library(readr)
datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/practicas%20R/unidad%202/alumnos.deportes.2020.csv")
datos
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1   1       Ana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 2   2   Antonio    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 3   3   Aracely    F  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 4   4    Carmen    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 5   5   Eduardo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 6   6   Ernesto    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 7   7    Gabino    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 9   9    Javier    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 10 10  Jeorgina    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 12 12      Lalo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 13 13     Laura    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 15 15      Luis    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 16 16     Luisa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 19 19 Margarito    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 20 20     Maria    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 22 22     Oscar    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 26 26      Raul    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 27 27  Romualdo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 28 28   Rosario    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 29 29     Rubén    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 31 31    Sandra    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 32 32    Sandro    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 34 34      Yuri    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 35 35    Arturo    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 37 37   Arnulfo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 39 39    Carlos    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 40 40 Dagoberto    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 42 42     Dalia    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 47 47  Fernanda    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 48 48  Gabriela    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 49 49   Gabriel    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 53 53   Mikaela    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 55 55   Marcela    F  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 56 56   Orlando    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 59 59     Perla    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 61 61    Susana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 62 62     Sandy    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 64 64  Tiburcio    M  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 65 65    Teresa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE
n <- nrow(datos)
hombres <- subset(datos, sexo =='M')
mujeres <- subset(datos, sexo =='F')

hombres
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 2   2   Antonio    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 5   5   Eduardo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 6   6   Ernesto    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 7   7    Gabino    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 9   9    Javier    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 12 12      Lalo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 15 15      Luis    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 19 19 Margarito    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 22 22     Oscar    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 26 26      Raul    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 27 27  Romualdo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 29 29     Rubén    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 32 32    Sandro    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 35 35    Arturo    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 37 37   Arnulfo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 39 39    Carlos    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 40 40 Dagoberto    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 49 49   Gabriel    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 56 56   Orlando    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 64 64  Tiburcio    M  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
mujeres
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1   1       Ana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 3   3   Aracely    F  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 4   4    Carmen    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 10 10  Jeorgina    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 13 13     Laura    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 16 16     Luisa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 20 20     Maria    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 28 28   Rosario    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 31 31    Sandra    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 34 34      Yuri    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 42 42     Dalia    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 47 47  Fernanda    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 48 48  Gabriela    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 53 53   Mikaela    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 55 55   Marcela    F  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 59 59     Perla    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 61 61    Susana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 62 62     Sandy    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 65 65    Teresa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE
table(datos$sexo)
## 
##  F  M 
## 33 34

#Porcentaje entre cuantos hombres y mujeres hay

round(prop.table(table(datos$sexo)),4)
## 
##      F      M 
## 0.4925 0.5075

#multiplicado por 100 para verlo en %

round(prop.table(table(datos$sexo)),4)*100
## 
##     F     M 
## 49.25 50.75

#Qué personas juegan cada deporte/frecuencia relativa, probabilidad de que al elegir un estudiante juegue tal deporte: #futbol

futbol <- subset(datos, futbol  == TRUE)

futbol
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 5   5   Eduardo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 26 26      Raul    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 27 27  Romualdo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 29 29     Rubén    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 34 34      Yuri    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 39 39    Carlos    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 42 42     Dalia    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 49 49   Gabriel    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 56 56   Orlando    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
table(datos$futbol)
## 
## FALSE  TRUE 
##    34    33
round(prop.table(table(datos$futbol)),4)
## 
##  FALSE   TRUE 
## 0.5075 0.4925
round(prop.table(table(datos$futbol)),4)*100
## 
## FALSE  TRUE 
## 50.75 49.25

#basquetbol

basquetbol <- subset(datos, basquetbol  == TRUE)

basquetbol
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 4   4    Carmen    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 6   6   Ernesto    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 7   7    Gabino    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 9   9    Javier    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 10 10  Jeorgina    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 13 13     Laura    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 20 20     Maria    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 53 53   Mikaela    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 62 62     Sandy    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE
table(datos$basquetbol)
## 
## FALSE  TRUE 
##    45    22
round(prop.table(table(datos$basquetbol)),4)
## 
##  FALSE   TRUE 
## 0.6716 0.3284
round(prop.table(table(datos$basquetbol)),4)*100
## 
## FALSE  TRUE 
## 67.16 32.84

#voleybol

voleybol <- subset(datos, voleybol  == TRUE)

voleybol
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 12 12      Lalo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 15 15      Luis    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 37 37   Arnulfo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 40 40 Dagoberto    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE
table(datos$voleybol)
## 
## FALSE  TRUE 
##    53    14
round(prop.table(table(datos$voleybol)),4)
## 
## FALSE  TRUE 
## 0.791 0.209
round(prop.table(table(datos$voleybol)),4)*100
## 
## FALSE  TRUE 
##  79.1  20.9

#atletismo

atletismo <- subset(datos, atletismo  == TRUE)

atletismo
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 55 55   Marcela    F  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 64 64  Tiburcio    M  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE
table(datos$atletismo)
## 
## FALSE  TRUE 
##    55    12
round(prop.table(table(datos$atletismo)),4)
## 
##  FALSE   TRUE 
## 0.8209 0.1791
round(prop.table(table(datos$atletismo)),4)*100
## 
## FALSE  TRUE 
## 82.09 17.91

#ajedrez

ajedrez <- subset(datos, ajedrez  == TRUE)

ajedrez
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE
table(datos$ajedrez)
## 
## FALSE  TRUE 
##    62     5
round(prop.table(table(datos$ajedrez)),4)
## 
##  FALSE   TRUE 
## 0.9254 0.0746
round(prop.table(table(datos$ajedrez)),4)*100
## 
## FALSE  TRUE 
## 92.54  7.46

#Union de conjuntos/ probabilidad de elegir a una persona y que esté en más de 1 deporte a la vez #futbol o basquetbol

prob.futbol <- prop.table(table(datos$futbol))
prob.basquetbol <- prop.table(table(datos$basquetbol))

prob.futbol <- prob.futbol[2] 
prob.basquetbol <- prob.basquetbol[2]

prob.futbol
##      TRUE 
## 0.4925373
prob.basquetbol
##      TRUE 
## 0.3283582

#tenis o ajedrez

prob.tenis <- prop.table(table(datos$tenis))
prob.ajedrez <- prop.table(table(datos$ajedrez))

prob.tenis <- prob.tenis[2] 
prob.ajedrez <- prob.ajedrez[2]

prob.tenis
##       TRUE 
## 0.05970149
prob.ajedrez
##       TRUE 
## 0.07462687

#atletismo o voleybol

prob.atletismo <- prop.table(table(datos$atletismo))
prob.voleybol <- prop.table(table(datos$voleybal))

prob.atletismo <- prob.atletismo[2] 
prob.voleybol <- prob.voleybol[2]

prob.atletismo
##      TRUE 
## 0.1791045
prob.voleybol
## [1] NA

#voleybol o futbol

prob.futbol
##      TRUE 
## 0.4925373
prob.voleybol
## [1] NA

#basquetbol o voleybol

prob.basquetbol
##      TRUE 
## 0.3283582
prob.voleybol
## [1] NA

#mismas probabilidades pero con tablas cruzadas: #futbol o basquetbol

tabla.cruzada <- table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))

tabla.cruzada
##        basquetbol
## fútbol  FALSE TRUE
##   FALSE    22   12
##   TRUE     23   10

#tenis o ajedrez

tabla.cruzada <- table(datos$tenis, datos$ajedrez, dnn = c('tenis','ajedrez'))

tabla.cruzada
##        ajedrez
## tenis   FALSE TRUE
##   FALSE    58    5
##   TRUE      4    0

#atletismo o voleybol

tabla.cruzada <- table(datos$atletismo, datos$voleybol, dnn = c('atletismo','voleybol'))

tabla.cruzada
##          voleybol
## atletismo FALSE TRUE
##     FALSE    44   11
##     TRUE      9    3

#voleybol o futbol

tabla.cruzada <- table(datos$voleybol, datos$futbol, dnn = c('voleybol','futbol'))

tabla.cruzada
##         futbol
## voleybol FALSE TRUE
##    FALSE    27   26
##    TRUE      7    7

#basquetbol o voleybol

tabla.cruzada <- table(datos$basquetbol, datos$voleybol, dnn = c('basquetbol','voleybol'))

tabla.cruzada
##           voleybol
## basquetbol FALSE TRUE
##      FALSE    34   11
##      TRUE     19    3

##RESUMEN##

#En esta práctica se hacen diversos cálculos sobre la probabilidad de que pase un evento, esta probabilidad se hace sobre un archivo que contiene los datos de un grupo de alumnos que juegan ciertos deportes, algunos juegan más de un deporte a la vez. #Se sacan dichas probabilidades por frecuencia relativa primero, después se sacan con la ley de adición y finalmente se sacan por medio de tablas cruzadas. #Gracias a Rstudio hacer todos estos cálculos de probabilidad de forma rápida y eficiente.