The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
library("lme4")
## Loading required package: Matrix
model <- lmer(resp2 ~ elevation + slope + (1|stand))
model
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
## REML criterion at convergence: 81.9874
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 1.099
## Residual 1.165
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## -21.31463 0.02060 0.09511
summary(model)
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
##
## REML criterion at convergence: 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.65583 -0.62467 -0.01693 0.53669 1.41736
##
## Random effects:
## Groups Name Variance Std.Dev.
## stand (Intercept) 1.208 1.099
## Residual 1.358 1.165
## Number of obs: 20, groups: stand, 5
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -21.314628 6.602053 -3.228
## elevation 0.020600 0.004916 4.190
## slope 0.095105 0.016441 5.785
##
## Correlation of Fixed Effects:
## (Intr) elevtn
## elevation -0.991
## slope 0.049 -0.148
function1 <- function(nstand=5, nplot=4, b0=-1, b1=0.005, b2=0.1, sigma_s=2, sigma=1) {
stand <- rep(LETTERS[1:nstand], each = nplot)
standeff <- rep(rnorm(nstand, 0, sigma_s), each = nplot)
ploteff <- rnorm(nstand*nplot, 0, sigma)
elevation <- rep(runif(nstand, 1000, 1500), each = nplot)
slope <- runif(nstand*nplot, 2, 75)
resp2 <- b0 + b1*elevation + b2*slope + standeff + ploteff
fit2 <- lmer(resp2 ~ elevation + slope + (1|stand))
}
times <- 1000
set.seed(16)
result <- replicate(times, function1())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
library("purrr")
library("tidyr")
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:Matrix':
##
## expand
library(broom)
tidy(model, effects = "ran_pars", scales = "vcov")
## # A tibble: 2 x 3
## term group estimate
## <chr> <chr> <dbl>
## 1 var_(Intercept).stand stand 1.21
## 2 var_Observation.Residual Residual 1.36
head(map_dfr(result, broom::tidy, .id = "model", effects = "ran_pars"))
## # A tibble: 6 x 4
## model term group estimate
## <chr> <chr> <chr> <dbl>
## 1 1 sd_(Intercept).stand stand 1.10
## 2 1 sd_Observation.Residual Residual 1.17
## 3 2 sd_(Intercept).stand stand 2.36
## 4 2 sd_Observation.Residual Residual 0.975
## 5 3 sd_(Intercept).stand stand 1.62
## 6 3 sd_Observation.Residual Residual 1.05
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("forcats")
stand_sims <- c(5, 20, 100) %>%
set_names() %>%
map(~replicate (1000, function1(nstand = .x)))
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
stand_vars = stand_sims %>%
modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "stand_number") %>%
filter (group == "stand")
head(stand_vars)
## # A tibble: 6 x 4
## stand_number term group estimate
## <chr> <chr> <chr> <dbl>
## 1 5 var_(Intercept).stand stand 6.91
## 2 5 var_(Intercept).stand stand 1.92
## 3 5 var_(Intercept).stand stand 12.0
## 4 5 var_(Intercept).stand stand 6.84
## 5 5 var_(Intercept).stand stand 2.89
## 6 5 var_(Intercept).stand stand 2.52
stand_vars = mutate(stand_vars, stand_number = fct_inorder(stand_number))
add_prefix <- function(string) {
paste("Number of Stands:", string, sep = " ")
}
groupmed = stand_vars %>%
group_by(stand_number) %>%
summarise(mvar = median(estimate))
library("ggplot2")
ggplot(stand_vars, aes(x = estimate)) +
geom_density(fill = "orange", alpha = 0.25) +
facet_wrap(~stand_number, labeller = as_labeller(add_prefix)) +
geom_vline(aes(xintercept = 4, linetype = "True Variance"), size = 0.5) +
geom_vline(data = groupmed, aes(xintercept = mvar, linetype = "Median Variance"), size = 0.5) + theme_bw() +
scale_linetype_manual(name = "", values = c(2,1)) +
theme(legend.position = "bottom", legend.key.width = unit(.1, "cm")) +
labs(x = "Estimated Variance", y = "Probability Density")
coef <- result %>%
map_dfr(tidy, effects="fixed") %>%
filter(term %in% c("elevation", "slope"))
coef$sequence <- rep(1:times, each=2)
coefmed <- coef %>%
group_by(term) %>%
summarise(med=median(estimate))
f2 <- ggplot(coef, aes(sequence, estimate))+
geom_point(size=0.2)+
facet_wrap(~term)+
geom_hline(data=coefmed, aes(yintercept=med), size=0.4)+
labs(x="Sequence number", y="Estimated coefficients")+
theme_bw()
f2
#The model may not fit well in this case.