ques4.dat=c(6,7,8,9,10,11,4,5,6,7,8,9,2,3,4,5,6,7,10,11,12,13,14,15)
A=factor(c(rep('a1',12),rep('a2',12)))
B=factor(rep(c(rep('b1',6),rep('b2',6)),2))
sub=1:24
ques4.df=data.frame(sub,A,B,ques4.dat)
ques4.aov=aov(ques4.dat~A*B,data=ques4.df)
ques4.aov
## Call:
## aov(formula = ques4.dat ~ A * B, data = ques4.df)
##
## Terms:
## A B A:B Residuals
## Sum of Squares 6 54 150 70
## Deg. of Freedom 1 1 1 20
##
## Residual standard error: 1.870829
## Estimated effects may be unbalanced
ques4.sum=summary(ques4.aov)
ques4sum=unlist(ques4.sum)
df1=as.numeric(ques4sum['Df1'])
df2=as.numeric(ques4sum['Df2'])
df3=as.numeric(ques4sum['Df3'])
df4=as.numeric(ques4sum['Df4'])
SS1=as.numeric(ques4sum['Sum Sq1'])
SS2=as.numeric(ques4sum['Sum Sq2'])
SS3=as.numeric(ques4sum['Sum Sq3'])
SS4=as.numeric(ques4sum['Sum Sq4'])
ms1=as.numeric(ques4sum['Mean Sq1'])
ms2=as.numeric(ques4sum['Mean Sq2'])
ms3=as.numeric(ques4sum['Mean Sq3'])
ms4=as.numeric(ques4sum['Mean Sq4'])
F1=as.numeric(ques4sum['F value1'])
F2=as.numeric(ques4sum['F value2'])
F3=as.numeric(ques4sum['F value3'])
p1=as.numeric(ques4sum['Pr(>F)1'])
p2=as.numeric(ques4sum['Pr(>F)2'])
p3=as.numeric(ques4sum['Pr(>F)3'])
There was no significant effect of A, F(1, 20)=1.7142857, MSe=6, p=0.2052736.
There was a significant wffect of B, F(1, 20)=15.4285714, MSe=54, p=8.326334310^{-4}.
There was a sigificant effect of the interaction of A on B, F(1, 20)=42.8571429, MSe=150, p=2.223878410^{-6}.