
dat %>% group_by(speaker) %>% summarise(word.dur.mean=mean(word.dur), word.dur.sd=sd(word.dur))
Sys.setlocale(locale="UTF-8")
## [1] "C/UTF-8/C/C/C/C"
dat %>% group_by(speaker, word) %>% summarise(wd_mean=mean(word.dur))
dat %>% count(speaker, name = 'number')
dat %>% count(aspiration)
dat %>% count(speaker, aspiration)
dat %>% count(speaker, aspiration) %>% pivot_wider(names_from='aspiration', values_from = 'n') %>% pivot_longer(yes:no, names_to="aspiration")
dat %>% arrange(desc(word.dur))

Find a speaker with largest average word.dur.