#Use X1 -X3 to represent the stock price delta divided by sqrt of days=(365-1).
X1 <- (100-100)/sqrt(364)
X2 <- (110-100)/sqrt(364)
X3 <- (120-100)/sqrt(364)
#The exercise provides the mean and sd:
mean <- 0
sd <- sqrt(1/4)## [1] 0.5
## [1] 0.1472537
## [1] 0.01801584
\(P(X=k) = {n \choose k} p^k q^{n-k}\), where \(q=1-p\).
\(M_X(t)=(q+pe^t)^n\).
\(M'_X(t) = n(q+pe^t)^{n-1}pe^t\).
\[ \begin{split} E(X)=M'_X(0) &= n(q+pe^0)^{n-1}pe^0\\ &= n(q+p)^{n-1}p\\ &= np(1-p+p)^{n-1}\\ &= np1^{n-1}\\ &=np \end{split} \]
\(M''_X(t) = n(n-1)(q+pe^t)^{n-2}p^2 e^{2t}+n(q+pe^t)^{n-1}pe^t\).
\(V(X)=E(X^2)-E(X)^2\):
\[ \begin{split} E(X^2)=M''_X(0) &= n(n-1)(q+pe^0)^{n-2}p^2 e^0+n(q+pe^0)^{n-1}pe^0\\ &= n(n-1)(1-p+p)^{n-2}p^2+n(1-p+p)^{n-1}p\\ &= n(n-1)p^2+np \end{split} \]
\[ \begin{split} V(X) &= n(n-1)p^2+np-n^2p^2 \\ &= np((n-1)p+1-np) \\ &= np(np-p+1-np) \\ &= np(1-p) \\ &= npq \end{split} \]
\(f(x)=\lambda e^{-\lambda x}\)
\(M_X(t)=\frac{\lambda}{\lambda-t}, t<\lambda\).
\(M'_X(t) = \frac{\lambda}{(\lambda-t)^2}\)
\(M''_X(t) = \frac{2\lambda}{(\lambda-t)^3}\).
\[ \begin{split} E(X)=M'_X(0) &= \frac{\lambda}{(\lambda-0)^2} \\ &= \frac{\lambda}{\lambda^2}\\ &= \frac{1}{\lambda} \end{split} \]
\[ \begin{split} V(X) = E(X^2)-E(X)^2 &= M''_X(0)-M'_X(0)^2 \\ &=\frac{2\lambda}{(\lambda-0)^3} - \frac{1}{\lambda^2}\\ &=\frac{2\lambda}{\lambda^3} - \frac{1}{\lambda^2}\\ &=\frac{2}{\lambda^2} - \frac{1}{\lambda^2}\\ &=\frac{1}{\lambda^2} \end{split} \]