deptos <- read_sf("./COL_adm1.shp")
head(deptos)
Simple feature collection with 6 features and 9 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -77.149 ymin: -4.228429 xmax: -69.36835 ymax: 11.10792
CRS: 4326
ggplot() + geom_sf(data = deptos)

# The CRS 3978 is used in Canada
ggplot() + geom_sf(data = deptos) + coord_sf(crs=st_crs(3978))

ggplot() + geom_sf(data = deptos_utm)

ggplot() + geom_sf(data = valledelcauca)

munic <- read_sf("./COL_adm2.shp")
mun_valledelcauca <- munic %>% filter(NAME_1 == "Valle del Cauca")
ggplot() + geom_sf(data = mun_valledelcauca)

mun_valledelcauca
Simple feature collection with 42 features and 11 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -81.61708 ymin: 2.931806 xmax: -75.7098 ymax: 4.975899
CRS: 4326
ggplot(valledelcauca) +
geom_sf() +
geom_sf(data = valledelcauca_points, fill = "antiquewhite") +
geom_text(data = valledelcauca_points, aes(x=X, y=Y,label = ID_2), size = 2) +
coord_sf(xlim = c(-78, -75), ylim = c(3, 5), expand = FALSE)

ggplot(valledelcauca) +
geom_sf(data=valledelcauca_points, aes(x=X, y=Y, fill =
ID_2), color = "black", size = 0.25) +
geom_text(data = valledelcauca_points, aes(x=X, y=Y,label = ID_2), size = 2) +
theme(aspect.ratio=1)+
scale_fill_distiller(name="ID_2", palette = "YlGn", breaks = pretty_breaks(n = 5))+
labs(title="Another Map of Valle del Cauca")
Ignoring unknown aesthetics: x, y

mun_valledelcauca$km2
Units: [m^2]
[1] 90.47328 217.03732 317.63325 193.84200 695.82052
[6] 6789.96158 371.49077 131.56671 829.24901 260.71860
[11] 354.94225 797.82338 270.85422 145.15438 506.81757
[16] 327.78503 434.96694 232.89042 188.21736 975.69844
[21] 683.32275 205.68742 123.93291 309.70029 149.54531
[26] 1036.86196 427.67754 136.32020 238.46109 274.89575
[31] 300.76931 503.33924 920.25180 192.05739 241.24827
[36] 608.83412 65.84478 448.32781 170.36758 318.31794
[41] 158.85390 354.38819
bins <- c(0, 50, 100, 200, 300, 500, 1000, 2000, Inf)
pal <- colorBin("YlOrRd", domain = valle_mun$km2, bins = bins)
labels <- mun_valledelcauca$NAME_2
labels
[1] "Alcalá" "Andalucía"
[3] "Ansermanuevo" "Argelia"
[5] "Bolívar" "Buenaventura"
[7] "Bugalagrande" "Caicedonia"
[9] "Calima" "Candelaria"
[11] "Cartago" "Dagua"
[13] "El Águila" "El Cairo"
[15] "El Cerrito" "El Dovio"
[17] "Florida" "Ginebra"
[19] "Guacarí" "Guadalajara de Buga"
[21] "Jamundí" "La Cumbre"
[23] "La Unión de Sucre" "La Victoria"
[25] "Obando" "Palmira"
[27] "Pradera" "Restrepo"
[29] "Riofrío" "Roldanillo"
[31] "San Pedro" "Santiago de Cali"
[33] "Sevilla" "Toro"
[35] "Trujillo" "Tuluá"
[37] "Ulloa" "Versalles"
[39] "Vijes" "Yotoco"
[41] "Yumbo" "Zarzal"
m <- leaflet(valle_mun) %>%
setView(-75.5, 7, 8) %>% addPolygons(
fillColor = ~pal(km2),
weight = 2,
opacity = 1,
color = "white",
dashArray = "3",
fillOpacity = 0.7,
highlight = highlightOptions(
weight = 5,
color = "#666",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),
label = labels) %>%
addLegend(pal = pal, values = ~km2, opacity = 0.7, title = NULL,
position = "bottomright")
m
leaflet() %>%
addProviderTiles(providers$Esri.WorldImagery, options= providerTileOptions(opacity = 0.99)) %>%
addPolygons(data = valle_mun, popup= valle_mun$NAME_2,
stroke = TRUE, fillOpacity = 0.25, smoothFactor = 0.25
)
LS0tCnRpdGxlOiAiUmVhZGluZywgZmlsdGVyaW5nIGFuZCB2aXN1YWxpemluZyBnZW9zcGF0aWFsIHZlY3RvciBkYXRhIGluIFIiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpkZXB0b3MgPC0gIHJlYWRfc2YoIi4vQ09MX2FkbTEuc2hwIikKYGBgCgpgYGB7cn0KaGVhZChkZXB0b3MpCmBgYApgYGB7cn0KZ2dwbG90KCkgKyBnZW9tX3NmKGRhdGEgPSBkZXB0b3MpIApgYGAKCmBgYHtyfQojIFRoZSBDUlMgMzk3OCBpcyB1c2VkIGluIENhbmFkYQpnZ3Bsb3QoKSArIGdlb21fc2YoZGF0YSA9IGRlcHRvcykgKyBjb29yZF9zZihjcnM9c3RfY3JzKDM5NzgpKQpgYGAKCmBgYHtyfQpnZ3Bsb3QoKSArIGdlb21fc2YoZGF0YSA9IGRlcHRvc191dG0pCmBgYAoKYGBge3J9CmdncGxvdCgpICsgZ2VvbV9zZihkYXRhID0gdmFsbGVkZWxjYXVjYSkgCmBgYAoKYGBge3J9Cm11bmljIDwtICByZWFkX3NmKCIuL0NPTF9hZG0yLnNocCIpCm11bl92YWxsZWRlbGNhdWNhIDwtIG11bmljICU+JSBmaWx0ZXIoTkFNRV8xID09ICJWYWxsZSBkZWwgQ2F1Y2EiKQpnZ3Bsb3QoKSArIGdlb21fc2YoZGF0YSA9IG11bl92YWxsZWRlbGNhdWNhKSAKYGBgCmBgYHtyfQptdW5fdmFsbGVkZWxjYXVjYQpgYGAKCmBgYHtyfQpnZ3Bsb3QodmFsbGVkZWxjYXVjYSkgKwogICAgZ2VvbV9zZigpICsKICAgIGdlb21fc2YoZGF0YSA9IHZhbGxlZGVsY2F1Y2FfcG9pbnRzLCBmaWxsID0gImFudGlxdWV3aGl0ZSIpICsgCiAgICBnZW9tX3RleHQoZGF0YSA9IHZhbGxlZGVsY2F1Y2FfcG9pbnRzLCBhZXMoeD1YLCB5PVksbGFiZWwgPSBJRF8yKSwgc2l6ZSA9IDIpICsKICAgIGNvb3JkX3NmKHhsaW0gPSBjKC03OCwgLTc1KSwgeWxpbSA9IGMoMywgNSksIGV4cGFuZCA9IEZBTFNFKQpgYGAKCmBgYHtyfQpnZ3Bsb3QodmFsbGVkZWxjYXVjYSkgKyAKICBnZW9tX3NmKGRhdGE9dmFsbGVkZWxjYXVjYV9wb2ludHMsIGFlcyh4PVgsIHk9WSwgZmlsbCA9CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElEXzIpLCBjb2xvciA9ICJibGFjayIsIHNpemUgPSAwLjI1KSArCiAgZ2VvbV90ZXh0KGRhdGEgPSB2YWxsZWRlbGNhdWNhX3BvaW50cywgYWVzKHg9WCwgeT1ZLGxhYmVsID0gSURfMiksIHNpemUgPSAyKSArCiAgdGhlbWUoYXNwZWN0LnJhdGlvPTEpKwogIHNjYWxlX2ZpbGxfZGlzdGlsbGVyKG5hbWU9IklEXzIiLCBwYWxldHRlID0gIllsR24iLCBicmVha3MgPSBwcmV0dHlfYnJlYWtzKG4gPSA1KSkrCiAgbGFicyh0aXRsZT0iQW5vdGhlciAgTWFwIG9mIFZhbGxlIGRlbCBDYXVjYSIpCmBgYApgYGB7cn0KbXVuX3ZhbGxlZGVsY2F1Y2Eka20yCmBgYApgYGB7cn0KYmlucyA8LSBjKDAsIDUwLCAxMDAsIDIwMCwgMzAwLCA1MDAsIDEwMDAsIDIwMDAsIEluZikKcGFsIDwtIGNvbG9yQmluKCJZbE9yUmQiLCBkb21haW4gPSB2YWxsZV9tdW4ka20yLCBiaW5zID0gYmlucykKCgpsYWJlbHMgPC0gbXVuX3ZhbGxlZGVsY2F1Y2EkTkFNRV8yCgpsYWJlbHMKYGBgCmBgYHtyfQptIDwtIGxlYWZsZXQodmFsbGVfbXVuKSAlPiUKICBzZXRWaWV3KC03NSwgNzgpICAlPiUgYWRkUG9seWdvbnMoCiAgZmlsbENvbG9yID0gfnBhbChrbTIpLAogIHdlaWdodCA9IDIsCiAgb3BhY2l0eSA9IDEsCiAgY29sb3IgPSAid2hpdGUiLAogIGRhc2hBcnJheSA9ICIzIiwKICBmaWxsT3BhY2l0eSA9IDAuNywKICBoaWdobGlnaHQgPSBoaWdobGlnaHRPcHRpb25zKAogICAgd2VpZ2h0ID0gNSwKICAgIGNvbG9yID0gIiM2NjYiLAogICAgZGFzaEFycmF5ID0gIiIsCiAgICBmaWxsT3BhY2l0eSA9IDAuNywKICAgIGJyaW5nVG9Gcm9udCA9IFRSVUUpLAogIGxhYmVsID0gbGFiZWxzKSAlPiUKICBhZGRMZWdlbmQocGFsID0gcGFsLCB2YWx1ZXMgPSB+a20yLCBvcGFjaXR5ID0gMC43LCB0aXRsZSA9IE5VTEwsCiAgICBwb3NpdGlvbiA9ICJib3R0b21yaWdodCIpCmBgYAoKYGBge3J9Cm0KYGBgCgpgYGB7cn0KbGVhZmxldCgpICU+JQogIGFkZFByb3ZpZGVyVGlsZXMocHJvdmlkZXJzJEVzcmkuV29ybGRJbWFnZXJ5LCBvcHRpb25zPSBwcm92aWRlclRpbGVPcHRpb25zKG9wYWNpdHkgPSAwLjk5KSkgJT4lCiAgYWRkUG9seWdvbnMoZGF0YSA9IHZhbGxlX211biwgcG9wdXA9IHZhbGxlX211biROQU1FXzIsCiAgICBzdHJva2UgPSBUUlVFLCBmaWxsT3BhY2l0eSA9IDAuMjUsIHNtb290aEZhY3RvciA9IDAuMjUKICApCmBgYAoK