library(readr)
library(tidyr)
library(lubridate)
library(jiebaR)
library(tm)
library(dplyr)
library(plotly)
library(scales)
library(wordcloud)
library(qdap)
library(stringr)
library(wordcloud2)
body <- read_csv("C:/Users/VivoBook/Desktop/study/text_mini/HW_1/body.csv")
re<-read_csv("C:/Users/VivoBook/Desktop/study/text_mini/HW_1/re.csv")
head(body)
## # A tibble: 6 x 10
## artTitle artDate artTime artUrl artPoster artCat commentNum push
## <chr> <date> <time> <chr> <chr> <chr> <dbl> <dbl>
## 1 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ 657 625
## 2 Re:[問卦]~ 2015-09-20 06:09:43 https~ ffaarr Gossi~ 88 72
## 3 Re:[問卦]~ 2015-10-21 04:00:09 https~ ffaarr Gossi~ 131 119
## 4 Re:[問卦]~ 2015-10-23 06:10:25 https~ ffaarr Gossi~ 260 244
## 5 Re:[問卦]~ 2015-10-28 07:40:11 https~ ffaarr Gossi~ 203 178
## 6 Re:[問卦]~ 2015-11-10 06:11:36 https~ ffaarr Gossi~ 231 210
## # ... with 2 more variables: boo <dbl>, sentence <chr>
head(re)
## # A tibble: 6 x 10
## artTitle artDate artTime artUrl artPoster artCat commentPoster
## <chr> <date> <time> <chr> <chr> <chr> <chr>
## 1 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ zold
## 2 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ KEKEKUO
## 3 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ dixieland999
## 4 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ a741085
## 5 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ TheDesire
## 6 Re:[問卦]~ 2015-09-08 20:33:51 https~ ffaarr Gossi~ kosuke
## # ... with 3 more variables: commentStatus <chr>, commentDate <dttm>,
## # commentContent <chr>
data<-as.data.frame(matrix(NA,nrow(body),3))
colnames(data)<-c("title","body","respon")
for(i in 1:nrow(body)){
tmp_title<-(body$artTitle)[i] #主文名稱
id<-which(re$artTitle==tmp_title) #與主文名稱相同的回覆
try(tmp_data<-re[id,], silent = T) #同主文回復整理
try(tmp_re_one<-paste2(tmp_data$commentContent, sep = " "), silent = T) #回復內容合併
body$sentence[i]<-str_replace_all(body$sentence[i],"[[:punct:]]","") #主文去標點
try(tmp_re_one<-str_replace_all(tmp_re_one,"[[:punct:]]",""), silent = T) #回復去標點
data[i,]<-c(tmp_title,body$sentence[i],tmp_re_one) #紀錄到新資料
}
jieba_tokenizer = worker(stop_word ="C:/Users/VivoBook/Desktop/study/text_mini/jiebar/stop_words2.txt")
set.seed(20200328)
(id<-sample(nrow(data),10))
## [1] 859 279 852 1152 677 222 1854 105 214 465
new_user_word(jieba_tokenizer,c("胖虎","小夫","大熊","銅鑼燒","哆啦a夢","靜香","卡通",
"高爾夫","再忘","有卦","多啦a夢"))
tf_body<-as.data.frame(table(segment(removeNumbers(tolower(data$body[1])), jieba_tokenizer)))
tf_re<-as.data.frame(table(segment(removeNumbers(tolower(data$re[1])), jieba_tokenizer)))
as.character(tf_body$Var1)->tf_body$Var1
as.character(tf_re$Var1)->tf_re$Var1
for(i in 2:nrow(body)){
tmp_text<-as.data.frame(table(segment(removeNumbers(tolower(data$body[i])), jieba_tokenizer)))
tmp_text$Var1%>%as.character->tmp_text$Var1
colnames(tmp_text)[2]<-paste(colnames(tmp_text)[2],i)
tf_body<-full_join(tf_body,tmp_text,by =c("Var1","Var1"))
tmp_text<-as.data.frame(table(segment(removeNumbers(tolower(data$respon[i])), jieba_tokenizer)))
tmp_text$Var1%>%as.character->tmp_text$Var1
colnames(tmp_text)<-c("Var1",paste("Freq",i))
tf_re<-full_join(tf_re,tmp_text,by =c("Var1","Var1"))
}
tf_data<-full_join(tf_body,tf_re,by =c("Var1","Var1"))
rownames(tf_data)<-tf_data$Var1
tf_data[is.na(tf_data)] <- 0
tf_body2<-tf_data[,2:2078]
tf_re2<-tf_data[,2079:4155]
tmp_body<-apply(tf_body2,1, sum)
id<-which(tmp_body>1)
tf_body2<-tf_body2[id,]
tf_re2<-tf_re2[id,]
rownames(tf_re2)
tf_re2<-t(tf_re2)
tf_body2<-t(tf_body2)
tf2<-tf_body2
tf2[,]<-NA
for(i in 1:ncol(tf_re2)){tf2[,i]<-tf_body2[,i]+as.numeric(tf_re2[,i])}
tf2-tf_body2->tf_re2
tf2[c(100:110),c(100:110)]
## 回來 回家 在家 地方 多個 好 好用 宅 宇宙 安排 收集
## Freq 100.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 101.x 0 0 0 0 0 1 0 0 0 0 0
## Freq 102.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 103.x 0 0 0 1 0 0 0 0 0 0 0
## Freq 104.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 105.x 0 0 0 0 0 1 0 0 0 0 0
## Freq 106.x 0 0 0 0 0 2 0 0 0 0 0
## Freq 107.x 0 0 1 0 0 1 0 0 0 0 0
## Freq 108.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 109.x 0 0 0 1 0 1 0 0 0 0 0
## Freq 110.x 0 0 0 0 0 1 0 0 0 0 0
tf_body2[c(100:110),c(100:110)]
## 回來 回家 在家 地方 多個 好 好用 宅 宇宙 安排 收集
## Freq 100.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 101.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 102.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 103.x 0 0 0 1 0 0 0 0 0 0 0
## Freq 104.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 105.x 0 0 0 0 0 1 0 0 0 0 0
## Freq 106.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 107.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 108.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 109.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 110.x 0 0 0 0 0 0 0 0 0 0 0
tf_re2[c(100:110),c(100:110)]
## 回來 回家 在家 地方 多個 好 好用 宅 宇宙 安排 收集
## Freq 100.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 101.x 0 0 0 0 0 1 0 0 0 0 0
## Freq 102.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 103.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 104.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 105.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 106.x 0 0 0 0 0 2 0 0 0 0 0
## Freq 107.x 0 0 1 0 0 1 0 0 0 0 0
## Freq 108.x 0 0 0 0 0 0 0 0 0 0 0
## Freq 109.x 0 0 0 1 0 1 0 0 0 0 0
## Freq 110.x 0 0 0 0 0 1 0 0 0 0 0
name_id<-which(colnames(tf2)%in%c("胖虎","小夫","大雄","哆啦a夢","靜香"))
tmp_data<-tf2[,name_id]
type<-c()
for(i in 1:2077){
type[i]<-which.max(tmp_data[i,])
}
a<-as.data.frame(t(as.data.frame(table(type))))
colnames(a)<-colnames(tmp_data)
a
## 大雄 哆啦a夢 胖虎 小夫 靜香
## type 1 2 3 4 5
## Freq 973 489 278 98 239
cloud2<-function(x){
tmp_id<-which(type==x)
tmp_data<-tf2[tmp_id,]
tmp<-apply(tmp_data,2,sum)
p<-data.frame(
word=colnames(tmp_data),
sum=tmp
)
id<-which((p$sum>mean(p$sum)))
p<-p[id,]
wordcloud2(p)
}
cloud2(1)
avatar
cloud2(2)
avatar
cloud2(3)
avatar
cloud2(4)
#### 靜香文字雲
cloud2(5)
avatar
body_word<-apply(tf_body2,2,sum)
re_word<-apply(tf_re2,2,sum)
X=body_word
Y=re_word
p<-data.frame(
word=colnames(tf2),
blue=X/sum(X),
green=Y/sum(Y),
color=abs(X-Y))
ggplot(p, aes(x = blue, y = green, color = color)) +
geom_abline(color = "gray40", lty = 2) +
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5, family="Heiti TC Light") +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001), low = "darkslategray4", high = "gray75") +
theme(legend.position="none") +
labs(y = "留言內容", x = "主文內容")
##主文情緒對留言情緒影響
positive <- read_csv("C:/Users/VivoBook/Desktop/study/text_mini/project_1/data/positive.txt",
col_names = FALSE)
## Parsed with column specification:
## cols(
## .default = col_character()
## )
## See spec(...) for full column specifications.
negative <- read_csv("C:/Users/VivoBook/Desktop/study/text_mini/project_1/data/negative.txt",
col_names = FALSE)
## Parsed with column specification:
## cols(
## .default = col_character()
## )
## See spec(...) for full column specifications.
positive_id<-which(colnames(tf2)%in%positive[1,])
negative_id<-which(colnames(tf2)%in%negative[1,])
positive_body<-c()
negative_body<-c()
#
i=1
for(i in 1:nrow(tf_body2)){
tmp <-tf_body2[i,]
tmp<-tmp
positive_body[i]<-sum(tmp[positive_id])
negative_body[i]<-sum(tmp[negative_id])
}
sentiment_body<-positive_body-negative_body
positive_re<-c()
negative_re<-c()
for(i in 1:nrow(tf_re2)){
tmp <-tf_re2[i,]
tmp<-tmp
positive_re[i]<-sum(tmp[positive_id])
negative_re[i]<-sum(tmp[negative_id])
}
sentiment_re<-positive_re-negative_re
p<-data.frame(
blue=sentiment_body,
green=sentiment_re
)
ggplot(p, aes(x = blue, y = green)) +
geom_abline(color = "gray40", lty = 2) +
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
labs(y = "留言內容", x = "主文內容")
cor.test(sentiment_body,sentiment_re)
##
## Pearson's product-moment correlation
##
## data: sentiment_body and sentiment_re
## t = 6.7553, df = 2075, p-value = 1.845e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1043415 0.1885150
## sample estimates:
## cor
## 0.1466938