Fórmula general

Una ecuación cuádratica tiene dos raíces \(x_1\) y \(x_2\) que cumplen que \(ax^2 + bx + c = 0\), las cuales son iguales a:

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]

  1. Si \(b^2 - 4ac=0\) entonces \(x_1\) y \(x_2\) son números reales iguales
  2. Si \(b^2 - 4ac > 0\) entonces \(x_1\) y \(x_2\) son números reales distintos
  3. Si \(b^2 - 4ac < 0\) entonces \(x_1\) y \(x_2\) son números complejos

Demostración

\[ax^2 + bx + c = 0\] \[x² + \frac{b}{a}x + \frac{c}{a} = 0\]

\[x² + \frac{b}{a}x = -\frac{c}{a}\]

\[x² + \frac{b}{a}x + \frac{b^2}{4a} = \frac{b^2}{4a} -\frac{c}{a}\]

\[\left ( x + \frac{b}{2a} \right )^2 = \frac{b^2-4ac}{4a^2}\]

\[x + \frac{b}{2a} = \pm \sqrt{\frac{b^2-4ac}{4a^2}}\]

\[x + \frac{b}{2a} = \pm \frac{\sqrt{b^2-4ac}}{2a}\]

\[x = - \frac{b}{2a} \pm \frac{\sqrt{b^2-4ac}}{2a}\]

\[x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}\]

Código en R

raices = function(a,b,c){
  if (b^2 - 4*a*c >= 0) {
  raiz1 = (-b + sqrt(b^2 - 4*a*c))/(2*a)
  raiz2 = (-b - sqrt(b^2 - 4*a*c))/(2*a)
  }
  else {
  raiz1 = (-b + sqrt(as.complex(b^2 - 4*a*c)))/(2*a)
  raiz2 = (-b - sqrt(as.complex(b^2 - 4*a*c)))/(2*a)
  }
  c(raiz1, raiz2)
}
raices(1, -5, 4)
## [1] 4 1
raices(2, -6, 5)
## [1] 1.5+0.5i 1.5-0.5i

Código en Python

import math

import cmath

def raices(a,b,c):
    if b**2-4*a*c >= 0:
        raiz1 = (-b + math.sqrt(b**2 - 4*a*c))/(2*a)
        raiz2 = (-b - math.sqrt(b**2 - 4*a*c))/(2*a)
    else:
        raiz1 = (-b + cmath.sqrt(complex(b**2 - 4*a*c)))/(2*a)
        raiz2 = (-b - cmath.sqrt(complex(b**2 - 4*a*c)))/(2*a)
    return [raiz1, raiz2]
raices(1,-5,4)
## [4.0, 1.0]
raices(2,-6,5)
## [(1.5+0.5j), (1.5-0.5j)]

\[\ \]

Contacto:
Fiverr
Twitter
edison.lmg@gmail.com

\[\ \]