Variables

merged2 <- merged %>% 
           remove_rownames %>% 
           column_to_rownames(var="Nom_Barri") %>% 
           select("n.tot","pc.esp","pc.ext","pc.ue27-esp","pc.20.34","2019-2014","var20192014",
                  "hotel2019",
                  "alq.mq","alq.num","alq.pmq",
                  "tot_ann","pc.ent","pc.priv","pc.shared","pc.hotel","pm_ent","pm_priv","pm_sha","pm_hot",
                  "RFD.2017",
                  "tot.comp","perc.nou.comp","perc.prot.comp","perc.usat.comp",
                  "tot.m2","nou.m2","prot.m2","usat.m2",
                  "tot.eur","nou.eur","usat.eur",
                  "tot.eurm2","nou.eurm2","usat.eurm2",
                  "rest1614")

Standardizar los datos

df <- scale(merged2)

Calcular eigenvalues and eigenvectors

pca_result <- prcomp(merged2, scale = TRUE)

pca_result$center
##          n.tot         pc.esp         pc.ext    pc.ue27-esp       pc.20.34 
##   22607.643836      80.781048      13.404986       7.114347      18.988279 
##      2019-2014    var20192014      hotel2019         alq.mq        alq.num 
##     658.342466       5.214562     276.054795      69.992967     167.369863 
##        alq.pmq        tot_ann         pc.ent        pc.priv      pc.shared 
##      12.531159     279.835616      33.437569      60.914692       1.734542 
##       pc.hotel         pm_ent        pm_priv         pm_sha         pm_hot 
##       1.173470     160.829973      44.526768      46.970471     172.496888 
##       RFD.2017       tot.comp  perc.nou.comp perc.prot.comp perc.usat.comp 
##      93.671233     185.191781       7.687534       2.268758      91.924106 
##         tot.m2         nou.m2        prot.m2        usat.m2        tot.eur 
##      77.679909      59.242808      15.476027      77.344635     309.594521 
##        nou.eur       usat.eur      tot.eurm2      nou.eurm2     usat.eurm2 
##     260.815068     302.687671    3722.853425    2650.116438    3675.641096 
##       rest1614 
##       1.191781
pca_result$scale
##          n.tot         pc.esp         pc.ext    pc.ue27-esp       pc.20.34 
##   14753.886904       9.009606       6.720753       7.320092       3.873115 
##      2019-2014    var20192014      hotel2019         alq.mq        alq.num 
##    1490.085971      10.477120     490.230782      14.165945     159.168980 
##        alq.pmq        tot_ann         pc.ent        pc.priv      pc.shared 
##       4.260785     443.819033      18.180666      20.110450       6.114537 
##       pc.hotel         pm_ent        pm_priv         pm_sha         pm_hot 
##       1.943317     201.699239      16.003633     143.964167     403.002786 
##       RFD.2017       tot.comp  perc.nou.comp perc.prot.comp perc.usat.comp 
##      42.709775     148.403509      10.382977      17.543273      10.563166 
##         tot.m2         nou.m2        prot.m2        usat.m2        tot.eur 
##      18.930482      47.275532      32.108977      18.206886     183.338837 
##        nou.eur       usat.eur      tot.eurm2      nou.eurm2     usat.eurm2 
##     440.142831     171.131367    1266.180075    2861.379533    1234.737827 
##       rest1614 
##      26.158522
#pesos asignados a cada componente
pca_result$rotation[,1:5]
##                        PC1          PC2          PC3          PC4          PC5
## n.tot          -0.16516544 -0.165839329 -0.072038562  0.334558689 -0.167297172
## pc.esp          0.07599470  0.331308108 -0.054782766  0.251075796 -0.035081851
## pc.ext          0.03105891 -0.314671685  0.082044518 -0.196260332 -0.003665424
## pc.ue27-esp    -0.16425197 -0.248949015  0.031787245 -0.282641635  0.084738880
## pc.20.34       -0.08583139 -0.340682082  0.037270593 -0.214251697  0.160317616
## 2019-2014      -0.03502102  0.153801556 -0.117377009  0.352255049 -0.043349468
## var20192014     0.03301277  0.185838980 -0.041502116  0.126939300  0.300534766
## hotel2019      -0.18887244 -0.208009575 -0.104796987  0.158670246  0.100060310
## alq.mq         -0.22754241  0.166339818  0.008173313 -0.095235862  0.034205491
## alq.num        -0.20779800 -0.185054733 -0.106556103  0.252617998 -0.022163929
## alq.pmq        -0.20294583 -0.026599968 -0.034111306 -0.012805585 -0.302196639
## tot_ann        -0.17952423 -0.293003501 -0.084978732  0.045021902  0.105984946
## pc.ent         -0.19442100 -0.013809087 -0.183842820 -0.049777955  0.207942635
## pc.priv         0.11069835 -0.008341634  0.123138739  0.008440571 -0.398101238
## pc.shared       0.10549583 -0.035033834 -0.063445508  0.059203593 -0.057561324
## pc.hotel       -0.15673663 -0.137583846 -0.175465940  0.245346091  0.073329289
## pm_ent         -0.04660363  0.070758710 -0.091098809  0.070218576  0.367143934
## pm_priv        -0.18754587 -0.055917581 -0.126860693 -0.032514504 -0.175377880
## pm_sha         -0.10344544 -0.018258893 -0.184599738  0.013387924  0.010092399
## pm_hot         -0.13989583 -0.105123766 -0.193294600  0.101725303  0.128768854
## RFD.2017       -0.25739984  0.175795005 -0.012654108 -0.061983099 -0.006888339
## tot.comp       -0.11948666 -0.180544094  0.080464085  0.291724778 -0.151011643
## perc.nou.comp  -0.03396862  0.016511560  0.426409194  0.100255740  0.230261474
## perc.prot.comp  0.05498072  0.022842961 -0.057228399  0.041368954  0.408157724
## perc.usat.comp  0.02623529 -0.017647494 -0.419297757 -0.115240015 -0.285310167
## tot.m2         -0.23057978  0.222871621  0.023736532 -0.094810579 -0.045982239
## nou.m2         -0.16952372 -0.023361870  0.344677073  0.161646487 -0.065015572
## prot.m2        -0.05729853 -0.097723317  0.136191229  0.296339001  0.035089560
## usat.m2        -0.21419723  0.246623663 -0.005422952 -0.090155826  0.009813247
## tot.eur        -0.26271621  0.176743018  0.022473664 -0.110050900 -0.028557483
## nou.eur        -0.17582945  0.041184026  0.319908645  0.017128329 -0.065263513
## usat.eur       -0.26183963  0.185294292 -0.019531302 -0.109297374 -0.010190294
## tot.eurm2      -0.27722413  0.082152887 -0.027718557 -0.118810700 -0.010487385
## nou.eurm2      -0.18891270 -0.030710565  0.366458830  0.062040897 -0.039434919
## usat.eurm2     -0.27154347  0.081465550 -0.056930554 -0.117350018  0.001825782
## rest1614        0.02586620  0.170334210 -0.098818123  0.190711619  0.020547767
#results
pca_result$x[,1:5]
##                                                      PC1        PC2         PC3
## el Raval                                     -2.21781988 -7.5853853  0.10748785
## el Barri Gòtic                               -4.55381738 -7.6699178  3.12867967
## la Barceloneta                               -0.65477622 -4.3035726 -0.03159807
## Sant Pere, Santa Caterina i la Ribera        -3.41367711 -5.3290436  0.62605617
## el Fort Pienc                                -4.45136679 -0.6305147  3.74527767
## la Sagrada Família                           -1.50455362 -2.4112208 -2.95771166
## la Dreta de l'Eixample                       -8.15830760 -2.4781772 -1.84542961
## l'Antiga Esquerra de l'Eixample              -5.32705473 -2.1867419 -0.99663130
## la Nova Esquerra de l'Eixample               -2.47737844 -2.1388038 -0.48641626
## Sant Antoni                                  -2.82627843 -2.4568364 -2.66986105
## el Poble Sec                                 -1.80045866 -3.6358061 -0.74701136
## la Marina del Prat Vermell                    4.93743101  1.1477810 -1.60290881
## la Marina de Port                             2.20098729  0.1910154 -0.79039412
## la Font de la Guatlla                         0.52658321 -0.3374349 -1.03073285
## Hostafrancs                                  -0.68054547 -0.3450139  0.66479782
## la Bordeta                                    2.29056537  0.1711813 -1.22334883
## Sants - Badal                                 1.31515128 -0.2573923 -1.01509308
## Sants                                        -0.89417574 -0.8953334 -1.39329415
## les Corts                                    -3.25740109 -0.2500281  0.10058182
## la Maternitat i Sant Ramon                   -0.25181834  1.1051357 -1.88915801
## Pedralbes                                    -8.23713976  5.8705809  4.30956346
## Vallvidrera, el Tibidabo i les Planes        -1.87505308  3.6968273 -1.82921464
## Sarrià                                       -4.48321127  3.8873905  0.58646224
## les Tres Torres                              -5.16578899  5.3410948 -3.04261386
## Sant Gervasi - la Bonanova                   -4.58560748  4.0339119  1.00615965
## Sant Gervasi - Galvany                       -6.37111841  1.9026177  0.90184451
## el Putxet i el Farró                         -3.20490351  1.6771321  0.56011173
## Vallcarca i els Penitents                    -0.45271288  1.3738700  1.24541291
## el Coll                                       1.91430375  0.4209502  1.81286386
## la Salut                                     -0.53179698  1.1201427  0.71728609
## la Vila de Gràcia                            -5.51133746 -3.3123719 -2.54174924
## el Camp d'en Grassot i Gràcia Nova           -1.94699724 -0.4117966 -1.73331629
## el Baix Guinardó                              0.56396120 -0.1151044 -1.85176487
## Can Baró                                      1.90690534  0.3917359 -1.41935262
## el Guinardó                                   0.40039022 -0.2493064  0.03512734
## la Font d'en Fargues                          1.40497089  2.5560642 -0.48211289
## el Carmel                                     1.26617170 -1.0593382  2.25580290
## la Teixonera                                  2.31699472  0.4054950  2.72518547
## Sant Genís dels Agudells                      1.92069393  0.8411061  1.60580764
## Montbau                                       2.70928019  0.5045632  2.91183187
## la Vall d'Hebron                              1.88671727  1.4065643  2.34013339
## la Clota                                      2.79819589  2.3395017  4.07553145
## Horta                                         1.31387691  0.3821931  1.93627822
## Vilapicina i la Torre Llobeta                 2.65372409  0.3594988 -0.88298030
## Porta                                         2.59825653  0.1010059 -0.45865650
## el Turó de la Peira                           2.75895722 -1.1815280 -0.46561571
## Can Peguera                                   8.28817088 -1.0813320 -1.06025360
## la Guineueta                                  2.10737069  1.1485762  0.59509497
## Canyelles                                     3.53105131  1.5292577 -0.82216751
## les Roquetes                                  3.30341126 -1.1026646 -0.81268583
## Verdun                                        3.06996929 -0.9245743  0.88417519
## la Prosperitat                                3.80210913 -0.4350234 -0.94386465
## la Trinitat Nova                              4.62607326 -1.1847987 -0.24069889
## Torre Baró                                    4.23582770  0.8564354 -0.83539834
## Ciutat Meridiana                              4.83366773 -2.0286426  0.09674048
## Vallbona                                      4.60278256  1.3454405 -0.57980929
## la Trinitat Vella                             3.00950384 -1.1855088 -0.41899855
## Baró de Viver                                 0.16627403  2.5317964 -1.88245301
## el Bon Pastor                                 2.86327754  0.1737218  0.54864977
## Sant Andreu                                   0.20443536  0.2035818  0.65864860
## la Sagrera                                    1.53706386  0.2957190 -1.29498841
## el Congrés i els Indians                      1.43344182  0.4245311 -0.81915009
## Navas                                         0.01044098  1.0797189  0.42179284
## el Camp de l'Arpa del Clot                   -1.47389422 -1.1900235  1.03075362
## el Clot                                      -0.70841712 -0.1030109  0.70781531
## el Parc i la Llacuna del Poblenou             0.62773793  0.1120644 -1.31043391
## la Vila Olímpica del Poblenou                -2.43384160  3.0837628 -2.61369960
## el Poblenou                                  -2.21190306  0.4220057  0.28570587
## Diagonal Mar i el Front Marítim del Poblenou -3.11967329  3.4004125 -3.68459889
## el Besòs i el Maresme                         0.05908273 -1.8071444  3.53800604
## Provençals del Poblenou                      -0.64730176  1.7707613  1.69360904
## Sant Martí de Provençals                      0.98818999  0.7686598  1.96920355
## la Verneda i la Pau                           2.44612769 -0.0904135  0.87768768
##                                                      PC4          PC5
## el Raval                                     -0.91683045  0.003098849
## el Barri Gòtic                               -6.91432145  1.194943029
## la Barceloneta                               -3.22337930  0.651548911
## Sant Pere, Santa Caterina i la Ribera        -1.58602386  0.766795838
## el Fort Pienc                                 1.24680975 -0.558077084
## la Sagrada Família                            0.33210317  0.335828278
## la Dreta de l'Eixample                        3.84440945  1.673358045
## l'Antiga Esquerra de l'Eixample               1.15845848  0.925894752
## la Nova Esquerra de l'Eixample                1.93885361 -0.474265343
## Sant Antoni                                   1.92459402  1.127065038
## el Poble Sec                                 -0.44040460 -0.047860804
## la Marina del Prat Vermell                    0.71509993  7.983034462
## la Marina de Port                             0.38892031 -1.729473267
## la Font de la Guatlla                        -0.84866366 -0.133449992
## Hostafrancs                                  -0.37700371  0.829156316
## la Bordeta                                   -0.24981546 -0.826014431
## Sants - Badal                                -0.03353059 -0.579062583
## Sants                                         1.79858286 -0.458490621
## les Corts                                     3.04382268 -0.755684860
## la Maternitat i Sant Ramon                   -0.68361462 -1.021201428
## Pedralbes                                    -2.61870709 -1.631413731
## Vallvidrera, el Tibidabo i les Planes        -2.48293332 -0.574746665
## Sarrià                                       -0.86467290 -1.605311260
## les Tres Torres                              -2.34291146 -0.274360019
## Sant Gervasi - la Bonanova                   -0.14921898  0.761487986
## Sant Gervasi - Galvany                        0.94145069  0.102599552
## el Putxet i el Farró                          0.22305315  0.635918066
## Vallcarca i els Penitents                    -0.43784807 -0.015112481
## el Coll                                       0.04388191  0.566130145
## la Salut                                     -0.63205442 -0.978741993
## la Vila de Gràcia                             1.39182375  0.815252458
## el Camp d'en Grassot i Gràcia Nova            0.64299864 -0.776919234
## el Baix Guinardó                             -0.40821607 -0.933183940
## Can Baró                                     -1.25574447  0.201771023
## el Guinardó                                   1.00121970 -1.257915273
## la Font d'en Fargues                         -0.34730885  0.405111585
## el Carmel                                     1.71359311  0.500075141
## la Teixonera                                  0.26710688  0.520843522
## Sant Genís dels Agudells                     -0.37397620  0.138259074
## Montbau                                       0.78960835  0.407619081
## la Vall d'Hebron                              0.29223681  1.096853985
## la Clota                                      0.50742802  5.582202880
## Horta                                         1.45191585 -0.863207082
## Vilapicina i la Torre Llobeta                -0.26918382 -1.451014640
## Porta                                         0.76137100 -0.954521414
## el Turó de la Peira                           0.50006370 -1.138094600
## Can Peguera                                   1.03685588 -0.114391257
## la Guineueta                                 -0.04227403 -1.287608479
## Canyelles                                    -0.64955288 -0.913733061
## les Roquetes                                 -0.83437983 -0.743572856
## Verdun                                       -0.37521142 -1.064907215
## la Prosperitat                                0.21212401 -1.325718908
## la Trinitat Nova                             -1.14659149 -1.240003226
## Torre Baró                                   -0.69587892  1.195711886
## Ciutat Meridiana                             -1.36448472 -1.367130804
## Vallbona                                     -0.69139983  1.865415851
## la Trinitat Vella                            -1.50922441 -0.595754430
## Baró de Viver                                -2.45045224  2.969396514
## el Bon Pastor                                 1.38583189 -0.621346783
## Sant Andreu                                   3.39963841 -1.293323760
## la Sagrera                                    0.10117023 -1.185715660
## el Congrés i els Indians                     -0.43950063 -1.222697851
## Navas                                        -0.29426049 -1.366141714
## el Camp de l'Arpa del Clot                    1.77622961 -0.072459812
## el Clot                                       1.06450468 -1.479004971
## el Parc i la Llacuna del Poblenou            -0.32051611  0.358175045
## la Vila Olímpica del Poblenou                -1.98062502  0.462997573
## el Poblenou                                   1.58792560  0.909620697
## Diagonal Mar i el Front Marítim del Poblenou  0.03531732  1.499472791
## el Besòs i el Maresme                         1.75523340  0.845119073
## Provençals del Poblenou                       0.04891843 -0.104573852
## Sant Martí de Provençals                      0.28354260 -0.678359074
## la Verneda i la Pau                           0.64401749 -1.616190985

Var Exp

VE <- pca_result$sdev^2
PVE <- VE / sum(VE)
round(PVE, 2)
##  [1] 0.29 0.16 0.08 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01
## [16] 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [31] 0.00 0.00 0.00 0.00 0.00 0.00

vis eigen

fviz_eig(pca_result)

Plot

biplot(pca_result, scale = 0)

graph pca

fviz_pca_ind(pca_result,
             col.ind = "cos2", 
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE     
             )

graph var

fviz_pca_var(pca_result,
             col.var = "contrib", 
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE   
             )

graph biplot

fviz_pca_biplot(pca_result, repel = TRUE,
                col.var = "#2E9FDF", # Variables color
                col.ind = "#696969"  # Individuals color
                )