dta <- read.table("/Users/Tjlee/Desktop/weather/usBirths2015.txt", header = T)
dta
## birth month
## 1 325955 January
## 2 298058 February
## 3 328923 March
## 4 320832 April
## 5 327917 May
## 6 330541 June
## 7 353415 July
## 8 351791 August
## 9 347516 September
## 10 339007 October
## 11 318820 November
## 12 335722 December
str(dta)
## 'data.frame': 12 obs. of 2 variables:
## $ birth: int 325955 298058 328923 320832 327917 330541 353415 351791 347516 339007 ...
## $ month: Factor w/ 12 levels "April","August",..: 5 4 8 1 9 7 6 2 12 11 ...
dta$month <- c("spring", "spring", "spring", "summer", "summer", "summer", "fall", "fall", "fall", "winter", "winter", "winter")
dta
## birth month
## 1 325955 spring
## 2 298058 spring
## 3 328923 spring
## 4 320832 summer
## 5 327917 summer
## 6 330541 summer
## 7 353415 fall
## 8 351791 fall
## 9 347516 fall
## 10 339007 winter
## 11 318820 winter
## 12 335722 winter
season <- aggregate(birth ~ month, sum, data=dta)
season
## month birth
## 1 fall 1052722
## 2 spring 952936
## 3 summer 979290
## 4 winter 993549