Problem 11 on page 363.
(c) \(\geq\) 120.
## [1] 0.01801584
2. Calculate the expected value and variance of the binomial distribution using the moment generating function.
The moment generating function for a binomial random variable X:
\(M(t)=[(1-p) +pe^t]^n\).
Calculating the first Derivative of M(t) with respect to t, we get
\(M'(t) = n(pe^t)[(1-p)+pe^t]^{n-1}\)
Setting t = 0
\(M'(0) = n [ 1 - p + p ]^{n-1} p(1) = np\)
Expected value:- \[ E(X) = \mu = M'(0) = np \]
To find the variance, we first need to take the second derivative of M(t) with respect to t. Doing so, we get:
\(M''(t) = n[1 - p + pe^t]^{n-1}(pe^t)+ (pe^t) n(n-1)[1 - p + pe^t]^{n-2}(pe^t)\)
Setting t = 0
\(M''(0) = np + n^2p^2 -np^2\)
Variance: = \(M''(0) = n(n-1)p^2 + np\) = \(\sigma^2 = M''(0) - [M'(0)]^2 = np(1-p)\)
or,
\(\sigma^2 = np(1-p)\)
3. Calculate the expected value and variance of the exponential distribution using the moment generating function.
The exponential distribution function is given as: \(f(x)= \lambda e^{−\lambda x}\)
Moment generating function for the distribution is:
\(M_X(t)=E(e^{tx})=\int ^∞_0e^{tx}f(x)dx\)
\(=E(e^{tx})=\int ^∞_0e^{tx}λe^{−λx}dx\)
\(=\lambda \int^∞_0e^{tx}e^{−λx}dx\)
\(=\lambda \int^∞_0e^{(t−λ)x}dx\)
\(=\lambda \int ^∞_0e^{(t−λ)x}dx\)
So, \(M_X(t)=\frac {\lambda}{\lambda−t}\)
For t=0,
The first derivative
\(M_X'(0) = E(x)= \frac {\lambda}{(\lambda -0)^2} = \frac{1}{\lambda}\) = \(\mu_1\) = expected value E(x)
The second derivative For t = 0,
\(M_X''(0) = E(X^2)= \frac {2\lambda}{(\lambda-t)^3}\)
\(M_X''(0) = E(X^2)= \frac{2}{\lambda^2}\)
\(V(X)=E(X^2)−E(X)^2=\frac { 2 }{ \lambda ^{ 2 } } -\frac { 1 }{ \lambda ^{ 2 } }=\frac{1}{\lambda^2}\) = V(X) = Variance = \(\sigma^2\)