R fundamentals: In-class Exercise 3

2020-Spring [Data Management] Instructor: SHEU, Ching-Fan

CHIU, Ming-Tzu

2020-03-29

Use help to examine the coding scheme for the mother’s race variable in the birthwt{MASS} dataset. The MASS comes with the base R installation but is not automatically loaded when R is invoked.

  1. How many black mothers are there in this data frame?
  2. What does the following R command do?

c(“White”, “Black”, “Other”)[birthwt$race]

library(MASS)
MASS::birthwt
#>     low age lwt race smoke ptl ht ui ftv  bwt
#> 85    0  19 182    2     0   0  0  1   0 2523
#> 86    0  33 155    3     0   0  0  0   3 2551
#> 87    0  20 105    1     1   0  0  0   1 2557
#> 88    0  21 108    1     1   0  0  1   2 2594
#> 89    0  18 107    1     1   0  0  1   0 2600
#> 91    0  21 124    3     0   0  0  0   0 2622
#> 92    0  22 118    1     0   0  0  0   1 2637
#> 93    0  17 103    3     0   0  0  0   1 2637
#> 94    0  29 123    1     1   0  0  0   1 2663
#> 95    0  26 113    1     1   0  0  0   0 2665
#> 96    0  19  95    3     0   0  0  0   0 2722
#> 97    0  19 150    3     0   0  0  0   1 2733
#> 98    0  22  95    3     0   0  1  0   0 2751
#> 99    0  30 107    3     0   1  0  1   2 2750
#> 100   0  18 100    1     1   0  0  0   0 2769
#> 101   0  18 100    1     1   0  0  0   0 2769
#> 102   0  15  98    2     0   0  0  0   0 2778
#> 103   0  25 118    1     1   0  0  0   3 2782
#> 104   0  20 120    3     0   0  0  1   0 2807
#> 105   0  28 120    1     1   0  0  0   1 2821
#> 106   0  32 121    3     0   0  0  0   2 2835
#> 107   0  31 100    1     0   0  0  1   3 2835
#> 108   0  36 202    1     0   0  0  0   1 2836
#> 109   0  28 120    3     0   0  0  0   0 2863
#> 111   0  25 120    3     0   0  0  1   2 2877
#> 112   0  28 167    1     0   0  0  0   0 2877
#> 113   0  17 122    1     1   0  0  0   0 2906
#> 114   0  29 150    1     0   0  0  0   2 2920
#> 115   0  26 168    2     1   0  0  0   0 2920
#> 116   0  17 113    2     0   0  0  0   1 2920
#> 117   0  17 113    2     0   0  0  0   1 2920
#> 118   0  24  90    1     1   1  0  0   1 2948
#> 119   0  35 121    2     1   1  0  0   1 2948
#> 120   0  25 155    1     0   0  0  0   1 2977
#> 121   0  25 125    2     0   0  0  0   0 2977
#> 123   0  29 140    1     1   0  0  0   2 2977
#> 124   0  19 138    1     1   0  0  0   2 2977
#> 125   0  27 124    1     1   0  0  0   0 2922
#> 126   0  31 215    1     1   0  0  0   2 3005
#> 127   0  33 109    1     1   0  0  0   1 3033
#> 128   0  21 185    2     1   0  0  0   2 3042
#> 129   0  19 189    1     0   0  0  0   2 3062
#> 130   0  23 130    2     0   0  0  0   1 3062
#> 131   0  21 160    1     0   0  0  0   0 3062
#> 132   0  18  90    1     1   0  0  1   0 3062
#> 133   0  18  90    1     1   0  0  1   0 3062
#> 134   0  32 132    1     0   0  0  0   4 3080
#> 135   0  19 132    3     0   0  0  0   0 3090
#> 136   0  24 115    1     0   0  0  0   2 3090
#> 137   0  22  85    3     1   0  0  0   0 3090
#> 138   0  22 120    1     0   0  1  0   1 3100
#> 139   0  23 128    3     0   0  0  0   0 3104
#> 140   0  22 130    1     1   0  0  0   0 3132
#> 141   0  30  95    1     1   0  0  0   2 3147
#> 142   0  19 115    3     0   0  0  0   0 3175
#> 143   0  16 110    3     0   0  0  0   0 3175
#> 144   0  21 110    3     1   0  0  1   0 3203
#> 145   0  30 153    3     0   0  0  0   0 3203
#> 146   0  20 103    3     0   0  0  0   0 3203
#> 147   0  17 119    3     0   0  0  0   0 3225
#> 148   0  17 119    3     0   0  0  0   0 3225
#> 149   0  23 119    3     0   0  0  0   2 3232
#> 150   0  24 110    3     0   0  0  0   0 3232
#> 151   0  28 140    1     0   0  0  0   0 3234
#> 154   0  26 133    3     1   2  0  0   0 3260
#> 155   0  20 169    3     0   1  0  1   1 3274
#> 156   0  24 115    3     0   0  0  0   2 3274
#> 159   0  28 250    3     1   0  0  0   6 3303
#> 160   0  20 141    1     0   2  0  1   1 3317
#> 161   0  22 158    2     0   1  0  0   2 3317
#> 162   0  22 112    1     1   2  0  0   0 3317
#> 163   0  31 150    3     1   0  0  0   2 3321
#> 164   0  23 115    3     1   0  0  0   1 3331
#> 166   0  16 112    2     0   0  0  0   0 3374
#> 167   0  16 135    1     1   0  0  0   0 3374
#> 168   0  18 229    2     0   0  0  0   0 3402
#> 169   0  25 140    1     0   0  0  0   1 3416
#> 170   0  32 134    1     1   1  0  0   4 3430
#> 172   0  20 121    2     1   0  0  0   0 3444
#> 173   0  23 190    1     0   0  0  0   0 3459
#> 174   0  22 131    1     0   0  0  0   1 3460
#> 175   0  32 170    1     0   0  0  0   0 3473
#> 176   0  30 110    3     0   0  0  0   0 3544
#> 177   0  20 127    3     0   0  0  0   0 3487
#> 179   0  23 123    3     0   0  0  0   0 3544
#> 180   0  17 120    3     1   0  0  0   0 3572
#> 181   0  19 105    3     0   0  0  0   0 3572
#> 182   0  23 130    1     0   0  0  0   0 3586
#> 183   0  36 175    1     0   0  0  0   0 3600
#> 184   0  22 125    1     0   0  0  0   1 3614
#> 185   0  24 133    1     0   0  0  0   0 3614
#> 186   0  21 134    3     0   0  0  0   2 3629
#> 187   0  19 235    1     1   0  1  0   0 3629
#> 188   0  25  95    1     1   3  0  1   0 3637
#> 189   0  16 135    1     1   0  0  0   0 3643
#> 190   0  29 135    1     0   0  0  0   1 3651
#> 191   0  29 154    1     0   0  0  0   1 3651
#> 192   0  19 147    1     1   0  0  0   0 3651
#> 193   0  19 147    1     1   0  0  0   0 3651
#> 195   0  30 137    1     0   0  0  0   1 3699
#> 196   0  24 110    1     0   0  0  0   1 3728
#> 197   0  19 184    1     1   0  1  0   0 3756
#> 199   0  24 110    3     0   1  0  0   0 3770
#> 200   0  23 110    1     0   0  0  0   1 3770
#> 201   0  20 120    3     0   0  0  0   0 3770
#> 202   0  25 241    2     0   0  1  0   0 3790
#> 203   0  30 112    1     0   0  0  0   1 3799
#> 204   0  22 169    1     0   0  0  0   0 3827
#> 205   0  18 120    1     1   0  0  0   2 3856
#> 206   0  16 170    2     0   0  0  0   4 3860
#> 207   0  32 186    1     0   0  0  0   2 3860
#> 208   0  18 120    3     0   0  0  0   1 3884
#> 209   0  29 130    1     1   0  0  0   2 3884
#> 210   0  33 117    1     0   0  0  1   1 3912
#> 211   0  20 170    1     1   0  0  0   0 3940
#> 212   0  28 134    3     0   0  0  0   1 3941
#> 213   0  14 135    1     0   0  0  0   0 3941
#> 214   0  28 130    3     0   0  0  0   0 3969
#> 215   0  25 120    1     0   0  0  0   2 3983
#> 216   0  16  95    3     0   0  0  0   1 3997
#> 217   0  20 158    1     0   0  0  0   1 3997
#> 218   0  26 160    3     0   0  0  0   0 4054
#> 219   0  21 115    1     0   0  0  0   1 4054
#> 220   0  22 129    1     0   0  0  0   0 4111
#> 221   0  25 130    1     0   0  0  0   2 4153
#> 222   0  31 120    1     0   0  0  0   2 4167
#> 223   0  35 170    1     0   1  0  0   1 4174
#> 224   0  19 120    1     1   0  0  0   0 4238
#> 225   0  24 116    1     0   0  0  0   1 4593
#> 226   0  45 123    1     0   0  0  0   1 4990
#> 4     1  28 120    3     1   1  0  1   0  709
#> 10    1  29 130    1     0   0  0  1   2 1021
#> 11    1  34 187    2     1   0  1  0   0 1135
#> 13    1  25 105    3     0   1  1  0   0 1330
#> 15    1  25  85    3     0   0  0  1   0 1474
#> 16    1  27 150    3     0   0  0  0   0 1588
#> 17    1  23  97    3     0   0  0  1   1 1588
#> 18    1  24 128    2     0   1  0  0   1 1701
#> 19    1  24 132    3     0   0  1  0   0 1729
#> 20    1  21 165    1     1   0  1  0   1 1790
#> 22    1  32 105    1     1   0  0  0   0 1818
#> 23    1  19  91    1     1   2  0  1   0 1885
#> 24    1  25 115    3     0   0  0  0   0 1893
#> 25    1  16 130    3     0   0  0  0   1 1899
#> 26    1  25  92    1     1   0  0  0   0 1928
#> 27    1  20 150    1     1   0  0  0   2 1928
#> 28    1  21 200    2     0   0  0  1   2 1928
#> 29    1  24 155    1     1   1  0  0   0 1936
#> 30    1  21 103    3     0   0  0  0   0 1970
#> 31    1  20 125    3     0   0  0  1   0 2055
#> 32    1  25  89    3     0   2  0  0   1 2055
#> 33    1  19 102    1     0   0  0  0   2 2082
#> 34    1  19 112    1     1   0  0  1   0 2084
#> 35    1  26 117    1     1   1  0  0   0 2084
#> 36    1  24 138    1     0   0  0  0   0 2100
#> 37    1  17 130    3     1   1  0  1   0 2125
#> 40    1  20 120    2     1   0  0  0   3 2126
#> 42    1  22 130    1     1   1  0  1   1 2187
#> 43    1  27 130    2     0   0  0  1   0 2187
#> 44    1  20  80    3     1   0  0  1   0 2211
#> 45    1  17 110    1     1   0  0  0   0 2225
#> 46    1  25 105    3     0   1  0  0   1 2240
#> 47    1  20 109    3     0   0  0  0   0 2240
#> 49    1  18 148    3     0   0  0  0   0 2282
#> 50    1  18 110    2     1   1  0  0   0 2296
#> 51    1  20 121    1     1   1  0  1   0 2296
#> 52    1  21 100    3     0   1  0  0   4 2301
#> 54    1  26  96    3     0   0  0  0   0 2325
#> 56    1  31 102    1     1   1  0  0   1 2353
#> 57    1  15 110    1     0   0  0  0   0 2353
#> 59    1  23 187    2     1   0  0  0   1 2367
#> 60    1  20 122    2     1   0  0  0   0 2381
#> 61    1  24 105    2     1   0  0  0   0 2381
#> 62    1  15 115    3     0   0  0  1   0 2381
#> 63    1  23 120    3     0   0  0  0   0 2410
#> 65    1  30 142    1     1   1  0  0   0 2410
#> 67    1  22 130    1     1   0  0  0   1 2410
#> 68    1  17 120    1     1   0  0  0   3 2414
#> 69    1  23 110    1     1   1  0  0   0 2424
#> 71    1  17 120    2     0   0  0  0   2 2438
#> 75    1  26 154    3     0   1  1  0   1 2442
#> 76    1  20 105    3     0   0  0  0   3 2450
#> 77    1  26 190    1     1   0  0  0   0 2466
#> 78    1  14 101    3     1   1  0  0   0 2466
#> 79    1  28  95    1     1   0  0  0   2 2466
#> 81    1  14 100    3     0   0  0  0   2 2495
#> 82    1  23  94    3     1   0  0  0   0 2495
#> 83    1  17 142    2     0   0  1  0   0 2495
#> 84    1  21 130    1     1   0  1  0   3 2495

Use help to the dataset

help("birthwt")
#> starting httpd help server ... done

It shows that:

birthwt{MASS}

Risk Factors Associated with Low Infant Birth Weight

This data frame contains the following columns:

low indicator of birth weight less than 2.5 kg.

age mother’s age in years.

lwt mother’s weight in pounds at last menstrual period.

race mother’s race (1 = white, 2 = black, 3 = other).

smoke smoking status during pregnancy.

ptl number of previous premature labours.

ht history of hypertension.

ui presence of uterine irritability.

ftv number of physician visits during the first trimester.

bwt birth weight in grams.

1. How many black mothers are there in this data frame?

str(birthwt)
#> 'data.frame':    189 obs. of  10 variables:
#>  $ low  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ age  : int  19 33 20 21 18 21 22 17 29 26 ...
#>  $ lwt  : int  182 155 105 108 107 124 118 103 123 113 ...
#>  $ race : int  2 3 1 1 1 3 1 3 1 1 ...
#>  $ smoke: int  0 0 1 1 1 0 0 0 1 1 ...
#>  $ ptl  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ ht   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ ui   : int  1 0 0 1 1 0 0 0 0 0 ...
#>  $ ftv  : int  0 3 1 2 0 0 1 1 1 0 ...
#>  $ bwt  : int  2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
black <- birthwt[birthwt$race == 2, ]
black
#>     low age lwt race smoke ptl ht ui ftv  bwt
#> 85    0  19 182    2     0   0  0  1   0 2523
#> 102   0  15  98    2     0   0  0  0   0 2778
#> 115   0  26 168    2     1   0  0  0   0 2920
#> 116   0  17 113    2     0   0  0  0   1 2920
#> 117   0  17 113    2     0   0  0  0   1 2920
#> 119   0  35 121    2     1   1  0  0   1 2948
#> 121   0  25 125    2     0   0  0  0   0 2977
#> 128   0  21 185    2     1   0  0  0   2 3042
#> 130   0  23 130    2     0   0  0  0   1 3062
#> 161   0  22 158    2     0   1  0  0   2 3317
#> 166   0  16 112    2     0   0  0  0   0 3374
#> 168   0  18 229    2     0   0  0  0   0 3402
#> 172   0  20 121    2     1   0  0  0   0 3444
#> 202   0  25 241    2     0   0  1  0   0 3790
#> 206   0  16 170    2     0   0  0  0   4 3860
#> 11    1  34 187    2     1   0  1  0   0 1135
#> 18    1  24 128    2     0   1  0  0   1 1701
#> 28    1  21 200    2     0   0  0  1   2 1928
#> 40    1  20 120    2     1   0  0  0   3 2126
#> 43    1  27 130    2     0   0  0  1   0 2187
#> 50    1  18 110    2     1   1  0  0   0 2296
#> 59    1  23 187    2     1   0  0  0   1 2367
#> 60    1  20 122    2     1   0  0  0   0 2381
#> 61    1  24 105    2     1   0  0  0   0 2381
#> 71    1  17 120    2     0   0  0  0   2 2438
#> 83    1  17 142    2     0   0  1  0   0 2495
length(black)
#> [1] 10

There are 10 black mothers in this data frame.

2. What does the following R command do?

c(“White”, “Black”, “Other”)[birthwt$race]

c("White", "Black", "Other")[birthwt$race]
#>   [1] "Black" "Other" "White" "White" "White" "Other" "White" "Other" "White"
#>  [10] "White" "Other" "Other" "Other" "Other" "White" "White" "Black" "White"
#>  [19] "Other" "White" "Other" "White" "White" "Other" "Other" "White" "White"
#>  [28] "White" "Black" "Black" "Black" "White" "Black" "White" "Black" "White"
#>  [37] "White" "White" "White" "White" "Black" "White" "Black" "White" "White"
#>  [46] "White" "White" "Other" "White" "Other" "White" "Other" "White" "White"
#>  [55] "Other" "Other" "Other" "Other" "Other" "Other" "Other" "Other" "Other"
#>  [64] "White" "Other" "Other" "Other" "Other" "White" "Black" "White" "Other"
#>  [73] "Other" "Black" "White" "Black" "White" "White" "Black" "White" "White"
#>  [82] "White" "Other" "Other" "Other" "Other" "Other" "White" "White" "White"
#>  [91] "White" "Other" "White" "White" "White" "White" "White" "White" "White"
#> [100] "White" "White" "White" "Other" "White" "Other" "Black" "White" "White"
#> [109] "White" "Black" "White" "Other" "White" "White" "White" "Other" "White"
#> [118] "Other" "White" "Other" "White" "Other" "White" "White" "White" "White"
#> [127] "White" "White" "White" "White" "Other" "White" "Black" "Other" "Other"
#> [136] "Other" "Other" "Black" "Other" "White" "White" "White" "Other" "Other"
#> [145] "White" "White" "Black" "White" "Other" "Other" "Other" "White" "White"
#> [154] "White" "White" "Other" "Black" "White" "Black" "Other" "White" "Other"
#> [163] "Other" "Other" "Black" "White" "Other" "Other" "White" "White" "Black"
#> [172] "Black" "Black" "Other" "Other" "White" "White" "White" "White" "Black"
#> [181] "Other" "Other" "White" "Other" "White" "Other" "Other" "Black" "White"

This R command is to rename the modifiers of “race” variable. 1 = White 2 = Black 3 = Other