1. SU DUNG R CHO CAC PHEP TINH MA TRAN Ma tran (matrix), noi don gian, gom co dong (row) va cot (column). Khi viet A[m,n] chung ta hieu rang ma tran A co m dong va n cot. Chung ta muon tao 1 ma tran vuong A gom 3 dong va 3 cot, voi cac phan tu (element) 1,2,3,4,5,6,7,8,9, chung ta viet:
y=c(1:9)
A=matrix(y,nrow=3)
A
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9

Nhung neu chung ta lenh ben duoi thi so thu tu se theo dong:

A=matrix(y, nrow=3, byrow=TRUE)
A
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6
## [3,]    7    8    9

Day la 1 ma tran chuyen vi (transposed matrix). Mot cach khac de tao 1 ma tran hoan vi la dung t().

y=(1:9)
A=matrix(y,nrow=3)
A
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
B=t(A)
B
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6
## [3,]    7    8    9

Ma tran vo huong (scalar matrix) la mot ma tran vuong (tuc so dong bang so cot), va tat ca cac phan tu ngoai duong cheo (off-diagonal elements) la 0, va phan tu duong cheo la 1.

#Tao ra 1 ma tran 3x3 voi tat ca cac phan tu la O. 
A=matrix(0,3,3)
# Cho cac phan tu duong cheo bang 1
diag(A) = 1
diag(A)
## [1] 1 1 1
A
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1

IV.1) Chiet phan tu tu ma tran

y=c(1:9)
A=matrix(y,nrow=3)
A
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
# Cot 1 cua ma tran A
A[,1]
## [1] 1 2 3
# Cot 3 cua ma tran A
A[,3]
## [1] 7 8 9
# Dong 1 cua ma tran A
A[1,]
## [1] 1 4 7
# Dong 2, cot 3 cua ma tran A
A[2,3]
## [1] 8
# Tat ca cac dong cua ma tran A, ngoai tru dong 2
A[-2,]
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    3    6    9
# Tat ca cac cot cua ma tran A, ngoai tru cot 1
A[,-1]
##      [,1] [,2]
## [1,]    4    7
## [2,]    5    8
## [3,]    6    9
#Xem phan tu nao cao hon 3
A>3
##       [,1] [,2] [,3]
## [1,] FALSE TRUE TRUE
## [2,] FALSE TRUE TRUE
## [3,] FALSE TRUE TRUE

IV.2) TINH TOAN VOI MA TRAN * Cong va tru 2 ma tran

A=matrix(1:12., 3,4)
B=matrix(-1:-12, 3,4)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    4    7   10
## [2,]    2    5    8   11
## [3,]    3    6    9   12
B
##      [,1] [,2] [,3] [,4]
## [1,]   -1   -4   -7  -10
## [2,]   -2   -5   -8  -11
## [3,]   -3   -6   -9  -12
C=A+B
D=A-B
C
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## [2,]    0    0    0    0
## [3,]    0    0    0    0
D
##      [,1] [,2] [,3] [,4]
## [1,]    2    8   14   20
## [2,]    4   10   16   22
## [3,]    6   12   18   24
A=matrix(1:9, 3, 3)
B=t(A)
A
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
B
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6
## [3,]    7    8    9

Chung ta tinh AxB bang lenh "%*%"

AB =A%*%B
AB
##      [,1] [,2] [,3]
## [1,]   66   78   90
## [2,]   78   93  108
## [3,]   90  108  126

Hay tinh BxA

BA=B%*%A
BA
##      [,1] [,2] [,3]
## [1,]   14   32   50
## [2,]   32   77  122
## [3,]   50  122  194

*Nghich dao ma tran va giai he phuong trinh

A=matrix(c(3,1,4,6), nrow=2)
Y=matrix(c(4,2), nrow=2)
X=solve(A)%*%Y
X
##           [,1]
## [1,] 1.1428571
## [2,] 0.1428571
#Chung ta co the kiem tra 
3*X[1,1]+4*X[2,1]
## [1] 4

Tri so eigen cung co the tinh toan bang function eigen nhu sau:

eigen(A)
## eigen() decomposition
## $values
## [1] 7 2
## 
## $vectors
##            [,1]       [,2]
## [1,] -0.7071068 -0.9701425
## [2,] -0.7071068  0.2425356
E=matrix((1:9),3,3)
E
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
det(E)
## [1] 0

Nhung ma tran F sau day thi co the dao nghich

F=matrix((1:9)^2, 3, 3)
F
##      [,1] [,2] [,3]
## [1,]    1   16   49
## [2,]    4   25   64
## [3,]    9   36   81
det(F)
## [1] -216

Va nghich dao cua ma tran F (F^-1) co the tinh bang function “solve()”

solve(F)
##           [,1]      [,2]       [,3]
## [1,]  1.291667 -2.166667  0.9305556
## [2,] -1.166667  1.666667 -0.6111111
## [3,]  0.375000 -0.500000  0.1805556

R co 1 package Matrix chuyen thiet ke cho tinh toan ma tran va TLTK di kem.