Principal Compents Analysis for Joggle Tests

Initial Extraction of the Components - No Rotation

# Pricipal Components Analysis entering raw data and extracting PCs from the correlation matrix 
JogglePCA <- princomp(JoggleScores, cor=TRUE)

Summary(Variance accounted for)

summary(JogglePCA) 
## Importance of components:
##                        Comp.1 Comp.2 Comp.3 Comp.4  Comp.5  Comp.6  Comp.7
## Standard deviation      1.659 1.0599 0.9694 0.9403 0.86449 0.77378 0.76291
## Proportion of Variance  0.344 0.1404 0.1175 0.1105 0.09342 0.07484 0.07275
## Cumulative Proportion   0.344 0.4844 0.6019 0.7124 0.80580 0.88065 0.95340
##                        Comp.8
## Standard deviation     0.6106
## Proportion of Variance 0.0466
## Cumulative Proportion  1.0000

PC Loadings

#PC Loadings
loadings(JogglePCA) 
## 
## Loadings:
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## BARTaccuracy   -0.197         0.901  0.356                            
## DSSTefficiency -0.497        -0.102                0.121 -0.329  0.777
## LOTefficiency  -0.473                              0.358 -0.536 -0.591
## PVTefficiency  -0.180 -0.785  0.142 -0.131        -0.534 -0.119 -0.122
## AMefficiency   -0.330  0.450 -0.202  0.407  0.112 -0.676        -0.107
## NBACKaccuracy  -0.238  0.364  0.242 -0.816        -0.222  0.181       
## VOLTefficiency -0.370        -0.219  0.132 -0.754  0.109  0.456       
## MPTspeed       -0.395 -0.168                0.629  0.220  0.589 -0.135
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000
## Proportion Var  0.125  0.125  0.125  0.125  0.125  0.125  0.125  0.125
## Cumulative Var  0.125  0.250  0.375  0.500  0.625  0.750  0.875  1.000
JogglePCAScores = JogglePCA$scores # the principal components

Biplot

biplot(JogglePCA,col=c("light blue","blue"))

plot of chunk unnamed-chunk-5

Eigen Values

ev <- eigen(cor(JoggleScores))
ev

Scree Plot with Optimal Coordinates

ap <- parallel(subject=nrow(JoggleScores),var=ncol(JoggleScores), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-8

Varimax Rotation to Final Solution

principal(JoggleScores,nfactors=2,rotate="varimax",scores=T)
## Principal Components Analysis
## Call: principal(r = JoggleScores, nfactors = 2, rotate = "varimax", 
##     scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 RC1   RC2   h2   u2
## BARTaccuracy   0.27  0.21 0.12 0.88
## DSSTefficiency 0.78  0.26 0.68 0.32
## LOTefficiency  0.71  0.34 0.62 0.38
## PVTefficiency  0.60 -0.65 0.78 0.22
## AMefficiency   0.32  0.65 0.53 0.47
## NBACKaccuracy  0.22  0.51 0.30 0.70
## VOLTefficiency 0.61  0.14 0.39 0.61
## MPTspeed       0.67  0.09 0.46 0.54
## 
##                        RC1  RC2
## SS loadings           2.51 1.36
## Proportion Var        0.31 0.17
## Cumulative Var        0.31 0.48
## Proportion Explained  0.65 0.35
## Cumulative Proportion 0.65 1.00
## 
## Test of the hypothesis that 2 components are sufficient.
## 
## The degrees of freedom for the null model are  28  and the objective function was  1.39
## The degrees of freedom for the model are 13  and the objective function was  0.36 
## The total number of observations was  1299  with MLE Chi Square =  463.5  with prob <  8.1e-91 
## 
## Fit based upon off diagonal values = 0.84

Promax Rotation to Final Solution

principal(r=JoggleScores,nfactors=2,rotate="promax",scores=T)
## Principal Components Analysis
## Call: principal(r = JoggleScores, nfactors = 2, rotate = "promax", 
##     scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 PC1   PC2   h2   u2
## BARTaccuracy   0.26  0.14 0.12 0.88
## DSSTefficiency 0.81  0.06 0.68 0.32
## LOTefficiency  0.72  0.15 0.62 0.38
## PVTefficiency  0.68 -0.83 0.78 0.22
## AMefficiency   0.29  0.58 0.53 0.47
## NBACKaccuracy  0.19  0.46 0.30 0.70
## VOLTefficiency 0.63 -0.02 0.39 0.61
## MPTspeed       0.70 -0.10 0.46 0.54
## 
##                        PC1  PC2
## SS loadings           2.65 1.23
## Proportion Var        0.33 0.15
## Cumulative Var        0.33 0.48
## Proportion Explained  0.68 0.32
## Cumulative Proportion 0.68 1.00
## 
##  With component correlations of 
##      PC1  PC2
## PC1 1.00 0.33
## PC2 0.33 1.00
## 
## Test of the hypothesis that 2 components are sufficient.
## 
## The degrees of freedom for the null model are  28  and the objective function was  1.39
## The degrees of freedom for the model are 13  and the objective function was  0.36 
## The total number of observations was  1299  with MLE Chi Square =  463.5  with prob <  8.1e-91 
## 
## Fit based upon off diagonal values = 0.84

Correlations between Joggle Scores

zCor(JoggleScores)
##                BARTaccuracy DSSTefficiency LOTefficiency PVTefficiency
## BARTaccuracy    1.00         0.17***        0.18***       0.07**      
## DSSTefficiency  0.17***      1.00           0.61***       0.23***     
## LOTefficiency   0.18***      0.61***        1.00          0.15***     
## PVTefficiency   0.07**       0.23***        0.15***       1.00        
## AMefficiency    0.14***      0.36***        0.33***      -0.09**      
## NBACKaccuracy   0.11***      0.25***        0.26***      -0.02        
## VOLTefficiency  0.11***      0.39***        0.39***       0.17***     
## MPTspeed        0.14***      0.47***        0.38***       0.21***     
##                AMefficiency NBACKaccuracy VOLTefficiency MPTspeed
## BARTaccuracy    0.14***      0.11***       0.11***        0.14***
## DSSTefficiency  0.36***      0.25***       0.39***        0.47***
## LOTefficiency   0.33***      0.26***       0.39***        0.38***
## PVTefficiency  -0.09**      -0.02          0.17***        0.21***
## AMefficiency    1.00         0.14***       0.26***        0.26***
## NBACKaccuracy   0.14***      1.00          0.13***        0.15***
## VOLTefficiency  0.26***      0.13***       1.00           0.25***
## MPTspeed        0.26***      0.15***       0.25***        1.00   
## 
## n =  1299