title: “Medidas de Centrales y de Dispersión; Coeficiente de Variación” |
author: “Victor Borjas” |
date: “2/26/2020” |
output: PRACTICA 7 |
### Se carga la librería
library(readr)
datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/practicas%20R/unidad%202/alumnos.deportes.2020.csv")
datos
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1 1 Ana F FALSE FALSE FALSE FALSE FALSE FALSE
## 2 2 Antonio M FALSE FALSE FALSE FALSE FALSE FALSE
## 3 3 Aracely F FALSE FALSE FALSE FALSE FALSE TRUE
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 16 16 Luisa F FALSE FALSE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 19 19 Margarito M FALSE FALSE FALSE FALSE FALSE TRUE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 22 22 Oscar M FALSE FALSE FALSE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 28 28 Rosario F FALSE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 31 31 Sandra F FALSE FALSE FALSE FALSE FALSE FALSE
## 32 32 Sandro M FALSE FALSE FALSE FALSE FALSE TRUE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 35 35 Arturo M FALSE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 47 47 Fernanda F FALSE FALSE FALSE FALSE FALSE FALSE
## 48 48 Gabriela F FALSE FALSE FALSE FALSE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 59 59 Perla F FALSE FALSE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 61 61 Susana F FALSE FALSE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
## 65 65 Teresa F FALSE FALSE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
n <- nrow(datos)
hombres <- subset(datos, sexo =='M')
mujeres <- subset(datos, sexo =='F')
hombres
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 2 2 Antonio M FALSE FALSE FALSE FALSE FALSE FALSE
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 19 19 Margarito M FALSE FALSE FALSE FALSE FALSE TRUE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 22 22 Oscar M FALSE FALSE FALSE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 32 32 Sandro M FALSE FALSE FALSE FALSE FALSE TRUE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 35 35 Arturo M FALSE FALSE FALSE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
mujeres
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1 1 Ana F FALSE FALSE FALSE FALSE FALSE FALSE
## 3 3 Aracely F FALSE FALSE FALSE FALSE FALSE TRUE
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 16 16 Luisa F FALSE FALSE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 28 28 Rosario F FALSE FALSE FALSE FALSE FALSE FALSE
## 31 31 Sandra F FALSE FALSE FALSE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 47 47 Fernanda F FALSE FALSE FALSE FALSE FALSE FALSE
## 48 48 Gabriela F FALSE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 59 59 Perla F FALSE FALSE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 61 61 Susana F FALSE FALSE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 65 65 Teresa F FALSE FALSE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
table(datos$sexo)
##
## F M
## 33 34
round(prop.table(table(datos$sexo)),4)
##
## F M
## 0.4925 0.5075
round(prop.table(table(datos$sexo)),4) * 100
##
## F M
## 49.25 50.75
futbol <- subset(datos, futbol == TRUE)
futbol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 5 5 Eduardo M TRUE FALSE FALSE FALSE FALSE FALSE
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 26 26 Raul M TRUE FALSE FALSE FALSE FALSE FALSE
## 27 27 Romualdo M TRUE FALSE FALSE FALSE FALSE FALSE
## 29 29 Rubén M TRUE FALSE FALSE FALSE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 34 34 Yuri F TRUE FALSE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 39 39 Carlos M TRUE FALSE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 42 42 Dalia F TRUE FALSE FALSE FALSE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 49 49 Gabriel M TRUE FALSE FALSE FALSE FALSE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 56 56 Orlando M TRUE FALSE FALSE FALSE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
{r} table(datos$futbol)
round(prop.table(table(datos$futbol)),4)
##
## FALSE TRUE
## 0.5075 0.4925
round(prop.table(table(datos$futbol)),4) * 100
##
## FALSE TRUE
## 50.75 49.25
##Conjunto Basquetbol
basquetbol <- subset(datos, basquetbol == TRUE)
basquetbol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 4 4 Carmen F FALSE TRUE FALSE FALSE FALSE FALSE
## 6 6 Ernesto M FALSE TRUE FALSE FALSE FALSE FALSE
## 7 7 Gabino M FALSE TRUE FALSE FALSE FALSE FALSE
## 9 9 Javier M FALSE TRUE FALSE FALSE FALSE FALSE
## 10 10 Jeorgina F FALSE TRUE FALSE FALSE FALSE FALSE
## 13 13 Laura F FALSE TRUE FALSE FALSE FALSE FALSE
## 17 17 Lupita F TRUE TRUE FALSE FALSE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 20 20 Maria F FALSE TRUE FALSE FALSE FALSE FALSE
## 25 25 Paty F TRUE TRUE FALSE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 38 38 Bety F TRUE TRUE FALSE FALSE FALSE FALSE
## 41 41 Dany F TRUE TRUE FALSE FALSE FALSE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 51 51 Jorge M TRUE TRUE FALSE FALSE FALSE FALSE
## 53 53 Mikaela F FALSE TRUE FALSE FALSE FALSE FALSE
## 54 54 Miguel M TRUE TRUE FALSE FALSE FALSE FALSE
## 58 58 Pedro M TRUE TRUE FALSE FALSE FALSE FALSE
## 60 60 Raquel F TRUE TRUE FALSE FALSE FALSE FALSE
## 62 62 Sandy F FALSE TRUE FALSE FALSE FALSE FALSE
## 66 66 Walter F TRUE TRUE FALSE FALSE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
table(datos$basquetbol)
##
## FALSE TRUE
## 45 22
round(prop.table(table(datos$basquetbol)),4)
##
## FALSE TRUE
## 0.6716 0.3284
round(prop.table(table(datos$basquetbol)),4) * 100
##
## FALSE TRUE
## 67.16 32.84
voleybol <- subset(datos, voleybol == TRUE)
voleybol
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 8 8 Gerardo M TRUE FALSE TRUE FALSE FALSE TRUE
## 12 12 Lalo M FALSE FALSE TRUE FALSE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 15 15 Luis M FALSE FALSE TRUE FALSE FALSE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 33 33 Saul M TRUE FALSE TRUE FALSE FALSE FALSE
## 36 36 Angélica F TRUE TRUE TRUE FALSE FALSE FALSE
## 37 37 Arnulfo M FALSE FALSE TRUE FALSE FALSE FALSE
## 40 40 Dagoberto M FALSE FALSE TRUE FALSE FALSE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 46 46 Fabián M FALSE TRUE TRUE FALSE FALSE FALSE
## 52 52 Lorenzo M TRUE FALSE TRUE FALSE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
table(datos$voleybol)
##
## FALSE TRUE
## 53 14
round(prop.table(table(datos$voleybol)),4)
##
## FALSE TRUE
## 0.791 0.209
round(prop.table(table(datos$voleybol)),4) * 100
##
## FALSE TRUE
## 79.1 20.9
atletismo <- subset(datos, atletismo == TRUE)
atletismo
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 11 11 Juan M TRUE FALSE FALSE TRUE FALSE FALSE
## 14 14 Lucy F TRUE FALSE TRUE TRUE FALSE FALSE
## 18 18 Margarita F FALSE TRUE FALSE TRUE FALSE FALSE
## 24 24 Patricia F TRUE FALSE FALSE TRUE FALSE FALSE
## 30 30 Salvador M TRUE FALSE FALSE TRUE FALSE FALSE
## 43 43 Efren M TRUE FALSE FALSE TRUE FALSE FALSE
## 45 45 Fernando M TRUE FALSE FALSE TRUE FALSE FALSE
## 55 55 Marcela F FALSE FALSE FALSE TRUE FALSE FALSE
## 57 57 Otilia F TRUE FALSE FALSE TRUE FALSE FALSE
## 63 63 Sotelo M FALSE FALSE TRUE TRUE FALSE FALSE
## 64 64 Tiburcio M FALSE FALSE FALSE TRUE FALSE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
table(datos$atletismo)
##
## FALSE TRUE
## 55 12
round(prop.table(table(datos$atletismo )),4)
##
## FALSE TRUE
## 0.8209 0.1791
round(prop.table(table(datos$atletismo )),4) * 100
##
## FALSE TRUE
## 82.09 17.91
ajedrez <- subset(datos, ajedrez == TRUE)
ajedrez
## X nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 21 21 Memo M TRUE FALSE FALSE FALSE TRUE FALSE
## 23 23 Paco M TRUE FALSE TRUE FALSE TRUE FALSE
## 44 44 Ernestina F TRUE FALSE TRUE FALSE TRUE FALSE
## 50 50 Guille F TRUE FALSE FALSE FALSE TRUE FALSE
## 67 67 Xóchitl F FALSE TRUE TRUE TRUE TRUE FALSE
table(datos$ajedrez)
##
## FALSE TRUE
## 62 5
round(prop.table(table(datos$ajedrez )),4)
##
## FALSE TRUE
## 0.9254 0.0746
round(prop.table(table(datos$ajedrez )),4) * 100
##
## FALSE TRUE
## 92.54 7.46
futUbas <- union(futbol$nombres, basquetbol$nombres)
futUbas
## [1] "Eduardo" "Gerardo" "Juan" "Lucy" "Lupita" "Memo"
## [7] "Paco" "Patricia" "Paty" "Raul" "Romualdo" "Rubén"
## [13] "Salvador" "Saul" "Yuri" "Angélica" "Bety" "Carlos"
## [19] "Dany" "Dalia" "Efren" "Ernestina" "Fernando" "Gabriel"
## [25] "Guille" "Jorge" "Lorenzo" "Miguel" "Orlando" "Otilia"
## [31] "Pedro" "Raquel" "Walter" "Carmen" "Ernesto" "Gabino"
## [37] "Javier" "Jeorgina" "Laura" "Margarita" "Maria" "Fabián"
## [43] "Mikaela" "Sandy" "Xóchitl"
cat("Hay ", length(futUbas), " alumnos que juegan fútbol o basquetbol de un total de ",n)
## Hay 45 alumnos que juegan fútbol o basquetbol de un total de 67
prob.futUbas <- length(futUbas) / n
cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
## 0.6716418
futIbas <- intersect(futbol$nombres, basquetbol$nombres)
futIbas
## [1] "Lupita" "Paty" "Angélica" "Bety" "Dany" "Jorge"
## [7] "Miguel" "Pedro" "Raquel" "Walter"
cat("Hay ", length(futIbas), " alumnos que juegan fútbol y que también juegan basquetbol de un total de ",n)
## Hay 10 alumnos que juegan fútbol y que también juegan basquetbol de un total de 67
prob.futIbas <- length(futIbas) / n
cat("¿Cuántos alumnos hay que juegan fútbol y basquetbol?", prob.futIbas)
## ¿Cuántos alumnos hay que juegan fútbol y basquetbol? 0.1492537
prob.futbol <- prop.table(table(datos$futbol))
prob.basquetbol <- prop.table(table(datos$basquetbol))
prob.futbol <- prob.futbol[2]
prob.basquetbol <- prob.basquetbol[2]
prob.futbol
## TRUE
## 0.4925373
prob.basquetbol
## TRUE
## 0.3283582
as.numeric(prob.futbol)
## [1] 0.4925373
as.numeric(prob.basquetbol)
## [1] 0.3283582
as.numeric(prob.futIbas)
## [1] 0.1492537
prob.futUbas <- as.numeric(prob.futbol) + as.numeric(prob.basquetbol) - as.numeric(prob.futIbas)
prob.futUbas
## [1] 0.6716418
cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
## 0.6716418
table(datos$futbol, datos$basquetbol)
##
## FALSE TRUE
## FALSE 22 12
## TRUE 23 10
tabla.cruzada <- table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))
tabla.cruzada
## basquetbol
## fútbol FALSE TRUE
## FALSE 22 12
## TRUE 23 10
tabla.cruzada.s <- rbind(tabla.cruzada, apply(tabla.cruzada,2,sum))
tabla.cruzada.s <- cbind(tabla.cruzada.s, apply(tabla.cruzada.s,1,sum))
tabla.cruzada.s
## FALSE TRUE
## FALSE 22 12 34
## TRUE 23 10 33
## 45 22 67
prob.tabla.cruzada <- round(prop.table(table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))),4)
prob.tabla.cruzada
## basquetbol
## fútbol FALSE TRUE
## FALSE 0.3284 0.1791
## TRUE 0.3433 0.1493
prob.tabla.cruzada <- rbind(prob.tabla.cruzada,apply(prob.tabla.cruzada,2,sum))
prob.tabla.cruzada <- cbind(prob.tabla.cruzada, apply(prob.tabla.cruzada,1,sum))
prob.tabla.cruzada
## FALSE TRUE
## FALSE 0.3284 0.1791 0.5075
## TRUE 0.3433 0.1493 0.4926
## 0.6717 0.3284 1.0001