library(kableExtra)
library(naivebayes)
library(dplyr)
library(class) 
library(ggplot2)

Question 1

You have been hired by a local electronics retailer and the above dataset has been given to you. Manager Bayes Jr. wants to create a spreadsheet to predict if a customer is likely prospect. To that end:

Dataset

data <- read.csv("question1.csv", header = TRUE)
data %>% kable() %>% kable_styling() %>% scroll_box(width = "800px")
age.group networth status credit_rating class.prospect
youth high employed fair no
youth high employed excellent no
middle high employed fair yes
senior medium employed fair yes
senior low unemployed fair yes
senior low unemployed excellent no
middle low unemployed excellent yes
youth medium employed fair no
youth low unemployed fair yes
senior medium unemployed fair yes
youth medium unemployed excellent yes
middle medium employed excellent yes
middle high unemployed fair yes
senior medium employed excellent no

Priors

1)Compute prior probabilities for the Prospect

Prior Priorities P(prospect=yes)
Prior Priorities P(prospect=no)

(priorCount<-table(data$class.prospect))
## 
##  no yes 
##   5   9
numberOfNo<-priorCount[1]
numberOfYes<-priorCount[2]
(numberOfSamples<-nrow(data))
## [1] 14
(Pyes<-numberOfYes/numberOfSamples)
##       yes 
## 0.6428571
(Pno<-numberOfNo/numberOfSamples)
##        no 
## 0.3571429

Conditional probabilities

  1. Compute the conditional probabilities. Compute the conditional probabilities for each predictor variable: age_group, networth, status, credit_rating.

age_group

data %>% select(age.group,class.prospect) %>% kable() %>% kable_styling() %>% scroll_box(width = "800px")
age.group class.prospect
youth no
youth no
middle yes
senior yes
senior yes
senior no
middle yes
youth no
youth yes
senior yes
youth yes
middle yes
middle yes
senior no

P(age-group=youth|prospect=yes)

(numberOfYouthWithYes<-length(which((data$class.prospect=='yes') & (data$age.group=='youth'))))
## [1] 2
(PyouthGivenYes<-numberOfYouthWithYes/numberOfYes)
##       yes 
## 0.2222222

P(age-group=middle|prospect=yes)

(numberOfMiddleWithYes<-length(which((data$class.prospect=='yes') & (data$age.group=='middle'))))
## [1] 4
(PmiddleGivenYes<-numberOfMiddleWithYes/numberOfYes)
##       yes 
## 0.4444444

P(age-group=senior|prospect=yes)

(numberOfSeniorWithYes<-length(which((data$class.prospect=='yes') & (data$age.group=='senior'))))
## [1] 3
(PseniorGivenYes<-numberOfSeniorWithYes/numberOfYes)
##       yes 
## 0.3333333

We will add the probabilities to double check our calculations.

PyouthGivenYes+PmiddleGivenYes+PseniorGivenYes
## yes 
##   1

P(age-group=youth|prospect=no)

(numberOfYouthWithNo<-length(which((data$class.prospect=='no') & (data$age.group=='youth'))))
## [1] 3
(PyouthGivenNo<-numberOfYouthWithNo/numberOfNo)
##  no 
## 0.6

P(age-group=middle|prospect=no)

(numberOfMiddleWithNo<-length(which((data$class.prospect=='no') & (data$age.group=='middle'))))
## [1] 0
(PmiddleGivenNo<-numberOfMiddleWithNo/numberOfNo)
## no 
##  0

P(age-group=senior|prospect=no)

(numberOfSeniorWithNo<-length(which((data$class.prospect=='no') & (data$age.group=='senior'))))
## [1] 2
(PseniorGivenNo<-numberOfSeniorWithNo/numberOfNo)
##  no 
## 0.4
PyouthGivenNo+PmiddleGivenNo+PseniorGivenNo
## no 
##  1

networth

data %>% select(networth,class.prospect) %>% kable() %>% kable_styling() %>% scroll_box(width = "800px")
networth class.prospect
high no
high no
high yes
medium yes
low yes
low no
low yes
medium no
low yes
medium yes
medium yes
medium yes
high yes
medium no

P(networth=high|prospect=yes)

(numberOfHighWithYes<-length(which((data$class.prospect=='yes') & (data$networth=='high'))))
## [1] 2
(PhighGivenYes<-numberOfHighWithYes/numberOfYes)
##       yes 
## 0.2222222

P(networth=low|prospect=yes)

(numberOfLowWithYes<-length(which((data$class.prospect=='yes') & (data$networth=='low'))))
## [1] 3
(PlowGivenYes<-numberOfLowWithYes/numberOfYes)
##       yes 
## 0.3333333

P(networth=medium|prospect=yes)

(numberOfMediumWithYes<-length(which((data$class.prospect=='yes') & (data$networth=='medium'))))
## [1] 4
(PmediumGivenYes<-numberOfMediumWithYes/numberOfYes)
##       yes 
## 0.4444444
PhighGivenYes+PlowGivenYes+PmediumGivenYes
## yes 
##   1

P(networth=high|prospect=no)

(numberOfHighWithNo<-length(which((data$class.prospect=='no') & (data$networth=='high'))))
## [1] 2
(PhighGivenNo<-numberOfHighWithNo/numberOfNo)
##  no 
## 0.4

P(networth=low|prospect=no)

(numberOfLowWithNo<-length(which((data$class.prospect=='no') & (data$networth=='low'))))
## [1] 1
(PlowGivenNo<-numberOfLowWithNo/numberOfNo)
##  no 
## 0.2

P(networth=medium|prospect=no)

(numberOfMediumWithNo<-length(which((data$class.prospect=='no') & (data$networth=='medium'))))
## [1] 2
(PmediumGivenNo<-numberOfMediumWithNo/numberOfNo)
##  no 
## 0.4
PhighGivenNo+PlowGivenNo+PmediumGivenNo
## no 
##  1

status

data %>% select(status,class.prospect) %>% kable() %>% kable_styling() %>% scroll_box(width = "800px")
status class.prospect
employed no
employed no
employed yes
employed yes
unemployed yes
unemployed no
unemployed yes
employed no
unemployed yes
unemployed yes
unemployed yes
employed yes
unemployed yes
employed no

P(status=employed|prospect=yes)

(numberOfEmployedWithYes<-length(which((data$class.prospect=='yes') & (data$status=='employed'))))
## [1] 3
(PemployedGivenYes<-numberOfEmployedWithYes/numberOfYes)
##       yes 
## 0.3333333

P(status=unemployed|prospect=yes)

(numberOfUnemployedWithYes<-length(which((data$class.prospect=='yes') & (data$status=='unemployed'))))
## [1] 6
(PunemployedGivenYes<-numberOfUnemployedWithYes/numberOfYes)
##       yes 
## 0.6666667
PemployedGivenYes+PunemployedGivenYes
## yes 
##   1

P(status=employed|prospect=no)

(numberOfEmployedWithNo<-length(which((data$class.prospect=='no') & (data$status=='employed'))))
## [1] 4
(PemployedGivenNo<-numberOfEmployedWithNo/numberOfNo)
##  no 
## 0.8

P(status=unemployed|prospect=no)

(numberOfUnemployedWithNo<-length(which((data$class.prospect=='no') & (data$status=='unemployed'))))
## [1] 1
(PunemployedGivenNo<-numberOfUnemployedWithNo/numberOfNo)
##  no 
## 0.2
PemployedGivenNo+PunemployedGivenNo
## no 
##  1

credit_rating

data %>% select(credit_rating,class.prospect) %>% kable() %>% kable_styling() %>% scroll_box(width = "800px")
credit_rating class.prospect
fair no
excellent no
fair yes
fair yes
fair yes
excellent no
excellent yes
fair no
fair yes
fair yes
excellent yes
excellent yes
fair yes
excellent no

P(credit=fair|prospect=yes)

(numberOfFairWithYes<-length(which((data$class.prospect=='yes') & (data$credit=='fair'))))
## [1] 6
(PfairGivenYes<-numberOfFairWithYes/numberOfYes)
##       yes 
## 0.6666667

P(credit=excellent|prospect=yes)

(numberOfExcellentdWithYes<-length(which((data$class.prospect=='yes') & (data$credit=='excellent'))))
## [1] 3
(PexcellentGivenYes<-numberOfExcellentdWithYes/numberOfYes)
##       yes 
## 0.3333333
PfairGivenYes+PexcellentGivenYes
## yes 
##   1

P(credit=fair|prospect=no)

(numberOfFairWithNo<-length(which((data$class.prospect=='no') & (data$credit=='fair'))))
## [1] 2
(PfairGivenNo<-numberOfFairWithNo/numberOfNo)
##  no 
## 0.4

P(credit=excellent|prospect=no)

(numberOfExcellentWithNo<-length(which((data$class.prospect=='no') & (data$credit=='excellent'))))
## [1] 3
(PexcellentGivenNo<-numberOfExcellentWithNo/numberOfNo)
##  no 
## 0.6
PfairGivenNo+PexcellentGivenNo
## no 
##  1

Posteriors

  1. Assuming the assumptions of Naive Bayes are met compute the posterior probability.

The posterior probabilities answer the questions the manager has, to know if a given costumer is a likely porspect.

For example, given a costumer:
- Age group: youth
- Net worth: high
- Status: employed
- Credit rating: fair
What is the probability this is a prospect client? We canculate the propability of yes being a prospect given all the conditions, and no not being a prospects given the same conditions. The highest of the two gives us the answer. To calculate both of these probabilities, we should be dividing by the multiplication of the feature marginals. We have not calculated this, but we really don’t need to since both are devided by the same multiplication.

P(prospect=yes|age-group=youth,networth=hgh,status=employed,credit=fair)

This is a posterior probability

(PposteriorYes <- (PyouthGivenYes * PhighGivenYes * PemployedGivenYes * PfairGivenYes) * Pyes )  
##         yes 
## 0.007054674
(PposteriorNo <- (PyouthGivenNo * PhighGivenNo * PemployedGivenNo * PfairGivenNo) * Pno )  
##         no 
## 0.02742857

This costumer does not seem to be a good prospect according to our classifier.

The resusts are not probabilities. To calculate actual probabilities we need to devide both by the marginal probability of each feature. We first calculate these marginal.

(priorCount<-table(data$age.group))
## 
## middle senior  youth 
##      4      5      5
numberOfMiddle<-priorCount[1]
numberOfSenior<-priorCount[2]
numberOfYouth<-priorCount[3]
(Pyouth<-numberOfYouth/numberOfSamples)
##     youth 
## 0.3571429
(Pmiddle<-numberOfMiddle/numberOfSamples)
##    middle 
## 0.2857143
(Psenior<-numberOfSenior/numberOfSamples)
##    senior 
## 0.3571429
Pyouth+Pmiddle+Psenior
## youth 
##     1
(priorCount<-table(data$networth))
## 
##   high    low medium 
##      4      4      6
numberOfHigh<-priorCount[1]
numberOfLow<-priorCount[2]
numberOfMedium<-priorCount[3]
(Plow<-numberOfLow/numberOfSamples)
##       low 
## 0.2857143
(Pmedium<-numberOfMedium/numberOfSamples)
##    medium 
## 0.4285714
(Phigh<-numberOfHigh/numberOfSamples)
##      high 
## 0.2857143
Phigh+Plow+Pmedium
## high 
##    1
(priorCount<-table(data$status))
## 
##   employed unemployed 
##          7          7
numberOfEmployed<-priorCount[1]
numberOfUnemployed<-priorCount[2]
(Pemployed<-numberOfEmployed/numberOfSamples)
## employed 
##      0.5
(Punemployed<-numberOfUnemployed/numberOfSamples)
## unemployed 
##        0.5
Pemployed+Punemployed
## employed 
##        1
(priorCount<-table(data$credit_rating))
## 
## excellent      fair 
##         6         8
numberOfExcellent<-priorCount[1]
numberOfFair<-priorCount[2]
(Pfair<-numberOfFair/numberOfSamples)
##      fair 
## 0.5714286
(Pexcellent<-numberOfExcellent/numberOfSamples)
## excellent 
## 0.4285714
Pfair+Pexcellent
## fair 
##    1

Going back to our case:
- Age group: youth
- Net worth: high
- Status: employed
- Credit rating: fair

PposteriorYes<- (PyouthGivenYes * PhighGivenYes * PemployedGivenYes * PfairGivenYes) * Pyes 
(PposteriorYes<-PposteriorYes / (Pyouth * Phigh * Pemployed * Pfair))
##       yes 
## 0.2419753
PposteriorNo<- (PyouthGivenNo * PhighGivenNo * PemployedGivenNo * PfairGivenNo) * Pno 
(PposteriorNo<-PposteriorNo / (Pyouth * Phigh * Pemployed * Pfair))
##     no 
## 0.9408

We can try another case:

  • Age group: youth
  • Net worth: high
  • Status: unemployed
  • Credit rating: excellent
PposteriorYes<- (PyouthGivenYes * PhighGivenYes * PunemployedGivenYes * PexcellentGivenYes) * Pyes 
(PposteriorYes<-PposteriorYes / (Pyouth * Phigh * Punemployed * Pexcellent))
##       yes 
## 0.3226337
PposteriorNo<- (PyouthGivenNo * PhighGivenNo * PunemployedGivenNo * PexcellentGivenNo) * Pno 
(PposteriorNo<-PposteriorNo / (Pyouth * Phigh * Punemployed * Pexcellent))
##     no 
## 0.4704

We can also use the naivebayses library to calculate the classification.

test<-data[1,!(names(data) %in% c('class.prospect'))]
test[1,1]<-'youth'
test[1,2]<-'high'
test[1,3]<-'employed'
test[1,4]<-'excellent'
test
##   age.group networth   status credit_rating
## 1     youth     high employed     excellent
model<-naive_bayes(class.prospect~.,data=data,laplace = 0)
## Warning: naive_bayes(): Feature age.group - zero probabilities are present.
## Consider Laplace smoothing.
predict(model,test,type = 'prob')
##            no        yes
## [1,] 0.921036 0.07896399

As we can see we obtain silar classification results.

We can try third and final case:

  • Age group: senior
  • Net worth: low
  • Status: unemployed
  • Credit rating: excellent
PposteriorYes<- (PseniorGivenYes * PlowGivenYes * PunemployedGivenYes * PexcellentGivenYes) * Pyes 
(PposteriorYes<-PposteriorYes / (Psenior * Plow * Punemployed * Pexcellent))
##       yes 
## 0.7259259
PposteriorNo<- (PseniorGivenNo * PlowGivenNo * PunemployedGivenNo * PexcellentGivenNo) * Pno 
(PposteriorNo<-PposteriorNo / (Psenior * Plow * Punemployed * Pexcellent))
##     no 
## 0.1568

We can also use the naivebayses library to calculate the classification.

test<-data[1,!(names(data) %in% c('class.prospect'))]
test[1,1]<-'senior'
test[1,2]<-'low'
test[1,3]<-'unemployed'
test[1,4]<-'excellent'
test
##   age.group networth     status credit_rating
## 1    senior      low unemployed     excellent
model<-naive_bayes(class.prospect~.,data=data,laplace = 0)
## Warning: naive_bayes(): Feature age.group - zero probabilities are present.
## Consider Laplace smoothing.
predict(model,test,type = 'prob')
##             no       yes
## [1,] 0.1776316 0.8223684

Again we get a similar classification with the manual process and the library.

Question 2

You just recently joined a datascience team.

There are two datasets junk1.txt and junk2.csv They have two options 1. They can go back to the client and ask for more data to remedy problems with the data. 2. They can accept the data and undertake a major analytics exercise.

The team is relying on your dsc skills to determine how they should proceed.

Can you explore the data and recommend actions for each file enumerating the reasons.

Data load

junk1 <- read.csv("junk1.txt", sep = ' ',  header = TRUE)
junk1 %>% kable() %>% kable_styling() %>% scroll_box(width = "800px", height = "400px")
a b class
1.6204214 3.0036241 1
1.4340220 0.7852487 1
2.4766615 0.9367761 1
0.5283093 0.1196222 1
1.0054081 0.7872866 1
1.1032636 0.7330594 1
1.1789710 3.1022974 1
2.1099008 2.6152836 1
1.1460600 1.1797560 1
1.8310132 2.8142432 1
1.4047787 -0.0996363 1
0.1199486 0.5057891 1
0.6765030 1.3647484 1
1.1181504 -1.5489430 1
1.5704227 1.0558466 1
-0.8697279 3.0944632 1
0.4828084 1.1411314 1
0.4858466 -0.7100753 1
1.2997491 0.9445179 1
-0.3767567 -0.7262630 1
2.2148328 1.0954370 1
0.5599372 0.8047502 1
0.6725790 -1.2861484 1
1.3958583 0.7617706 1
1.8575015 0.4979771 1
-0.7657255 -1.0628475 1
-2.2985403 -1.5229682 1
-1.2245988 0.0039812 1
-0.4224027 -2.2020321 1
-0.3986345 -1.4344173 1
-0.1541545 1.2075572 1
-2.2278869 0.0441864 1
-1.3294799 -0.2382930 1
0.6964771 -0.5327920 1
-1.4964152 0.2131591 1
-1.4176253 -3.0500140 1
-1.6936362 -2.0528397 1
-0.9910132 0.8037407 1
0.0074113 -2.2418797 1
0.0244566 -1.2752123 1
-1.3692513 -0.2129825 1
-2.0327734 -0.6313832 1
-0.4648920 -1.8299871 1
-0.1866641 -1.8733288 1
-0.1235247 -1.4478383 1
1.0870333 -0.3643405 1
-1.1430852 -1.1070141 1
-0.6252176 0.0521050 1
-0.7535247 0.3371487 1
-1.5570333 -0.1268570 1
-0.9446757 1.6630737 2
-2.1754510 2.7743599 2
-1.5808068 1.0526114 2
-1.2987153 -0.4161319 2
-0.8420963 2.2892391 2
-1.8135451 -0.6236857 2
-1.0054094 2.3836180 2
-0.5810079 0.5414749 2
-1.1346434 1.2679017 2
-0.6731265 0.1716737 2
-1.2500186 2.1546548 2
-2.2548399 1.6154887 2
-2.1216527 1.3045452 2
0.8089390 -0.2678904 2
-0.8436088 1.6674678 2
0.1264992 0.7935832 2
-0.6910051 0.3472630 2
-0.3557378 1.5140557 2
0.2099927 1.4443751 2
-0.7024238 1.4116462 2
-1.2794889 1.3118886 2
-0.5944345 0.4311028 2
-0.6088464 0.4578163 2
-0.4477992 0.4690932 2
-1.8236985 2.4728836 2
0.4034355 -2.4056383 2
0.9881920 -0.9081219 2
0.5679804 -3.1717369 2
0.9243354 -1.0664954 2
-0.2793336 -0.2123748 2
0.4229422 -1.0445746 2
0.4747675 -0.8544943 2
1.8137459 -1.4255818 2
1.3863266 -1.0547404 2
-0.8093364 -0.9158605 2
0.8217856 -0.0494760 2
-0.5381374 -1.0172655 2
1.5008916 -1.4382739 2
1.5727083 -2.0152071 2
2.9208389 -2.7731913 2
0.0527032 -0.6144914 2
1.1566916 -2.1728755 2
1.3866433 -0.1587467 2
0.9578530 -0.5550774 2
-0.1024852 -1.7465024 2
0.0702465 -0.4001083 2
3.0060368 -0.5292340 2
1.8822550 -1.3784355 2
-0.1048475 -0.4203739 2
1.9732535 -1.0063869 2
junk2 <- read.csv("junk2.csv", header = TRUE)
junk2 %>% kable() %>% kable_styling() %>% scroll_box(width = "800px", height = "400px")
a b class
3.1886481 0.9291774 0
0.8224527 0.0476031 0
0.8147247 0.0291093 0
-1.5065362 3.1323136 0
0.4426887 2.8494282 0
0.8564405 -0.6614385 0
2.0915017 1.9789250 0
0.3770563 1.3877767 0
0.0925396 1.6587941 0
-0.5937133 -0.0310689 0
1.3026445 -0.0784188 0
2.6343924 -0.2736602 0
0.3781534 1.3426658 0
1.4671611 0.9332228 0
2.4192658 1.1945902 0
1.1102652 0.6267688 0
2.8696292 0.3677869 0
-0.0302508 -0.5252946 0
-0.3416344 2.0121204 0
1.5543983 -0.1927756 0
0.9379292 0.9722719 0
1.0966016 3.3511605 0
2.5629506 2.5909881 0
1.8282320 1.1441314 0
1.5400644 2.0620302 0
0.4050557 1.7974087 0
-0.9008409 0.2979948 0
1.1935082 1.1890270 0
0.4181997 0.8862482 0
-0.5452108 -0.2668863 0
1.4788123 0.8316610 0
1.2293416 2.1604669 0
0.8620735 1.4517620 0
3.4107390 -0.4896563 0
-0.9227946 2.7936837 0
2.6629424 -0.0364324 0
3.1213590 -1.1127498 0
0.8116194 3.5499987 0
-1.1221131 1.1649957 0
1.2765970 1.7798761 0
0.3744676 2.0995758 0
1.5460990 2.7453149 0
1.1556990 1.7621170 0
0.2961337 1.0582543 0
0.9621085 2.4698332 0
1.7051636 1.8349871 0
-0.7241028 2.5790697 0
1.2213792 0.8619945 0
1.4755514 1.5364704 0
4.3854715 1.1720348 0
-0.0103123 1.3106665 0
-0.8047218 0.5465758 0
-0.6203790 1.0205504 0
1.9111819 0.5923949 0
1.2612364 1.6178809 0
1.5805944 1.1513547 0
-0.0413213 2.1794796 0
2.1600628 3.2044725 0
3.1473536 0.7377654 0
0.3535885 1.4766146 0
0.0690691 0.3740302 0
1.7853491 1.3880545 0
0.5339464 -0.1790515 0
0.6718992 0.5800105 0
1.9153283 -0.2405698 0
2.6893674 1.1685852 0
2.6730891 3.0314342 0
1.7994683 1.9068147 0
2.3667197 0.8558302 0
0.1359159 0.1169239 0
-0.4327418 1.9929729 0
0.5587084 1.3446275 0
0.4199242 0.1963534 0
-0.9714248 0.7849007 0
2.5645640 -0.4931215 0
0.1908021 0.8434980 0
1.6966843 2.3159396 0
-0.1721230 0.9175183 0
0.4262759 0.4164779 0
1.1649945 1.0950994 0
1.2520046 0.8061823 0
1.1446041 0.9956207 0
0.9771395 0.8544062 0
0.4293051 1.5797532 0
0.4521032 -1.3241064 0
1.7384460 2.3302336 0
0.1258763 0.4248651 0
1.9523669 0.1402230 0
-0.0444428 0.8406334 0
-0.1434549 -0.5812785 0
1.2877842 -0.6123256 0
0.1219014 2.1705694 0
-0.0660868 -0.0586697 0
1.9811558 1.9393344 0
-0.3814871 1.1024750 0
1.9509080 2.4185384 0
-0.3066822 0.0267763 0
1.2133585 0.0764646 0
1.7858874 0.4727848 0
1.7285963 1.3475741 0
1.0786234 -0.1596412 0
0.0129127 0.8390395 0
-0.1752323 -0.7050457 0
2.6814089 1.8361933 0
1.7562323 0.5665736 0
1.3030973 2.4680484 0
-0.0638029 0.9137620 0
1.7406752 1.7677081 0
1.4950995 0.7945587 0
-0.1328282 1.1232995 0
-0.1564945 -0.5426174 0
0.2873443 0.6884008 0
0.2097990 1.7728623 0
1.6382629 0.7870257 0
1.0398566 2.3183705 0
1.4215533 0.6581305 0
0.3305263 0.1935124 0
0.4965509 1.6839813 0
1.4445391 -0.0463351 0
0.0831084 2.7312805 0
2.2799030 1.2231393 0
2.2146147 0.9172131 0
2.9006755 1.4848645 0
1.0851665 1.8759119 0
1.2253196 1.1534333 0
2.0612778 0.9400515 0
1.0965512 1.3758563 0
0.7029955 1.5612008 0
2.4479008 0.3975023 0
0.9918721 0.9496248 0
0.5257486 2.4733572 0
1.0548982 1.1234519 0
0.2386553 0.3229039 0
-0.0449415 1.3293144 0
0.2099893 2.0982198 0
1.6321100 0.5809237 0
0.3243277 -0.1466030 0
0.5746510 2.2085974 0
1.2442476 -1.2086792 0
0.5021062 0.2671954 0
1.7495994 0.1106685 0
1.1093696 0.9038500 0
0.2836198 -0.1877205 0
0.6158419 0.8974669 0
0.7271020 1.0089159 0
3.0839521 -0.3726306 0
2.0004094 0.4914547 0
0.7943233 0.3165337 0
-0.1064687 0.7666682 0
1.0215173 1.7184628 0
1.0569784 1.0901137 0
1.0579067 0.5532558 0
0.2453820 1.2384502 0
-0.1077425 1.9688310 0
0.8114873 1.4004785 0
1.0671242 1.6855710 0
1.4851333 -0.6195699 0
1.6188526 3.3039459 0
1.2480149 1.3295955 0
1.5773538 0.8286715 0
0.7919977 2.8115899 0
0.4851283 1.4534522 0
-0.2304551 0.8806336 0
0.3605607 1.9308505 0
1.9823310 -0.1665007 0
0.2155825 1.9500356 0
1.2817168 1.3882591 0
2.7668208 2.2572276 0
0.8183699 2.3424753 0
0.4253358 1.9674631 0
1.3760384 0.6264701 0
1.2506831 0.7152015 0
0.2462329 1.0303617 0
1.2351612 1.4401168 0
0.2630508 1.6454253 0
1.8280269 -1.5266579 0
-0.3796675 -0.7457868 0
-0.4890005 0.5778713 0
1.3140496 2.5133402 0
0.1283003 -0.1324300 0
0.6369418 2.1511541 0
-0.0475630 2.8839740 0
1.0953360 1.9579833 0
0.5650670 1.2708956 0
0.4947176 0.4205548 0
1.3503503 0.5848853 0
0.5817044 2.1354360 0
3.1764385 -1.1592382 0
1.4843062 1.2811064 0
0.8426157 1.2109462 0
2.2094872 0.0379731 0
1.6248081 0.9744700 0
1.6613390 0.9200094 0
0.8799389 1.9134506 0
0.7917837 0.1417486 0
0.5086854 0.6046775 0
1.1077037 1.5019400 0
1.5010265 -0.1532738 0
1.9856466 -0.8863200 0
1.3866142 1.0768665 0
-0.0196461 0.7876099 0
0.3858297 0.0998590 0
0.2039139 1.2820468 0
2.7001956 0.0160371 0
1.9576671 0.5782792 0
0.8779916 -0.2134533 0
2.1539597 -0.0102578 0
1.2013779 -0.3623086 0
1.2678681 -0.1849870 0
1.1650863 1.0035379 0
1.4386732 0.6488356 0
1.5228300 2.1268344 0
2.1870722 1.3661555 0
2.3689878 2.6102273 0
3.5350240 -0.8716904 0
3.1609448 0.5213805 0
-0.4231457 0.8511026 0
1.0458105 1.3362180 0
0.5900086 0.5763179 0
0.6699876 0.4036596 0
1.1524608 1.2565786 0
2.4576912 0.6385870 0
1.2974990 1.3185346 0
0.3900704 2.0950783 0
-0.6562798 0.7959381 0
2.6328286 -0.1089003 0
0.7018013 0.3279686 0
1.1052550 0.6581905 0
-0.8689843 0.2916600 0
0.9976233 0.6653024 0
2.0357146 0.7529290 0
1.8626808 1.3876116 0
1.4695895 1.0922373 0
0.2184985 1.0956107 0
0.8585208 1.8608650 0
1.9660023 0.0171285 0
1.2448660 0.4448720 0
0.3065734 2.6513332 0
0.0419695 1.2730675 0
0.7642386 1.5800393 0
0.5594082 2.3159473 0
1.8967778 0.6441324 0
1.9069049 -0.0652604 0
0.5880838 1.3365108 0
-0.5552880 1.3187509 0
0.7405219 1.6738221 0
1.7298398 -0.0742740 0
-0.0455566 1.5695839 0
1.7760847 0.9682174 0
2.3111229 1.9438539 0
1.6635594 0.5079052 0
-0.7003508 1.6737910 0
2.2771949 -0.3275255 0
1.5659944 0.6254204 0
1.4954803 0.4320673 0
0.2193262 1.8105843 0
1.4416356 -0.0198288 0
1.7397399 1.9222651 0
1.1509576 1.1501817 0
0.4460977 0.4161591 0
0.0229904 -0.6166694 0
-0.9883178 1.9105870 0
1.5008284 0.5690008 0
0.9089827 0.9198680 0
1.2967551 1.5135048 0
1.3152085 0.2270349 0
0.3377149 0.6560694 0
0.6467369 1.2344496 0
0.8571995 0.0105320 0
2.3728100 -1.1969516 0
0.2043150 0.1965853 0
1.1244284 0.4044227 0
1.1656407 1.0205257 0
0.7103302 0.8432767 0
0.2382613 -0.4995235 0
0.7634580 1.6962480 0
2.2137959 1.4724958 0
0.1734792 1.5511738 0
1.9172684 0.4953626 0
1.5281499 -0.4966355 0
0.7405485 -0.9618293 0
-0.6619828 0.9730647 0
-1.2621885 1.6975008 0
1.0599673 0.7953306 0
-1.0482201 1.2420349 0
0.2668745 1.9976242 0
1.3032501 2.0783693 0
0.0302801 -0.4549368 0
4.6264729 -1.6759893 0
0.9268935 1.1172125 0
-0.6098216 1.5624230 0
0.1374923 -0.7060575 0
0.5915481 2.8537829 0
0.9782589 0.4915392 0
0.9099418 2.7764342 0
1.3905955 0.9022822 0
-0.0224947 1.8154169 0
1.2372542 0.8896647 0
0.5126448 0.5257591 0
0.7745982 1.1916176 0
-0.3754433 -0.6040862 0
1.4533906 -0.0667327 0
2.3274219 0.5462112 0
0.5509215 2.2046514 0
0.2738043 2.0813517 0
0.7910083 0.0530905 0
-0.9299570 2.1642938 0
0.6250015 0.7542855 0
1.2264328 0.4147876 0
1.5090294 0.9447529 0
1.7404535 2.0400116 0
0.6807130 1.2557746 0
1.0791489 -0.2380785 0
0.6482481 0.6520466 0
-0.8469805 1.8714872 0
3.2633800 -0.0075810 0
0.6329903 0.1277961 0
0.1430396 2.6726378 0
2.1282363 0.3152662 0
-0.7515834 1.3922195 0
-0.5661366 -0.2309137 0
1.4170249 0.7947839 0
0.4535731 2.1505491 0
2.6870834 -0.0599107 0
1.3022758 -0.1113493 0
0.3159042 2.1826958 0
0.8316245 1.6624839 0
0.1710023 1.3353548 0
3.2209322 0.2320629 0
0.5788764 2.2817994 0
0.3706836 0.6327739 0
1.3870232 0.4072382 0
0.8870883 0.4135580 0
0.0525752 1.6681343 0
-0.0097540 -0.2793129 0
2.3969807 1.1268548 0
-0.5253959 2.2708670 0
-0.0874077 1.5237766 0
0.9068042 3.7552107 0
0.3457413 1.4382402 0
0.0709261 1.1169715 0
1.5350273 2.2675650 0
3.2569249 0.0368302 0
1.3243724 -0.5336942 0
0.1405202 0.7960522 0
1.9079199 0.3214691 0
1.1772149 -0.1933279 0
0.8214326 2.6501389 0
1.9269189 -1.4852154 0
1.9092843 0.1192148 0
0.9407679 1.6337173 0
2.0413226 0.3639610 0
2.1750222 0.5606482 0
2.5802327 1.3223112 0
0.1943916 -0.2073190 0
-1.5436781 -0.2255888 0
1.1595540 1.1733883 0
1.6760991 -0.0297113 0
1.4550278 1.6070131 0
1.4761201 2.4343215 0
2.6962610 1.6152887 0
-0.5651638 0.8266640 0
0.7876695 3.3036166 0
0.8853066 2.4250206 0
0.8448182 1.5843008 0
0.8082568 0.0146869 0
0.8696975 2.1013516 0
1.1491620 3.7360800 0
2.8899384 -1.0575870 0
0.8844112 2.2638953 0
0.8518192 0.2062975 0
2.7859552 -0.5211024 0
0.7144390 1.5771078 0
0.9649445 -0.5574360 0
0.8855605 -0.0218499 0
2.8273016 -0.4239831 0
0.7384135 2.1973521 0
1.9100174 0.9481527 0
1.1573556 2.1453960 0
0.1502851 0.3465294 0
-0.1288374 1.9263335 0
1.7631653 0.3445324 0
0.6901677 -0.8738960 0
0.9512335 0.2479532 0
2.9424862 0.9060175 0
2.4243184 2.4424961 0
1.6476006 0.4927056 0
-0.1141856 0.4955240 0
1.1021281 1.4213713 0
-1.1702969 2.0052921 0
0.8323925 1.2917581 0
0.8093973 1.4098499 0
1.1437921 2.6211643 0
-0.4014556 1.6000826 0
-0.8584560 1.3956985 0
2.1874160 0.7576316 0
2.3791415 0.3554940 0
0.3249198 0.7625222 0
1.3209092 1.4349832 0
2.8526169 0.8684522 0
0.1539475 1.5882196 0
0.3416884 -0.3662610 0
1.2222961 0.5769558 0
0.4566075 1.3957418 0
0.2449845 2.5553615 0
0.8213216 1.7922386 0
2.1109671 -1.3144960 0
-0.2755807 2.0808726 0
0.9899359 -0.0011058 0
-1.1702963 1.7706803 0
2.2508373 1.8419625 0
-0.2091531 0.9266491 0
0.4493233 1.9138476 0
1.9529169 -0.1414009 0
1.2776548 2.0284108 0
1.0428299 1.8764060 0
0.7599018 1.7654871 0
0.2537366 0.7838063 0
0.7152478 -0.0342333 0
1.3466891 1.3422374 0
0.3337834 2.3794830 0
0.3595575 -0.8458071 0
0.7554902 -0.4070217 0
-1.0754420 0.8730800 0
1.1474066 -0.6746504 0
1.3637487 1.3842734 0
1.1345615 3.9422223 0
0.6088770 0.4269178 0
0.8294347 3.1563502 0
1.1838927 3.0633332 0
0.1452788 1.2603972 0
2.2783004 -1.0522150 0
-0.4210037 1.1332518 0
1.9136889 0.2894372 0
0.1228211 0.7752720 0
1.4676177 2.3136009 0
-0.9037587 2.3282223 0
0.4743086 -0.6192078 0
0.6757088 1.5119677 0
0.9983479 2.0190048 0
-0.4510400 2.3861973 0
0.8562981 1.3136628 0
1.9215379 1.4099715 0
1.3078381 0.2544217 0
2.2519060 1.6429584 0
-0.8240264 0.2759187 0
-0.8839115 -0.3871229 0
1.4658439 0.9964735 0
1.0873368 1.6921399 0
0.7420927 2.2579447 0
-0.2153404 0.4553974 0
0.2624097 1.2388210 0
-0.1522806 0.5602522 0
1.4459599 2.5738355 0
1.4128741 1.9675346 0
1.9127741 -0.0567404 0
0.2464608 1.2704073 0
0.7522729 0.4358715 0
2.2482299 -1.1173780 0
0.1425946 -0.2567692 0
-1.0625660 1.3804243 0
1.9063724 0.1328552 0
2.7708478 1.1821259 0
-0.1949599 1.7842160 0
1.7056805 1.1181002 0
1.6086264 1.1624931 0
1.4839178 -1.3985788 0
1.4869725 -0.1549131 0
1.1674936 0.8399550 0
2.0070134 0.6738549 0
2.5402882 2.3874302 0
0.9172500 2.9092102 0
1.2675623 1.6415613 0
1.3348623 1.3502296 0
1.6780187 -0.3586322 0
1.8165151 1.4681863 0
2.0594761 1.1388285 0
1.6226122 0.4410328 0
1.8514575 -0.7298713 0
2.0444431 0.7958211 0
0.3987328 1.1604452 0
1.5694415 0.3229912 0
2.5929838 -0.0098395 0
2.2837043 0.4982842 0
1.2007135 0.5670924 0
1.9026354 1.7232964 0
1.5422275 1.6821654 0
0.6705111 1.2172875 0
1.0401945 1.4746023 0
0.1367233 1.4054993 0
0.1694034 0.8673956 0
0.3337237 -0.2834110 0
1.7381131 2.2815106 0
-0.1520886 1.7903620 0
1.3095801 0.9853705 0
1.6397230 2.3669191 0
1.9262986 1.0711109 0
-0.0449298 1.5338670 0
-0.0889620 1.4819711 0
1.1378561 0.9347479 0
1.8461368 1.0651973 0
1.3723457 0.4945852 0
4.4004352 1.2276556 0
-1.0265471 0.9849093 0
0.8930291 0.3645648 0
-0.2266146 1.3648266 0
1.9185463 2.6613518 0
1.0270241 2.3858705 0
-1.1271915 3.0037023 0
-0.6008151 4.3105160 0
1.7496813 2.0565686 0
1.7219145 0.9302711 0
0.6617699 -0.5356526 0
1.9135928 0.4620881 0
1.5877949 1.0200027 0
0.1483747 0.8771761 0
0.6548998 -0.3987796 0
2.1956755 0.9098876 0
-0.1631564 -0.1535970 0
1.0067346 1.8028608 0
2.4100877 0.0168208 0
2.3227419 0.0659060 0
0.7029610 1.6385595 0
0.8028265 2.2891699 0
1.2243610 2.4294595 0
1.5166417 0.8395554 0
0.2207115 1.1723330 0
1.5797904 0.2009661 0
-0.4553544 3.0552189 0
1.0809135 0.8079292 0
0.8551788 0.6793453 0
0.8859209 0.8243532 0
0.2361719 0.7832111 0
1.7073391 1.9214305 0
1.6477654 0.6276200 0
-0.4909613 -0.1689152 0
1.6205637 1.4177523 0
0.4566646 0.5128291 0
1.1048175 0.4790881 0
0.9969229 -0.9835841 0
1.7032423 0.6460740 0
0.5673877 0.2390098 0
1.7651730 0.6731657 0
1.6623511 1.9384625 0
1.3206014 0.5440211 0
-0.5425527 0.5852255 0
0.1583867 3.2715888 0
1.2440237 1.3521436 0
0.6367946 0.9260398 0
1.4250839 0.3371296 0
1.4809610 1.9506818 0
2.1717897 0.7375541 0
1.6893103 0.5570265 0
1.0699112 0.0654587 0
2.2113153 -0.3098544 0
-1.9928563 -0.5235435 0
-0.7254393 1.1329197 0
0.5727672 3.5621644 0
0.6793226 0.7284079 0
0.3743838 0.4304918 0
1.4366843 1.2059784 0
0.9486540 0.4079051 0
0.9940950 0.9479722 0
0.3493516 -0.1074602 0
1.1042802 2.2815894 0
1.6926020 2.1749196 0
0.7154754 0.8940519 0
1.1142347 0.8482928 0
0.6925350 -0.6743701 0
0.1315759 1.4383505 0
0.9919227 -1.3857404 0
0.7837361 1.0562993 0
1.7162861 1.5271423 0
0.7533056 0.4306568 0
0.4852908 -1.1987394 0
1.5710004 1.3259186 0
1.9518613 -0.2401916 0
0.3428036 0.6869535 0
1.7027725 1.1002578 0
-0.8899455 -0.0740303 0
-0.5563057 1.9687521 0
-0.3338790 0.5399711 0
0.8516917 -0.1220179 0
1.8627590 1.3395799 0
1.0157127 0.3906756 0
0.4810114 0.3701707 0
1.3815189 1.2028001 0
0.0795846 -0.1454981 0
0.7085770 0.3948364 0
1.0515804 2.0689737 0
0.3463321 1.7256982 0
-0.1595639 0.7913445 0
0.4756564 -0.4787917 0
0.5000656 2.0884948 0
1.8905899 1.3399397 0
0.4167562 1.7174464 0
1.4645868 -0.5917937 0
-0.0721166 1.6475577 0
-0.9950985 0.8218584 0
-0.3984250 1.5447903 0
0.9522433 1.3843061 0
1.9938384 -0.2477438 0
1.2742233 1.2056068 0
-0.2743763 0.9504957 0
-0.5865867 1.2676703 0
1.2306959 3.1870457 0
1.1512480 0.9585994 0
2.6314089 0.3165136 0
0.1211512 1.2893627 0
1.4517273 0.2931100 0
1.3921562 2.8942819 0
1.5442404 1.3353864 0
0.7888570 1.0752004 0
2.3648742 2.2386364 0
0.4584952 1.6872661 0
0.9106506 0.6331575 0
0.1849912 2.5940239 0
0.8782354 2.6683083 0
-0.7413675 3.0516314 0
3.0430856 1.2386859 0
2.0510247 0.9596551 0
1.0714678 0.2321849 0
1.3460269 -0.1939576 0
1.1909151 0.5306816 0
-0.1048888 0.9739943 0
0.8063212 0.2784366 0
1.4537083 1.1727988 0
0.8851130 1.6744457 0
1.2797053 1.0183315 0
0.7083225 -0.0254388 0
-0.0469201 3.0065289 0
1.5462068 0.3247106 0
1.4178953 -0.7425845 0
1.6074274 0.9153184 0
1.3862632 2.7233825 0
2.6933255 2.5634816 0
0.7304863 -0.5982814 0
1.9727997 1.2517126 0
0.8631085 0.9165923 0
1.0365344 0.6535179 0
0.1812762 0.4159844 0
0.7292520 1.1137983 0
0.9007850 0.9781196 0
0.5582039 0.5759189 0
0.2145499 -0.1325227 0
0.7333373 -0.4788993 0
0.8144516 0.8148893 0
0.4121609 2.5452466 0
1.5709352 0.8304091 0
1.3395465 1.3519194 0
1.4362419 0.7721381 0
-0.3456372 1.9210121 0
1.2653993 0.8578956 0
0.5098946 1.7431863 0
1.4970146 3.0733503 0
0.9261183 1.3865694 0
-0.3393376 1.6421293 0
-0.5757326 0.3878238 0
2.5908060 0.3540254 0
1.2833808 2.3500783 0
0.5623337 0.6139514 0
1.0860360 1.3044816 0
0.7948567 1.6126904 0
0.6319976 2.9162076 0
1.2770609 1.3236098 0
2.1842810 2.0126895 0
0.9574192 -0.3963528 0
0.9659414 1.7150703 0
2.8222648 2.3328828 0
2.4184616 0.8043320 0
-0.6633143 1.0961138 0
1.3063964 2.2438832 0
0.8660449 -0.4821511 0
2.7852568 0.9264789 0
3.1441149 1.6941725 0
2.9467048 2.8970087 0
2.0819683 2.3576300 0
1.4666074 2.2564204 0
1.7086548 0.0262307 0
1.2507164 2.5093137 0
1.2805788 2.8172196 0
0.8978173 2.3342370 0
2.5190617 1.1399504 0
0.7590143 0.9364598 0
-0.3927852 0.6993802 0
-0.2136135 1.3554077 0
1.2413816 0.9982525 0
0.7650120 -0.4658866 0
2.6204562 1.7300570 0
1.5480447 0.1165341 0
2.5209481 0.2909804 0
-0.0696835 -0.3589603 0
-1.1497565 1.0487654 0
0.6284012 2.5040260 0
0.9827992 -0.0665924 0
2.4210656 1.4606178 0
0.2802620 0.6210837 0
0.4606382 1.3878169 0
1.1277354 -0.0701253 0
1.5214947 -0.3066992 0
-0.0714686 0.6139644 0
1.3116672 0.6039346 0
1.5930346 -0.1538656 0
0.7189350 0.3874257 0
0.5456212 1.3411954 0
0.3877986 0.3313827 0
2.2619061 2.5171010 0
0.1670104 1.0035365 0
2.0421281 2.8366743 0
1.1010589 0.0687538 0
2.4810953 2.0776859 0
1.5507688 1.9088244 0
1.7095179 0.8489983 0
2.4039881 -0.5524628 0
1.0509668 3.1073302 0
0.3363938 0.5571247 0
0.8790211 -0.6788751 0
1.8308224 1.1280668 0
0.1539962 2.9345610 0
2.4604563 0.6962434 0
1.7582339 1.6776435 0
1.2416721 1.6814499 0
1.4618156 1.7671458 0
1.0864049 -1.0801100 0
-0.3455356 0.2696841 0
1.1729624 1.8818528 0
-0.7983751 2.8171662 0
3.5738884 -0.2046178 0
1.7977744 2.6808735 0
2.3208396 1.9179712 0
2.6370852 1.1037113 0
0.0431134 -0.5845357 0
2.5845449 1.6054706 0
0.3174596 1.1062267 0
1.9270512 -0.5627574 0
0.8330851 1.3484655 0
1.4626333 1.1649549 0
1.2066843 0.9972851 0
1.2514724 0.4402455 0
1.5463392 0.9405239 0
0.3727061 2.7018789 0
0.7205132 0.9178824 0
-0.9525033 1.2771711 0
-0.2775437 0.2321078 0
1.0368796 1.1745960 0
1.1528002 -0.7961437 0
0.0482999 -0.2104104 0
2.8041999 2.2451016 0
1.1685990 0.8181974 0
1.7469230 1.3130165 0
0.2948727 -0.0859548 0
0.7715148 1.4276491 0
2.1550147 -1.0831303 0
0.4635606 -0.0542911 0
1.0720424 -0.0858693 0
2.2064788 1.7828640 0
-0.0659363 1.5496492 0
1.0145776 0.5543460 0
0.2655286 2.0887920 0
1.9656584 1.2859995 0
1.1736549 0.0021044 0
0.9099437 0.1806659 0
0.0849529 -0.2407392 0
-0.4570663 0.0842184 0
-1.0224104 3.5337077 0
0.5348621 2.3913426 0
1.7176604 0.0069740 0
-0.2537993 -0.4612898 0
0.1282648 1.7550537 0
0.0038414 2.3906634 0
2.5722840 0.3472953 0
1.6761261 0.0351090 0
0.6183812 0.3453191 0
-0.3367279 1.9294432 0
1.3387871 1.0498551 0
1.4374377 3.0303612 0
-0.1753098 -0.7370468 0
-0.4982114 0.7407568 0
0.2744648 1.1776188 0
0.2925801 -0.4895040 0
1.1608428 1.5495634 0
-0.6261620 -1.1435501 0
1.7752979 0.9628701 0
3.0485506 -0.0066584 0
1.2732811 1.8738423 0
1.1631052 0.0172736 0
1.2456114 0.6447115 0
0.6041244 1.8635767 0
-0.1532047 0.6829272 0
1.4809996 1.2995439 0
0.0844303 -0.3773330 0
3.1488382 1.6815082 0
1.3887679 0.9530040 0
0.4759266 0.9773226 0
0.7548750 0.5155189 0
0.8001889 1.8514316 0
2.3534068 1.4151481 0
-0.0133028 1.8484658 0
2.2073434 1.0945913 0
0.0459225 0.8097051 0
1.1186691 1.0076919 0
0.9231351 -0.1098827 0
0.7719606 1.9168477 0
1.5689499 -0.5067149 0
0.2740783 1.2553927 0
1.3345215 0.8752463 0
0.0627472 0.1847811 0
0.8650680 0.9296187 0
1.8648192 -0.7768309 0
1.4111123 0.2191351 0
-0.0428962 1.7738963 0
-0.1768650 1.4594677 0
1.0428787 -0.0621249 0
1.7433897 3.1134954 0
2.0517097 2.2718955 0
2.2091978 -0.3361189 0
1.8935161 -0.2615238 0
0.7815514 1.8986054 0
1.1606986 0.6707834 0
1.1904711 0.1523004 0
1.4644891 1.7231732 0
2.1091325 2.0301473 0
1.9325324 1.4684123 0
-0.3440683 -0.4982453 0
1.2952358 1.2568635 0
0.2181570 0.7577034 0
1.6529391 -0.1571168 0
1.6527171 2.3806796 0
0.3835626 1.1743648 0
0.3516529 1.3580232 0
-0.6089620 2.2953624 0
0.6298147 1.6847851 0
0.3571039 1.9035965 0
-0.1077204 0.8206999 0
2.7676615 -0.5457692 0
2.8054801 -1.1477830 0
0.0147844 2.0924511 0
-0.4183155 3.3431095 0
2.4651605 1.0836060 0
-0.8436354 -0.6355561 0
1.0495832 0.8585813 0
-0.4961323 1.2809999 0
-0.0486008 2.1200294 0
1.5015637 0.9730216 0
-0.0239380 0.1936092 0
2.1828960 -0.2119107 0
1.6905810 1.0936100 0
0.1122947 1.3918094 0
0.9963388 0.1511649 0
1.5687035 2.3417423 0
1.0151266 2.1648976 0
-1.8402529 0.6677459 0
0.7038381 -0.2954865 0
1.5201046 2.1075178 0
2.6774742 0.8510114 0
0.5152137 1.7533635 0
-0.4854403 1.3553006 0
2.8152743 1.7021533 0
0.7664396 0.2040763 0
1.9489545 0.4990270 0
1.7183103 1.5130362 0
0.3874508 1.4763508 0
2.6786763 0.5015969 0
0.4594495 1.7067506 0
1.5097875 1.4088556 0
2.3306012 0.4791603 0
1.4239408 2.6013472 0
0.4596660 0.1783935 0
1.8431550 1.3222256 0
2.1725574 3.4174765 0
0.4866052 0.3921629 0
1.8713063 0.5862351 0
1.9437144 -1.2520477 0
0.8491604 1.4342060 0
0.0948770 0.7480223 0
0.4104980 1.1071868 0
2.7157347 1.1654077 0
2.0966950 0.1551021 0
1.4166493 0.5429087 0
1.7172321 1.3162872 0
2.4464952 0.1728557 0
1.7883026 -0.1853399 0
1.4001276 0.2923812 0
1.5112673 1.9109957 0
0.5670980 2.1060206 0
0.6630298 0.1656310 0
1.0975424 1.0093374 0
2.2807792 1.9207143 0
0.8319719 1.1920051 0
0.0076178 -0.1874301 0
0.8409219 1.1816191 0
2.0012522 1.5185781 0
0.4146536 1.3174350 0
1.6634942 0.8787669 0
1.2934732 -0.2416158 0
0.9560276 0.6403647 0
0.1679696 1.3295874 0
1.3652029 1.0610540 0
0.7715897 2.2432725 0
0.8630110 1.1064666 0
1.9455820 0.0400777 0
0.7833668 1.8463518 0
1.2185859 -0.7525384 0
-0.1076703 2.4245231 0
1.4166332 0.9635500 0
1.7192990 0.1283940 0
1.2885836 2.6597850 0
-0.0476449 0.6222008 0
0.9750705 0.5917300 0
1.3717984 -0.8500486 0
-0.2565041 1.0154831 0
2.1213178 2.0066946 0
0.3506449 1.0901687 0
1.7208460 0.9527825 0
1.8953481 0.2734104 0
-0.2810009 0.8747658 0
0.3722381 1.4977220 0
0.1846514 0.2367921 0
-0.8881930 2.0559384 0
1.4068261 1.4647694 0
2.3274589 -0.1058946 0
3.0139721 1.9456972 0
1.1717689 0.5287327 0
3.0149555 1.6079917 0
1.3625197 1.7118358 0
1.3066458 1.8934870 0
1.3275366 1.1218581 0
2.0082558 2.7160362 0
0.0122439 -0.4716323 0
0.3130616 1.4742865 0
1.9531597 2.3026857 0
0.8885099 -0.4331231 0
-0.1881358 1.5619260 0
0.8724514 -0.3878255 0
1.4769752 1.1564274 0
0.4051543 0.8261245 0
1.5288656 1.0141387 0
1.2019190 -0.2156650 0
-0.2859515 1.5071597 0
0.8695422 -0.1762253 0
0.8057402 2.2650568 0
1.7629738 0.8388165 0
-0.3506012 1.9927088 0
0.7023359 0.6097761 0
1.6951649 0.2861493 0
0.9197295 1.9258759 0
-0.1403784 -0.8119753 0
0.5663968 1.0871305 0
2.6959736 2.2125062 0
1.0556636 0.9730858 0
1.4661371 1.1579650 0
1.1436445 2.1083568 0
2.6808006 -0.1281857 0
1.1775482 0.6998220 0
2.3995991 0.1089715 0
1.7065600 1.9467782 0
0.7805749 0.5837223 0
0.7464305 0.9192309 0
-0.0497280 -0.1756001 0
2.0681045 0.8566086 0
1.4332557 0.0494280 0
1.2949462 0.8328762 0
2.5239965 1.8750524 0
0.9512334 0.7849084 0
-0.5247817 -0.8939068 0
2.5212855 1.5491946 0
1.0489670 0.9257568 0
-0.4091456 0.5463531 0
0.5643342 0.3274663 0
-0.1902907 0.9296544 0
2.0598391 -0.1579123 0
0.4431678 1.6281661 0
0.5520688 2.4913712 0
1.7504123 -0.3420195 0
-0.3019082 1.1621265 0
2.6414949 0.8993373 0
0.8235165 3.0542672 0
2.1851600 1.3056544 0
3.9639301 0.2372250 0
0.7960057 0.8651405 0
1.7072384 1.2572807 0
1.6480154 -0.1764734 0
1.0713448 -0.1163142 0
1.1892993 0.0477226 0
0.9283324 -0.3102403 0
2.6837199 2.2125297 0
0.9071501 0.8054493 0
0.3226405 1.4819958 0
-0.1385382 1.9657581 0
0.1375014 2.3908306 0
1.1239433 -1.0309489 0
1.3084690 0.1709813 0
1.6690772 0.0806435 0
1.3644338 0.8065468 0
0.8940094 -0.6729415 0
2.0486182 1.1983967 0
0.8682785 0.1886545 0
-0.2555151 1.2589992 0
3.4520698 2.0134871 0
1.0923366 0.5784209 0
-1.1382882 0.2211858 0
-0.7153715 1.6983518 0
-1.3222510 -0.5054181 0
0.9053081 1.1279613 0
-1.3648275 0.0747807 0
-0.7041460 1.6678104 0
-0.8513560 0.6375451 0
-2.5813564 2.6939413 0
-0.6637650 1.3914562 0
0.4739763 1.1405068 0
-1.5882949 -1.0028120 0
-0.4466287 1.9145491 0
-0.1090680 0.9180974 0
-0.9850506 0.5030697 0
0.3998080 -0.2985275 0
-1.1763444 0.0713515 0
-1.1018494 1.7946913 0
-1.1980820 -0.8500092 0
1.0487506 -0.5711022 0
-1.3986628 1.3874406 0
-1.9941808 0.0315398 0
-1.6476319 0.8886830 0
-0.8792091 1.8457876 0
0.5087363 0.9374089 0
-2.3781783 1.8316878 0
-0.5375445 1.6366383 0
-0.3586462 1.3555593 0
0.3729046 1.9339894 0
-0.7309456 0.9726057 0
-1.8605789 0.8752278 0
-2.1982704 1.5989947 0
-1.6186224 1.8394247 0
-0.6581741 3.8989983 0
-1.6380588 0.3704968 0
-0.7157100 2.4588198 0
-1.4248149 0.6598091 0
-1.4833781 1.2074417 0
0.8367103 0.9694098 0
-2.3598690 2.3466643 0
-1.5193153 2.9093288 0
-1.6163843 1.2023439 0
0.5587250 -0.5403198 0
-0.5489988 0.5785112 0
-2.0103354 0.5354963 0
-1.6340110 0.6234892 0
-0.5148238 1.7281413 0
-0.7269520 0.9508358 0
-1.3378826 2.6561370 0
-0.0002223 -1.2487881 0
-0.6082408 0.0692517 0
0.3260785 -1.0324178 0
-0.9432273 0.3816465 0
-0.8523669 1.1632400 0
0.2686603 1.8669615 0
-1.3151574 0.5155127 0
-1.3423541 -0.2762867 0
-1.9164890 3.5648902 0
-1.0425817 1.8521011 0
-0.2025679 1.6268478 0
-1.2943035 1.0674991 0
-1.7146327 1.3137449 0
-1.8746474 -0.2895625 0
-1.2981818 -0.2239886 0
-1.2448679 0.2065994 0
0.0250891 3.5266425 0
-1.7587365 -0.3170784 0
-0.4450280 0.7292462 0
-0.0681569 1.4132696 0
-1.1997888 2.2602578 0
1.9586562 2.7955481 0
-0.9550370 0.3680780 0
-2.1638081 0.4932410 0
-0.9161171 0.1442190 0
-0.9470298 -0.2965204 0
-0.0660749 1.2765562 0
0.6186399 2.7432614 0
-1.2355195 2.2641293 0
-0.0884905 0.4750943 0
-2.1733862 0.2771199 0
-2.3665637 2.2544458 0
0.4427144 2.8892460 0
-1.1133791 1.7494736 0
0.1114398 2.1496430 0
-1.2834657 0.0077931 0
-0.7812140 0.6278579 0
-2.2820162 1.5783532 0
0.5740539 -0.4885366 0
-0.9870660 0.7632859 0
-0.0241248 1.0338774 0
-1.0832718 1.4510511 0
-2.0178879 0.3162630 0
-1.1405632 0.8247856 0
-0.4583199 0.3999557 0
0.8907853 -0.0480842 0
0.3812124 4.1315105 0
-0.4958965 2.2458717 0
-0.6089576 1.9048955 0
-0.5822565 -0.0439468 0
-0.4749640 0.8891694 0
-2.2838656 3.2355029 0
-2.4279477 -0.5306472 0
-1.7022615 -0.2924356 0
0.1970205 1.2360747 0
-1.5340539 0.2122345 0
-1.9320080 1.0507467 0
0.2797512 0.0940784 0
-3.5250686 2.4858822 0
-0.5559948 2.4651971 0
-1.0490514 -0.0820032 0
-1.5139302 0.0382124 0
-0.9272550 0.8683527 0
-2.6093613 2.4402028 0
-0.3035493 1.5892476 0
-0.8902826 2.9634670 0
0.4870217 -0.1543228 0
-0.2694167 -0.9049908 0
-0.5104601 2.1114046 0
-0.7669918 0.5813952 0
-0.4490055 -1.3704824 0
-2.6032667 1.3472513 0
-1.9318158 1.6339311 0
-3.4561803 0.0876431 0
0.6469723 2.2148533 0
-1.1947858 0.4062327 0
-2.0547421 -0.3197504 0
-1.7973307 2.3230531 0
-0.7877579 0.2294543 0
-1.1299709 0.5805849 0
0.0765959 -0.3777844 0
-2.1069410 1.2306325 0
-0.6486465 1.1102784 0
0.6009845 -0.0404041 0
0.3351957 1.4047615 0
-1.1370843 1.5788019 0
-1.8066024 0.8422726 0
-1.9133157 2.7975890 0
-1.6338727 1.2964304 0
-2.4353830 0.7134516 0
-1.6019250 3.1601512 0
-1.4180335 2.1519204 0
0.0802507 -0.3938109 0
-1.7216230 0.6755918 0
-2.3708182 0.2240016 0
-0.4231154 2.7698392 0
-0.0317166 0.5632777 0
-2.2474126 -0.0001968 0
-0.8592276 0.3700184 0
-1.1376819 0.5519801 0
-0.8800525 0.4422315 0
-0.5444351 0.7201489 0
0.2812431 1.4489480 0
-0.2789354 2.0525275 0
-0.6166731 1.0627505 0
-2.7375788 -0.0303649 0
-0.7640803 1.4497369 0
-1.8757174 0.4227591 0
-2.0082218 1.9923311 0
-0.4184423 0.6007492 0
0.1929407 1.3343196 0
-0.5586492 1.5188067 0
0.4262689 0.9641675 0
-2.5243618 0.8595997 0
-0.9506051 2.4383488 0
-0.1745772 0.9964335 0
-0.5327754 0.4501954 0
-0.4708720 -1.2249652 0
-2.8852405 1.8600824 0
-1.1883279 0.4012960 0
-0.3315545 2.5518808 0
-1.2500257 1.9762675 0
-1.2296181 -0.3299101 0
-2.3199435 -0.5447321 0
-0.2737224 1.3846874 0
-1.0208942 1.5694363 0
-1.2041383 2.3543076 0
0.2880875 0.3000111 0
-1.0015520 2.1484437 0
-0.2930030 1.9590959 0
-0.6996629 2.4633884 0
-0.0150406 0.7044703 0
-0.5816237 0.4348080 0
0.5222651 1.6640055 0
-1.1680745 -0.2503342 0
-0.5798944 2.0296888 0
-1.7400815 1.0974373 0
-0.4074388 0.7558235 0
0.5828998 0.5740195 0
-0.7121812 1.9516989 0
-0.4457413 2.0605968 0
-1.9664988 0.7110861 0
-0.2544902 1.2582656 0
-3.1816249 0.8844377 0
-2.2888289 0.7491351 0
-3.4900371 1.2303449 0
-1.3401440 -0.4912765 0
-0.4847228 1.0379852 0
-0.4832078 0.0227282 0
-1.0877886 -0.5085353 0
-0.6336239 1.3856908 0
0.6084412 1.6349921 0
-0.3165245 2.2693338 0
0.2588099 1.1113602 0
-0.0671911 0.1309355 0
-1.6500996 0.7786724 0
-1.0328440 1.3667255 0
0.0641480 1.0893721 0
-4.0331365 -1.0121907 0
-1.4523974 2.1130551 0
1.7196687 2.3898573 0
-3.2235996 1.2490463 0
0.7605983 0.8793778 0
-2.5467795 1.6850173 0
-1.2114553 1.1960046 0
-1.3266934 -1.0010883 0
0.0289571 1.3949818 0
-0.7978260 1.2211967 0
-3.5522513 2.7442039 0
-1.3364012 2.4458171 0
-0.7070815 1.2366448 0
-1.5224336 0.2536112 0
-0.7342693 1.6734157 0
-1.6825625 0.2321858 0
-0.1067058 0.7574248 0
-1.5313664 0.6440747 0
-0.9359001 0.9765497 0
-2.2821082 1.0344407 0
-2.1650742 -0.6435261 0
-0.4179546 1.5536941 0
-0.9180076 0.2772350 0
-0.3852017 0.1757359 0
-2.1037607 0.8973728 0
-0.0405046 0.0487312 0
-1.0996145 -1.2154666 0
1.0399935 -0.3870829 0
-0.0413972 -0.3803391 0
0.1249900 -0.2309314 0
-1.1919179 1.9734836 0
-0.5972760 0.7711364 0
0.9226021 2.0153842 0
0.3590264 1.4691411 0
-1.3159667 0.7307457 0
0.9322346 -0.5530637 0
0.3979433 1.2740076 0
-1.9496602 2.1100266 0
-1.1644733 1.1289595 0
-0.1270255 1.6385981 0
-1.1599485 1.9746997 0
-1.3153897 1.2689397 0
-0.5710633 0.4925333 0
-1.1509730 0.9400273 0
-0.6200815 1.2910716 0
-0.4439644 -0.6625794 0
-1.2032604 0.8722960 0
0.8725309 0.6796818 0
-2.4891798 -0.2450833 0
0.3272580 0.8904885 0
-1.3770092 0.7989478 0
-0.6502499 1.4403050 0
0.2569742 2.8624246 0
-1.9738705 1.1438626 0
-0.2724254 -1.1174371 0
-2.3314817 1.4285023 0
-0.9343228 1.5312777 0
-2.5047353 0.1849180 0
-0.2335804 -1.5284341 0
-1.3889549 2.2823754 0
-2.1753285 0.4792641 0
-0.6419662 1.3144786 0
-1.2114676 0.9766158 0
-1.9891259 0.7784234 0
0.0484245 2.3802484 0
-1.4536721 1.1092028 0
-1.3094743 2.1202126 0
-0.2351747 0.2903980 0
-0.6152958 2.4964011 0
-1.4215183 1.2912056 0
-1.4941418 0.7398045 0
-1.9249911 3.5524339 0
-0.6575007 1.9850053 0
-0.9882484 -0.7659663 0
-0.4901704 -0.8414935 0
-1.0760091 1.8748045 0
-1.5843760 0.8322674 0
-0.9825835 1.8188152 0
-1.5657879 1.8804418 0
-1.4296384 2.2716476 0
-0.0747485 1.2646401 0
0.0938993 -1.1019927 0
0.4620815 2.8067123 0
-0.8395441 2.1082348 0
-1.8889162 0.6953625 0
-1.0308382 0.1709874 0
-0.4515171 2.4890422 0
-0.6675465 3.5031205 0
-0.9038343 -0.9001700 0
-1.0608674 1.1183769 0
-1.1314164 -0.1672584 0
-0.5375783 -0.9968278 0
-2.8384044 0.2951235 0
0.2575896 2.4919279 0
-1.4146757 0.8206539 0
0.5241609 1.0712146 0
-0.9382064 1.8012763 0
-1.9668292 -0.3227279 0
-1.8465717 0.0599205 0
-0.2568716 1.6703928 0
-2.1540191 0.2745930 0
-0.5803557 1.3136398 0
-0.7780625 1.7713680 0
0.5038848 0.8840399 0
-1.1941490 -1.7143453 0
-0.7918850 1.0588687 0
-0.4703474 -1.0203975 0
-0.0131389 -1.1131325 0
0.2941429 1.1522046 0
0.0642044 0.4292778 0
-1.2351965 0.9893288 0
-2.3432167 0.2858333 0
-0.4353261 2.7435780 0
-2.0542481 0.9998733 0
0.4344540 0.3856410 0
-1.2466490 0.9754842 0
-0.8235306 0.4421510 0
-1.6457567 0.7809943 0
0.8319756 2.2965977 0
-1.2670984 0.2847140 0
-1.5674057 1.1907796 0
-0.1407120 0.2611248 0
-0.5442070 2.7464171 0
-1.6061618 3.5824900 0
1.0058674 0.5872349 0
-1.0997998 0.0096393 0
-0.0360008 -0.7579720 0
-0.8590538 0.8311532 0
-2.2213498 1.3891548 0
-0.3687519 1.7716308 0
-1.0473088 0.5436533 0
-0.7273308 1.1197067 0
0.0755814 1.6271369 0
-1.9130787 -0.1343527 0
-1.2885660 1.6452611 0
-2.2760282 2.6827798 0
-0.0366016 -0.8073918 0
1.1023256 0.7776945 0
-0.7113721 -0.7388890 0
-1.5082424 2.0297281 0
-1.6299256 0.2488848 0
-0.5597529 -0.2186183 0
-0.6014398 2.0490167 0
-0.9833063 0.0719383 0
-0.5070728 1.6996664 0
-3.0415434 2.2351712 0
-1.1805525 0.8364108 0
-1.7134510 1.1371126 0
-0.8523900 2.7165689 0
0.2068983 1.2599626 0
-2.6384098 1.8941123 0
-1.8169716 1.2919469 0
0.6972260 1.0504137 0
-0.8104202 1.2935576 0
-2.0137354 -1.0276555 0
-1.5463577 2.5295639 0
-1.9157911 -0.1715300 0
-0.2388508 1.2657416 0
-0.3096408 0.2130735 0
-0.8907189 1.2960994 0
-3.1980345 0.9905392 0
0.3912589 0.1835890 0
-0.8852525 1.8458663 0
-1.0400311 2.5807761 0
-0.8762599 -1.0863267 0
-1.9372926 0.6096002 0
-2.7229017 2.0906071 0
-0.2933077 0.8845601 0
-1.6683366 2.1030234 0
-0.2789733 0.2577758 0
-1.1735011 0.3101768 0
-1.9490874 0.6287761 0
-1.7191167 1.2491087 0
-2.6150815 0.7280154 0
-2.9007477 -1.6775520 0
-1.4590218 1.1217964 0
0.0690077 1.6052441 0
-0.5508720 -0.5005635 0
-1.1039708 2.0592688 0
-2.5886539 1.2618837 0
-0.1406249 2.2955495 0
-1.5766321 -0.6371446 0
-1.8896633 1.5677057 0
-2.0183566 0.1409015 0
-1.0269629 2.2696986 0
0.6962766 2.6470906 0
-0.1852119 1.1638346 0
-0.7348199 1.6917941 0
-0.9262201 0.4181996 0
-0.2456246 0.2066327 0
-0.8389765 1.5248208 0
-0.4030527 0.4105719 0
-0.4223957 -0.1013574 0
-2.8238290 1.6965142 0
-1.2492494 2.1300701 0
-1.6430168 1.8419617 0
0.2002360 0.2513714 0
-0.7077644 1.5067890 0
-1.0845853 0.7696314 0
-1.1844818 1.5447005 0
-3.4468907 -0.5628607 0
-0.8889906 0.4732206 0
-1.1299329 1.6624938 0
-1.5494922 1.9310045 0
-1.3447472 -0.2179484 0
-0.9899300 1.9890239 0
-0.3913413 0.6875201 0
-0.7048301 0.4990430 0
-1.1669135 2.2690987 0
0.3620436 -0.0468938 0
-0.4781952 2.1318481 0
0.6068696 1.7437673 0
-0.0833321 0.7227928 0
-1.2880710 1.1270230 0
-0.7775460 0.8049445 0
-1.3650036 1.0690186 0
-1.6458214 1.7942388 0
-0.7240193 3.5976561 0
-2.2142854 0.8544113 0
-0.2142931 1.6174671 0
-0.0773672 1.2568278 0
-1.0897252 0.1248062 0
-1.3611703 -0.2411241 0
-0.2547642 2.1596447 0
-1.1644828 -0.2387924 0
-0.3053718 0.7526004 0
-0.2708583 2.4901135 0
-0.2005069 1.1710634 0
-1.9361520 -0.1047918 0
-2.7952064 0.5465976 0
-1.7945225 0.4821564 0
-2.0702688 0.0295952 0
-1.8587538 0.2061761 0
-0.4980319 1.9202270 0
-2.1953637 0.1364415 0
-0.4069463 1.0659010 0
-1.5370135 0.7922389 0
-1.5572162 0.8235798 0
-1.0371841 0.5000225 0
-1.2887173 1.2199017 0
-0.8582444 1.0257335 0
-0.6879758 0.7305490 0
-0.9792094 2.0779099 0
-1.9606801 2.1105819 0
0.1978055 1.5071776 0
-1.2676183 0.6540948 0
-0.0741796 3.8065321 0
-2.1262400 -0.1061080 0
0.1431973 -0.1881979 0
-0.0272583 0.3327149 0
-1.3286973 0.6321529 0
0.0542349 3.0951608 0
-1.1450589 0.6352521 0
-0.1546987 1.4134388 0
-1.9104385 1.3587499 0
-1.0546222 0.4257964 0
-2.3396030 0.7230039 0
-2.1767249 0.6394853 0
-0.6393847 0.8439719 0
-1.3171925 1.3165987 0
-1.5445476 -1.1957446 0
-1.4100789 2.3842111 0
-0.9857679 1.6297740 0
-1.9312074 0.8439430 0
-1.6316127 -0.3541761 0
-2.0929320 0.6468166 0
-0.8889665 2.0491778 0
0.0232220 -0.2566063 0
-1.4229395 1.2780044 0
-1.5766164 1.9924214 0
-2.8087292 0.6301350 0
-0.9497271 1.9169610 0
-0.6612413 1.1968201 0
-1.8406989 -0.0862319 0
-0.3438552 1.0606558 0
-2.1477268 -0.7193748 0
-1.4147041 0.5354226 0
-1.4145521 0.3500590 0
-1.0097498 1.3354823 0
-1.1884623 2.3766862 0
-2.7117919 1.6101854 0
-1.3420065 0.7434104 0
-0.3439157 1.9030418 0
-0.8327248 0.1831390 0
-0.2039721 2.9819480 0
-0.8013885 0.9628544 0
-1.4615586 1.5198418 0
-0.7486448 -0.0493549 0
-2.9343083 1.6645214 0
-0.8314769 1.1703236 0
-1.1514130 -0.0083149 0
-2.0205055 -0.1485677 0
-1.7881500 0.5205070 0
0.1376570 0.5295260 0
-0.7180997 2.5563215 0
-3.9253693 1.0073461 0
-0.7359946 -0.2168261 0
-0.4557232 0.9009564 0
-1.9288388 1.4174719 0
-0.4622874 2.3262833 0
-3.2185306 1.5761697 0
-0.0062022 1.3139778 0
-0.8371603 0.7679509 0
-1.1468435 1.0321881 0
0.1999491 -0.1662357 0
0.4798273 2.2404859 0
-0.9739865 -0.2215729 0
-2.0669960 1.1640128 0
-0.8014704 1.4182704 0
-1.2597537 2.7460567 0
-1.8340387 1.2294101 0
-2.6335087 1.1068985 0
-1.3329546 1.7016031 0
-0.8523753 1.8600031 0
0.3279908 0.2367137 0
-1.2554872 2.1221445 0
-2.2580595 0.4471953 0
-0.2767556 0.2268799 0
-1.7042162 -1.0044386 0
-1.5251506 1.4898722 0
-0.1531228 -0.0000855 0
0.6473226 0.4947945 0
-2.3667594 0.0498294 0
-0.4080447 0.9749742 0
-2.9789715 0.3861233 0
0.2501262 1.2273620 0
-1.3080151 3.5294990 0
-1.3532115 0.3819978 0
-0.9929538 2.4207150 0
-0.6076098 -0.2518204 0
-0.5464110 1.6662423 0
-2.4563649 2.1588091 0
-1.9878317 0.0270648 0
-0.1941382 0.6180428 0
-1.0315191 2.3605293 0
-0.5402718 -0.2084248 0
-0.2764259 0.2973130 0
0.0007636 1.3555246 0
-1.2561522 0.3076080 0
0.1118665 -1.4267732 0
-1.5052278 1.2768074 0
-2.0503986 -0.0619237 0
-1.1980812 1.0022279 0
-0.0495085 -0.3656694 0
-2.1664874 -0.1456206 0
-0.8916094 -1.2530912 0
-0.7845457 3.9018903 0
-0.6129541 2.7400113 0
-1.1147546 0.3188436 0
-3.0387108 1.6708608 0
-3.4512650 1.3632736 0
-1.8059352 -0.7730139 0
-0.1828830 1.0702741 0
-0.6498723 -0.4382887 0
-0.6653732 1.3482750 0
-1.2997470 -1.0349230 0
-0.5967994 1.6673013 0
-1.9010261 2.2364896 0
-1.6860937 0.4590825 0
-0.2383834 0.9388471 0
-2.0729218 1.3744322 0
-0.3510506 -0.7522148 0
-0.1901895 1.0034016 0
0.1150988 1.0372957 0
-1.1853241 -0.1303336 0
-1.2833861 -2.0869719 0
-1.2680027 0.5403497 0
-2.0415262 2.9721057 0
-4.1650482 1.6931321 0
-0.5443466 1.2125861 0
-1.9955184 0.6857825 0
-2.1646265 1.9335818 0
-1.5740386 1.2178265 0
-1.7103286 1.9076244 0
-1.6473958 0.1899578 0
-1.0232482 1.6906491 0
-1.1034593 0.4503879 0
-0.3626748 1.8532232 0
-0.6239210 1.7672342 0
0.4221973 0.9890613 0
0.1891084 1.9211259 0
-1.8171093 0.0976291 0
-1.0049349 1.1773621 0
-1.8938836 1.2359661 0
-1.3820020 1.2127299 0
-0.7051402 1.0552838 0
0.4568310 1.8514867 0
-0.1219670 0.4810945 0
-0.4458769 0.5023255 0
1.0390283 -0.1257727 0
-1.6233545 -0.3704214 0
-1.5160749 0.0009997 0
-1.0790222 0.6261732 0
-1.2844544 0.8299627 0
-1.2180590 1.8385012 0
-1.8061253 -0.6061907 0
1.0670842 1.1800010 0
-1.1661913 0.8024059 0
-0.6646458 2.8800769 0
-1.0251051 1.4362510 0
0.3670083 1.6554517 0
-1.8288364 -0.1769069 0
-1.2770213 0.6987438 0
-0.9026696 2.4698330 0
-1.0356064 2.4718791 0
-2.9798633 3.2245667 0
-1.8689568 1.6824771 0
-0.8078708 2.1547449 0
0.1414811 0.7042461 0
-1.6756393 0.8097016 0
-0.8729526 -0.6029557 0
-0.8076506 0.8346744 0
-1.2484037 1.9430550 0
1.1371644 0.7071931 0
-3.0387293 1.9384816 0
0.6556259 2.5871372 0
-2.0787782 0.0899294 0
-0.4462741 2.0171941 0
-1.2830919 0.2888201 0
-0.0761735 1.4890381 0
-1.9582084 1.8263628 0
-0.5794697 1.4088669 0
-1.3927651 1.3456656 0
0.1219256 1.0064252 0
-0.7704996 1.6431332 0
-1.8281698 0.2780199 0
-0.4321711 1.1857041 0
-2.6128850 0.9816289 0
-1.1070856 1.0164699 0
-0.1749980 -1.1744144 0
-0.9350440 0.8233791 0
-1.0973290 -0.2336005 0
-2.6809094 -0.0222236 0
-0.3726049 2.7772242 0
-1.2412790 1.4862833 0
-1.4434533 2.9574079 0
-0.7291426 1.1227962 0
-1.3721376 1.8894171 0
-2.5255249 1.4981850 0
-1.7326163 1.0163139 0
0.0079741 2.2965236 0
-1.3710314 0.1855951 0
-2.4543526 1.9197457 0
0.1997192 1.9755308 0
-1.7355646 1.3797230 0
-0.8600010 0.7463348 0
-2.7333157 0.2607026 0
-0.0683288 2.3725120 0
-1.9976767 1.3833009 0
-0.4169888 0.3370927 0
-1.4659792 0.7337184 0
0.3139392 -0.0184563 0
0.2990621 0.1056057 0
-0.2978744 2.2147647 0
-1.3938739 0.3297922 0
-1.4904950 0.8039267 0
-1.1019792 -0.5245137 0
-0.7084908 0.3604292 0
-1.1952458 0.5321707 0
-0.1106141 0.1078124 0
1.4138004 1.0563212 0
-2.3621688 0.3577788 0
-1.5498795 1.4035881 0
0.0093502 2.0619464 0
-2.1248334 0.2194965 0
-0.8148471 1.0551057 0
-0.5991772 1.0047689 0
-0.6785280 0.4364097 0
-1.1909047 0.6485755 0
-0.7120628 1.3246555 0
-2.4735722 -0.2814305 0
-0.9783255 2.0854860 0
0.3984152 1.7541281 0
-1.8655215 0.6102201 0
0.4963256 0.6782016 0
-0.5955405 -0.7470737 0
-1.6625188 -0.2531504 0
-0.5900123 1.9277193 0
-2.1264558 0.6760440 0
-1.5736044 1.4005730 0
-2.3107957 1.9398793 0
-0.5489147 3.3540689 0
-0.9676655 0.5326526 0
-3.4371779 2.3562997 0
1.3756804 0.1424713 0
-1.9831491 -1.8215105 0
-0.5962889 0.6796255 0
0.0524131 1.7353297 0
-1.7945819 1.4502700 0
-1.2932229 2.6978139 0
-0.6673057 3.4636716 0
-0.0329388 -0.4557865 0
-1.2956813 2.6567569 0
-1.4417157 0.2321985 0
-0.9905223 0.9444839 0
-1.6378718 1.0931083 0
-0.5885122 1.6532952 0
-0.0815289 1.1182368 0
-2.7371672 1.9189891 0
-3.5973124 0.5971750 0
-2.3669520 1.7641633 0
-1.4622333 -0.0012817 0
-1.5253182 -1.1181765 0
-0.8542962 2.6784876 0
-0.5757566 2.2865606 0
-0.2739616 1.7262604 0
0.1714967 -0.5806676 0
-0.0883829 1.1636173 0
-1.7086288 1.0197524 0
-1.4399844 1.3178603 0
-0.5812148 0.9172220 0
0.1985211 0.1476365 0
-1.1979394 3.6288803 0
-1.8246054 1.4045059 0
-1.2186035 0.7600366 0
-2.3029588 0.8000641 0
-1.6345593 -0.5310447 0
-1.2870587 -0.4656133 0
-0.9933489 1.7386597 0
-1.8647066 -0.0893592 0
-1.5294160 0.2293030 0
-1.2732836 0.0757176 0
-0.8838965 0.5746285 0
-1.4606000 1.6915114 0
-1.4009612 0.5463276 0
-0.3696699 0.9284951 0
-2.0659614 1.3741310 0
0.0155982 1.5157377 0
-1.7495481 1.8150352 0
-0.1491872 -0.2571487 0
-0.3354626 0.4455143 0
-0.2983095 0.6926090 0
-0.1103660 0.2892911 0
-2.0562801 1.2894327 0
-1.5880637 -0.3690606 0
0.8640405 1.3703753 0
-1.7374082 2.5078221 0
-2.5812223 1.6170184 0
-0.9970414 0.0374407 0
-0.8853507 1.4696593 0
0.4837545 1.8934924 0
-1.0466430 0.3301473 0
-1.6018516 0.6676346 0
-1.5047403 -0.6924270 0
-0.4824547 3.0697312 0
0.7397046 1.9074878 0
-2.5531048 0.7182080 0
-1.7540810 1.4691929 0
-0.8228896 0.4378030 0
-0.9816317 -0.1038754 0
-0.7117408 -0.6840732 0
-1.7075759 0.1443848 0
-2.4035053 1.4578520 0
0.6535053 0.6234465 0
-0.6439805 2.4636602 0
-0.5530376 1.0535744 0
-2.5657089 1.1282034 0
-0.5613649 -0.0621836 0
-0.6487209 2.8392778 0
-1.1295542 1.4455634 0
-2.6910529 1.7073797 0
-0.8345142 1.7118355 0
-1.0114037 0.3684216 0
-1.7294975 0.9581096 0
-2.4090845 0.7912857 0
0.3822493 0.1778386 0
-0.6695162 1.2709961 0
-0.5671030 0.7011560 0
-0.7381932 1.3974290 0
-0.4078223 2.0604361 0
-0.3446736 0.1142683 0
0.1545579 2.8743857 0
0.1978889 -0.1113252 0
-1.3490396 0.7956343 0
-1.6962073 0.3208236 0
0.2291261 0.4700298 0
-2.1887621 -0.3731084 0
-0.1473679 2.0843719 0
-1.4323716 -0.4435938 0
-0.9785332 1.6473369 0
-1.5142408 -0.0622042 0
-1.5792393 -0.1249501 0
0.0531425 0.9588401 0
-1.8388778 -0.1635013 0
-0.4593540 1.4632944 0
-0.1521496 1.8711138 0
-0.6269952 0.2900834 0
-1.7322878 1.7675754 0
-0.9198244 1.0939697 0
-0.3905730 0.2999533 0
0.0673666 2.3642136 0
0.2151659 0.8262507 0
-1.4310027 -0.0867029 0
-1.3591775 0.4480239 0
-0.9150806 2.4052475 0
-1.9909385 0.6529087 0
-0.6054038 2.2016673 0
-2.5431470 2.0747030 0
-1.5468620 1.6074010 0
-0.8105723 0.7622709 0
-1.2466110 1.3291567 0
-0.9922066 0.3343076 0
0.1951175 0.3642969 0
-0.0809037 1.4231949 0
-0.9130496 1.1609840 0
-1.8313318 -0.1978492 0
-0.8727861 3.1247387 0
-0.9856973 2.0342074 0
0.8005396 1.3492540 0
-0.0882346 1.1582080 0
-1.0145944 1.6995462 0
-2.4462965 2.1620286 0
-1.4422552 2.3882514 0
-0.5805712 1.6750918 0
-0.3278426 0.3295232 0
0.7915074 0.9403768 0
-1.9951312 0.6658249 0
-1.2908964 0.2574512 0
1.1057808 0.6962557 0
-0.9527965 1.1230258 0
1.0866263 -0.2632151 0
-1.9741730 2.0760968 0
-3.1407772 0.5028183 0
-0.7282849 2.2875890 0
-0.8012840 0.9933685 0
1.0311633 1.9417315 0
-2.2312231 -0.0524813 0
0.0235408 0.5518785 0
-2.2965101 0.7316683 0
-1.9784934 0.0104416 0
-1.0305151 1.1636578 0
-1.1324102 -0.3305797 0
-0.1157919 0.5135528 0
0.3127108 1.4977636 0
0.4686787 1.9761577 0
-1.3360913 1.3742801 0
0.6042973 2.0131876 0
-0.4157523 0.6479721 0
0.4777779 0.6805220 0
-0.8908782 -0.7436127 0
-1.1430964 1.2814762 0
-2.0615103 1.3720477 0
-1.4546831 2.0544573 0
-1.2394709 0.7809459 0
-0.1980559 1.3012586 0
-0.2935782 -0.1752045 0
-1.4773823 2.4773837 0
-1.2722414 2.1516233 0
-1.7141969 0.5151161 0
-1.9586270 0.7574726 0
-0.4374092 1.9075647 0
0.2691047 0.9030437 0
-0.4509374 1.5891156 0
-0.7091278 -0.2233778 0
-0.0011969 0.7094025 0
-1.0589638 -0.1266256 0
-0.9905392 1.2486326 0
-1.3272131 -0.1235838 0
-0.6794323 1.1727981 0
-0.6291212 0.2831349 0
-1.1830276 0.1587387 0
-0.1613722 1.5601064 0
0.8570819 -0.4986744 0
0.0820057 0.0399836 0
-1.8956933 3.9624405 0
1.3786998 2.6937349 0
-3.2719027 1.0083930 0
-1.1919574 1.4606410 0
-2.4528795 1.6798088 0
-1.4412365 -0.3880643 0
-0.5070909 1.0410713 0
-1.2515522 -0.4884255 0
-1.6839184 1.0467284 0
-1.1918181 2.4048620 0
-1.8362379 -0.4652576 0
-2.8821005 0.9248874 0
-0.5817429 -0.1759301 0
-1.3418946 1.4118010 0
0.0441645 0.4462423 0
-0.8440846 -0.3204808 0
-1.3211346 2.2753396 0
-0.8204065 0.8229571 0
-0.4577239 1.0608717 0
-3.3553380 -0.3265267 0
-2.8997704 -0.1139371 0
-0.5096826 1.4939930 0
-0.0690761 0.3379369 0
-0.6759308 -0.5559426 0
-1.5817547 0.4901395 0
-0.3484140 0.9709554 0
-0.3647868 1.4808405 0
-2.1455789 -0.5393025 0
-0.5308126 1.3295973 0
-0.7995384 1.1976908 0
-0.2304001 -1.0976978 0
-0.3330331 0.4772012 0
-1.4834876 2.4568580 0
-1.8811725 2.4693943 0
-2.4406376 2.4828011 0
0.4459883 1.3770372 0
-0.2847194 2.8711081 0
-3.1343454 -0.5969199 0
-0.0270992 1.2230413 0
-0.0840980 -1.1565307 0
-1.1115769 -0.4898743 0
0.1618078 -0.0560421 0
-0.3362849 0.9414065 0
-0.8422147 0.3085766 0
-2.3585793 1.9754751 0
-2.4745383 0.4673784 0
-1.2527058 3.3015246 0
0.2530439 1.1928196 0
0.9872922 1.4276837 0
-1.4164536 -0.6302827 0
-1.2023436 -0.7428449 0
-1.9303467 0.2486319 0
-2.5014616 1.2296419 0
0.8332855 -0.1709374 0
-1.9580080 0.5167203 0
0.2449120 1.7282033 0
0.0534549 0.7641201 0
-0.0619401 1.1882905 0
-3.1025747 -1.3064873 0
-1.9227728 1.3192593 0
-1.2412637 2.1736733 0
-2.0688501 1.9037184 0
-1.4988327 1.1026257 0
-2.5063405 1.0899534 0
0.6159130 1.6788625 0
-0.8447322 -0.6098071 0
-1.2534110 0.3584683 0
-0.4302762 -0.8919739 0
-1.3019670 2.1803871 0
-0.6307070 1.4601707 0
-1.4932712 0.5997338 0
-0.8215612 1.8136538 0
-0.6617746 0.8690457 0
0.0447827 2.4274569 0
-0.0719359 0.7374534 0
-1.7192035 0.6701133 0
-0.6134570 0.3642210 0
0.1611643 -0.7803080 0
0.9677103 2.3829436 0
-2.7750105 -0.4486787 0
-1.4155857 1.9197965 0
0.5191959 2.1124823 0
-0.9656958 -0.0595793 0
-1.6581999 0.5165765 0
-2.1861699 0.7157372 0
-1.8166156 1.4454247 0
-0.8133453 0.7000194 0
-1.1637949 1.6711866 0
-1.2304851 1.7506939 0
-1.1796219 0.9649873 0
-0.9557648 -0.2906001 0
0.7673710 1.1305316 0
-2.1349478 -0.2106839 0
-0.5147487 2.9521020 0
-1.7033261 0.9815603 0
-0.2107898 2.0137623 0
-1.6919686 -0.0834940 0
0.6847742 1.9571296 0
0.4249121 -0.0032431 0
-0.2409049 2.1472020 0
-1.5773927 1.5726037 0
-1.6522073 -0.1243600 0
-1.2804906 -2.2753424 0
0.9400810 1.7363450 0
-2.7857788 0.4644446 0
0.1154962 2.5422945 0
-0.2462452 2.0507520 0
-2.1390781 1.0290410 0
0.0892584 -0.0024810 0
-0.8486050 1.7222192 0
-1.7616130 0.9159049 0
-1.7777784 0.6287480 0
-0.7899297 0.8851510 0
-0.1919219 -0.1275758 0
-1.0342813 0.9889452 0
-1.3222856 2.6046469 0
-2.2252470 0.5035766 0
0.6409667 -0.1874543 0
0.7497298 0.8083125 0
-0.1250000 0.3815924 0
-1.2746551 0.3645581 0
-0.9982444 -1.3254691 0
0.7118511 0.2142640 0
0.5196696 1.0050657 0
0.6821142 0.9100518 0
-0.0623608 3.3702645 0
-0.9349218 0.4895872 0
-0.6454145 0.9045816 0
-1.2854448 -0.2070856 0
-0.0652298 2.4352521 0
-1.0701228 -1.8672832 0
-2.2627457 -0.1386084 0
-0.6932462 -1.2493125 0
1.8888676 -1.6220003 0
-0.3957799 -0.8203177 0
-0.2124155 1.1966593 0
-0.6138520 -1.9626632 0
-1.9968362 -1.2493619 0
-0.7875370 -0.6241612 0
-0.6534585 -0.8195357 0
-0.6063407 -0.1966797 0
0.4773429 -2.3592643 0
-0.2164842 -0.5345178 0
0.3082893 -0.2912504 0
-2.2342159 -3.0070370 0
-2.9472823 -0.4052294 0
-1.5234639 -1.5924140 0
-0.5447879 -1.5203690 0
-2.2938586 -0.1935139 0
-1.1306504 -1.0194736 0
-2.9049828 -0.1301387 0
0.0309225 -1.4827303 0
-1.4148101 0.4758735 0
0.0730673 0.3776238 0
-1.4583301 -1.8738190 0
-0.4797251 -1.0039108 0
-0.9517335 -2.2341922 0
-1.9784483 1.1446234 0
0.8081719 -0.3049177 0
0.2816680 -0.6848783 0
-1.9860653 -3.2489875 0
-0.4875405 0.7605453 0
-1.9094018 -0.2611267 0
-2.2670056 -1.0327455 0
-2.2267921 -0.8929573 0
-0.9797049 -3.2967697 0
-2.0127674 -1.7407216 0
-1.3519289 -0.6961942 0
-1.7642113 -1.1900689 0
-1.2353593 -0.4158768 0
-1.0888304 -0.0099134 0
-1.9973822 -0.9805073 0
-0.2534865 0.8530663 0
-0.6883539 -1.7368440 0
-1.1317541 -1.6573008 0
0.4699930 -1.9529437 0
-0.1432310 -0.5109197 0
-0.2282435 -0.8680607 0
-1.5360568 0.3753041 0
-1.5587519 -1.5121084 0
-1.8770820 -1.8665901 0
-0.7106429 0.4364034 0
-1.0729955 -2.0722325 0
-2.2567610 -1.2143690 0
-1.5629261 -0.0504746 0
-1.2294660 -0.7701141 0
-1.8834512 1.0249577 0
-2.6969979 -1.8009814 0
-0.8747330 -0.9586062 0
-1.5331932 -0.5003270 0
0.3159019 -1.6033261 0
0.7181660 -0.1555448 0
-1.5676481 0.5658690 0
-1.0154646 -3.0386240 0
-1.6821705 -1.8748957 0
0.9702509 -0.3639671 0
-0.5717270 -0.6944743 0
-2.8016044 -0.1997989 0
0.0480003 -0.2283612 0
-0.4977906 -2.0813733 0
-1.2187922 -1.1758341 0
-2.0771487 -1.7809307 0
-0.2369940 -1.2011848 0
0.4350786 -0.9067940 0
-1.3620901 -1.3501701 0
-2.5116996 -1.6294637 0
-1.4183925 -0.2466965 0
-1.9710513 -1.7955905 0
0.0690843 -2.1626615 0
-2.2046602 -0.5850073 0
-0.9564898 -0.4225542 0
-2.3762356 -1.4601016 0
-0.1753421 0.6017293 0
0.5409807 -1.0310090 0
-2.1729035 -1.9455831 0
-2.9646092 -1.0239348 0
-0.7436830 -0.5985234 0
-1.2867256 0.8240548 0
-1.7117645 -0.1775855 0
-1.6688247 -2.0190924 0
-0.7348598 -1.8533915 0
-0.6426391 -1.4929525 0
-0.4403068 -1.1438650 0
-1.0179123 0.4755063 0
-0.9048774 -0.2278180 0
-0.2794275 -1.8845168 0
-1.7199865 -1.6676994 0
0.9507578 -0.0529305 0
0.4191046 -1.1679990 0
-0.6924740 -1.0775600 0
-1.2034235 -1.0058079 0
-0.6828247 -1.2271833 0
-2.9764660 -0.9345546 0
1.0485032 -2.4524611 0
0.7315850 -2.8255960 0
-0.0443084 -0.5395125 0
-0.6331115 -1.7023502 0
-1.3473321 -0.7854891 0
-2.5122465 -1.5466135 0
-1.8518553 0.0318270 0
-1.5788369 0.4717256 0
0.0320505 -0.8002097 0
-1.0712383 -1.1393040 0
1.0486931 -1.1750620 0
-2.0167049 -1.0941088 0
-0.8077059 0.5255702 0
1.8356079 -0.2336324 0
0.9425604 0.3169411 0
0.0066223 -1.2947650 0
-2.0589333 -1.7210880 0
-0.1274190 -0.4412554 0
-0.6805705 -1.6175389 0
-3.4274557 -0.9849158 0
-1.3190265 -2.4277566 0
-2.5492921 0.8604821 0
-1.7309647 0.5215105 0
-2.5909649 -1.5822392 0
-0.1724818 -0.5803447 0
-2.3040944 -2.1379712 0
-1.2357694 -0.4703298 0
-2.4632702 0.1605651 0
-1.1735546 -0.0348206 0
0.4988085 -1.2616734 0
-0.2260471 -2.0080901 0
-0.1129661 -1.7972774 0
-0.1913128 -2.4952692 0
-1.2859387 0.4010555 0
-1.4928014 -1.1542057 0
-1.2125450 -1.6609201 0
0.1382404 -2.2293795 0
-1.8740887 0.9937278 0
-1.3373749 0.5258321 0
-1.0425330 -0.7187157 0
-0.1640698 -0.2686263 0
-1.5783357 -0.0187199 0
0.6074833 -0.9200355 0
-2.4453776 -0.7266171 0
-4.1098068 -0.5560492 0
-2.0279223 -1.6184517 0
0.2016246 -0.4833818 0
-1.3887911 -1.4200269 0
-0.5928687 0.3061808 0
-1.5649312 -3.2222502 0
1.1125264 -0.0836571 0
-1.0174158 0.2734715 0
-2.5153399 -1.9663762 0
-0.8366183 -0.6207130 0
-1.2301661 -0.0356625 0
-2.4097952 -2.7990755 0
-0.1904632 -1.3372345 0
-1.4021712 -0.2171165 0
-0.0530217 -0.8789543 0
-2.4057969 -0.6500007 0
-1.4446851 0.2473413 0
-1.8740100 -1.4962990 0
-2.1504813 0.2366872 0
-1.3324579 -3.4253700 0
-2.2158326 -1.7594185 0
-0.5664210 -0.7738799 0
1.1306926 -1.5674183 0
-1.3168048 -0.9495140 0
-0.8858331 -1.4072176 0
0.2102073 0.8309632 0
0.1625929 -0.4150495 0
-0.4015522 -2.1653714 0
0.0661182 0.0961714 0
-0.8097689 -1.9987798 0
-2.3825916 -1.0057604 0
-1.1547594 -0.8745363 0
-0.7097853 -1.0484538 0
-0.4248440 -1.0489534 0
-0.9533572 -0.0512065 0
-1.2110173 -1.3362975 0
-2.6010125 -0.0520487 0
-0.9375451 -1.2644046 0
-0.4325043 1.6179368 0
-2.4869148 -1.2004468 0
-0.9158286 -0.9288973 0
-0.0102948 0.0099735 0
-0.3395164 -0.4856470 0
-1.7175428 -0.4258617 0
-0.0677187 -0.4997079 0
-1.9109546 -1.9668971 0
-0.6329321 -1.5070833 0
1.4796850 -0.4115631 0
-1.9233675 -0.0654011 0
-0.9001631 -0.2376221 0
-0.8440564 -0.9591702 0
-1.9341385 1.0061824 0
-1.3025780 -1.5241955 0
0.3727846 0.2250003 0
-1.1836320 -0.5684891 0
-1.9399716 -2.1209025 0
-1.4633132 -0.3304424 0
-1.3348948 -1.7456634 0
-2.9060223 -1.7460418 0
-1.3140150 1.2217656 0
-1.4503831 -2.1131160 0
-2.4500105 -1.4196488 0
-2.1397376 -0.4842695 0
-2.2208619 -0.1330406 0
-1.3908231 -0.7276285 0
-1.7326307 -0.2051030 0
-1.5333219 -2.0551141 0
-1.2226046 -1.3757441 0
-1.5754307 0.5525024 0
-1.8561827 -0.9722220 0
-1.0907146 -1.3811914 0
-1.5812836 -1.3038607 0
-1.4162339 -1.0588727 0
-1.3602486 -0.7724563 0
-1.5883181 -1.3175885 0
-1.6146469 -0.6050790 0
-1.9139203 -0.0884581 0
1.3988634 0.0702130 0
-1.3613600 0.2610494 0
-1.1726089 1.3939963 0
-0.0225227 -1.3496335 0
0.1157740 -2.0819186 0
-2.4092632 -1.3935219 0
-0.6811969 -3.3906500 0
-1.9640629 0.3461984 0
-1.8387702 -0.6345459 0
-1.7512310 0.5214825 0
-0.9240375 0.3695100 0
-2.7269946 -1.5692475 0
-1.6256216 -0.3099702 0
1.9604356 -0.0078843 0
0.7433893 -0.5877273 0
-1.7383800 -1.9285061 0
-2.0248289 -2.6211595 0
-0.6215597 -1.1450148 0
-0.3336311 -0.8821653 0
-0.4828852 -0.3023145 0
-0.4520164 -0.4116258 0
-1.4434118 -1.5295914 0
-0.6457725 -1.0992237 0
-2.6744098 -1.0266895 0
-0.9796052 -0.3786923 0
2.0887324 -1.6313434 0
-1.3459849 -2.2476257 0
-1.1302886 -0.7605887 0
-2.2987859 -3.4098657 0
-1.3616209 -2.3181925 0
-1.1552369 -0.1201941 0
0.7361551 -0.7213256 0
-0.2954609 -3.2459910 0
0.6579468 -1.8645200 0
-1.2100266 -1.9132308 0
-0.5388308 -2.0689026 0
-1.3627862 -1.9837623 0
-1.9042319 -0.0688228 0
-0.3017532 0.6897416 0
-1.3831208 -2.1282160 0
-1.6090302 -1.2006732 0
-0.2888244 -0.9646246 0
-0.7720718 -1.9304901 0
-2.0185645 -1.9642601 0
-0.0177997 -2.1112629 0
-0.8760239 -0.4943726 0
-0.5363735 -1.3297482 0
-2.3107477 -1.5053267 0
0.2625377 -0.6743724 0
-0.3423263 -0.5687410 0
-1.9872752 -1.0048569 0
-1.0846704 -0.6878301 0
-2.3949178 -1.0306709 0
-2.4306341 -1.7555421 0
-2.1183481 -2.1765729 0
-1.8875242 -1.5737274 0
-1.2001722 -1.3133914 0
-1.7528333 -0.4311429 0
0.5986602 -1.5556242 0
-0.2881843 -1.5805329 0
-0.7815724 -0.4410014 0
-2.0624877 -1.9116100 0
-1.5819917 -0.8855483 0
0.1957681 -1.8661434 0
-2.0697221 -1.5189637 0
-0.7747242 -1.6229871 0
-0.6574323 -2.0807245 0
0.0260154 -0.6373780 0
-1.7024997 -2.2449019 0
0.5605427 -1.2713336 0
-2.5171866 -1.9753347 0
-1.5189096 -0.2940320 0
-0.4331138 0.4979553 0
-1.1582525 -1.9209363 0
-2.0294494 -0.5952738 0
-0.9265932 -1.9657692 0
-0.8974309 -0.2423018 0
-0.4614038 -0.8665008 0
0.2037931 -1.5212271 0
-3.1201993 -1.1462009 0
-1.0756444 -2.1032215 0
-0.4897387 -2.8921226 0
-0.1402821 -1.2179581 0
-0.8036765 -2.3571559 0
-2.0435655 -1.6441626 0
-0.3101764 -0.3377959 0
-1.6171696 -0.6805981 0
-1.6514251 -1.9363816 0
-1.9097743 -1.9534357 0
-2.4702310 -0.1901225 0
-0.4229444 -1.7749745 0
-2.1396190 -1.6110071 0
-1.3760920 -0.0585739 0
-1.9475766 -1.0649811 0
-2.2191577 -0.9350495 0
-1.6862169 -1.7039923 0
-1.5866675 -0.1351790 0
-3.4378167 -1.7953659 0
-1.5696758 -3.0348170 0
-0.9846440 -0.7931261 0
-1.0338412 -1.4189884 0
-1.5229433 -1.9738710 0
-1.8395441 -0.9666215 0
-3.3100242 -1.6792304 0
-2.3119499 -2.3700233 0
0.0201497 -1.6294497 0
-1.8932251 -0.7593901 0
-1.2529405 0.1282335 0
-0.2381724 -1.3576101 0
-0.4465853 -1.9678483 0
-1.0502991 0.1020363 0
-2.0804325 0.0780759 0
-0.5482850 -2.0813213 0
-1.7756963 -1.4034220 0
1.8250935 -1.3854693 0
0.4062007 -2.4339561 0
0.9825683 -0.8907431 0
0.7465472 -0.2610575 0
-1.0790864 -1.6427132 0
-1.9690208 -1.7809847 0
-1.5114100 -1.1190803 0
-0.4264771 0.1952342 0
0.1665922 -0.7608215 0
-0.6413502 -1.2475111 0
-0.6033883 -2.3747561 0
0.5038767 2.2151228 0
-1.1908437 0.4090700 0
-0.3026392 -2.2045883 0
-1.0694357 -0.0675069 0
-1.4015464 -0.6048470 0
-0.4309031 -1.4331137 0
-1.0016611 -0.7350414 0
-3.0250348 -0.2269585 0
-3.5543029 -1.0640066 0
-0.3161057 -2.7125365 0
-0.1201079 -2.8038685 0
-0.5842091 -0.7644837 0
-1.8416983 0.1055649 0
-1.3375281 -2.1051458 0
-0.9487498 0.1547147 0
-1.5295953 -0.6001839 0
-0.9290249 -1.7936832 0
1.1306556 -1.7784594 0
-0.7634355 -1.6280127 0
-1.5584968 -2.5629562 0
-2.2119731 -1.9067348 0
-0.4781676 -0.4426635 0
-0.7685614 -2.1058872 0
-2.7861295 -0.1588003 0
-1.5183960 -2.6145800 0
-0.4576575 -0.2027185 0
-2.0523618 -0.6910424 0
0.0793090 -2.3360687 0
-2.1887169 0.0195865 0
0.8031272 -1.4410430 0
0.4832867 -2.2480065 0
0.1627123 -1.6365182 0
-1.3471038 -0.3656332 0
-0.9073959 0.3023162 0
-0.2705010 0.9072907 0
-1.3263736 -1.9327443 0
-1.6065928 1.2604560 0
-0.4935181 -1.1288666 0
1.2250841 -1.7734227 0
-2.1751999 -0.2916490 0
-0.6462758 -0.6286249 0
-1.6581760 -2.2441556 0
-0.8765218 -1.1249019 0
-2.5210698 -2.6531143 0
-3.2724630 -2.5169094 0
-0.7604370 -0.7835694 0
-1.1675321 -0.3320271 0
-2.2036889 -0.7126064 0
-1.6777361 -3.7733296 0
-0.8439925 -2.3409209 0
-1.1181326 -1.1511383 0
-1.0785241 -0.6955357 0
-0.6287580 -2.4947964 0
-0.8840845 -0.8227891 0
0.6350620 -0.5208767 0
-0.1664711 -3.1226459 0
-1.9194554 -1.5050058 0
-0.4722317 -0.3174003 0
-0.5785163 -0.8649163 0
-1.5032743 -0.7716070 0
0.1606966 -2.9055055 0
-1.3966953 -2.1421649 0
-0.6662415 -1.9699441 0
-1.3078700 -2.6112471 0
-1.3248995 -0.6110202 0
-1.7531382 0.2775649 0
0.4403583 0.6572140 0
-1.6652760 -1.0376924 0
-0.5603494 -1.7371197 0
-0.9866940 0.7195493 0
-2.2807102 -1.2797589 0
1.3447603 -2.5655784 0
-2.0112051 -1.1832940 0
0.3485746 -1.7637261 0
1.9256586 -1.4064086 0
-0.5892099 -1.5501189 0
-1.0976271 -0.2032855 0
-0.5349808 -1.5262334 0
-1.6097829 -2.3656293 0
-2.2557566 -1.3967483 0
-1.8141324 0.8299548 0
0.1977686 -1.4368005 0
-1.2834105 -0.6124738 0
-2.1597946 -0.4727332 0
-0.7076212 -1.4623702 0
0.2534145 0.1180067 0
-2.5767005 -0.8083427 0
0.2028329 -2.8736167 0
0.9006669 -0.2656493 0
-1.2432978 -1.0416368 0
-0.8306603 -0.3746765 0
-1.0238727 -0.3335790 0
-0.1083810 -0.6424729 0
0.1586627 -0.7127968 0
-0.8936330 -0.5012394 0
-1.3855965 -0.1430699 0
-2.3828393 -2.7878366 0
0.0195024 -1.3265793 0
-1.3483422 -1.8999659 0
-1.4831310 -2.1084709 0
-1.4759996 -1.2728693 0
-1.0216668 -1.9240111 0
1.6684816 -1.3164324 0
-1.3434938 0.0174887 0
-1.6990586 -0.5704337 0
1.0978469 -1.5615115 0
-0.0721971 0.2670786 0
-0.2605434 -0.9385167 0
-0.9774922 -0.8361931 0
-2.7517327 0.6937196 0
-1.1315927 0.3312140 0
-2.0923580 -2.2307118 0
-0.0113746 -3.5943680 0
-1.0852078 -1.6880554 0
-0.8230777 -0.4593788 0
-1.2588488 -1.2491153 0
-0.7188520 -0.3914006 0
0.0404254 -0.4070734 0
-1.7212027 0.2103679 0
-2.7941775 -1.0170245 0
-1.8360055 -2.1416416 0
-0.3627628 -1.3993354 0
-0.5810461 -0.4063922 0
-1.0144240 -0.8819595 0
-0.8811071 0.2888372 0
-1.5119604 -1.4112119 0
0.3868131 -3.0282265 0
-1.5523648 -1.7881608 0
-1.5426330 0.8854145 0
-1.8670334 -2.7703921 0
-0.4609002 -3.1599216 0
-0.7457734 -1.2097587 0
-0.4626495 -1.3486125 0
-3.3010816 -0.7310064 0
-0.8206688 -0.7633641 0
-1.2689171 -0.6374917 0
-3.0242513 -2.1280522 0
-1.6875488 -1.4593681 0
-1.9394193 -2.3395134 0
-2.0896360 -0.6975546 0
-0.8319820 -1.4335492 0
-1.4649038 -1.4017222 0
-0.9732531 -1.2143123 0
-1.6376778 -1.3516025 0
-0.1973285 -1.1887426 0
-1.0708134 -0.3026953 0
0.5497627 -1.3480885 0
-1.1513250 -0.8617517 0
-0.5741843 -1.4481136 0
-0.6243818 -0.0056360 0
-0.8204332 1.1700146 0
-2.1022485 -0.0550306 0
-2.1763887 -1.2608060 0
-0.5078925 -1.7493298 0
-0.2479582 -1.8322086 0
-1.3981996 -2.4846186 0
-0.9650003 1.9527722 0
-2.4906380 -0.3244572 0
-0.6212792 -2.3872123 0
-0.6574391 -0.3304726 0
-1.4149766 -0.7296499 0
-1.0042764 -2.6484143 0
-1.3034052 -0.4023964 0
-0.8841975 -1.5123750 0
-2.1681679 -1.1523234 0
-0.5773369 -0.2416894 0
-0.3562839 -2.9737705 0
-1.7254881 0.1170832 0
-0.6043268 -0.7246264 0
-0.3682069 -1.1226312 0
-0.7052792 0.1372253 0
0.1499549 -1.2962082 0
-0.8083036 -0.4248342 0
-2.5770062 -1.4483586 0
-0.9574485 -1.0039301 0
-1.0909417 -0.3779174 0
-2.0521011 -0.0270396 0
-1.4404870 -0.1344588 0
-0.4956162 -0.0936726 0
-1.7228121 -2.2398429 0
-1.3281676 0.0937650 0
-0.9757673 -0.8001738 0
0.0762899 0.0773751 0
-0.3011013 -0.8218845 0
-1.9932799 -1.3977968 0
-1.5318790 0.5826853 0
-1.5965304 -1.0575944 0
-2.9441111 -0.0584330 0
-1.8777903 -0.7904506 0
-0.4764041 -0.7712095 0
-0.1747989 -0.3261912 0
-2.3161315 -2.4140076 0
-0.3351596 1.5589310 0
-0.9819122 0.2802910 0
-0.6816186 -0.3455217 0
-0.9060570 -1.2607878 0
-1.0869795 -0.2633786 0
-1.0725027 1.1340830 0
-1.3656226 -1.3725841 0
-0.6837684 -2.6634373 0
-1.0582130 -2.0330150 0
-2.8335367 -0.1325425 0
-2.2531715 -1.3686144 0
0.3007103 -1.5617372 0
-0.7855455 -2.6075662 0
0.4605308 -1.0229311 0
-0.6524661 -0.5106462 0
-2.4336317 -2.2832116 0
0.0277748 -0.8853642 0
-0.4590233 -0.5846491 0
-0.2027210 -1.5304398 0
-1.0830283 -1.6909083 0
-1.7189275 -0.9534367 0
-2.9572009 -0.8133689 0
-1.5187916 -1.6973247 0
0.4658774 -0.2528644 0
-0.1663449 -0.6262428 0
0.4629564 -1.4452875 0
-1.7929351 -0.4845055 0
0.1312298 0.3868242 0
-1.6210122 -1.3757977 0
-1.0393210 -1.2622810 0
-0.7415358 -2.3154649 0
-1.2751372 -2.0012731 0
-1.3224949 -1.7012428 0
0.0258004 -0.6949388 0
-0.5524605 -2.0157382 0
-0.3918785 1.3153359 0
-0.1479563 -0.4484557 0
-3.0560982 0.3619307 0
-0.9091191 -0.0164214 0
-2.7575035 -0.9616223 0
-0.8127478 -0.5136502 0
-0.6840392 -1.2071240 0
-1.3067343 -1.9061781 0
-0.3149891 -1.1455823 0
-0.9447098 -1.8752093 0
-0.8716224 0.5421210 0
-0.5798126 0.1457784 0
-0.7738152 -1.6135357 0
-1.6129716 -0.8591615 0
-0.9235717 -1.5646851 0
-0.0095848 -2.8302192 0
-1.0104893 -1.9816436 0
-0.9374229 -1.8603230 0
-1.6936450 -2.2395618 0
0.2344015 -0.9791695 0
-1.9601184 -1.4970969 0
-0.5527243 -2.8727641 0
-1.8867294 -1.3935470 0
-1.8281709 -2.3040360 0
0.3671590 -1.3143127 0
0.1582815 -0.6982410 0
0.8690193 -1.0226604 0
-1.2907517 -0.8009975 0
-1.2045434 -1.9923081 0
-1.2663729 -0.7083572 0
-1.4134681 0.5426750 0
-1.1519762 1.6618948 0
-1.7507545 -2.0192040 0
1.2096813 -0.2264011 0
0.0879933 -0.7997620 0
0.4126182 -2.2028640 0
-0.6180538 0.4593383 0
-0.6201731 -1.7389801 0
-1.8686884 -2.0378401 0
-0.8526783 -0.3818087 0
-0.6179642 -0.5137331 0
-2.6108412 -1.1007010 0
-0.0901817 -2.6687931 0
-0.3791402 -1.0718052 0
-1.4257461 -1.6833817 0
-2.2641612 -1.9050566 0
-2.3302695 -0.9459355 0
-1.2026552 -1.8997170 0
-0.1857444 -1.3165918 0
-1.5524611 0.6268180 0
-1.4192893 -1.5459908 0
0.7818016 -2.0831439 0
-0.7925714 -1.2919371 0
-1.4351211 -1.7904146 0
-2.2410406 -0.2585473 0
-1.7824385 -1.3759310 0
-0.1384771 -2.7310376 0
0.2411506 -1.1748593 0
0.9744071 -0.9736362 0
-1.2872658 -0.1504027 0
-2.4423329 -1.6240335 0
-1.4992454 -0.9360603 0
-2.6317171 -2.1476483 0
-1.0222706 -2.1602245 0
-0.7148271 -1.9120881 0
0.1255083 -0.4623827 0
-2.0436378 -1.4547249 0
0.8453819 -2.6363855 0
0.1036600 -0.2616407 0
-2.5784783 -0.9793412 0
-1.7800748 -1.5556295 0
-3.1616889 -1.9721706 0
-1.1168290 1.7921848 0
-2.3954883 -0.8259759 0
-0.3131611 -0.4084130 0
-0.1453866 -1.7817382 0
-1.3391538 -0.3076104 0
0.2317328 1.8181765 0
-2.2449140 0.0960509 0
-1.4722857 -1.8346186 0
-1.4092891 -2.2509017 0
0.6780763 0.0575460 0
-0.5575660 0.0518809 0
-1.1310166 -0.4903073 0
-1.0042712 -0.1401415 0
-0.7008617 -1.9528985 0
-0.3940643 -2.1535550 0
-0.6976708 -0.6682186 0
-2.0382106 0.2100752 0
-0.9446590 -1.0327761 0
0.8339819 -2.0278295 0
-1.0224834 -2.2870155 0
-0.2998063 -2.7046905 0
-1.6978379 -0.7608136 0
-1.4719420 -1.2359530 0
-0.1012234 -2.7197289 0
-1.5531301 -0.8530754 0
-0.0784084 -0.8282220 0
-1.1412405 -1.1643217 0
-1.5786821 0.2833160 0
-0.5513985 -1.9683354 0
-2.1758736 -1.9574767 0
-0.0642736 -1.1069385 0
-0.5613185 -0.7333707 0
-0.2852257 -2.8373480 0
-2.1225274 -0.3170198 0
0.6014269 -1.2978080 0
0.3862434 -1.3707225 0
-3.1961236 0.0218182 0
-0.8053076 -1.2225935 0
-0.8468026 0.0848998 0
-1.2065932 -0.7935076 0
-0.4596822 -2.7565549 0
-0.4794284 0.0630328 0
-0.9968268 -1.1345627 0
0.1090700 0.9299382 0
-0.6530813 -1.3159821 0
-1.0657994 -0.9396965 0
0.6519710 -1.7674070 0
-0.9814510 -1.1961174 0
0.7567787 -0.6953984 0
-1.5373028 -0.3572283 0
0.9681009 -0.5418340 0
-1.2805859 -1.0238756 0
-1.2441070 -1.9454267 0
-0.0539661 -0.1920024 0
-0.9155055 -1.0794570 0
-0.8064306 0.1221534 0
0.7160679 -0.0421850 0
0.5395535 -0.3573838 0
-1.8745895 -2.0154605 0
0.6125470 -0.1946664 0
-1.4656403 -1.3439832 0
-0.6284044 -0.3906859 0
-2.4414381 -0.6735920 0
-0.9913677 -1.3162243 0
-1.7402595 -2.7639572 0
-1.6108041 -1.8904169 0
-0.7196430 0.0455061 0
-1.6720486 -2.0840806 0
-0.4829463 -0.5126723 0
-1.0086204 -0.2810109 0
-0.9785768 0.4900768 0
-1.9818354 0.9763504 0
-1.8605779 -1.0249009 0
-2.5387181 -1.3180657 0
-2.0523492 -2.1508139 0
-0.6173324 -0.0686274 0
-0.8985458 -0.4395677 0
-1.8291292 0.9056911 0
-0.2750826 -1.8467953 0
-0.6408701 -1.3334822 0
-1.2998040 0.0610726 0
-0.7204556 -1.3833517 0
-2.2093463 -2.2620493 0
-3.0577959 -1.0340672 0
-2.2924992 -1.8391459 0
-1.2394763 0.7517951 0
-1.3384057 -2.4411774 0
0.2326469 0.2166490 0
-0.5596688 -1.4256854 0
-1.3152496 -2.3890469 0
-3.3005316 0.2606796 0
0.9763858 -0.8889237 0
-0.4994092 -0.9126401 0
-0.5958772 0.0316703 0
-1.4751992 -0.1819542 0
-1.3638204 -0.4272911 0
0.1957515 -2.3193541 0
-2.2681292 -1.8296572 0
-1.9542770 -1.1367514 0
-1.7716037 -0.1721498 0
-1.3129341 0.7050744 0
-0.9109584 -2.1519728 0
-0.2659663 -1.1461684 0
-1.2918356 -0.8606118 0
0.4440239 -0.6324281 0
-1.7892719 -1.7002674 0
-1.6799348 0.5553711 0
-1.9903640 2.1981430 0
-0.1806220 -1.7214768 0
-2.0333951 0.5193502 0
-1.3275761 -2.0081933 0
-1.9024612 -2.5260338 0
-0.8418520 -0.3784642 0
-0.4461436 -0.6546761 0
-2.8448440 0.1008125 0
-0.7818603 -0.9576644 0
-1.5780469 -0.3129991 0
1.3423687 -2.0319142 0
-1.6967641 -0.7328319 0
-0.4929229 0.6293210 0
-0.0282819 -1.6880149 0
-1.2958905 -1.2516281 0
0.1941461 -2.0290668 0
0.3398691 -1.9007490 0
-0.7271370 -2.1867471 0
-1.9509301 -1.3442253 0
-1.9955452 -2.3777868 0
-0.2818869 0.7868258 0
-0.6367165 -2.7376341 0
-2.0088141 -2.0700322 0
-0.2886753 -2.0034310 0
-0.4998240 -0.8972832 0
-0.8827147 -1.6478697 0
-1.3964711 -0.4840445 0
-0.8763849 -2.4658841 0
0.1535172 -1.8881176 0
-0.2332753 0.3695021 0
-0.5595676 1.0888820 0
0.2894759 1.1014122 0
-2.0976646 -1.0920353 0
-2.0875792 -1.7431863 0
-0.0966425 -1.2845289 0
-0.2016326 -0.7329923 0
-2.0981628 -3.2499526 0
0.6850911 -0.3363999 0
0.2308658 -2.9804748 0
-0.8037288 -1.9623756 0
-2.1732019 -1.3179588 0
-2.8930701 -1.4343008 0
-1.7023260 -2.5127656 0
-0.1014239 -1.0086356 0
-1.9192578 -3.0230947 0
-1.2120778 -1.2679376 0
0.1880237 -2.0495339 0
-2.7079831 -1.4457312 0
0.4816545 -1.9381994 0
-0.8519810 -0.4237761 0
-1.1926282 -1.0185770 0
0.2246105 -0.1099450 0
-1.4246429 -0.4285132 0
-1.2511286 -0.4929550 0
0.4762932 -0.2285912 0
-1.1984173 -1.0380970 0
-0.4714971 -3.3691266 0
-2.9564663 -0.2973234 0
-2.2507851 -0.9993276 0
-2.2606224 -1.2700555 0
-1.6607488 -1.9255823 0
-0.1350131 -0.7201479 0
-2.1811234 -1.3120069 0
0.1988906 -1.3182420 0
-1.3455584 -1.2806699 0
0.5676885 -0.3719745 0
-1.1256929 -2.8499619 0
-0.6357726 -1.1210471 0
-1.4420933 -0.6338570 0
-0.7271664 0.8501517 0
0.1594349 -1.3898529 0
-1.1407973 -2.5038464 0
0.6835976 -0.4338856 0
-0.5591520 0.9742831 0
1.0647559 -1.9001128 0
0.7270037 -0.8027533 0
-0.8319698 0.4340568 0
-2.5171057 -1.2258213 0
-1.3832812 0.5976101 0
-0.8578436 -1.4538185 0
-0.9587133 0.7427272 0
0.4420631 -0.8346208 0
0.0412671 -1.9915415 0
0.0212260 -1.4264007 0
-1.0890474 -0.9635436 0
-1.3466780 -0.5053356 0
0.4839603 -0.9172129 0
-0.5417440 -1.9404546 0
-1.1252384 -0.7559286 0
-0.7101109 -2.2023929 0
-0.2990601 -1.3750896 0
-2.9597139 -0.2585579 0
-2.5536481 -1.2498430 0
-0.6570474 -1.3345819 0
0.1893387 -3.5318848 0
-1.1861608 -1.2499248 0
-0.4785801 -1.7892897 0
1.0227580 0.5611490 0
-0.6547877 -0.2821402 0
0.0272869 -0.1757988 0
0.1204179 -0.2119739 0
-0.4555363 -1.0054695 0
0.3870233 -2.7471261 0
0.0297763 1.4878031 0
-2.1198218 -0.2373069 0
-0.4359269 -0.7300076 0
-0.9612087 -0.5129583 0
-0.6647170 -0.2774796 0
-1.0012338 -0.8465589 0
-1.4098740 -1.9237955 0
-0.8300918 -1.4435835 0
0.0329330 -1.0323805 0
-0.6179036 -1.6331354 0
-0.7944529 -1.5655368 0
0.7341893 -3.5441332 0
-0.3084598 -0.2458732 0
-1.1506104 -1.7518873 0
0.0130526 -2.6457665 0
-0.8547589 -2.0225534 0
-2.3729938 -1.7539646 0
1.8401062 0.7016103 0
-1.0898918 0.8099907 0
-0.7643351 0.8363041 0
-1.9197087 0.6856730 0
-2.3028280 -2.4498024 0
-2.4687657 -0.8983166 0
0.2871420 -2.3629232 0
1.2665158 -1.4230325 0
0.1670769 -0.1187821 0
0.0537811 -0.0606203 0
0.3034974 0.9332674 0
-1.4722270 -1.0024104 0
-1.5376708 -1.3089608 0
-1.5987937 -0.5318323 0
-0.1977700 -0.4459726 0
1.3541273 0.0829031 0
-2.4829956 -2.1715774 0
-2.4986725 0.5680964 0
-0.6930831 -1.4518328 0
-1.5110559 -1.2202088 0
-1.3172488 -2.4659737 0
-1.3522360 -0.0455425 0
-2.1863128 1.1201623 0
-1.6911842 0.1454274 0
-1.8309538 -0.5047149 0
-0.9560670 -0.7712487 0
0.5170329 -0.5395091 0
-0.7937364 0.6687560 0
-0.6084705 1.5251066 0
-1.6875882 -0.5769280 0
-1.2549731 -1.0022686 0
0.4529380 -0.7322319 0
-1.8699314 -1.3125495 0
-1.3542535 -0.1718472 0
-2.2492570 -1.5783785 0
-0.1128199 -0.4001434 0
-0.1333178 -0.6095978 0
-1.9020579 -0.2140076 0
-2.7841805 1.0046726 0
-2.1660848 -0.8085644 0
-1.9534263 -1.0739928 0
-0.8531565 -1.7444083 0
-1.4375362 -1.9127914 0
-1.2830457 0.3490466 0
-1.1663988 -0.4726693 0
-2.6057680 -1.8378377 0
-0.9992456 -2.2929228 0
-1.9492901 -2.2780216 0
-2.0900309 -0.5944436 0
-0.5184975 -1.3622901 0
-2.0808020 -1.8598325 0
-0.8670654 -0.3877233 0
-0.7278118 -2.4188458 0
-4.0758962 -1.1690430 0
0.1015403 -0.8547611 0
-0.2252207 -0.7266276 0
-0.4140244 -2.4213048 0
0.3413616 0.3527582 0
0.1074096 0.4809916 0
0.5153342 0.4977414 0
-1.4083440 -3.3331272 0
-1.1592523 -2.4876731 0
-0.3042689 -1.4117247 0
-1.1917705 -2.1520064 0
-0.7044324 -1.6868699 0
-1.0121471 -1.0445451 0
-0.1981150 -0.2166598 0
-1.3367892 -0.7921248 0
0.4269578 -2.3095237 0
-2.0861599 -1.6822130 0
-0.8610906 -1.5044604 0
-3.8191641 -1.7587084 0
-1.6682014 -0.3789988 0
-0.6539375 -2.5308057 0
0.4476430 -1.4475354 0
-0.1388184 -0.8338987 0
-1.4800464 -1.2227259 0
-0.3024565 -1.1813898 0
-2.4111722 0.2472931 0
-2.9016416 0.1949885 0
-0.1864439 -1.9253046 0
0.8510341 0.9945531 0
-0.6544082 0.1240103 0
-1.5857988 -3.9047211 0
-1.5262439 -0.2389940 0
0.1687268 0.4652391 0
-0.1443231 -0.8454698 0
-1.8570888 -1.7949779 0
-0.8186399 -3.0131179 0
-0.7329794 -2.7485562 0
-0.1630907 -0.1963668 0
-0.6141659 -1.5511349 0
-0.8133171 -0.0059128 0
-0.8717266 -1.8049855 0
-1.5043410 -0.2785908 0
-3.5183793 -2.2095300 0
-1.3410007 -0.7308715 0
-0.0024722 -0.8068025 0
-1.1308898 -0.7024289 0
-0.8235570 -0.7234578 0
-1.6172174 -0.1022120 0
-2.0616474 -3.0318719 0
-2.4990739 -1.6323479 0
-0.8614046 0.6673242 0
0.0486863 -0.6851454 0
-0.2943197 -0.8667130 0
-1.4807214 0.6210097 0
-0.0791898 -1.9528669 0
1.4749141 -2.5063084 0
-2.0576312 -2.3184677 0
-1.0632101 -1.0810462 0
-1.0688160 -1.8464524 0
-0.7027213 -0.8546494 0
-0.5898725 -0.7406728 0
-1.9182152 -2.4155968 0
-1.3929466 -0.9278698 0
-1.1839451 -1.2928527 0
-1.1379537 -1.6758087 0
-1.3833933 -1.0108232 0
0.4513127 0.8076479 0
-1.2700902 -1.0423614 0
-0.6646822 -1.5025027 0
1.2089088 -1.0885958 0
-1.2634415 -0.4289396 0
-2.6359287 -0.5256431 0
0.7598646 0.3251023 0
1.1235422 -1.1681086 0
0.7338300 -1.1964779 0
0.8029960 0.2154997 0
0.3282247 -1.1630006 0
1.3091914 -0.2436451 0
0.0345784 -0.3487167 0
-0.4413098 -0.3926782 0
1.0700917 -1.3217625 0
1.4874337 -0.6475527 0
0.6948891 -0.4243527 0
0.6079869 -0.4380415 0
0.5097489 -0.9798677 0
0.3625927 0.3690708 0
0.1185449 -0.6863804 0
0.4402930 -0.5224790 0
-0.4482273 -0.3085034 0
0.1796697 -0.5425132 0
0.7979573 -0.6311157 0
1.0027305 0.2229080 0
0.4684220 -1.1817605 0
0.5025750 -0.4426874 0
1.4023765 -0.7096555 0
0.9559152 0.0278335 0
0.3726071 -0.8382724 0
0.5607991 -0.1420776 0
0.9256065 -0.1037237 0
1.9251313 -0.9648041 0
1.0343360 -0.1507149 0
-0.2792758 -0.7011586 0
0.2229805 -1.1554285 0
0.2950710 -0.7631011 0
0.6481079 -0.9003524 0
1.2289544 -0.5242925 0
-0.0831910 0.3018604 0
0.4469592 -0.5321600 0
0.7647838 -1.0266467 0
-0.0381751 -0.4284360 0
0.1362295 -1.1055806 0
0.2927482 -0.9589980 0
-0.4665644 -0.0955603 0
0.3682599 -1.8824401 0
1.1579072 -1.1087649 0
0.4398397 -0.0021342 0
0.3999358 -1.0391752 0
0.2271408 -0.5511712 0
0.2470808 -0.0905022 0
0.0835196 0.0589745 0
0.8427115 -0.2643641 0
0.2287856 -0.7641195 0
0.3388155 -0.5626810 0
0.1840660 -1.1797597 0
0.5979896 -0.7345043 0
-0.0854083 -0.5883639 0
0.5523016 0.0617044 0
0.6527526 -0.7040299 0
0.4678991 -0.1271191 0
0.2124611 -0.9384077 0
0.4264034 0.2588969 0
-0.2179197 -0.0988940 0
0.3423504 -0.1868032 0
1.5879937 -0.8074004 0
0.0330783 -1.4607513 0
0.2811007 0.0114709 0
1.4439807 -1.2664627 0
0.2507397 0.3672489 0
0.7216094 -0.0956157 0
0.2919145 -0.0244757 0
1.3375536 -0.5763753 0
-0.1893055 -0.1417250 0
1.0714112 -0.0472302 0
0.0585429 -0.5544266 0
0.1621543 -0.1765301 0
1.4204063 -0.5631509 0
1.6205182 0.6632874 0
0.4677845 -0.4747470 0
0.7280858 -0.7987691 0
0.3799101 -0.3110109 0
0.7815285 -0.5906223 0
0.6878600 -0.6570739 0
-0.1181088 0.0226044 0
0.1333185 -0.8790105 0
1.1235369 -0.4862888 0
1.0405415 -0.3153110 0
0.4398604 -0.9205376 0
0.3366025 -0.7108401 0
-0.3009332 0.1764889 0
0.5477088 0.0205176 0
0.5169181 -0.5497536 0
0.0960435 -0.4413125 0
0.0845013 0.0494573 0
1.2933271 0.2859606 0
0.5522801 -1.1405456 0
-0.0821493 -0.7050882 0
0.6234098 -1.1320362 0
-0.3249571 -0.5470451 0
0.3134893 -0.9602503 0
0.4037556 0.1338205 0
0.2297054 -0.5585331 0
1.4084312 -1.2462421 0
0.8034021 -0.3862881 0
0.2650180 0.0704249 0
0.4685932 -0.7365109 0
1.1856140 -0.2753923 0
0.5373110 -0.0475227 0
1.2951969 -0.3799248 0
0.9865675 -0.0263405 0
-0.1406995 -0.7290951 0
1.5186845 -0.8404020 0
-0.3304275 -0.5723284 0
0.2053521 0.4262532 0
0.3768621 0.2806836 0
0.5268553 -1.0344592 0
0.4369554 -0.6904532 0
1.5475323 -0.9120600 0
0.1508673 -0.8840991 0
1.0288180 -0.5468333 0
0.6819770 -0.2759863 0
0.7607794 -0.4494140 0
0.5432950 -1.4849927 0
0.2895220 -0.7088087 0
0.3847662 -0.2016483 0
0.4475372 -0.7909122 0
1.0455626 -0.9317755 0
-0.1367022 -0.8169408 0
0.1373005 -1.3754448 0
-0.0212138 -0.5003173 0
0.4804454 -1.3332988 0
0.3298179 0.0139251 0
0.3036957 -1.1571810 0
0.0616298 -0.3233427 0
0.4086239 0.2345874 0
0.8073859 -0.7606050 0
0.1635516 -0.0803969 0
0.2554687 -0.0396459 0
0.6015376 0.0023749 0
0.4449597 -0.9168513 0
0.4796161 -0.6273687 0
0.3070245 -1.2470444 0
0.5014046 -1.0124065 0
0.0866695 0.0317335 0
-0.7403367 -1.5085682 0
0.3613440 -0.4524849 0
0.7643718 -0.7301336 0
0.1406538 -1.1383063 0
-1.0876228 -0.7922080 0
0.1620306 -0.4340131 0
-0.0737373 -1.1100128 0
0.8107766 -0.9039085 0
0.2504731 -0.9203882 0
0.4183730 0.2454631 0
0.1759071 -0.9319776 0
0.5884949 -0.7369641 0
0.3926029 -0.3239376 0
0.6353777 -1.0056814 0
-0.1290529 -0.8886257 0
0.6965084 -1.3878639 0
0.8895307 -0.6592790 0
1.1861125 0.0854727 0
0.3756730 -0.7735379 0
0.5885196 -0.0043346 0
-0.1155517 -0.5727771 0
-0.0671528 -0.0357176 0
0.2917767 -0.2478521 0
0.8643152 -0.9872824 0
0.7741137 -0.4319274 0
0.0677120 -0.7755756 0
1.0386325 -0.2984837 0
1.3437498 -0.4340633 0
-0.1453802 0.1630364 0
0.4726888 -1.6030414 0
-0.2108803 -0.6037164 0
0.2883225 -0.1684966 0
-0.1489010 -0.1427034 0
1.0538657 -0.4130839 0
0.4206423 0.0158321 0
0.1937178 -0.3516785 0
0.5032747 -0.3101676 0
0.4468196 0.0487033 0
-0.1070194 0.2401717 0
-0.0940143 -0.7690543 0
0.1859862 -0.0235650 0
-0.5697388 -0.0366062 0
0.2937321 -1.5853627 0
1.1603114 -0.5630654 0
0.3770328 -0.4127306 0
-0.3536012 -0.8441652 0
0.0556409 0.2798100 0
0.7637105 -1.5858742 0
0.6416749 0.0529377 0
0.2150014 -0.0267621 0
0.1269374 -0.4306568 0
0.2557352 -0.6011928 0
0.2690749 -0.6438536 0
1.2382194 -0.8035710 0
0.3692322 -0.1010704 0
0.4218843 -0.3858098 0
1.4031455 -1.2553628 0
1.0754181 -0.5440395 0
0.7944955 0.0633206 0
0.3518528 -0.7155212 0
0.5105972 0.0802386 0
1.5857397 0.4968442 0
0.2764912 -0.4435670 0
0.1074973 -0.9859763 0
0.6874805 -0.4518957 0
1.0393359 -0.2015328 0
1.2775969 -1.2899495 0
-0.2135159 -0.2322929 0
0.5602210 -0.3950628 0
1.0161970 0.1350099 0
0.7898732 -0.3261493 0
0.7346549 -1.0042242 0
1.2343618 -0.7127932 0
0.3059830 -1.1013931 0
0.9403190 -0.9382341 0
0.0514116 1.0330252 0
1.2691639 0.0545322 0
-0.5962184 -0.9433157 0
-0.0576457 0.3944197 0
0.6126639 0.1069621 0
0.2219644 0.0672023 0
0.1382010 -0.3559622 0
0.8122139 -0.5694439 0
-0.0746748 -0.7348716 0
-0.0512927 0.0174907 0
0.5475927 0.3243290 0
0.2721893 -0.0396986 0
0.5504761 -0.0969828 0
1.0925483 -0.9506270 0
0.4425044 -0.6658257 0
0.3573496 -1.5000284 0
0.1881963 -0.5195182 0
0.1644040 -0.7169853 0
0.4051414 -0.0180445 0
0.3844648 -0.2069036 0
0.4769580 -0.4901632 0
0.6325924 -0.7661974 0
0.2183279 -0.2701516 0
0.5746560 -0.5236195 0
0.7180907 -1.3546203 0
1.3814285 -0.5197945 0
0.5297372 -0.1365033 0
0.0014050 -0.4302655 0
0.6412018 -0.3159207 0
1.2210940 -0.4535482 0
0.0604367 -0.1546046 0
0.0886818 -0.3264513 0
-0.1253769 -0.3595418 0
0.2816186 -1.5519517 0
0.7167742 -0.1478405 0
1.1758926 -0.5019739 0
1.2631361 -0.0268876 0
1.0544642 -0.0073219 0
0.5786418 -1.0923933 0
0.6154519 -0.4031986 0
1.7948088 -0.7100557 0
0.4601416 -0.7074611 0
0.7160775 -0.6536559 0
1.2738274 -0.6804384 0
1.0112849 -0.3303630 0
0.2004605 0.2950242 0
0.6986694 -0.4373321 0
0.4861367 -1.1945372 0
0.2979998 -0.0863350 0
0.7569387 -0.6361164 0
0.8181362 -1.3948533 0
1.0996708 0.6710104 0
1.8872374 -1.2127218 0
1.5637554 -0.5922404 0
1.6092416 -0.6132641 0
1.1338605 -0.3072453 0
0.5575861 -0.3931287 0
0.5783290 -0.6979959 0
1.7347109 0.2077700 0
1.2697179 -1.0262911 0
1.1913801 -0.7675689 0
1.1792935 0.4083780 0
0.6707138 -0.5518303 0
1.1394482 -0.2649610 0
1.1980437 -0.4148203 0
0.4948769 -0.7247782 0
1.2444688 -0.3064261 0
0.8799252 -1.2894872 0
0.6054095 -1.6260133 0
1.0179621 -0.6203224 0
0.7786536 0.2514788 0
2.2083209 -1.3843049 0
0.5467420 -1.2868587 0
0.9086941 -0.3070412 0
0.6302392 0.4164806 0
0.2514611 -0.0296714 0
0.7338113 -0.2451114 0
0.2244823 -0.5179408 0
0.6800127 0.1687045 0
0.8674582 -1.1045921 0
0.8378027 0.4421874 0
0.8919534 0.1499426 0
2.2528160 -0.6748427 0
1.9723683 -0.4441029 0
0.6268518 -0.9015659 0
1.1262410 -0.4763632 0
1.0268533 -0.7198867 0
0.7881033 -0.7488566 0
1.0878520 -0.7824788 0
0.7725675 -0.0480107 0
1.4330429 -1.1590502 0
0.4404747 -1.2858616 0
1.1654943 0.1305000 0
1.5057614 -0.6326231 0
1.5021616 -0.7433652 0
0.8463209 -0.1930626 0
1.1492314 0.2556030 0
1.1597188 -0.6363795 0
1.0933932 -0.3433960 0
1.5737583 0.7181344 0
1.7514604 -0.6817871 0
1.4553766 0.2103434 0
1.1225347 -0.9315306 0
1.0600484 -1.4991415 0
0.4685129 -0.7856010 0
1.0259732 -0.1572888 0
0.9769051 -0.3803481 0
0.0625393 -0.2946755 0
1.1579077 -0.8310743 0
0.8647937 -0.8339237 0
1.0378422 -0.1301685 0
1.2142658 0.0453444 0
0.4248355 -0.8569181 0
0.5107845 -1.2526003 0
1.3377279 -0.0162003 0
-0.1352750 0.0304013 0
1.7124463 -0.8109755 0
0.7935829 -0.4231329 0
1.6919902 -0.2234305 0
1.3136405 -0.5003473 0
1.4231857 -0.7710399 0
0.6107087 -0.3059006 0
1.0378404 0.0512042 0
0.5780349 -0.9369489 0
1.5817894 -0.3024455 0
1.0148415 -0.4870258 0
0.9745165 -1.1458962 0
0.8403009 -0.8512521 0
1.1709065 -0.4074338 0
0.9580002 -0.4431574 0
0.4697254 -0.4037854 0
1.6483795 0.2274538 0
0.5150687 -0.5148286 0
1.2395648 -0.8648796 0
1.4423177 -0.1358904 0
0.2603167 -0.7613006 0
0.7545795 -0.5651092 0
0.1038068 0.2618404 0
1.7731659 -0.8943661 0
1.8601673 0.3220356 0
1.2562312 -0.7832843 0
2.0173075 -0.5992233 0
0.3996593 -0.8865002 0
0.6041646 -1.4134162 0
1.0556699 0.8746813 0
1.1849399 0.7414105 0
0.1046003 -0.8233676 0
0.1044361 -0.0262763 0
2.0648532 0.3834095 0
0.9474176 -0.1068540 0
1.5401639 -0.6209067 0
0.7433550 -0.1416744 0
0.5257828 -0.1928191 0
1.3384063 -0.0325921 0
0.9325648 -0.7437441 0
0.6231828 -0.4397833 0
0.8300746 -0.5848908 0
1.5393685 0.0136917 0
1.0378635 -0.6880970 0
1.0708115 -0.7997335 0
1.8061897 -0.0434999 0
1.5432635 -0.6138955 0
1.3099840 -1.4050710 0
0.6647528 -1.3287559 0
0.3719887 -0.3034568 0
1.3464280 0.0589313 0
0.1686313 -0.7003823 0
-0.3272793 -0.4975825 0
1.1002452 -1.5201836 0
0.4251219 -0.4075338 0
0.8937541 -0.5153473 0
0.5157547 0.3495450 0
1.1084417 0.0829712 0
1.4641975 -0.2704885 0
1.3893471 0.3710527 0
1.6058973 -0.9864014 0
1.3205131 -0.7854075 0
0.6996954 -0.1056191 0
1.4066060 -0.8037521 0
1.5589412 0.1910489 0
1.7802581 -0.6854321 0
1.3394584 -0.2657383 0
0.8738497 -0.2042505 0
0.8799288 -0.1232160 0
1.4407707 -0.5664748 0
-0.1620705 -0.3455644 0
0.8418341 -0.4809686 0
1.0397715 -0.2451684 0
0.7236826 -0.9387665 0
0.0475247 -0.6515931 0
0.7900515 -1.1636315 0
1.0218885 -0.6127828 0
1.5678802 -0.2569559 0
0.8586731 -0.0796427 0
0.2736711 -0.6114285 0
0.9142452 -0.7622008 0
0.3532156 -1.4420341 0
1.6518319 -0.7852316 0
-0.1338176 -0.3226154 0
0.9782456 -0.4309290 0
0.7373503 -0.2539522 0
0.9642922 -0.7073029 0
1.0134586 0.0574016 0
1.4718816 0.2477657 0
0.6940561 -0.2711317 0
1.0341619 -0.7635838 0
1.2189741 -0.6234074 0
1.1103021 -0.2381513 0
1.1238801 -0.7238886 0
0.7706103 -0.3247584 0
1.1391192 -0.9456717 0
1.4935681 -1.2117908 0
0.6511809 -1.1597364 0
0.6572740 -0.5548740 0
1.4042460 -0.1174412 0
0.9993496 -0.5540587 0
0.7507904 -0.7747154 0
0.8228415 -0.6331279 0
1.1188522 -0.6611499 0
0.6242360 0.0675354 0
0.2558993 -1.4259634 0
0.8304580 -0.2916042 0
1.5896992 -0.2049799 0
0.8855369 -0.5809121 0
1.2983316 -0.3071730 0
0.6518843 -2.0368221 0
0.9897554 -0.9318821 0
0.6430587 -0.8021192 0
1.4163760 -0.2156578 0
0.8108049 -0.0676070 0
1.2114037 -1.5364214 0
1.5448179 -1.0627832 0
-0.4291378 0.1720253 0
0.2990451 -0.3463023 0
1.3143809 -0.2553020 0
0.8752057 0.0010524 0
1.3443096 0.1129527 0
1.2774164 -0.2205384 0
1.4535388 0.0637101 0
1.3246049 -0.5395211 0
1.0119234 -0.9895440 0
0.6702712 -0.2519945 0
1.0594108 -1.2381605 0
0.7475219 0.2603099 0
1.6570361 -0.4575258 0
0.9932934 -1.3214692 0
0.5829604 -0.1520162 0
1.5727107 -0.4311079 0
0.4728465 -0.0656755 0
-0.1792738 -0.8964845 0
0.7393729 -1.1763980 0
1.4130771 -0.4910836 0
1.4018284 0.0402925 0
0.3310173 -1.3106739 0
0.7332308 -0.0502466 0
1.0685751 -0.4648948 0
1.2470843 -0.6840324 0
1.6280582 0.1017110 0
1.2905109 -1.0538489 0
0.4867856 -0.1811841 0
-0.0976269 -0.6297922 0
1.2169398 -0.3528931 0
0.7746049 -1.2872947 0
1.0763996 -0.1464121 0
1.0081869 0.0041635 0
0.1100902 -0.0214780 0
1.1524134 0.0950536 0
1.7657777 -0.9430397 0
1.4226316 0.2086323 0
0.7286082 -0.2714788 0
0.7894500 -0.0081099 0
0.4318530 -0.4351027 0
0.5011355 0.3854851 0
0.8585729 -0.7470131 0
0.4083888 -0.3366517 0
1.5607874 0.1041842 0
0.8598200 -0.4804610 0
1.4597169 -1.1209830 0
1.0254421 0.0013804 0
0.1672519 0.3375386 0
0.9700438 -0.1056570 0
1.1926569 -0.7560000 0
0.6954602 -1.0952294 0
0.7320481 -0.9490211 0
-0.0400298 -0.8152937 0
1.3443643 -0.9976222 0
1.1229517 -1.2352974 0
0.3355187 -0.4710648 0
0.0843548 -1.0316119 0
1.2102406 -1.3393402 0
1.0463391 -1.0454694 0
0.5447973 -0.8558042 0
1.0776472 -0.8458096 0
0.3767314 0.2823551 0
0.3673022 -2.1969743 0
0.6010146 -1.2814554 0
0.5343305 -1.2127847 0
0.8686161 -0.5046319 0
0.7629764 -0.4766519 0
0.6890278 -0.9636268 0
0.9020371 -1.0452580 0
0.2472906 -0.9039513 0
-0.0146474 -0.7526550 0
1.0949630 -0.9100624 0
0.2537045 -1.1842241 0
1.7450516 0.1900929 0
0.4397064 -1.2820524 0
-0.2759864 -1.0479869 0
0.5620888 -1.2549824 0
0.9568415 -0.5076801 0
0.0697226 -0.7826175 0
1.2751610 -0.4485536 0
0.6578578 -1.0422452 0
0.3983664 -2.0757001 0
0.5566833 -0.2167362 0
0.2806224 -0.9146520 0
-0.2929468 -1.3383892 0
0.9079313 -0.4287286 0
0.2795088 -1.3486305 0
-0.0144740 -1.5493120 0
-0.1042848 -1.3458622 0
0.1074101 -1.7236497 0
0.6500559 -0.9922246 0
-0.1341962 -1.0582763 0
0.5506152 -0.6963628 0
1.2114913 -0.8406345 0
0.8350347 -0.0717856 0
0.7514743 -0.4967591 0
0.3763854 -0.2871400 0
0.1416138 -1.0400128 0
0.1328882 -0.8216547 0
0.7649418 -1.4870714 0
0.8511323 -1.0345879 0
0.4937326 -0.9027060 0
0.6947345 -1.2027984 0
0.3952730 -0.0638710 0
0.8026382 -0.4148442 0
0.0870951 -1.0101888 0
0.0976040 -1.2898951 0
1.3485083 -0.1462101 0
0.1180746 -0.4143189 0
-0.5112766 -1.1745351 0
1.0363626 -1.3188051 0
0.4951352 -1.1444945 0
0.1772379 -0.6095487 0
0.0818165 -0.6149321 0
0.1487552 -0.2017292 0
0.1763070 -1.0540971 0
0.4218480 -1.4572069 0
0.6925753 -1.8190328 0
0.9023396 -0.2547798 0
0.4638707 -0.6642363 0
0.5273055 -1.6505526 0
0.4857512 -0.7971875 0
0.7213250 -0.8957198 0
1.2782593 -0.3589739 0
0.9906062 -0.7533746 0
0.6987759 -1.1205282 0
0.3827439 -1.2903002 0
0.5909107 -1.2486841 0
1.1513945 -1.1855354 0
0.2715008 -1.5946279 0
0.3731596 -0.6930640 0
-0.4643070 -1.4717930 0
0.4722249 -1.5447576 0
0.8120506 -0.8680118 0
0.5221055 -1.5643791 0
0.7268482 -0.9876626 0
1.3888674 -1.3692152 0
1.1374721 -1.2618335 0
0.5476541 -0.8587213 0
1.3759563 -0.9894862 0
0.4500481 -0.4524449 0
0.7311196 -0.7210248 0
-0.0968720 -0.8905107 0
0.4349289 -1.4976734 0
1.0370069 -1.4007187 0
0.5733455 -0.8003831 0
0.7208292 -1.2485036 0
0.0660664 -1.3114941 0
0.2307607 -1.2064826 0
0.3310727 -1.6074167 0
0.2180461 -1.1899174 0
0.3105640 -0.5569111 0
1.4886850 -1.3962776 0
-0.2664121 0.1514999 0
0.0360519 -0.5630192 0
0.5647411 -1.1078511 0
1.0009587 -1.2768090 0
0.2645272 -1.5653219 0
0.4052669 -0.8878347 0
0.4666483 -0.7948007 0
0.2146887 -0.7691202 0
0.5775153 -1.0536157 0
-0.1367929 -1.1539658 0
0.1077559 -1.8185388 0
0.6553153 -1.7365006 0
-0.1404293 -0.9782056 0
0.3214048 -0.7415059 0
0.7206010 -1.1327738 0
0.2732180 -1.1584129 0
-0.0547899 -0.9160193 0
0.5437001 -1.1251692 0
0.5224918 -1.2177082 0
0.0336343 -0.6015227 0
0.4804102 -0.3414882 0
0.7383747 -0.5905647 0
0.8534900 -1.2195727 0
0.9373044 -0.7308981 0
0.5426522 -0.3681033 0
-0.5480574 -1.5813299 0
0.6280783 -2.0609165 0
0.4103547 0.0941651 0
0.7453686 -1.4948324 0
1.5319067 -0.0376524 0
1.0851007 -0.9416026 0
0.8337796 -0.5845216 0
0.6109653 -0.5079483 0
0.5425801 -0.3327597 0
0.6911997 -1.2366976 0
1.1939506 -0.7539383 0
0.5382768 -1.0048440 0
1.5244373 -1.2978456 0
0.3862016 -0.3841480 0
-0.0566852 -0.7566101 0
0.9180059 -1.0433173 0
0.9319526 -1.0426669 0
0.4693248 -1.0518879 0
-0.0318446 -0.4629484 0
0.4397368 -1.2178062 0
0.5357835 -0.9522511 0
0.9935748 -1.1588488 0
1.2142507 -0.6517318 0
1.1193429 -1.1149545 0
0.5629190 -0.5612551 0
0.4220449 -0.8483917 0
1.1484740 -0.7150396 0
1.1663222 -1.3537070 0
0.6332621 -1.0047255 0
0.4862762 -0.5803947 0
0.2231207 -0.4223764 0
0.2057743 -0.8262713 0
0.4154820 -1.3425857 0
0.5942792 -1.0255126 0
-0.1032396 -0.7913254 0
0.1645701 -0.2866452 0
1.4572722 -1.6146158 0
-0.1539843 -1.4943988 0
0.1888553 -0.5181513 0
0.3176452 -0.7006839 0
0.4643022 -1.1151053 0
-0.0322310 -0.9806256 0
0.8618678 -0.7491403 0
-0.0722049 -0.6252721 0
0.3520883 -1.4516062 0
0.2579261 -1.7626388 0
0.6712444 -0.5283192 0
0.5592784 -1.7841771 0
0.1130027 -0.5154725 0
1.1555288 -1.0671475 0
0.0078726 -1.0218201 0
0.0704839 -1.8001572 0
-0.7360051 -1.3089641 0
-0.2238756 -1.4649474 0
1.0995053 -1.4548842 0
0.0035998 -1.4443266 0
0.3692438 -1.2153044 0
-0.4563672 -0.8238744 0
-0.7408487 -0.7603382 0
0.8183680 -1.2166141 0
0.6365274 -1.5133074 0
0.4639250 -0.8958303 0
0.3243630 -1.2113736 0
0.9968449 -1.3084275 0
0.8826863 -0.6089891 0
1.3191640 -0.4369746 0
0.2886352 -1.2453345 0
0.5266668 -1.3155561 0
0.1838117 -1.3078610 0
0.1271541 -1.2885105 0
0.5567345 -0.3127753 0
0.9548855 -0.2690709 0
1.1041192 -1.4524352 0
1.4871946 -1.4605236 0
1.2728157 -1.0724825 0
1.4837428 -0.6699416 0
1.2649395 0.1388875 0
1.3026477 -1.0594251 0
0.9080278 -1.6631491 0
1.2082200 -0.5895781 0
0.9814831 -0.9512485 0
1.4289614 -0.6010736 0
0.1568032 -0.4305043 0
-0.0278775 -0.9780379 0
0.9002456 -0.7630049 0
0.7573660 -1.0123954 0
0.0293855 -0.6517437 0
0.9934428 -0.9969943 0
0.4716149 -1.7329702 0
0.8519430 -0.9255798 0
-0.2481378 -0.9872674 0
0.4498622 -0.7009559 0
0.2276491 -0.8188056 0
0.8449467 -0.0420725 0
0.3977961 -0.9960109 0
0.4638699 -0.8673747 0
0.2375085 -0.4176442 0
0.8950506 -0.5907846 0
1.3931555 -0.8927798 0
0.7426513 -0.0303852 0
1.2135117 -0.8604135 0
0.8542807 -1.4703983 0
-0.0268544 -1.1828103 0
0.6294724 -1.0680653 0
0.5573976 -0.5524548 0
0.9968000 -0.2533100 0
1.0818582 -1.9265767 0
1.0384880 -2.1770415 0
0.1151418 -1.1624199 0
0.6406453 -0.5864615 0
1.8791032 -0.3845816 0
0.8376132 -1.2757952 0
0.1118241 -1.0644141 0
0.6144735 -0.6476065 0
0.7911043 -1.5082081 0
0.4472508 -0.7808654 0
1.3716149 -1.0950115 0
0.9479112 -2.1440312 0
1.1217536 -0.8371806 0
0.7507216 -0.8896429 0
0.0080987 -0.8137186 0
0.2515362 -1.2043331 0
0.0797576 -0.8883456 0
0.8363116 -2.2335139 0
0.7009889 -0.8526682 1
1.0205748 -0.9414457 1
0.3333320 -0.6786525 1
0.9682724 -0.2136009 1
0.0395064 -0.8118329 1
1.6805989 -0.8612783 1
1.0424954 -0.3491905 1
0.9422365 -2.2442828 1
1.6119374 -1.8235901 1
0.9388756 -1.4350996 1
0.6375726 -1.1098310 1
0.3909974 -1.1628685 1
0.6021401 -1.6139388 1
0.7286173 -1.6097482 1
0.7281405 -0.9223942 1
1.4698369 -1.1403519 1
0.7381567 -0.3210491 1
1.7992385 -0.0857084 1
0.4870280 -1.4013133 1
0.5754202 -1.2787901 1
1.0613259 -0.8273306 1
0.7611056 -1.7939362 1
1.2889135 -1.2992564 1
0.7137594 -1.5852542 1
0.5654217 -0.3446875 1
1.9924928 0.0995348 1
0.9233381 -1.5020186 1
0.4644653 -1.6737174 1
1.1516021 -0.6023032 1
0.9684192 -1.0937176 1
1.7984395 -1.0159889 1
1.0693947 -0.6098846 1
0.4102914 -1.4130350 1
1.0406907 -0.0405318 1
1.3838999 -0.3334948 1
0.6375193 -1.1939020 1
0.2274574 -1.5720254 1
1.1307981 -1.9053248 1
1.0650074 -1.6082658 1
0.8470777 -0.8016771 1
0.0147537 -1.1485809 1
1.3892461 -1.5718098 1
1.5381619 -1.4563910 1
1.9642702 -1.0645516 1
0.9912013 -0.7750304 1
1.2245941 -0.5137217 1
0.3480973 -0.3691838 1
0.8877858 -0.3529045 1
1.7470763 -0.9704681 1
1.1112215 -1.0833906 1
-0.1619750 -2.0001832 1
1.1286212 -1.0594609 1
0.0523011 -1.0936484 1
1.1546917 -0.3016964 1
0.8444631 -0.6312986 1
1.2535678 -1.3478238 1
1.2779099 -1.3240695 1
1.7291116 -1.4096934 1
0.9539656 -1.1379287 1
0.6234433 -0.6495249 1
1.0661874 -0.5010470 1
1.3605514 -0.2585763 1
1.2325832 -0.5793666 1
1.2204472 -1.2387692 1
1.4870764 -0.7952147 1
0.7349110 -1.2210081 1
1.3615504 -0.8676154 1
1.7289323 -0.8055514 1
-0.0051241 -2.0257828 1
0.4953319 -1.4585826 1
0.8282843 -0.9639447 1
1.6799943 -0.9689617 1
1.5049065 -0.6357498 1
0.7175996 -1.3027766 1
1.3243790 -1.4194708 1
0.9911043 -0.0525759 1
1.5812523 -0.7802709 1
1.3273304 -0.7395893 1
-0.0374672 -0.4555944 1
1.1779919 -2.0624160 1
1.3055118 -0.2403836 1
1.7711671 -0.9026596 1
1.6624385 -0.9455674 1
0.4069348 -0.2414875 1
1.2422741 -1.6810341 1
1.6938991 -0.5004852 1
0.4082166 -0.9103724 1
0.9089725 -0.9566848 1
1.0331849 -0.6705746 1
0.3520403 -0.6109698 1
1.6849251 -0.9443089 1
0.8173392 -1.5063137 1
1.3635006 -0.6918229 1
0.9189427 -1.5341487 1
1.5096277 -0.7430656 1
0.2678783 -0.7558723 1
0.4534536 -0.1188891 1
1.5673156 0.1303222 1
1.0501415 -0.5674136 1
0.2085075 -1.8041460 1
0.2687324 -1.3388664 1
1.0099279 -1.4561434 1
1.1905647 -1.1415504 1
0.7981997 -1.1869160 1
0.7100839 -1.3321515 1
0.8929520 -1.5721589 1
1.4576378 -1.6247864 1
1.1715499 -0.9606502 1
1.2806771 -0.9580321 1
1.3432357 -0.9351563 1
0.5215230 0.4284366 1
1.0958489 -1.1165341 1
1.4116837 -1.7737857 1
0.5611281 -2.1727251 1
1.3635642 0.1287980 1
1.2677881 -1.0706653 1
0.9614439 -0.5341564 1
-0.2572964 -1.3194166 1
0.7029320 -1.2073358 1
1.5509358 -0.5634183 1
1.3238155 -1.0596175 1
1.7051786 -1.5290546 1
0.4737509 -1.3493024 1
1.9803702 -1.2404886 1
0.3190605 -1.1609212 1
0.2830108 -1.2754747 1
0.6283920 -0.9543675 1
1.9530702 -0.7077509 1
1.6736733 -1.7472700 1
0.7492468 -1.3032678 1
1.4639590 -0.0812986 1
1.5474418 -2.0244261 1
1.0853571 -1.1435369 1
0.8790999 -0.5615197 1
1.0518823 -0.1740318 1
1.1655301 -1.3493268 1
1.1268677 -0.7882314 1
0.6265107 -1.1130603 1
0.3708671 -0.9974951 1
1.2215858 -0.7014598 1
1.0192333 -1.0929057 1
0.6164805 -0.6823823 1
0.9275802 -0.6730924 1
1.3212002 -1.1095176 1
0.8728748 -0.9366700 1
-0.0892758 -1.0716074 1
0.9310878 -0.6706149 1
0.9692832 -1.2781063 1
1.3843673 -0.1681094 1
1.0235752 -0.5923108 1
1.4497085 -0.4231140 1
0.9352171 -0.8468366 1
0.3439981 -0.9468675 1
0.7771109 -0.0156001 1
0.2027087 -1.3465107 1
0.4290024 -1.1462729 1
1.4023796 -0.8457966 1
1.3874677 -1.5685770 1
1.4025284 -0.9591883 1
1.5807477 -0.9330609 1
0.8903851 -1.1447904 1
0.2978940 -1.3604157 1
0.5745897 -0.7194614 1
0.8939581 -0.0744086 1
1.8876456 -0.9035367 1
1.5036058 -0.1083257 1
1.0349077 -0.9610426 1
1.0564479 -0.0263517 1
0.9842305 -0.9073803 1
1.1634911 -1.6338369 1
1.0517688 -1.5063028 1
2.2468503 -1.2357414 1
1.8492129 -1.3496322 1
1.1580965 -0.9056651 1
0.9645021 0.0080262 1
0.7633210 -0.7001224 1
0.6149962 -0.3106775 1
1.3328381 -0.8756506 1
0.9280488 -0.3604687 1
2.1857351 -1.1217065 1
0.5424466 -0.7737701 1
0.7021817 -0.7102724 1
0.8149784 -0.6027630 1
1.3034797 -1.2066707 1
0.0327812 -0.8537295 1
1.0865167 -1.1316339 1
1.5367457 -0.8167750 1
0.9602106 -1.2790935 1
0.6887431 -1.1032511 1
1.1956740 -1.7565404 1
0.8078755 -1.6357604 1
1.2149144 -1.4157186 1
0.5780718 0.1138731 1
0.6886407 -0.9364791 1
1.4285324 -1.0626988 1
1.4930209 -1.0613269 1
1.2715781 -0.6478832 1
1.1900763 -0.7588691 1
0.5962139 -1.8121600 1
0.6739890 -1.4661915 1
1.2181100 -0.7277401 1
1.9099297 -1.0967026 1
0.8013725 -0.4818907 1
1.2581386 -1.8626525 1
0.7723100 -1.0546607 1
1.8904184 -0.9912112 1
0.6436389 -0.6456538 1
0.9697419 -0.9687825 1
1.1538479 -0.5683700 1
0.4245672 -1.4161176 1
0.4234866 -0.9509794 1
0.7750401 -1.6909097 1
0.6346517 -1.1207373 1
1.6743924 -1.0967452 1
0.8170661 -1.1519663 1
1.1704709 -0.7894293 1
1.1229183 -1.6151524 1
1.1740853 -0.7793917 1
1.6860644 -1.2725559 1
1.1286603 0.1325642 1
0.7401007 -1.2639153 1
0.4384881 -1.3332027 1
1.7864283 -1.1245578 1
1.1275054 -1.5930429 1
1.1358207 -1.2963480 1
1.9362524 -0.4187385 1
0.2002097 -0.9297540 1
1.1005666 -1.4425982 1
1.1756285 -1.0213184 1
1.1094213 -0.7260741 1
1.5639458 -1.7684502 1
0.8729218 -0.4125119 1
0.9309803 -0.4474825 1
1.7281289 -1.5531501 1
0.5750994 -0.1882485 1
0.8947459 -0.9389095 1
1.4009133 -1.3375860 1
0.1857906 -1.0797908 1
1.6766901 -1.0123859 1
1.3641385 -1.7221252 1
2.2836270 -0.4534597 1
1.2488651 -0.8688289 1
1.6344316 -0.8502213 1
1.9557950 -1.2213124 1
0.7758352 -1.0620913 1
1.5468068 -0.9049870 1
1.0151144 -0.8139607 1
0.6353856 -1.2692271 1
0.8469604 -0.6703314 1
0.6079482 -0.6409569 1

Missing data

We look for any missing data and notice there isn’t any.

sapply(junk1, function(x) round(sum(is.na(x))/nrow(junk1)*100,1))
##     a     b class 
##     0     0     0
sapply(junk2, function(x) round(sum(is.na(x))/nrow(junk2)*100,1))
##     a     b class 
##     0     0     0

Descriptive statistics

We look at a summary of the data undestand some of the descriptive statistics of the dataset.

summary(junk1)
##        a                  b                class    
##  Min.   :-2.29854   Min.   :-3.17174   Min.   :1.0  
##  1st Qu.:-0.85014   1st Qu.:-1.04712   1st Qu.:1.0  
##  Median :-0.04754   Median :-0.07456   Median :1.5  
##  Mean   : 0.04758   Mean   : 0.01324   Mean   :1.5  
##  3rd Qu.: 1.09109   3rd Qu.: 1.05342   3rd Qu.:2.0  
##  Max.   : 3.00604   Max.   : 3.10230   Max.   :2.0

Data seems to be properly distributed, with no indication of outliers. We can plot a histogram to have a more graphical view.

hist(junk1$a)

hist(junk1$b)

Bor variables look well distributed around their means, showing good normality. This is a good feayure for parametric modeling where an underlaying data distribution is assumed.

summary(junk2)
##        a                  b                class       
##  Min.   :-4.16505   Min.   :-3.90472   Min.   :0.0000  
##  1st Qu.:-1.01447   1st Qu.:-0.89754   1st Qu.:0.0000  
##  Median : 0.08754   Median :-0.08358   Median :0.0000  
##  Mean   :-0.05126   Mean   : 0.05624   Mean   :0.0625  
##  3rd Qu.: 0.89842   3rd Qu.: 1.00354   3rd Qu.:0.0000  
##  Max.   : 4.62647   Max.   : 4.31052   Max.   :1.0000
hist(junk2$a)

hist(junk2$b)

Same as with the first dataset, data looks well distributed. The distributions here looks a like more skewed, but it isn’t extreme. If it is necessary to use a parametric modeling, a different distribution from normal could be considered to better handle the skew. But no major issues are expected in modeling.

Balance

We look at the class vaeibale to see if the dataset are balanced.

dim(junk1)
## [1] 100   3
table(junk1$class)
## 
##  1  2 
## 50 50

Junk1 is very well balanced with half of the 100 entries in each class. Junk2 on the other hand shows an imbalance.

dim(junk2)
## [1] 4000    3
table(junk2$class)
## 
##    0    1 
## 3750  250
table(junk2$class)[1]/nrow(junk2)
##      0 
## 0.9375
table(junk2$class)[2]/nrow(junk2)
##      1 
## 0.0625

Only ~6 percent of the data is assigned to class 1. This imbalance will make it hard to use the data with many of the classification algorithm. A recommendation would be to bootstrap the data to increase the number of class 1 entries. Although imbalance will still be present, the class will be better represented. To ameliorate imbalance, techniques such as SMOTE should also be considered.

Scattered plots

Scattered plot will help us understand the relationship between the variables and their own nature. We start by plotting variables on their own.

ggplot(junk1,aes(y=a,x=seq_along(a),color=as.factor(class))) + geom_point()

Here we see how the data is modal against the index, and we see a segregation against the class. These could be due to the nature of how the data was gathered, seems the 50 first samples were collected for one class, then the other 50.

ggplot(junk1,aes(y=b,x=seq_along(b),color=as.factor(class))) + geom_point()

The second variable shows very similar characteristics. Here the sampling seems to come from a sinusoidal wave over the index.

Finbaly we plot both together.

ggplot(junk1,aes(x=a,y=b,color=as.factor(class))) + geom_point()

Plotting both variables together it is not apparent how the split them in two classes, but the data stills shows valuable for analysis.

We do the same for the second file.

ggplot(junk2,aes(y=a,x=seq_along(a),color=as.factor(class))) + geom_point()

ggplot(junk2,aes(y=b,x=seq_along(b),color=as.factor(class))) + geom_point()

Similar results as with the first file, although not as modal.

ggplot(junk2,aes(x=a,y=b,color=as.factor(class))) + geom_point()

Plotting both variables looks a bit more interesting this time. We can see good separation between classes. We can almost suggest using a classifier such as an SVM to “circle in” one of the classes.

Conclusion

After looking at the data, there is not indication of requiring more data gathering or discarding any of the provided data. Recommendation is to continue with the analysis with the data on hand. No issues with the same as expected, other than some extra steps to balance one of the datasets.

Question 3

Load supplied data and prepare dataset, runa and edit supplied code (kNN.R) for this dataset and run same with different values of K. Plot accuracy for these different values. Provide summary of results.

Dataset preparation

The kNN.R R script requires a dataset, labelcol and K (number of nearest neighbors to be considered). The dataset MUST Be numeric, except the labelcol. The labelcol must be the last column in the data.frame. All the other columns must be before the labelcol.

Please find icu.csv

data <- read.csv("icu.csv", header = TRUE)
data %>% kable() %>% kable_styling() %>% scroll_box(width = "800px", height = "400px")
ID STA AGE SEX RACE SER CAN CRN INF CPR SYS HRA PRE TYP FRA PO2 PH PCO BIC CRE LOC
8 0 27 1 1 0 0 0 1 0 142 88 0 1 0 0 0 0 0 0 0
12 0 59 0 1 0 0 0 0 0 112 80 1 1 0 0 0 0 0 0 0
14 0 77 0 1 1 0 0 0 0 100 70 0 0 0 0 0 0 0 0 0
28 0 54 0 1 0 0 0 1 0 142 103 0 1 1 0 0 0 0 0 0
32 0 87 1 1 1 0 0 1 0 110 154 1 1 0 0 0 0 0 0 0
38 0 69 0 1 0 0 0 1 0 110 132 0 1 0 1 0 0 1 0 0
40 0 63 0 1 1 0 0 0 0 104 66 0 0 0 0 0 0 0 0 0
41 0 30 1 1 0 0 0 0 0 144 110 0 1 0 0 0 0 0 0 0
42 0 35 0 2 0 0 0 0 0 108 60 0 1 0 0 0 0 0 0 0
50 0 70 1 1 1 1 0 0 0 138 103 0 0 0 0 0 0 0 0 0
51 0 55 1 1 1 0 0 1 0 188 86 1 0 0 0 0 0 0 0 0
53 0 48 0 2 1 1 0 0 0 162 100 0 0 0 0 0 0 0 0 0
58 0 66 1 1 1 0 0 0 0 160 80 1 0 0 0 0 0 0 0 0
61 0 61 1 1 0 0 1 0 0 174 99 0 1 0 0 1 0 1 1 0
73 0 66 0 1 0 0 0 0 0 206 90 0 1 0 0 0 0 0 1 0
75 0 52 0 1 1 0 0 1 0 150 71 1 0 0 0 0 0 0 0 0
82 0 55 0 1 1 0 0 1 0 140 116 0 0 0 0 0 0 0 0 0
84 0 59 0 1 0 0 0 1 0 48 39 0 1 0 1 0 1 1 0 2
92 0 63 0 1 0 0 0 0 0 132 128 1 1 0 0 0 0 0 0 0
96 0 72 0 1 1 0 0 0 0 120 80 1 0 0 0 0 0 0 0 0
98 0 60 0 1 0 0 0 1 1 114 110 0 1 0 0 0 0 0 0 0
100 0 78 0 1 1 0 0 0 0 180 75 0 0 0 0 0 0 0 0 0
102 0 16 1 1 0 0 0 0 0 104 111 0 1 0 0 0 0 0 0 0
111 0 62 0 1 1 0 1 0 0 200 120 0 0 0 0 0 0 0 0 0
112 0 61 0 1 0 0 0 1 0 110 120 0 1 0 0 0 0 0 0 0
136 0 35 0 1 0 0 0 0 0 150 98 0 1 0 0 0 0 0 0 0
137 0 74 1 1 1 0 0 0 0 170 92 0 0 0 0 0 1 0 0 0
143 0 68 0 1 1 0 0 0 0 158 96 0 0 0 0 0 0 0 0 0
153 0 69 1 1 1 0 0 0 0 132 60 0 1 0 0 0 0 0 0 0
170 0 51 0 1 0 0 0 0 0 110 99 0 1 0 0 0 0 0 0 0
173 0 55 0 1 1 0 0 0 0 128 92 0 0 0 0 0 0 0 0 0
180 0 64 1 3 1 0 0 1 0 158 90 1 1 0 0 0 0 0 0 0
184 0 88 1 1 1 0 0 1 0 140 88 1 1 0 0 0 0 0 0 0
186 0 23 1 1 1 0 0 0 0 112 64 0 1 1 0 0 0 0 0 0
187 0 73 1 1 1 1 0 0 0 134 60 0 0 0 0 0 1 0 0 0
190 0 53 0 3 1 0 0 0 0 110 70 1 0 0 0 0 0 0 0 0
191 0 74 0 1 1 0 0 0 0 174 86 0 0 0 0 0 0 0 0 0
207 0 68 0 1 1 0 0 0 0 142 89 0 0 0 0 0 0 0 0 0
211 0 66 1 1 0 0 0 1 0 170 95 1 1 0 0 0 0 0 0 0
214 0 60 0 1 1 1 0 1 0 110 92 0 0 0 0 0 0 0 0 0
219 0 64 0 1 1 0 0 1 0 160 120 0 0 0 0 0 0 0 0 0
225 0 66 0 2 1 1 0 1 0 150 120 0 0 0 0 0 1 0 0 0
237 0 19 1 1 1 0 0 1 0 142 106 0 1 1 0 0 0 0 0 0
247 0 18 1 1 0 0 0 0 0 146 112 0 1 0 0 0 0 0 0 0
249 0 63 0 1 1 0 0 1 0 162 84 1 1 0 0 0 0 0 0 0
260 0 45 0 1 0 0 0 0 0 126 110 0 1 0 0 0 0 0 0 0
266 0 64 0 1 0 0 0 0 0 162 114 0 1 0 0 0 0 0 0 0
271 0 68 1 1 0 0 0 1 0 200 170 1 1 0 0 0 0 0 0 0
276 0 64 1 1 0 0 0 1 0 126 122 0 1 0 1 0 1 0 0 0
277 0 82 0 1 1 0 0 0 0 135 70 0 0 0 0 0 0 0 0 0
278 0 73 0 1 1 0 0 0 0 170 88 0 0 0 0 0 0 0 0 0
282 0 70 0 1 0 0 0 0 0 86 153 1 1 0 0 0 1 0 0 0
292 0 61 0 1 1 0 0 1 0 68 124 0 1 0 0 0 0 0 0 0
295 0 64 0 1 1 1 0 1 0 116 88 0 0 0 0 0 0 0 0 0
297 0 47 0 1 1 1 0 1 0 120 83 0 0 0 0 0 0 0 0 0
298 0 69 0 1 1 0 0 0 0 170 100 0 0 0 0 0 0 0 0 0
308 0 67 1 1 0 0 0 1 0 190 125 0 1 0 0 0 0 0 0 0
310 0 18 0 1 1 1 0 0 0 156 99 0 0 0 0 0 0 0 0 0
319 0 77 0 1 1 0 0 1 0 158 107 0 0 0 0 0 0 0 0 0
327 0 32 0 2 1 0 0 0 0 120 84 0 1 0 0 0 0 0 0 0
333 0 19 1 1 1 0 0 1 0 104 121 1 0 0 0 0 0 0 0 0
335 0 72 1 1 1 0 0 0 0 130 86 0 1 0 0 0 0 0 0 0
343 0 49 0 1 0 0 0 1 0 112 112 0 1 0 0 0 0 0 0 0
357 0 68 1 1 1 0 0 0 0 154 74 0 0 0 0 0 0 0 0 0
362 0 82 0 1 1 0 1 1 0 130 131 0 1 0 0 0 0 0 0 0
365 0 32 1 3 0 0 0 1 1 110 118 0 1 0 0 0 0 0 0 0
369 0 78 1 1 1 0 0 1 0 126 96 0 1 0 0 0 0 0 0 0
370 0 57 0 1 0 0 0 1 0 128 104 0 1 0 0 0 1 0 0 0
371 0 46 1 1 1 1 0 0 0 132 90 0 1 0 0 0 0 0 0 0
376 0 23 0 1 0 0 0 1 0 144 88 0 1 0 0 0 0 0 0 0
378 0 55 0 1 0 0 0 0 0 132 112 0 1 0 0 0 0 0 0 0
379 0 18 0 1 1 0 0 0 0 112 76 0 1 1 0 0 0 0 0 0
381 0 20 0 1 1 0 0 0 0 164 108 0 1 0 0 0 0 0 0 0
382 0 75 1 1 1 0 0 0 0 100 48 0 0 0 0 0 0 0 0 0
398 0 79 0 1 1 0 0 1 0 112 67 0 0 0 0 0 0 0 0 0
401 0 40 0 1 1 0 0 0 0 140 65 0 1 1 0 0 0 0 0 0
409 0 76 0 1 1 0 0 1 0 110 70 0 1 0 0 0 0 0 0 0
413 0 66 1 1 1 0 0 1 0 139 92 0 0 0 0 0 0 0 0 0
416 0 76 0 1 0 0 0 1 0 190 100 0 1 0 0 0 0 0 0 0
438 0 80 1 1 1 0 0 0 0 162 44 0 1 0 0 0 0 0 0 0
439 0 23 1 1 0 0 0 1 0 120 88 0 1 0 0 0 0 0 0 0
440 0 48 0 2 1 0 0 1 0 92 162 1 1 0 0 0 0 0 0 0
455 0 67 0 2 1 0 0 0 0 90 92 1 0 0 0 0 0 0 0 0
462 0 69 1 1 1 0 0 0 0 150 85 0 1 0 0 0 0 0 0 0
495 0 65 0 3 1 0 0 0 0 208 124 0 0 0 0 0 0 0 0 0
498 0 72 0 1 1 0 0 0 0 126 88 0 0 0 0 0 0 0 0 0
502 0 55 0 1 0 0 0 0 0 190 136 0 1 0 1 1 1 0 0 0
505 0 40 0 1 0 0 0 0 0 130 65 0 1 0 0 0 0 0 0 0
508 0 55 1 1 0 0 0 1 0 110 86 0 1 0 0 0 0 0 0 0
517 0 34 0 1 1 0 0 0 0 110 80 0 1 1 0 0 0 0 0 0
522 0 47 1 1 1 0 0 0 0 132 68 0 1 0 0 0 0 0 0 0
525 0 41 1 1 0 0 0 1 0 118 145 0 1 0 0 1 0 1 0 0
526 0 84 1 1 0 0 1 1 0 100 103 0 1 0 0 0 0 1 1 0
546 0 88 1 1 1 0 0 0 0 110 46 1 0 0 0 0 0 0 0 0
548 0 77 1 1 1 1 0 0 0 212 87 0 0 0 0 0 1 0 0 0
550 0 80 0 1 0 0 0 0 0 122 126 0 1 0 1 0 0 1 0 0
552 0 16 0 1 1 0 0 0 0 100 140 0 1 1 0 0 0 0 0 0
560 0 70 0 1 1 0 0 0 0 160 60 0 0 0 0 0 0 0 0 0
563 0 83 1 1 1 0 0 1 0 138 91 0 1 0 0 0 0 0 0 0
573 0 23 0 2 0 0 0 0 0 130 52 0 1 0 0 0 0 0 0 0
575 0 67 1 1 0 0 0 0 1 120 120 0 1 0 0 1 1 0 0 0
584 0 18 0 1 1 1 0 0 0 130 140 0 0 0 0 0 0 0 0 0
597 0 77 1 1 0 0 0 1 0 136 138 0 0 0 1 1 1 0 0 0
598 0 48 1 1 0 0 0 0 1 128 96 0 1 0 0 0 0 0 0 0
601 0 24 1 2 0 0 0 0 0 140 86 0 1 0 0 0 0 0 0 0
605 0 71 1 1 0 0 0 1 0 124 106 0 1 0 0 0 0 0 0 0
607 0 72 0 1 1 0 0 0 0 134 60 0 1 0 0 0 0 0 0 0
619 0 77 1 1 1 0 1 0 0 170 115 1 0 0 0 0 0 0 0 0
620 0 60 0 1 1 0 0 1 0 124 135 0 1 0 0 0 0 0 0 0
639 0 46 0 1 1 1 0 0 0 110 128 0 0 0 0 0 0 0 0 0
644 0 65 1 1 0 0 0 0 0 100 105 0 1 0 0 0 0 0 0 0
645 0 36 0 1 0 0 0 0 0 224 125 0 1 0 0 0 0 0 0 0
648 0 68 0 1 1 0 0 0 0 112 64 0 0 0 0 0 0 0 0 0
655 0 58 0 1 0 0 0 0 0 154 98 0 1 0 0 0 0 0 0 0
659 0 76 1 1 0 0 0 1 0 92 112 0 1 0 0 0 0 0 0 0
669 0 41 1 2 0 0 0 0 0 110 144 0 1 0 0 0 0 1 1 0
670 0 20 0 3 0 0 0 0 0 120 68 0 1 0 0 0 0 0 0 0
674 0 91 0 1 0 0 1 1 0 152 125 0 1 0 0 0 0 0 0 0
675 0 75 0 1 1 0 0 0 0 140 90 0 1 0 0 0 0 0 0 0
676 0 25 1 1 0 0 0 0 0 131 135 0 1 0 0 0 0 1 0 0
709 0 70 0 1 0 0 0 1 0 78 143 0 1 0 1 0 0 0 0 0
713 0 47 0 1 1 0 0 0 0 156 112 0 1 0 0 0 0 0 0 0
727 0 75 0 3 1 0 0 0 0 144 120 0 1 0 0 0 0 0 1 0
728 0 40 0 2 0 0 0 1 0 160 150 1 1 1 0 0 0 0 0 0
732 0 71 0 1 0 0 0 1 0 148 192 0 1 0 1 1 1 0 0 0
746 0 70 1 1 0 0 0 1 0 90 140 0 1 0 1 0 0 1 0 0
749 0 58 0 1 1 0 0 0 0 148 95 1 1 0 0 0 0 0 0 0
754 0 54 0 1 1 0 0 0 0 136 80 0 0 0 0 0 0 0 0 0
761 0 77 0 1 1 0 0 0 0 128 59 0 0 0 0 0 0 0 0 0
763 0 55 0 1 1 1 0 1 0 138 140 0 0 0 0 0 0 0 0 0
764 0 21 0 1 1 0 0 0 0 120 62 0 1 0 0 0 0 0 0 0
765 0 53 0 2 0 0 1 0 1 170 115 0 1 0 0 0 0 0 0 0
766 0 31 1 1 0 1 1 1 1 146 100 0 1 0 0 1 1 0 0 0
772 0 71 0 1 1 1 0 0 0 204 52 0 0 0 0 0 0 0 0 0
776 0 49 0 2 0 0 0 0 0 150 100 0 1 0 0 0 0 0 0 0
784 0 60 1 2 0 0 0 1 0 116 92 1 1 0 0 0 0 0 0 0
794 0 50 0 1 0 0 0 1 0 156 99 0 1 0 1 0 1 0 0 0
796 0 45 1 1 1 0 0 0 0 132 109 0 1 1 0 0 0 0 0 0
809 0 21 0 1 1 0 0 0 0 110 90 0 1 0 0 0 0 0 0 0
814 0 73 1 1 1 0 0 0 0 130 83 0 1 0 0 0 0 0 0 0
816 0 28 0 1 1 0 0 1 0 122 80 1 0 1 0 0 0 0 0 0
829 0 17 0 1 1 0 0 0 0 140 78 0 1 1 0 0 0 0 0 0
837 0 17 1 3 0 0 0 0 0 130 140 0 1 0 0 0 0 0 0 0
846 0 21 1 1 1 0 0 0 0 142 79 0 1 0 0 0 0 0 0 0
847 0 68 1 1 1 1 0 0 0 91 79 0 0 0 0 0 0 0 0 0
863 0 17 0 3 1 0 0 0 0 136 78 0 1 0 0 0 0 0 0 0
867 0 60 0 1 0 0 0 1 0 108 120 0 1 0 0 0 0 0 0 0
875 0 69 0 1 1 0 0 0 0 169 73 0 1 0 0 0 0 0 0 0
877 0 88 1 1 0 0 1 0 0 190 88 0 1 0 0 0 0 0 0 0
880 0 20 0 1 1 0 0 0 0 120 80 0 1 0 0 0 0 0 0 0
881 0 89 1 1 1 0 0 0 0 190 114 0 1 0 0 0 1 0 0 2
889 0 62 1 1 0 0 0 0 0 110 78 0 1 0 0 0 0 0 0 0
893 0 46 0 1 0 0 1 1 0 142 89 0 1 0 0 1 0 1 0 0
906 0 19 0 1 1 0 0 1 0 100 137 0 1 0 0 0 0 0 0 0
912 0 71 0 1 0 0 0 1 0 124 124 0 1 0 1 1 1 0 0 0
915 0 67 0 1 1 0 0 0 0 152 78 0 0 0 0 0 0 0 0 0
923 0 20 0 1 1 0 0 0 0 104 83 0 1 0 0 0 0 0 0 0
924 0 73 1 2 0 0 1 0 0 162 100 0 1 0 0 0 0 0 0 0
925 0 59 0 1 0 0 0 0 0 100 88 0 1 0 0 0 0 0 0 0
929 0 42 0 1 1 0 0 0 0 122 84 0 1 1 0 0 0 0 0 0
4 1 87 1 1 1 0 0 1 0 80 96 0 1 1 1 1 1 0 0 0
27 1 76 1 1 1 0 0 1 0 128 90 1 1 0 0 0 0 0 0 0
47 1 78 0 1 0 0 0 1 0 130 132 0 1 0 0 0 0 1 0 0
52 1 63 0 1 0 0 1 1 0 112 106 1 1 0 1 0 0 0 0 0
127 1 19 0 1 1 0 0 0 0 140 76 0 1 0 0 0 0 0 0 0
145 1 67 1 1 0 0 0 1 0 62 145 0 1 0 0 0 0 0 1 0
154 1 53 1 1 0 0 0 1 0 148 128 0 1 0 0 1 1 0 0 0
165 1 92 0 1 0 0 0 1 0 124 80 0 1 0 0 0 0 1 0 0
195 1 57 0 1 0 0 0 1 1 110 124 0 1 0 0 0 0 0 0 2
202 1 75 1 1 1 1 0 0 0 130 136 0 0 0 0 0 0 0 0 0
204 1 91 0 1 0 0 0 1 0 64 125 0 1 0 0 0 1 0 0 0
208 1 70 0 1 1 0 0 0 0 168 122 0 0 0 1 0 0 0 0 1
222 1 88 0 1 0 0 0 1 1 141 140 0 1 0 0 0 0 0 0 0
238 1 41 0 1 1 0 0 1 0 140 58 0 1 0 0 0 0 0 0 2
241 1 61 0 1 0 0 0 0 0 140 81 0 1 0 0 0 0 0 0 0
273 1 80 0 1 1 0 0 0 0 100 85 0 1 0 0 0 0 0 0 0
285 1 40 0 1 0 0 0 1 0 86 80 1 1 0 0 0 0 0 0 0
299 1 75 0 1 0 0 0 1 0 90 100 0 1 0 0 0 0 0 0 1
331 1 63 1 1 1 0 1 1 1 36 86 0 1 1 0 0 0 0 1 2
346 1 75 1 1 0 1 0 0 0 190 94 0 1 0 0 0 0 0 0 0
380 1 20 0 1 1 0 0 0 0 148 72 0 1 1 0 0 0 0 0 0
384 1 71 0 1 0 0 0 0 0 142 95 0 1 0 0 0 0 0 0 0
412 1 51 1 1 1 0 0 1 0 134 100 1 1 0 0 0 0 0 0 1
427 1 65 0 1 0 0 0 0 0 66 94 0 1 0 0 0 0 0 0 2
442 1 69 1 3 0 0 1 0 0 170 60 1 1 0 1 0 0 0 0 0
461 1 55 0 1 1 0 1 1 0 122 100 1 1 0 0 0 0 0 0 0
468 1 50 1 1 1 1 0 0 0 120 96 0 1 0 0 0 0 0 0 0
490 1 78 0 1 0 0 0 1 0 110 81 0 1 0 0 0 0 0 0 0
518 1 71 1 1 0 0 0 0 1 70 112 0 1 0 0 0 0 0 0 2
611 1 85 1 1 1 0 0 0 0 136 96 0 1 0 0 0 0 0 0 0
613 1 75 0 1 0 0 1 1 0 130 119 0 1 0 0 1 0 1 1 0
666 1 65 1 1 0 0 0 1 1 104 150 0 1 0 0 0 1 0 0 2
671 1 49 0 1 0 0 0 1 1 140 108 0 1 0 0 0 0 1 0 0
706 1 75 1 1 0 0 1 1 1 150 66 0 1 0 0 0 0 0 1 2
740 1 72 1 1 0 0 0 0 0 90 160 0 1 0 0 0 0 0 0 0
751 1 69 0 1 0 0 1 0 0 80 81 0 1 0 0 0 0 0 0 2
752 1 64 0 1 0 1 0 1 0 80 118 0 1 0 1 0 0 0 1 0
789 1 60 0 1 0 0 0 1 0 56 114 1 1 0 0 1 0 1 0 0
871 1 60 0 3 1 0 1 1 0 130 55 0 1 0 0 0 0 0 0 1
921 1 50 1 2 0 0 0 0 0 256 64 0 1 0 0 0 0 0 0 1

Please note that the dataset does not have a predictor variable called COMA. Add a variable COMA in the dataset, here is how you can derive COMA from LOC variable:

If LOC is 2 set COMA to 1 otherwise set COMA to 0

data$COMA<-ifelse(data$LOC==2,1,0)
data %>% kable() %>% kable_styling() %>% scroll_box(width = "800px", height = "400px")
ID STA AGE SEX RACE SER CAN CRN INF CPR SYS HRA PRE TYP FRA PO2 PH PCO BIC CRE LOC COMA
8 0 27 1 1 0 0 0 1 0 142 88 0 1 0 0 0 0 0 0 0 0
12 0 59 0 1 0 0 0 0 0 112 80 1 1 0 0 0 0 0 0 0 0
14 0 77 0 1 1 0 0 0 0 100 70 0 0 0 0 0 0 0 0 0 0
28 0 54 0 1 0 0 0 1 0 142 103 0 1 1 0 0 0 0 0 0 0
32 0 87 1 1 1 0 0 1 0 110 154 1 1 0 0 0 0 0 0 0 0
38 0 69 0 1 0 0 0 1 0 110 132 0 1 0 1 0 0 1 0 0 0
40 0 63 0 1 1 0 0 0 0 104 66 0 0 0 0 0 0 0 0 0 0
41 0 30 1 1 0 0 0 0 0 144 110 0 1 0 0 0 0 0 0 0 0
42 0 35 0 2 0 0 0 0 0 108 60 0 1 0 0 0 0 0 0 0 0
50 0 70 1 1 1 1 0 0 0 138 103 0 0 0 0 0 0 0 0 0 0
51 0 55 1 1 1 0 0 1 0 188 86 1 0 0 0 0 0 0 0 0 0
53 0 48 0 2 1 1 0 0 0 162 100 0 0 0 0 0 0 0 0 0 0
58 0 66 1 1 1 0 0 0 0 160 80 1 0 0 0 0 0 0 0 0 0
61 0 61 1 1 0 0 1 0 0 174 99 0 1 0 0 1 0 1 1 0 0
73 0 66 0 1 0 0 0 0 0 206 90 0 1 0 0 0 0 0 1 0 0
75 0 52 0 1 1 0 0 1 0 150 71 1 0 0 0 0 0 0 0 0 0
82 0 55 0 1 1 0 0 1 0 140 116 0 0 0 0 0 0 0 0 0 0
84 0 59 0 1 0 0 0 1 0 48 39 0 1 0 1 0 1 1 0 2 1
92 0 63 0 1 0 0 0 0 0 132 128 1 1 0 0 0 0 0 0 0 0
96 0 72 0 1 1 0 0 0 0 120 80 1 0 0 0 0 0 0 0 0 0
98 0 60 0 1 0 0 0 1 1 114 110 0 1 0 0 0 0 0 0 0 0
100 0 78 0 1 1 0 0 0 0 180 75 0 0 0 0 0 0 0 0 0 0
102 0 16 1 1 0 0 0 0 0 104 111 0 1 0 0 0 0 0 0 0 0
111 0 62 0 1 1 0 1 0 0 200 120 0 0 0 0 0 0 0 0 0 0
112 0 61 0 1 0 0 0 1 0 110 120 0 1 0 0 0 0 0 0 0 0
136 0 35 0 1 0 0 0 0 0 150 98 0 1 0 0 0 0 0 0 0 0
137 0 74 1 1 1 0 0 0 0 170 92 0 0 0 0 0 1 0 0 0 0
143 0 68 0 1 1 0 0 0 0 158 96 0 0 0 0 0 0 0 0 0 0
153 0 69 1 1 1 0 0 0 0 132 60 0 1 0 0 0 0 0 0 0 0
170 0 51 0 1 0 0 0 0 0 110 99 0 1 0 0 0 0 0 0 0 0
173 0 55 0 1 1 0 0 0 0 128 92 0 0 0 0 0 0 0 0 0 0
180 0 64 1 3 1 0 0 1 0 158 90 1 1 0 0 0 0 0 0 0 0
184 0 88 1 1 1 0 0 1 0 140 88 1 1 0 0 0 0 0 0 0 0
186 0 23 1 1 1 0 0 0 0 112 64 0 1 1 0 0 0 0 0 0 0
187 0 73 1 1 1 1 0 0 0 134 60 0 0 0 0 0 1 0 0 0 0
190 0 53 0 3 1 0 0 0 0 110 70 1 0 0 0 0 0 0 0 0 0
191 0 74 0 1 1 0 0 0 0 174 86 0 0 0 0 0 0 0 0 0 0
207 0 68 0 1 1 0 0 0 0 142 89 0 0 0 0 0 0 0 0 0 0
211 0 66 1 1 0 0 0 1 0 170 95 1 1 0 0 0 0 0 0 0 0
214 0 60 0 1 1 1 0 1 0 110 92 0 0 0 0 0 0 0 0 0 0
219 0 64 0 1 1 0 0 1 0 160 120 0 0 0 0 0 0 0 0 0 0
225 0 66 0 2 1 1 0 1 0 150 120 0 0 0 0 0 1 0 0 0 0
237 0 19 1 1 1 0 0 1 0 142 106 0 1 1 0 0 0 0 0 0 0
247 0 18 1 1 0 0 0 0 0 146 112 0 1 0 0 0 0 0 0 0 0
249 0 63 0 1 1 0 0 1 0 162 84 1 1 0 0 0 0 0 0 0 0
260 0 45 0 1 0 0 0 0 0 126 110 0 1 0 0 0 0 0 0 0 0
266 0 64 0 1 0 0 0 0 0 162 114 0 1 0 0 0 0 0 0 0 0
271 0 68 1 1 0 0 0 1 0 200 170 1 1 0 0 0 0 0 0 0 0
276 0 64 1 1 0 0 0 1 0 126 122 0 1 0 1 0 1 0 0 0 0
277 0 82 0 1 1 0 0 0 0 135 70 0 0 0 0 0 0 0 0 0 0
278 0 73 0 1 1 0 0 0 0 170 88 0 0 0 0 0 0 0 0 0 0
282 0 70 0 1 0 0 0 0 0 86 153 1 1 0 0 0 1 0 0 0 0
292 0 61 0 1 1 0 0 1 0 68 124 0 1 0 0 0 0 0 0 0 0
295 0 64 0 1 1 1 0 1 0 116 88 0 0 0 0 0 0 0 0 0 0
297 0 47 0 1 1 1 0 1 0 120 83 0 0 0 0 0 0 0 0 0 0
298 0 69 0 1 1 0 0 0 0 170 100 0 0 0 0 0 0 0 0 0 0
308 0 67 1 1 0 0 0 1 0 190 125 0 1 0 0 0 0 0 0 0 0
310 0 18 0 1 1 1 0 0 0 156 99 0 0 0 0 0 0 0 0 0 0
319 0 77 0 1 1 0 0 1 0 158 107 0 0 0 0 0 0 0 0 0 0
327 0 32 0 2 1 0 0 0 0 120 84 0 1 0 0 0 0 0 0 0 0
333 0 19 1 1 1 0 0 1 0 104 121 1 0 0 0 0 0 0 0 0 0
335 0 72 1 1 1 0 0 0 0 130 86 0 1 0 0 0 0 0 0 0 0
343 0 49 0 1 0 0 0 1 0 112 112 0 1 0 0 0 0 0 0 0 0
357 0 68 1 1 1 0 0 0 0 154 74 0 0 0 0 0 0 0 0 0 0
362 0 82 0 1 1 0 1 1 0 130 131 0 1 0 0 0 0 0 0 0 0
365 0 32 1 3 0 0 0 1 1 110 118 0 1 0 0 0 0 0 0 0 0
369 0 78 1 1 1 0 0 1 0 126 96 0 1 0 0 0 0 0 0 0 0
370 0 57 0 1 0 0 0 1 0 128 104 0 1 0 0 0 1 0 0 0 0
371 0 46 1 1 1 1 0 0 0 132 90 0 1 0 0 0 0 0 0 0 0
376 0 23 0 1 0 0 0 1 0 144 88 0 1 0 0 0 0 0 0 0 0
378 0 55 0 1 0 0 0 0 0 132 112 0 1 0 0 0 0 0 0 0 0
379 0 18 0 1 1 0 0 0 0 112 76 0 1 1 0 0 0 0 0 0 0
381 0 20 0 1 1 0 0 0 0 164 108 0 1 0 0 0 0 0 0 0 0
382 0 75 1 1 1 0 0 0 0 100 48 0 0 0 0 0 0 0 0 0 0
398 0 79 0 1 1 0 0 1 0 112 67 0 0 0 0 0 0 0 0 0 0
401 0 40 0 1 1 0 0 0 0 140 65 0 1 1 0 0 0 0 0 0 0
409 0 76 0 1 1 0 0 1 0 110 70 0 1 0 0 0 0 0 0 0 0
413 0 66 1 1 1 0 0 1 0 139 92 0 0 0 0 0 0 0 0 0 0
416 0 76 0 1 0 0 0 1 0 190 100 0 1 0 0 0 0 0 0 0 0
438 0 80 1 1 1 0 0 0 0 162 44 0 1 0 0 0 0 0 0 0 0
439 0 23 1 1 0 0 0 1 0 120 88 0 1 0 0 0 0 0 0 0 0
440 0 48 0 2 1 0 0 1 0 92 162 1 1 0 0 0 0 0 0 0 0
455 0 67 0 2 1 0 0 0 0 90 92 1 0 0 0 0 0 0 0 0 0
462 0 69 1 1 1 0 0 0 0 150 85 0 1 0 0 0 0 0 0 0 0
495 0 65 0 3 1 0 0 0 0 208 124 0 0 0 0 0 0 0 0 0 0
498 0 72 0 1 1 0 0 0 0 126 88 0 0 0 0 0 0 0 0 0 0
502 0 55 0 1 0 0 0 0 0 190 136 0 1 0 1 1 1 0 0 0 0
505 0 40 0 1 0 0 0 0 0 130 65 0 1 0 0 0 0 0 0 0 0
508 0 55 1 1 0 0 0 1 0 110 86 0 1 0 0 0 0 0 0 0 0
517 0 34 0 1 1 0 0 0 0 110 80 0 1 1 0 0 0 0 0 0 0
522 0 47 1 1 1 0 0 0 0 132 68 0 1 0 0 0 0 0 0 0 0
525 0 41 1 1 0 0 0 1 0 118 145 0 1 0 0 1 0 1 0 0 0
526 0 84 1 1 0 0 1 1 0 100 103 0 1 0 0 0 0 1 1 0 0
546 0 88 1 1 1 0 0 0 0 110 46 1 0 0 0 0 0 0 0 0 0
548 0 77 1 1 1 1 0 0 0 212 87 0 0 0 0 0 1 0 0 0 0
550 0 80 0 1 0 0 0 0 0 122 126 0 1 0 1 0 0 1 0 0 0
552 0 16 0 1 1 0 0 0 0 100 140 0 1 1 0 0 0 0 0 0 0
560 0 70 0 1 1 0 0 0 0 160 60 0 0 0 0 0 0 0 0 0 0
563 0 83 1 1 1 0 0 1 0 138 91 0 1 0 0 0 0 0 0 0 0
573 0 23 0 2 0 0 0 0 0 130 52 0 1 0 0 0 0 0 0 0 0
575 0 67 1 1 0 0 0 0 1 120 120 0 1 0 0 1 1 0 0 0 0
584 0 18 0 1 1 1 0 0 0 130 140 0 0 0 0 0 0 0 0 0 0
597 0 77 1 1 0 0 0 1 0 136 138 0 0 0 1 1 1 0 0 0 0
598 0 48 1 1 0 0 0 0 1 128 96 0 1 0 0 0 0 0 0 0 0
601 0 24 1 2 0 0 0 0 0 140 86 0 1 0 0 0 0 0 0 0 0
605 0 71 1 1 0 0 0 1 0 124 106 0 1 0 0 0 0 0 0 0 0
607 0 72 0 1 1 0 0 0 0 134 60 0 1 0 0 0 0 0 0 0 0
619 0 77 1 1 1 0 1 0 0 170 115 1 0 0 0 0 0 0 0 0 0
620 0 60 0 1 1 0 0 1 0 124 135 0 1 0 0 0 0 0 0 0 0
639 0 46 0 1 1 1 0 0 0 110 128 0 0 0 0 0 0 0 0 0 0
644 0 65 1 1 0 0 0 0 0 100 105 0 1 0 0 0 0 0 0 0 0
645 0 36 0 1 0 0 0 0 0 224 125 0 1 0 0 0 0 0 0 0 0
648 0 68 0 1 1 0 0 0 0 112 64 0 0 0 0 0 0 0 0 0 0
655 0 58 0 1 0 0 0 0 0 154 98 0 1 0 0 0 0 0 0 0 0
659 0 76 1 1 0 0 0 1 0 92 112 0 1 0 0 0 0 0 0 0 0
669 0 41 1 2 0 0 0 0 0 110 144 0 1 0 0 0 0 1 1 0 0
670 0 20 0 3 0 0 0 0 0 120 68 0 1 0 0 0 0 0 0 0 0
674 0 91 0 1 0 0 1 1 0 152 125 0 1 0 0 0 0 0 0 0 0
675 0 75 0 1 1 0 0 0 0 140 90 0 1 0 0 0 0 0 0 0 0
676 0 25 1 1 0 0 0 0 0 131 135 0 1 0 0 0 0 1 0 0 0
709 0 70 0 1 0 0 0 1 0 78 143 0 1 0 1 0 0 0 0 0 0
713 0 47 0 1 1 0 0 0 0 156 112 0 1 0 0 0 0 0 0 0 0
727 0 75 0 3 1 0 0 0 0 144 120 0 1 0 0 0 0 0 1 0 0
728 0 40 0 2 0 0 0 1 0 160 150 1 1 1 0 0 0 0 0 0 0
732 0 71 0 1 0 0 0 1 0 148 192 0 1 0 1 1 1 0 0 0 0
746 0 70 1 1 0 0 0 1 0 90 140 0 1 0 1 0 0 1 0 0 0
749 0 58 0 1 1 0 0 0 0 148 95 1 1 0 0 0 0 0 0 0 0
754 0 54 0 1 1 0 0 0 0 136 80 0 0 0 0 0 0 0 0 0 0
761 0 77 0 1 1 0 0 0 0 128 59 0 0 0 0 0 0 0 0 0 0
763 0 55 0 1 1 1 0 1 0 138 140 0 0 0 0 0 0 0 0 0 0
764 0 21 0 1 1 0 0 0 0 120 62 0 1 0 0 0 0 0 0 0 0
765 0 53 0 2 0 0 1 0 1 170 115 0 1 0 0 0 0 0 0 0 0
766 0 31 1 1 0 1 1 1 1 146 100 0 1 0 0 1 1 0 0 0 0
772 0 71 0 1 1 1 0 0 0 204 52 0 0 0 0 0 0 0 0 0 0
776 0 49 0 2 0 0 0 0 0 150 100 0 1 0 0 0 0 0 0 0 0
784 0 60 1 2 0 0 0 1 0 116 92 1 1 0 0 0 0 0 0 0 0
794 0 50 0 1 0 0 0 1 0 156 99 0 1 0 1 0 1 0 0 0 0
796 0 45 1 1 1 0 0 0 0 132 109 0 1 1 0 0 0 0 0 0 0
809 0 21 0 1 1 0 0 0 0 110 90 0 1 0 0 0 0 0 0 0 0
814 0 73 1 1 1 0 0 0 0 130 83 0 1 0 0 0 0 0 0 0 0
816 0 28 0 1 1 0 0 1 0 122 80 1 0 1 0 0 0 0 0 0 0
829 0 17 0 1 1 0 0 0 0 140 78 0 1 1 0 0 0 0 0 0 0
837 0 17 1 3 0 0 0 0 0 130 140 0 1 0 0 0 0 0 0 0 0
846 0 21 1 1 1 0 0 0 0 142 79 0 1 0 0 0 0 0 0 0 0
847 0 68 1 1 1 1 0 0 0 91 79 0 0 0 0 0 0 0 0 0 0
863 0 17 0 3 1 0 0 0 0 136 78 0 1 0 0 0 0 0 0 0 0
867 0 60 0 1 0 0 0 1 0 108 120 0 1 0 0 0 0 0 0 0 0
875 0 69 0 1 1 0 0 0 0 169 73 0 1 0 0 0 0 0 0 0 0
877 0 88 1 1 0 0 1 0 0 190 88 0 1 0 0 0 0 0 0 0 0
880 0 20 0 1 1 0 0 0 0 120 80 0 1 0 0 0 0 0 0 0 0
881 0 89 1 1 1 0 0 0 0 190 114 0 1 0 0 0 1 0 0 2 1
889 0 62 1 1 0 0 0 0 0 110 78 0 1 0 0 0 0 0 0 0 0
893 0 46 0 1 0 0 1 1 0 142 89 0 1 0 0 1 0 1 0 0 0
906 0 19 0 1 1 0 0 1 0 100 137 0 1 0 0 0 0 0 0 0 0
912 0 71 0 1 0 0 0 1 0 124 124 0 1 0 1 1 1 0 0 0 0
915 0 67 0 1 1 0 0 0 0 152 78 0 0 0 0 0 0 0 0 0 0
923 0 20 0 1 1 0 0 0 0 104 83 0 1 0 0 0 0 0 0 0 0
924 0 73 1 2 0 0 1 0 0 162 100 0 1 0 0 0 0 0 0 0 0
925 0 59 0 1 0 0 0 0 0 100 88 0 1 0 0 0 0 0 0 0 0
929 0 42 0 1 1 0 0 0 0 122 84 0 1 1 0 0 0 0 0 0 0
4 1 87 1 1 1 0 0 1 0 80 96 0 1 1 1 1 1 0 0 0 0
27 1 76 1 1 1 0 0 1 0 128 90 1 1 0 0 0 0 0 0 0 0
47 1 78 0 1 0 0 0 1 0 130 132 0 1 0 0 0 0 1 0 0 0
52 1 63 0 1 0 0 1 1 0 112 106 1 1 0 1 0 0 0 0 0 0
127 1 19 0 1 1 0 0 0 0 140 76 0 1 0 0 0 0 0 0 0 0
145 1 67 1 1 0 0 0 1 0 62 145 0 1 0 0 0 0 0 1 0 0
154 1 53 1 1 0 0 0 1 0 148 128 0 1 0 0 1 1 0 0 0 0
165 1 92 0 1 0 0 0 1 0 124 80 0 1 0 0 0 0 1 0 0 0
195 1 57 0 1 0 0 0 1 1 110 124 0 1 0 0 0 0 0 0 2 1
202 1 75 1 1 1 1 0 0 0 130 136 0 0 0 0 0 0 0 0 0 0
204 1 91 0 1 0 0 0 1 0 64 125 0 1 0 0 0 1 0 0 0 0
208 1 70 0 1 1 0 0 0 0 168 122 0 0 0 1 0 0 0 0 1 0
222 1 88 0 1 0 0 0 1 1 141 140 0 1 0 0 0 0 0 0 0 0
238 1 41 0 1 1 0 0 1 0 140 58 0 1 0 0 0 0 0 0 2 1
241 1 61 0 1 0 0 0 0 0 140 81 0 1 0 0 0 0 0 0 0 0
273 1 80 0 1 1 0 0 0 0 100 85 0 1 0 0 0 0 0 0 0 0
285 1 40 0 1 0 0 0 1 0 86 80 1 1 0 0 0 0 0 0 0 0
299 1 75 0 1 0 0 0 1 0 90 100 0 1 0 0 0 0 0 0 1 0
331 1 63 1 1 1 0 1 1 1 36 86 0 1 1 0 0 0 0 1 2 1
346 1 75 1 1 0 1 0 0 0 190 94 0 1 0 0 0 0 0 0 0 0
380 1 20 0 1 1 0 0 0 0 148 72 0 1 1 0 0 0 0 0 0 0
384 1 71 0 1 0 0 0 0 0 142 95 0 1 0 0 0 0 0 0 0 0
412 1 51 1 1 1 0 0 1 0 134 100 1 1 0 0 0 0 0 0 1 0
427 1 65 0 1 0 0 0 0 0 66 94 0 1 0 0 0 0 0 0 2 1
442 1 69 1 3 0 0 1 0 0 170 60 1 1 0 1 0 0 0 0 0 0
461 1 55 0 1 1 0 1 1 0 122 100 1 1 0 0 0 0 0 0 0 0
468 1 50 1 1 1 1 0 0 0 120 96 0 1 0 0 0 0 0 0 0 0
490 1 78 0 1 0 0 0 1 0 110 81 0 1 0 0 0 0 0 0 0 0
518 1 71 1 1 0 0 0 0 1 70 112 0 1 0 0 0 0 0 0 2 1
611 1 85 1 1 1 0 0 0 0 136 96 0 1 0 0 0 0 0 0 0 0
613 1 75 0 1 0 0 1 1 0 130 119 0 1 0 0 1 0 1 1 0 0
666 1 65 1 1 0 0 0 1 1 104 150 0 1 0 0 0 1 0 0 2 1
671 1 49 0 1 0 0 0 1 1 140 108 0 1 0 0 0 0 1 0 0 0
706 1 75 1 1 0 0 1 1 1 150 66 0 1 0 0 0 0 0 1 2 1
740 1 72 1 1 0 0 0 0 0 90 160 0 1 0 0 0 0 0 0 0 0
751 1 69 0 1 0 0 1 0 0 80 81 0 1 0 0 0 0 0 0 2 1
752 1 64 0 1 0 1 0 1 0 80 118 0 1 0 1 0 0 0 1 0 0
789 1 60 0 1 0 0 0 1 0 56 114 1 1 0 0 1 0 1 0 0 0
871 1 60 0 3 1 0 1 1 0 130 55 0 1 0 0 0 0 0 0 1 0
921 1 50 1 2 0 0 0 0 0 256 64 0 1 0 0 0 0 0 0 1 0

The formula to fit is “STA ~ TYP + COMA + AGE + INF”

Read the icu.csv subset it with these 5 features in the formula and STA is the labelcol.

data<-subset(data, select = c(STA,TYP,COMA,AGE,INF) )
data <- data %>% select(-STA,STA)
data %>% kable() %>% kable_styling() %>% scroll_box(width = "800px", height = "400px")
TYP COMA AGE INF STA
1 0 27 1 0
1 0 59 0 0
0 0 77 0 0
1 0 54 1 0
1 0 87 1 0
1 0 69 1 0
0 0 63 0 0
1 0 30 0 0
1 0 35 0 0
0 0 70 0 0
0 0 55 1 0
0 0 48 0 0
0 0 66 0 0
1 0 61 0 0
1 0 66 0 0
0 0 52 1 0
0 0 55 1 0
1 1 59 1 0
1 0 63 0 0
0 0 72 0 0
1 0 60 1 0
0 0 78 0 0
1 0 16 0 0
0 0 62 0 0
1 0 61 1 0
1 0 35 0 0
0 0 74 0 0
0 0 68 0 0
1 0 69 0 0
1 0 51 0 0
0 0 55 0 0
1 0 64 1 0
1 0 88 1 0
1 0 23 0 0
0 0 73 0 0
0 0 53 0 0
0 0 74 0 0
0 0 68 0 0
1 0 66 1 0
0 0 60 1 0
0 0 64 1 0
0 0 66 1 0
1 0 19 1 0
1 0 18 0 0
1 0 63 1 0
1 0 45 0 0
1 0 64 0 0
1 0 68 1 0
1 0 64 1 0
0 0 82 0 0
0 0 73 0 0
1 0 70 0 0
1 0 61 1 0
0 0 64 1 0
0 0 47 1 0
0 0 69 0 0
1 0 67 1 0
0 0 18 0 0
0 0 77 1 0
1 0 32 0 0
0 0 19 1 0
1 0 72 0 0
1 0 49 1 0
0 0 68 0 0
1 0 82 1 0
1 0 32 1 0
1 0 78 1 0
1 0 57 1 0
1 0 46 0 0
1 0 23 1 0
1 0 55 0 0
1 0 18 0 0
1 0 20 0 0
0 0 75 0 0
0 0 79 1 0
1 0 40 0 0
1 0 76 1 0
0 0 66 1 0
1 0 76 1 0
1 0 80 0 0
1 0 23 1 0
1 0 48 1 0
0 0 67 0 0
1 0 69 0 0
0 0 65 0 0
0 0 72 0 0
1 0 55 0 0
1 0 40 0 0
1 0 55 1 0
1 0 34 0 0
1 0 47 0 0
1 0 41 1 0
1 0 84 1 0
0 0 88 0 0
0 0 77 0 0
1 0 80 0 0
1 0 16 0 0
0 0 70 0 0
1 0 83 1 0
1 0 23 0 0
1 0 67 0 0
0 0 18 0 0
0 0 77 1 0
1 0 48 0 0
1 0 24 0 0
1 0 71 1 0
1 0 72 0 0
0 0 77 0 0
1 0 60 1 0
0 0 46 0 0
1 0 65 0 0
1 0 36 0 0
0 0 68 0 0
1 0 58 0 0
1 0 76 1 0
1 0 41 0 0
1 0 20 0 0
1 0 91 1 0
1 0 75 0 0
1 0 25 0 0
1 0 70 1 0
1 0 47 0 0
1 0 75 0 0
1 0 40 1 0
1 0 71 1 0
1 0 70 1 0
1 0 58 0 0
0 0 54 0 0
0 0 77 0 0
0 0 55 1 0
1 0 21 0 0
1 0 53 0 0
1 0 31 1 0
0 0 71 0 0
1 0 49 0 0
1 0 60 1 0
1 0 50 1 0
1 0 45 0 0
1 0 21 0 0
1 0 73 0 0
0 0 28 1 0
1 0 17 0 0
1 0 17 0 0
1 0 21 0 0
0 0 68 0 0
1 0 17 0 0
1 0 60 1 0
1 0 69 0 0
1 0 88 0 0
1 0 20 0 0
1 1 89 0 0
1 0 62 0 0
1 0 46 1 0
1 0 19 1 0
1 0 71 1 0
0 0 67 0 0
1 0 20 0 0
1 0 73 0 0
1 0 59 0 0
1 0 42 0 0
1 0 87 1 1
1 0 76 1 1
1 0 78 1 1
1 0 63 1 1
1 0 19 0 1
1 0 67 1 1
1 0 53 1 1
1 0 92 1 1
1 1 57 1 1
0 0 75 0 1
1 0 91 1 1
0 0 70 0 1
1 0 88 1 1
1 1 41 1 1
1 0 61 0 1
1 0 80 0 1
1 0 40 1 1
1 0 75 1 1
1 1 63 1 1
1 0 75 0 1
1 0 20 0 1
1 0 71 0 1
1 0 51 1 1
1 1 65 0 1
1 0 69 0 1
1 0 55 1 1
1 0 50 0 1
1 0 78 1 1
1 1 71 0 1
1 0 85 0 1
1 0 75 1 1
1 1 65 1 1
1 0 49 1 1
1 1 75 1 1
1 0 72 0 1
1 1 69 0 1
1 0 64 1 1
1 0 60 1 1
1 0 60 1 1
1 0 50 0 1
data$TYP<-as.numeric(data$TYP)
data$AGE<-as.numeric(data$AGE)
data$INF<-as.numeric(data$INF)
data$STA<-as.factor(data$STA)
str(data)
## 'data.frame':    200 obs. of  5 variables:
##  $ TYP : num  1 1 0 1 1 1 0 1 1 0 ...
##  $ COMA: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ AGE : num  27 59 77 54 87 69 63 30 35 70 ...
##  $ INF : num  1 0 0 1 1 1 0 0 0 0 ...
##  $ STA : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

We compare the structure of our dataframe with that of the datset used in the supplied kNN function.

knn.df<-iris
str(knn.df)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

We observe they both have the same structure.

kNN.r

run the kNN.R for K=(3,5,7,15,25,50)

euclideanDist <- function(a, b){
  d = 0
  for(i in c(1:(length(a)) ))
  {
    d = d + (a[[i]]-b[[i]])^2
  }
  d = sqrt(d)
  return(d)
}

knn_predict2 <- function(test_data, train_data, k_value, labelcol){
  pred <- c()  #empty pred vector 
  #LOOP-1
  for(i in c(1:nrow(test_data))){   #looping over each record of test data
    eu_dist =c()          #eu_dist & eu_char empty  vector
    eu_char = c()
    good = 0              #good & bad variable initialization with 0 value
    bad = 0
    
    #LOOP-2-looping over train data 
    for(j in c(1:nrow(train_data))){
 
      #adding euclidean distance b/w test data point and train data to eu_dist vector
      eu_dist <- c(eu_dist, euclideanDist(test_data[i,-c(labelcol)], train_data[j,-c(labelcol)]))
 
      #adding class variable of training data in eu_char
      eu_char <- c(eu_char, as.character(train_data[j,][[labelcol]]))
    }
    
    eu <- data.frame(eu_char, eu_dist) #eu dataframe created with eu_char & eu_dist columns
 
    eu <- eu[order(eu$eu_dist),]       #sorting eu dataframe to gettop K neighbors
    eu <- eu[1:k_value,]               #eu dataframe with top K neighbors
 
    tbl.sm.df<-table(eu$eu_char)
    cl_label<-  names(tbl.sm.df)[[as.integer(which.max(tbl.sm.df))]]
    
    pred <- c(pred, cl_label)
    }
    return(pred) #return pred vector
  }
  

accuracy <- function(test_data,labelcol,predcol){
  correct = 0
  for(i in c(1:nrow(test_data))){
    if(test_data[i,labelcol] == test_data[i,predcol]){ 
      correct = correct+1
    }
  }
  accu = (correct/nrow(test_data)) * 100  
  return(accu)
}

We load our data to run the supplied function.

#load data
#knn.df<-iris
knn.df<-data
labelcol <- 5 # for our new dataset it is the fifth col 
predictioncol<-labelcol+1
# create train/test partitions
set.seed(2)
n<-nrow(knn.df)
knn.df<- knn.df[sample(n),]
train.df <- knn.df[1:as.integer(0.7*n),]

Model results

run the kNN.R for K=(3,5,7,15,25,50) submit the result confusionMatrix, Accuracy for each K

ks<-c(3,5,7,15,25,50)
acc<-vector()
for(i in 1:length(ks)) {
  K = ks[i] # number of neighbors to determine the class
  #table(train.df[,labelcol])
  test.df <- knn.df[as.integer(0.7*n +1):n,]
  #table(test.df[,labelcol])

  predictions <- knn_predict2(test.df, train.df, K,labelcol) #calling knn_predict()

  test.df[,predictioncol] <- predictions #Adding predictions in test data as 7th column
  acc<-c(acc,accuracy(test.df,labelcol,predictioncol))
  print(paste('Accuracy for K=',K,' is ',acc[i]))
  print('Confusion Matrix')
  print(table(test.df[[predictioncol]],test.df[[labelcol]]))
}
## [1] "Accuracy for K= 3  is  78.3333333333333"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 44  9
##   1  4  3
## [1] "Accuracy for K= 5  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 47 11
##   1  1  1
## [1] "Accuracy for K= 7  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
## [1] "Accuracy for K= 15  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
## [1] "Accuracy for K= 25  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
## [1] "Accuracy for K= 50  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12

Plot Accuracy vs K.

plot(ks,acc)

Results with the new dataset are not very good, in fact the high accuracy is really due to how imbalanced the dataset is. We run the same code with the Iris dataset, which is observed in the confusion matrices.

#load data
knn.df<-iris
labelcol <- 5 # for iris it is the fifth col 
predictioncol<-labelcol+1
# create train/test partitions
set.seed(2)
n<-nrow(knn.df)
knn.df<- knn.df[sample(n),]
train.df <- knn.df[1:as.integer(0.7*n),]

acc<-vector()
for(i in 1:length(ks)) {
  K = ks[i] # number of neighbors to determine the class
  #table(train.df[,labelcol])
  test.df <- knn.df[as.integer(0.7*n +1):n,]
  #table(test.df[,labelcol])

  predictions <- knn_predict2(test.df, train.df, K,labelcol) #calling knn_predict()

  test.df[,predictioncol] <- predictions #Adding predictions in test data as 7th column
  acc<-c(acc,accuracy(test.df,labelcol,predictioncol))
  print(paste('Accuracy for K=',K,' is ',acc[i]))
  print('Confusion Matrix')
  print(table(test.df[[predictioncol]],test.df[[labelcol]]))
}
## [1] "Accuracy for K= 3  is  86.6666666666667"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         13         4
##   virginica       0          2        12
## [1] "Accuracy for K= 5  is  91.1111111111111"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         3
##   virginica       0          1        13
## [1] "Accuracy for K= 7  is  91.1111111111111"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         15         4
##   virginica       0          0        12
## [1] "Accuracy for K= 15  is  88.8888888888889"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         4
##   virginica       0          1        12
## [1] "Accuracy for K= 25  is  86.6666666666667"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         5
##   virginica       0          1        11
## [1] "Accuracy for K= 50  is  80"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         8
##   virginica       0          1         8
plot(ks,acc)

We can see how the same code shows much better results in both accuracy and on the confusion matrices. We also observe how higher values of K do not necesarily reflect in beter results, same as we saw with the new dataset.

We can also compare our results from the Iris dataset to those using the Class library knn function.

#load data
knn.df<-iris
labelcol <- 5 # for iris it is the fifth col 
predictioncol<-labelcol+1
# create train/test partitions
set.seed(2)
n<-nrow(knn.df)
knn.df<- knn.df[sample(n),]
train.df <- knn.df[1:as.integer(0.7*n),]

acc<-vector()
for(i in 1:length(ks)) {
  K = ks[i] # number of neighbors to determine the class
  #table(train.df[,labelcol])
  test.df <- knn.df[as.integer(0.7*n +1):n,]
  #table(test.df[,labelcol])

  #predictions <- knn_predict2(test.df, train.df, K,labelcol) #calling knn_predict()
  predictions <-knn(train.df[,-5],test.df[,-5],train.df$Species,k=K)

  test.df[,predictioncol] <- predictions #Adding predictions in test data as 7th column
  acc<-c(acc,accuracy(test.df,labelcol,predictioncol))
  print(paste('Accuracy for K=',K,' is ',acc[i]))
  print('Confusion Matrix')
  print(table(test.df[[predictioncol]],test.df[[labelcol]]))
}
## [1] "Accuracy for K= 3  is  86.6666666666667"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         13         4
##   virginica       0          2        12
## [1] "Accuracy for K= 5  is  91.1111111111111"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         3
##   virginica       0          1        13
## [1] "Accuracy for K= 7  is  91.1111111111111"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         15         4
##   virginica       0          0        12
## [1] "Accuracy for K= 15  is  88.8888888888889"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         4
##   virginica       0          1        12
## [1] "Accuracy for K= 25  is  86.6666666666667"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         5
##   virginica       0          1        11
## [1] "Accuracy for K= 50  is  80"
## [1] "Confusion Matrix"
##             
##              setosa versicolor virginica
##   setosa         14          0         0
##   versicolor      0         14         8
##   virginica       0          1         8
plot(ks,acc)

We see how we get the same results, validating out by hand function.

#load data
knn.df<-data
labelcol <- 5 # for iris it is the fifth col 
predictioncol<-labelcol+1
# create train/test partitions
set.seed(2)
n<-nrow(knn.df)
knn.df<- knn.df[sample(n),]
train.df <- knn.df[1:as.integer(0.7*n),]

acc<-vector()
for(i in 1:length(ks)) {
  K = ks[i] # number of neighbors to determine the class
  #table(train.df[,labelcol])
  test.df <- knn.df[as.integer(0.7*n +1):n,]
  #table(test.df[,labelcol])

  #predictions <- knn_predict2(test.df, train.df, K,labelcol) #calling knn_predict()
  predictions <-knn(train.df,test.df,train.df$STA,k=K)

  test.df[,predictioncol] <- predictions #Adding predictions in test data as 7th column
  acc<-c(acc,accuracy(test.df,labelcol,predictioncol))
  print(paste('Accuracy for K=',K,' is ',acc[i]))
  print('Confusion Matrix')
  print(table(test.df[[predictioncol]],test.df[[labelcol]]))
}
## [1] "Accuracy for K= 3  is  83.3333333333333"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 46  8
##   1  2  4
## [1] "Accuracy for K= 5  is  81.6666666666667"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 11
##   1  0  1
## [1] "Accuracy for K= 7  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
##   1  0  0
## [1] "Accuracy for K= 15  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
##   1  0  0
## [1] "Accuracy for K= 25  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
##   1  0  0
## [1] "Accuracy for K= 50  is  80"
## [1] "Confusion Matrix"
##    
##      0  1
##   0 48 12
##   1  0  0
plot(ks,acc)

Again we see similar results, with the unbalanced dataset affects the results, especially visible in the confusion matrices.

Summary

In this exercise we were able to successfully run the provided kNN function to our data. Some data conditioning was required to fulfill the requirements of the function. The data provided was conditioned to have the same structure as the sample data used in the kNN function. The results though were not ideal. The newly supplied dataset is highly unbalanced, which is reflected in the results. Even though the accuracy calculation are encouraging, the confusion matrix shows this is due to the imbalance in the data itself. The knn function from the CLass library was used to confirm the findings.