R fundamentals: In-class Exercise 4-6

2020-Spring [Data Management] Instructor: SHEU, Ching-Fan

CHIU, Ming-Tzu

2020-03-29

Exercise 4

Regarding UCBAdmissions{datasets} data object, what does the output

UCBAdmissions[,1,]

UCBAdmissions[,1,1]

UCBAdmissions[1,1,]

of each of the above R statements mean, respectively?

datasets::UCBAdmissions
#> , , Dept = A
#> 
#>           Gender
#> Admit      Male Female
#>   Admitted  512     89
#>   Rejected  313     19
#> 
#> , , Dept = B
#> 
#>           Gender
#> Admit      Male Female
#>   Admitted  353     17
#>   Rejected  207      8
#> 
#> , , Dept = C
#> 
#>           Gender
#> Admit      Male Female
#>   Admitted  120    202
#>   Rejected  205    391
#> 
#> , , Dept = D
#> 
#>           Gender
#> Admit      Male Female
#>   Admitted  138    131
#>   Rejected  279    244
#> 
#> , , Dept = E
#> 
#>           Gender
#> Admit      Male Female
#>   Admitted   53     94
#>   Rejected  138    299
#> 
#> , , Dept = F
#> 
#>           Gender
#> Admit      Male Female
#>   Admitted   22     24
#>   Rejected  351    317
UCBAdmissions[,1,]
#>           Dept
#> Admit        A   B   C   D   E   F
#>   Admitted 512 353 120 138  53  22
#>   Rejected 313 207 205 279 138 351

此為各系男生之情形。

UCBAdmissions[,1,1]
#> Admitted Rejected 
#>      512      313

此為Dept A 的男性狀態。

UCBAdmissions[1,1,]
#>   A   B   C   D   E   F 
#> 512 353 120 138  53  22

此為各系admitted的男性人數。

Exercise 5

Concerning the chickwts{datasets}, explain the difference between

chickwts[,2]

chickwts[“feed”]

head(chickwts)
#>   weight      feed
#> 1    179 horsebean
#> 2    160 horsebean
#> 3    136 horsebean
#> 4    227 horsebean
#> 5    217 horsebean
#> 6    168 horsebean
str(chickwts)
#> 'data.frame':    71 obs. of  2 variables:
#>  $ weight: num  179 160 136 227 217 168 108 124 143 140 ...
#>  $ feed  : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...
chickwts[,2]
#>  [1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean
#>  [8] horsebean horsebean horsebean linseed   linseed   linseed   linseed  
#> [15] linseed   linseed   linseed   linseed   linseed   linseed   linseed  
#> [22] linseed   soybean   soybean   soybean   soybean   soybean   soybean  
#> [29] soybean   soybean   soybean   soybean   soybean   soybean   soybean  
#> [36] soybean   sunflower sunflower sunflower sunflower sunflower sunflower
#> [43] sunflower sunflower sunflower sunflower sunflower sunflower meatmeal 
#> [50] meatmeal  meatmeal  meatmeal  meatmeal  meatmeal  meatmeal  meatmeal 
#> [57] meatmeal  meatmeal  meatmeal  casein    casein    casein    casein   
#> [64] casein    casein    casein    casein    casein    casein    casein   
#> [71] casein   
#> Levels: casein horsebean linseed meatmeal soybean sunflower
chickwts["feed"]
#>         feed
#> 1  horsebean
#> 2  horsebean
#> 3  horsebean
#> 4  horsebean
#> 5  horsebean
#> 6  horsebean
#> 7  horsebean
#> 8  horsebean
#> 9  horsebean
#> 10 horsebean
#> 11   linseed
#> 12   linseed
#> 13   linseed
#> 14   linseed
#> 15   linseed
#> 16   linseed
#> 17   linseed
#> 18   linseed
#> 19   linseed
#> 20   linseed
#> 21   linseed
#> 22   linseed
#> 23   soybean
#> 24   soybean
#> 25   soybean
#> 26   soybean
#> 27   soybean
#> 28   soybean
#> 29   soybean
#> 30   soybean
#> 31   soybean
#> 32   soybean
#> 33   soybean
#> 34   soybean
#> 35   soybean
#> 36   soybean
#> 37 sunflower
#> 38 sunflower
#> 39 sunflower
#> 40 sunflower
#> 41 sunflower
#> 42 sunflower
#> 43 sunflower
#> 44 sunflower
#> 45 sunflower
#> 46 sunflower
#> 47 sunflower
#> 48 sunflower
#> 49  meatmeal
#> 50  meatmeal
#> 51  meatmeal
#> 52  meatmeal
#> 53  meatmeal
#> 54  meatmeal
#> 55  meatmeal
#> 56  meatmeal
#> 57  meatmeal
#> 58  meatmeal
#> 59  meatmeal
#> 60    casein
#> 61    casein
#> 62    casein
#> 63    casein
#> 64    casein
#> 65    casein
#> 66    casein
#> 67    casein
#> 68    casein
#> 69    casein
#> 70    casein
#> 71    casein

chickwts[,2]

此為 chickwts 第二行(column)的值。

chickwts[“feed”]

此為 chickwts feed 這一行的資料。

Exercise 6

What happens when the following command is entered?

help(ls(“package:MASS”)[92])

Use the observation to find out how many items there are in the package MASS.

help(ls(“package:MASS”)[92])

It shows:

menarche {MASS}

Age of Menarche in Warsaw

This data frame contains the following columns:

Age Average age of the group. (The groups are reasonably age homogeneous.)

Total Total number of children in the group.

Menarche Number who have reached menarche.

ls(“package:MASS”)

The result in R was

[1] “abbey” “accdeaths” “addterm”
[4] “Aids2” “Animals” “anorexia”
[7] “area” “as.fractions” “bacteria”
[10] “bandwidth.nrd” “bcv” “beav1”
[13] “beav2” “biopsy” “birthwt”
[16] “Boston” “boxcox” “cabbages”
[19] “caith” “Cars93” “cats”
[22] “cement” “chem” “con2tr”
[25] “contr.sdif” “coop” “corresp”
[28] “cov.mcd” “cov.mve” “cov.rob”
[31] “cov.trob” “cpus” “crabs”
[34] “Cushings” “DDT” “deaths”
[37] “denumerate” “dose.p” “drivers”
[40] “dropterm” “eagles” “enlist”
[43] “epil” “eqscplot” “farms”
[46] “fbeta” “fgl” “fitdistr”
[49] “forbes” “fractions” “frequency.polygon” [52] “GAGurine” “galaxies” “gamma.dispersion” [55] “gamma.shape” “gehan” “genotype”
[58] “geyser” “gilgais” “ginv”
[61] “glm.convert” “glm.nb” “glmmPQL”
[64] “hills” “hist.FD” “hist.scott”
[67] “housing” “huber” “hubers”
[70] “immer” “Insurance” “is.fractions”
[73] “isoMDS” “kde2d” “lda”
[76] “ldahist” “leuk” “lm.gls”
[79] “lm.ridge” “lmsreg” “lmwork”
[82] “loglm” “loglm1” “logtrans”
[85] “lqs” “lqs.formula” “ltsreg”
[88] “mammals” “mca” “mcycle”
[91] “Melanoma” “menarche” “michelson”
[94] “minn38” “motors” “muscle”
[97] “mvrnorm” “nclass.freq” “neg.bin”
[100] “negative.binomial” “negexp.SSival” “newcomb”
[103] “nlschools” “npk” “npr1”
[106] “Null” “oats” “OME”
[109] “painters” “parcoord” “petrol”
[112] “phones” “Pima.te” “Pima.tr”
[115] “Pima.tr2” “polr” “psi.bisquare”
[118] “psi.hampel” “psi.huber” “qda”
[121] “quine” “Rabbit” “rational”
[124] “renumerate” “rlm” “rms.curv”
[127] “rnegbin” “road” “rotifer”
[130] “Rubber” “sammon” “select”
[133] “Shepard” “ships” “shoes”
[136] “shrimp” “shuttle” “Sitka”
[139] “Sitka89” “Skye” “snails”
[142] “SP500” “stdres” “steam”
[145] “stepAIC” “stormer” “studres”
[148] “survey” “synth.te” “synth.tr”
[151] “theta.md” “theta.ml” “theta.mm”
[154] “topo” “Traffic” “truehist”
[157] “ucv” “UScereal” “UScrime”
[160] “VA” “waders” “whiteside”
[163] “width.SJ” “write.matrix” “wtloss”

There are 165 items in the package MASS.