download.file("http://www.openintro.org/stat/data/nc.RData", destfile = "nc.RData")
load("nc.RData")
Births recorded in the state of North Carolina. There are 1000 observations/samples or cases.
summary(nc)
## fage mage mature weeks premie
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00 full term:846
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00 premie :152
## Median :30.00 Median :27 Median :39.00 NA's : 2
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## visits marital gained weight
## Min. : 0.0 married :386 Min. : 0.00 Min. : 1.000
## 1st Qu.:10.0 not married:613 1st Qu.:20.00 1st Qu.: 6.380
## Median :12.0 NA's : 1 Median :30.00 Median : 7.310
## Mean :12.1 Mean :30.33 Mean : 7.101
## 3rd Qu.:15.0 3rd Qu.:38.00 3rd Qu.: 8.060
## Max. :30.0 Max. :85.00 Max. :11.750
## NA's :9 NA's :27
## lowbirthweight gender habit whitemom
## low :111 female:503 nonsmoker:873 not white:284
## not low:889 male :497 smoker :126 white :714
## NA's : 1 NA's : 2
##
##
##
##
plot(nc$habit, nc$weight, main = " Mother smoking habits VS Newborn weight gain")
by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## ------------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## ------------------------------------------------------------
## nc$habit: smoker
## [1] 126
Null Hypothesis: There is no difference in mean birth weight for mothers in the smoking and non-smoking groups. Alternative Hypothesis: There is a difference in mean birth weight for mothers in the smoking and non- smoking groups.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical", conflevel = 0.90)
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
inference(y = nc$gained, x = nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 1.286
## Test statistic: Z = -1.376
## p-value = 0.1686
by(nc$mage, nc$mature, range)
## nc$mature: mature mom
## [1] 35 50
## ------------------------------------------------------------
## nc$mature: younger mom
## [1] 13 34
I split the mother’s age variable into the maturity groups, then I took the range of each of those groups, using range.
Question: Does the mothers habit affect if the baby will be born prematurely (length of pregnancy)?
Null Hypothesis: The mothers habit does not affect the length of the pregnancy.
Alternative Hypothesis: The mothers habits does affect the length of the pregnancy.
inference(nc$weeks, nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 872, mean_nonsmoker = 38.3188, sd_nonsmoker = 2.9936
## n_smoker = 126, mean_smoker = 38.4444, sd_smoker = 2.4676
## Observed difference between means (nonsmoker-smoker) = -0.1256
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.242
## Test statistic: Z = -0.519
## p-value = 0.6038
Since the p-value is (.6038) >.10 we fail to reject the null. Meaning that there is no affect to length of pregnancy between smokers and non smokers.