title: “Medidas de Centrales y de Dispersión; Coeficiente de Variación”
author: “Victor Borjas”
date: “2/26/2020”
output: PRACTICA 7

### Se carga la librería

library(readr)

se cargan los datos

datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/practicas%20R/unidad%202/alumnos.deportes.2020.csv")

datos
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1   1       Ana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 2   2   Antonio    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 3   3   Aracely    F  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 4   4    Carmen    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 5   5   Eduardo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 6   6   Ernesto    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 7   7    Gabino    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 9   9    Javier    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 10 10  Jeorgina    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 12 12      Lalo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 13 13     Laura    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 15 15      Luis    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 16 16     Luisa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 19 19 Margarito    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 20 20     Maria    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 22 22     Oscar    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 26 26      Raul    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 27 27  Romualdo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 28 28   Rosario    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 29 29     Rubén    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 31 31    Sandra    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 32 32    Sandro    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 34 34      Yuri    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 35 35    Arturo    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 37 37   Arnulfo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 39 39    Carlos    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 40 40 Dagoberto    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 42 42     Dalia    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 47 47  Fernanda    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 48 48  Gabriela    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 49 49   Gabriel    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 53 53   Mikaela    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 55 55   Marcela    F  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 56 56   Orlando    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 59 59     Perla    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 61 61    Susana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 62 62     Sandy    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 64 64  Tiburcio    M  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 65 65    Teresa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE

Determinar conjunto de observaciones

n <- nrow(datos)

Conjunto Hombres y Mujeres

Se determinan los conjuntos según el género de la persona mediante la función subset() que permite filtrar datos

hombres <- subset(datos, sexo =='M')
mujeres <- subset(datos, sexo =='F')

hombres
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 2   2   Antonio    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 5   5   Eduardo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 6   6   Ernesto    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 7   7    Gabino    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 9   9    Javier    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 12 12      Lalo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 15 15      Luis    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 19 19 Margarito    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 22 22     Oscar    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 26 26      Raul    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 27 27  Romualdo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 29 29     Rubén    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 32 32    Sandro    M  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 35 35    Arturo    M  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 37 37   Arnulfo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 39 39    Carlos    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 40 40 Dagoberto    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 49 49   Gabriel    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 56 56   Orlando    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 64 64  Tiburcio    M  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
mujeres
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 1   1       Ana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 3   3   Aracely    F  FALSE      FALSE    FALSE     FALSE   FALSE  TRUE
## 4   4    Carmen    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 10 10  Jeorgina    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 13 13     Laura    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 16 16     Luisa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 20 20     Maria    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 28 28   Rosario    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 31 31    Sandra    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 34 34      Yuri    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 42 42     Dalia    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 47 47  Fernanda    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 48 48  Gabriela    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 53 53   Mikaela    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 55 55   Marcela    F  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 59 59     Perla    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 61 61    Susana    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 62 62     Sandy    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 65 65    Teresa    F  FALSE      FALSE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE

Frecuencias de Hombres y Mujeres

¿Cuántos casos hay que son hombres y cuántos casos hay que son mujeres?

table(datos$sexo)
## 
##  F  M 
## 33 34

Frecuencias relativas de Hombres y Mujeres

¿Cuál es la probabilidad al seleccionar a una persona de todo un conjunto de datos sea hombre y cuál es la probabilidad al seleccionar a una persona de todo conjunto de datos sea mujer?

round(prop.table(table(datos$sexo)),4)
## 
##      F      M 
## 0.4925 0.5075
round(prop.table(table(datos$sexo)),4) * 100
## 
##     F     M 
## 49.25 50.75

Conjunto Fútbol

futbol <- subset(datos, futbol  == TRUE)

futbol
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 5   5   Eduardo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 26 26      Raul    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 27 27  Romualdo    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 29 29     Rubén    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 34 34      Yuri    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 39 39    Carlos    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 42 42     Dalia    F   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 49 49   Gabriel    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 56 56   Orlando    M   TRUE      FALSE    FALSE     FALSE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE

Frecuencias de personas en Fútbol

¿Cuántas personas hay que practican Fútbol?

{r} table(datos$futbol)

Frecuencias relativas del conjunto Fútbol

¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue fútbol?

round(prop.table(table(datos$futbol)),4)
## 
##  FALSE   TRUE 
## 0.5075 0.4925
round(prop.table(table(datos$futbol)),4) * 100
## 
## FALSE  TRUE 
## 50.75 49.25

##Conjunto Basquetbol

basquetbol <- subset(datos, basquetbol == TRUE)

basquetbol
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 4   4    Carmen    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 6   6   Ernesto    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 7   7    Gabino    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 9   9    Javier    M  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 10 10  Jeorgina    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 13 13     Laura    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 17 17    Lupita    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 20 20     Maria    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 25 25      Paty    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 38 38      Bety    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 41 41      Dany    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 51 51     Jorge    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 53 53   Mikaela    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 54 54    Miguel    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 58 58     Pedro    M   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 60 60    Raquel    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 62 62     Sandy    F  FALSE       TRUE    FALSE     FALSE   FALSE FALSE
## 66 66    Walter    F   TRUE       TRUE    FALSE     FALSE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE

Frecuencias de personas en Basquetbol

¿Cuántas personas hay que practican Basquetbol?

table(datos$basquetbol)
## 
## FALSE  TRUE 
##    45    22

Frecuencias relativas del conjunto Basquetbol

¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue basquetbol?

round(prop.table(table(datos$basquetbol)),4)
## 
##  FALSE   TRUE 
## 0.6716 0.3284
round(prop.table(table(datos$basquetbol)),4) * 100
## 
## FALSE  TRUE 
## 67.16 32.84

Conjunto Voleybol

voleybol <- subset(datos, voleybol == TRUE)

voleybol
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 8   8   Gerardo    M   TRUE      FALSE     TRUE     FALSE   FALSE  TRUE
## 12 12      Lalo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 15 15      Luis    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 33 33      Saul    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 36 36  Angélica    F   TRUE       TRUE     TRUE     FALSE   FALSE FALSE
## 37 37   Arnulfo    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 40 40 Dagoberto    M  FALSE      FALSE     TRUE     FALSE   FALSE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 46 46    Fabián    M  FALSE       TRUE     TRUE     FALSE   FALSE FALSE
## 52 52   Lorenzo    M   TRUE      FALSE     TRUE     FALSE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE

Frecuencias de personas en Voleybol

¿Cuántas personas hay que practican voleybol?

table(datos$voleybol)
## 
## FALSE  TRUE 
##    53    14

Frecuencias relativas del conjunto Voleybol

¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue voleybol?

round(prop.table(table(datos$voleybol)),4)
## 
## FALSE  TRUE 
## 0.791 0.209
round(prop.table(table(datos$voleybol)),4) * 100
## 
## FALSE  TRUE 
##  79.1  20.9

Conjunto Atletismo

atletismo  <- subset(datos, atletismo  == TRUE)

atletismo
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 11 11      Juan    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 14 14      Lucy    F   TRUE      FALSE     TRUE      TRUE   FALSE FALSE
## 18 18 Margarita    F  FALSE       TRUE    FALSE      TRUE   FALSE FALSE
## 24 24  Patricia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 30 30  Salvador    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 43 43     Efren    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 45 45  Fernando    M   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 55 55   Marcela    F  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 57 57    Otilia    F   TRUE      FALSE    FALSE      TRUE   FALSE FALSE
## 63 63    Sotelo    M  FALSE      FALSE     TRUE      TRUE   FALSE FALSE
## 64 64  Tiburcio    M  FALSE      FALSE    FALSE      TRUE   FALSE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE

Frecuencias de personas en atletismo

¿Cuántas personas hay que practican atletismo?

table(datos$atletismo)
## 
## FALSE  TRUE 
##    55    12

Frecuencias relativas del conjunto Atletismo

¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue atletismo?

round(prop.table(table(datos$atletismo )),4)
## 
##  FALSE   TRUE 
## 0.8209 0.1791
round(prop.table(table(datos$atletismo )),4) * 100
## 
## FALSE  TRUE 
## 82.09 17.91

Conjunto Ajedrez

ajedrez  <- subset(datos, ajedrez  == TRUE)

ajedrez
##     X   nombres sexo futbol basquetbol voleybol atletismo ajedrez tenis
## 21 21      Memo    M   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 23 23      Paco    M   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 44 44 Ernestina    F   TRUE      FALSE     TRUE     FALSE    TRUE FALSE
## 50 50    Guille    F   TRUE      FALSE    FALSE     FALSE    TRUE FALSE
## 67 67   Xóchitl    F  FALSE       TRUE     TRUE      TRUE    TRUE FALSE

Frecuencias de personas en Ajedrez

¿Cuántas personas hay que practican ajedrez?

table(datos$ajedrez)
## 
## FALSE  TRUE 
##    62     5

Frecuencias relativas del conjunto Ajedrez

¿Cuál es la probabilidad al seleccionar a una persona de de todo conjunto de datos y que juegue ajedrez?

round(prop.table(table(datos$ajedrez )),4)
## 
##  FALSE   TRUE 
## 0.9254 0.0746
round(prop.table(table(datos$ajedrez )),4) * 100
## 
## FALSE  TRUE 
## 92.54  7.46

Unión de conjuntos

Unión de fútbol y basquetbol

futUbas <- union(futbol$nombres, basquetbol$nombres)
futUbas
##  [1] "Eduardo"   "Gerardo"   "Juan"      "Lucy"      "Lupita"    "Memo"     
##  [7] "Paco"      "Patricia"  "Paty"      "Raul"      "Romualdo"  "Rubén"    
## [13] "Salvador"  "Saul"      "Yuri"      "Angélica"  "Bety"      "Carlos"   
## [19] "Dany"      "Dalia"     "Efren"     "Ernestina" "Fernando"  "Gabriel"  
## [25] "Guille"    "Jorge"     "Lorenzo"   "Miguel"    "Orlando"   "Otilia"   
## [31] "Pedro"     "Raquel"    "Walter"    "Carmen"    "Ernesto"   "Gabino"   
## [37] "Javier"    "Jeorgina"  "Laura"     "Margarita" "Maria"     "Fabián"   
## [43] "Mikaela"   "Sandy"     "Xóchitl"

¿Cuántos alumnos hay que juegan fútbol o basquetbol?

cat("Hay ", length(futUbas), " alumnos que juegan fútbol o basquetbol de un total de ",n)
## Hay  45  alumnos que juegan fútbol o basquetbol de un total de  67
prob.futUbas <- length(futUbas) / n 

cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
##  0.6716418

Intersección de conjuntos

Intersección entre futbol y basquetbol

futIbas <- intersect(futbol$nombres, basquetbol$nombres)
futIbas
##  [1] "Lupita"   "Paty"     "Angélica" "Bety"     "Dany"     "Jorge"   
##  [7] "Miguel"   "Pedro"    "Raquel"   "Walter"

Cálculo de probabilidad por frecuencia relativa de la intersección entre futbol y basquetbol

cat("Hay ", length(futIbas), " alumnos que juegan fútbol y que también  juegan basquetbol de un total de ",n)
## Hay  10  alumnos que juegan fútbol y que también  juegan basquetbol de un total de  67
prob.futIbas <- length(futIbas) / n 

cat("¿Cuántos alumnos hay que juegan fútbol y basquetbol?", prob.futIbas)
## ¿Cuántos alumnos hay que juegan fútbol y basquetbol? 0.1492537

Ley de la adición para determinar probabilidades

Probabilidad de que juegue fútbol o que juegue basquetbol

prob.futbol <- prop.table(table(datos$futbol))
prob.basquetbol <- prop.table(table(datos$basquetbol))

prob.futbol <- prob.futbol[2] 
prob.basquetbol <- prob.basquetbol[2]

prob.futbol
##      TRUE 
## 0.4925373
prob.basquetbol
##      TRUE 
## 0.3283582

Cálculo de probabilidad de P(futbol U basquetbol)

as.numeric(prob.futbol)
## [1] 0.4925373
as.numeric(prob.basquetbol)
## [1] 0.3283582
as.numeric(prob.futIbas)
## [1] 0.1492537
prob.futUbas <- as.numeric(prob.futbol) + as.numeric(prob.basquetbol) - as.numeric(prob.futIbas)

prob.futUbas
## [1] 0.6716418
cat("* ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
", prob.futUbas)
## * ¿Cuál es la probabilidad de que existan alumnos que jueguen fútbol o basquetbol?
##  0.6716418

Tablas cruzadas

table(datos$futbol, datos$basquetbol)
##        
##         FALSE TRUE
##   FALSE    22   12
##   TRUE     23   10

Frecuencias utilizando tablas cruzadas

tabla.cruzada <- table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))

tabla.cruzada
##        basquetbol
## fútbol  FALSE TRUE
##   FALSE    22   12
##   TRUE     23   10
tabla.cruzada.s <- rbind(tabla.cruzada, apply(tabla.cruzada,2,sum))

tabla.cruzada.s <- cbind(tabla.cruzada.s, apply(tabla.cruzada.s,1,sum))

tabla.cruzada.s
##       FALSE TRUE   
## FALSE    22   12 34
## TRUE     23   10 33
##          45   22 67

Cálculo de probabilidades utilizando tablas cruzadas

prob.tabla.cruzada <- round(prop.table(table(datos$futbol, datos$basquetbol, dnn = c('fútbol','basquetbol'))),4)

prob.tabla.cruzada
##        basquetbol
## fútbol   FALSE   TRUE
##   FALSE 0.3284 0.1791
##   TRUE  0.3433 0.1493
prob.tabla.cruzada <- rbind(prob.tabla.cruzada,apply(prob.tabla.cruzada,2,sum))
                            
prob.tabla.cruzada <- cbind(prob.tabla.cruzada, apply(prob.tabla.cruzada,1,sum)) 

prob.tabla.cruzada
##        FALSE   TRUE       
## FALSE 0.3284 0.1791 0.5075
## TRUE  0.3433 0.1493 0.4926
##       0.6717 0.3284 1.0001