Error in eval(expr, envir, enclos): object 'DistProTop50' not found
State_Name District_Name Crop_Year Season
Length:246091 Length:246091 Min. :1997 Length:246091
Class :character Class :character 1st Qu.:2002 Class :character
Mode :character Mode :character Median :2006 Mode :character
Mean :2006
3rd Qu.:2010
Max. :2015
Crop Area Production
Length:246091 Min. : 0 Min. :0.000e+00
Class :character 1st Qu.: 80 1st Qu.:7.700e+01
Mode :character Median : 582 Median :6.910e+02
Mean : 12003 Mean :5.737e+05
3rd Qu.: 4392 3rd Qu.:6.769e+03
Max. :8580100 Max. :1.251e+09
[1] "Andaman and Nicobar Islands" "Andhra Pradesh"
[3] "Arunachal Pradesh" "Assam"
[5] "Bihar" "Chandigarh"
[7] "Chhattisgarh" "Dadra and Nagar Haveli"
[9] "Goa" "Gujarat"
[11] "Haryana" "Himachal Pradesh"
[13] "Jammu and Kashmir " "Jharkhand"
[15] "Karnataka" "Kerala"
[17] "Madhya Pradesh" "Maharashtra"
[19] "Manipur" "Meghalaya"
[21] "Mizoram" "Nagaland"
[23] "Odisha" "Puducherry"
[25] "Punjab" "Rajasthan"
[27] "Sikkim" "Tamil Nadu"
[29] "Telangana " "Tripura"
[31] "Uttar Pradesh" "Uttarakhand"
[33] "West Bengal"
[1] "NICOBARS" "NORTH AND MIDDLE ANDAMAN"
[3] "SOUTH ANDAMANS" "ANANTAPUR"
[5] "CHITTOOR" "EAST GODAVARI"
[7] "GUNTUR" "KADAPA"
[9] "KRISHNA" "KURNOOL"
[11] "PRAKASAM" "SPSR NELLORE"
[13] "SRIKAKULAM" "VISAKHAPATANAM"
[15] "VIZIANAGARAM" "WEST GODAVARI"
[17] "ANJAW" "CHANGLANG"
[19] "DIBANG VALLEY" "EAST KAMENG"
[21] "EAST SIANG" "KURUNG KUMEY"
[23] "LOHIT" "LONGDING"
[25] "LOWER DIBANG VALLEY" "LOWER SUBANSIRI"
[27] "NAMSAI" "PAPUM PARE"
[29] "TAWANG" "TIRAP"
[31] "UPPER SIANG" "UPPER SUBANSIRI"
[33] "WEST KAMENG" "WEST SIANG"
[35] "BAKSA" "BARPETA"
[37] "BONGAIGAON" "CACHAR"
[39] "CHIRANG" "DARRANG"
[41] "DHEMAJI" "DHUBRI"
[43] "DIBRUGARH" "DIMA HASAO"
[45] "GOALPARA" "GOLAGHAT"
[47] "HAILAKANDI" "JORHAT"
[49] "KAMRUP" "KAMRUP METRO"
[51] "KARBI ANGLONG" "KARIMGANJ"
[53] "KOKRAJHAR" "LAKHIMPUR"
[55] "MARIGAON" "NAGAON"
[57] "NALBARI" "SIVASAGAR"
[59] "SONITPUR" "TINSUKIA"
[61] "UDALGURI" "ARARIA"
[63] "ARWAL" "AURANGABAD"
[65] "BANKA" "BEGUSARAI"
[67] "BHAGALPUR" "BHOJPUR"
[69] "BUXAR" "DARBHANGA"
[71] "GAYA" "GOPALGANJ"
[73] "JAMUI" "JEHANABAD"
[75] "KAIMUR (BHABUA)" "KATIHAR"
[77] "KHAGARIA" "KISHANGANJ"
[79] "LAKHISARAI" "MADHEPURA"
[81] "MADHUBANI" "MUNGER"
[83] "MUZAFFARPUR" "NALANDA"
[85] "NAWADA" "PASHCHIM CHAMPARAN"
[87] "PATNA" "PURBI CHAMPARAN"
[89] "PURNIA" "ROHTAS"
[91] "SAHARSA" "SAMASTIPUR"
[93] "SARAN" "SHEIKHPURA"
[95] "SHEOHAR" "SITAMARHI"
[97] "SIWAN" "SUPAUL"
[99] "VAISHALI" "CHANDIGARH"
[101] "BALOD" "BALODA BAZAR"
[103] "BALRAMPUR" "BASTAR"
[105] "BEMETARA" "BIJAPUR"
[107] "BILASPUR" "DANTEWADA"
[109] "DHAMTARI" "DURG"
[111] "GARIYABAND" "JANJGIR-CHAMPA"
[113] "JASHPUR" "KABIRDHAM"
[115] "KANKER" "KONDAGAON"
[117] "KORBA" "KOREA"
[119] "MAHASAMUND" "MUNGELI"
[121] "NARAYANPUR" "RAIGARH"
[123] "RAIPUR" "RAJNANDGAON"
[125] "SUKMA" "SURAJPUR"
[127] "SURGUJA" "DADRA AND NAGAR HAVELI"
[129] "NORTH GOA" "SOUTH GOA"
[131] "AHMADABAD" "AMRELI"
[133] "ANAND" "BANAS KANTHA"
[135] "BHARUCH" "BHAVNAGAR"
[137] "DANG" "DOHAD"
[139] "GANDHINAGAR" "JAMNAGAR"
[141] "JUNAGADH" "KACHCHH"
[143] "KHEDA" "MAHESANA"
[145] "NARMADA" "NAVSARI"
[147] "PANCH MAHALS" "PATAN"
[149] "PORBANDAR" "RAJKOT"
[151] "SABAR KANTHA" "SURAT"
[153] "SURENDRANAGAR" "TAPI"
[155] "VADODARA" "VALSAD"
[157] "AMBALA" "BHIWANI"
[159] "FARIDABAD" "FATEHABAD"
[161] "GURGAON" "HISAR"
[163] "JHAJJAR" "JIND"
[165] "KAITHAL" "KARNAL"
[167] "KURUKSHETRA" "MAHENDRAGARH"
[169] "MEWAT" "PALWAL"
[171] "PANCHKULA" "PANIPAT"
[173] "REWARI" "ROHTAK"
[175] "SIRSA" "SONIPAT"
[177] "YAMUNANAGAR" "CHAMBA"
[179] "HAMIRPUR" "KANGRA"
[181] "KINNAUR" "KULLU"
[183] "LAHUL AND SPITI" "MANDI"
[185] "SHIMLA" "SIRMAUR"
[187] "SOLAN" "UNA"
[189] "ANANTNAG" "BADGAM"
[191] "BANDIPORA" "BARAMULLA"
[193] "DODA" "GANDERBAL"
[195] "JAMMU" "KARGIL"
[197] "KATHUA" "KISHTWAR"
[199] "KULGAM" "KUPWARA"
[201] "LEH LADAKH" "POONCH"
[203] "PULWAMA" "RAJAURI"
[205] "RAMBAN" "REASI"
[207] "SAMBA" "SHOPIAN"
[209] "SRINAGAR" "UDHAMPUR"
[211] "BOKARO" "CHATRA"
[213] "DEOGHAR" "DHANBAD"
[215] "DUMKA" "EAST SINGHBUM"
[217] "GARHWA" "GIRIDIH"
[219] "GODDA" "GUMLA"
[221] "HAZARIBAGH" "JAMTARA"
[223] "KHUNTI" "KODERMA"
[225] "LATEHAR" "LOHARDAGA"
[227] "PAKUR" "PALAMU"
[229] "RAMGARH" "RANCHI"
[231] "SAHEBGANJ" "SARAIKELA KHARSAWAN"
[233] "SIMDEGA" "WEST SINGHBHUM"
[235] "BAGALKOT" "BANGALORE RURAL"
[237] "BELGAUM" "BELLARY"
[239] "BENGALURU URBAN" "BIDAR"
[241] "CHAMARAJANAGAR" "CHIKBALLAPUR"
[243] "CHIKMAGALUR" "CHITRADURGA"
[245] "DAKSHIN KANNAD" "DAVANGERE"
[247] "DHARWAD" "GADAG"
[249] "GULBARGA" "HASSAN"
[251] "HAVERI" "KODAGU"
[253] "KOLAR" "KOPPAL"
[255] "MANDYA" "MYSORE"
[257] "RAICHUR" "RAMANAGARA"
[259] "SHIMOGA" "TUMKUR"
[261] "UDUPI" "UTTAR KANNAD"
[263] "YADGIR" "ALAPPUZHA"
[265] "ERNAKULAM" "IDUKKI"
[267] "KANNUR" "KASARAGOD"
[269] "KOLLAM" "KOTTAYAM"
[271] "KOZHIKODE" "MALAPPURAM"
[273] "PALAKKAD" "PATHANAMTHITTA"
[275] "THIRUVANANTHAPURAM" "THRISSUR"
[277] "WAYANAD" "AGAR MALWA"
[279] "ALIRAJPUR" "ANUPPUR"
[281] "ASHOKNAGAR" "BALAGHAT"
[283] "BARWANI" "BETUL"
[285] "BHIND" "BHOPAL"
[287] "BURHANPUR" "CHHATARPUR"
[289] "CHHINDWARA" "DAMOH"
[291] "DATIA" "DEWAS"
[293] "DHAR" "DINDORI"
[295] "GUNA" "GWALIOR"
[297] "HARDA" "HOSHANGABAD"
[299] "INDORE" "JABALPUR"
[301] "JHABUA" "KATNI"
[303] "KHANDWA" "KHARGONE"
[305] "MANDLA" "MANDSAUR"
[307] "MORENA" "NARSINGHPUR"
[309] "NEEMUCH" "PANNA"
[311] "RAISEN" "RAJGARH"
[313] "RATLAM" "REWA"
[315] "SAGAR" "SATNA"
[317] "SEHORE" "SEONI"
[319] "SHAHDOL" "SHAJAPUR"
[321] "SHEOPUR" "SHIVPURI"
[323] "SIDHI" "SINGRAULI"
[325] "TIKAMGARH" "UJJAIN"
[327] "UMARIA" "VIDISHA"
[329] "AHMEDNAGAR" "AKOLA"
[331] "AMRAVATI" "BEED"
[333] "BHANDARA" "BULDHANA"
[335] "CHANDRAPUR" "DHULE"
[337] "GADCHIROLI" "GONDIA"
[339] "HINGOLI" "JALGAON"
[341] "JALNA" "KOLHAPUR"
[343] "LATUR" "MUMBAI"
[345] "NAGPUR" "NANDED"
[347] "NANDURBAR" "NASHIK"
[349] "OSMANABAD" "PALGHAR"
[351] "PARBHANI" "PUNE"
[353] "RAIGAD" "RATNAGIRI"
[355] "SANGLI" "SATARA"
[357] "SINDHUDURG" "SOLAPUR"
[359] "THANE" "WARDHA"
[361] "WASHIM" "YAVATMAL"
[363] "BISHNUPUR" "CHANDEL"
[365] "CHURACHANDPUR" "IMPHAL EAST"
[367] "IMPHAL WEST" "SENAPATI"
[369] "TAMENGLONG" "THOUBAL"
[371] "UKHRUL" "EAST GARO HILLS"
[373] "EAST JAINTIA HILLS" "EAST KHASI HILLS"
[375] "NORTH GARO HILLS" "RI BHOI"
[377] "SOUTH GARO HILLS" "SOUTH WEST GARO HILLS"
[379] "SOUTH WEST KHASI HILLS" "WEST GARO HILLS"
[381] "WEST JAINTIA HILLS" "WEST KHASI HILLS"
[383] "AIZAWL" "CHAMPHAI"
[385] "KOLASIB" "LAWNGTLAI"
[387] "LUNGLEI" "MAMIT"
[389] "SAIHA" "SERCHHIP"
[391] "DIMAPUR" "KIPHIRE"
[393] "KOHIMA" "LONGLENG"
[395] "MOKOKCHUNG" "MON"
[397] "PEREN" "PHEK"
[399] "TUENSANG" "WOKHA"
[401] "ZUNHEBOTO" "ANUGUL"
[403] "BALANGIR" "BALESHWAR"
[405] "BARGARH" "BHADRAK"
[407] "BOUDH" "CUTTACK"
[409] "DEOGARH" "DHENKANAL"
[411] "GAJAPATI" "GANJAM"
[413] "JAGATSINGHAPUR" "JAJAPUR"
[415] "JHARSUGUDA" "KALAHANDI"
[417] "KANDHAMAL" "KENDRAPARA"
[419] "KENDUJHAR" "KHORDHA"
[421] "KORAPUT" "MALKANGIRI"
[423] "MAYURBHANJ" "NABARANGPUR"
[425] "NAYAGARH" "NUAPADA"
[427] "PURI" "RAYAGADA"
[429] "SAMBALPUR" "SONEPUR"
[431] "SUNDARGARH" "KARAIKAL"
[433] "MAHE" "PONDICHERRY"
[435] "YANAM" "AMRITSAR"
[437] "BARNALA" "BATHINDA"
[439] "FARIDKOT" "FATEHGARH SAHIB"
[441] "FAZILKA" "FIROZEPUR"
[443] "GURDASPUR" "HOSHIARPUR"
[445] "JALANDHAR" "KAPURTHALA"
[447] "LUDHIANA" "MANSA"
[449] "MOGA" "MUKTSAR"
[451] "NAWANSHAHR" "PATHANKOT"
[453] "PATIALA" "RUPNAGAR"
[455] "S.A.S NAGAR" "SANGRUR"
[457] "TARN TARAN" "AJMER"
[459] "ALWAR" "BANSWARA"
[461] "BARAN" "BARMER"
[463] "BHARATPUR" "BHILWARA"
[465] "BIKANER" "BUNDI"
[467] "CHITTORGARH" "CHURU"
[469] "DAUSA" "DHOLPUR"
[471] "DUNGARPUR" "GANGANAGAR"
[473] "HANUMANGARH" "JAIPUR"
[475] "JAISALMER" "JALORE"
[477] "JHALAWAR" "JHUNJHUNU"
[479] "JODHPUR" "KARAULI"
[481] "KOTA" "NAGAUR"
[483] "PALI" "PRATAPGARH"
[485] "RAJSAMAND" "SAWAI MADHOPUR"
[487] "SIKAR" "SIROHI"
[489] "TONK" "UDAIPUR"
[491] "EAST DISTRICT" "NORTH DISTRICT"
[493] "SOUTH DISTRICT" "WEST DISTRICT"
[495] "ARIYALUR" "COIMBATORE"
[497] "CUDDALORE" "DHARMAPURI"
[499] "DINDIGUL" "ERODE"
[501] "KANCHIPURAM" "KANNIYAKUMARI"
[503] "KARUR" "KRISHNAGIRI"
[505] "MADURAI" "NAGAPATTINAM"
[507] "NAMAKKAL" "PERAMBALUR"
[509] "PUDUKKOTTAI" "RAMANATHAPURAM"
[511] "SALEM" "SIVAGANGA"
[513] "THANJAVUR" "THE NILGIRIS"
[515] "THENI" "THIRUVALLUR"
[517] "THIRUVARUR" "TIRUCHIRAPPALLI"
[519] "TIRUNELVELI" "TIRUPPUR"
[521] "TIRUVANNAMALAI" "TUTICORIN"
[523] "VELLORE" "VILLUPURAM"
[525] "VIRUDHUNAGAR" "ADILABAD"
[527] "HYDERABAD" "KARIMNAGAR"
[529] "KHAMMAM" "MAHBUBNAGAR"
[531] "MEDAK" "NALGONDA"
[533] "NIZAMABAD" "RANGAREDDI"
[535] "WARANGAL" "DHALAI"
[537] "GOMATI" "KHOWAI"
[539] "NORTH TRIPURA" "SEPAHIJALA"
[541] "SOUTH TRIPURA" "UNAKOTI"
[543] "WEST TRIPURA" "AGRA"
[545] "ALIGARH" "ALLAHABAD"
[547] "AMBEDKAR NAGAR" "AMETHI"
[549] "AMROHA" "AURAIYA"
[551] "AZAMGARH" "BAGHPAT"
[553] "BAHRAICH" "BALLIA"
[555] "BANDA" "BARABANKI"
[557] "BAREILLY" "BASTI"
[559] "BIJNOR" "BUDAUN"
[561] "BULANDSHAHR" "CHANDAULI"
[563] "CHITRAKOOT" "DEORIA"
[565] "ETAH" "ETAWAH"
[567] "FAIZABAD" "FARRUKHABAD"
[569] "FATEHPUR" "FIROZABAD"
[571] "GAUTAM BUDDHA NAGAR" "GHAZIABAD"
[573] "GHAZIPUR" "GONDA"
[575] "GORAKHPUR" "HAPUR"
[577] "HARDOI" "HATHRAS"
[579] "JALAUN" "JAUNPUR"
[581] "JHANSI" "KANNAUJ"
[583] "KANPUR DEHAT" "KANPUR NAGAR"
[585] "KASGANJ" "KAUSHAMBI"
[587] "KHERI" "KUSHI NAGAR"
[589] "LALITPUR" "LUCKNOW"
[591] "MAHARAJGANJ" "MAHOBA"
[593] "MAINPURI" "MATHURA"
[595] "MAU" "MEERUT"
[597] "MIRZAPUR" "MORADABAD"
[599] "MUZAFFARNAGAR" "PILIBHIT"
[601] "RAE BARELI" "RAMPUR"
[603] "SAHARANPUR" "SAMBHAL"
[605] "SANT KABEER NAGAR" "SANT RAVIDAS NAGAR"
[607] "SHAHJAHANPUR" "SHAMLI"
[609] "SHRAVASTI" "SIDDHARTH NAGAR"
[611] "SITAPUR" "SONBHADRA"
[613] "SULTANPUR" "UNNAO"
[615] "VARANASI" "ALMORA"
[617] "BAGESHWAR" "CHAMOLI"
[619] "CHAMPAWAT" "DEHRADUN"
[621] "HARIDWAR" "NAINITAL"
[623] "PAURI GARHWAL" "PITHORAGARH"
[625] "RUDRA PRAYAG" "TEHRI GARHWAL"
[627] "UDAM SINGH NAGAR" "UTTAR KASHI"
[629] "24 PARAGANAS NORTH" "24 PARAGANAS SOUTH"
[631] "BANKURA" "BARDHAMAN"
[633] "BIRBHUM" "COOCHBEHAR"
[635] "DARJEELING" "DINAJPUR DAKSHIN"
[637] "DINAJPUR UTTAR" "HOOGHLY"
[639] "HOWRAH" "JALPAIGURI"
[641] "MALDAH" "MEDINIPUR EAST"
[643] "MEDINIPUR WEST" "MURSHIDABAD"
[645] "NADIA" "PURULIA"
[1] 2000 2001 2002 2003 2004 2005 2006 2010 1997 1998 1999 2007 2008 2009 2011
[16] 2012 2013 2014 2015
[1] "Kharif " "Whole Year " "Autumn " "Rabi " "Summer "
[6] "Winter "
[1] "Arecanut" "Other Kharif pulses"
[3] "Rice" "Banana"
[5] "Cashewnut" "Coconut "
[7] "Dry ginger" "Sugarcane"
[9] "Sweet potato" "Tapioca"
[11] "Black pepper" "Dry chillies"
[13] "other oilseeds" "Turmeric"
[15] "Maize" "Moong(Green Gram)"
[17] "Urad" "Arhar/Tur"
[19] "Groundnut" "Sunflower"
[21] "Bajra" "Castor seed"
[23] "Cotton(lint)" "Horse-gram"
[25] "Jowar" "Korra"
[27] "Ragi" "Tobacco"
[29] "Gram" "Wheat"
[31] "Masoor" "Sesamum"
[33] "Linseed" "Safflower"
[35] "Onion" "other misc. pulses"
[37] "Samai" "Small millets"
[39] "Coriander" "Potato"
[41] "Other Rabi pulses" "Soyabean"
[43] "Beans & Mutter(Vegetable)" "Bhindi"
[45] "Brinjal" "Citrus Fruit"
[47] "Cucumber" "Grapes"
[49] "Mango" "Orange"
[51] "other fibres" "Other Fresh Fruits"
[53] "Other Vegetables" "Papaya"
[55] "Pome Fruit" "Tomato"
[57] "Rapeseed &Mustard" "Mesta"
[59] "Cowpea(Lobia)" "Lemon"
[61] "Pome Granet" "Sapota"
[63] "Cabbage" "Peas (vegetable)"
[65] "Niger seed" "Bottle Gourd"
[67] "Sannhamp" "Varagu"
[69] "Garlic" "Ginger"
[71] "Oilseeds total" "Pulses total"
[73] "Jute" "Peas & beans (Pulses)"
[75] "Blackgram" "Paddy"
[77] "Pineapple" "Barley"
[79] "Khesari" "Guar seed"
[81] "Moth" "Other Cereals & Millets"
[83] "Cond-spcs other" "Turnip"
[85] "Carrot" "Redish"
[87] "Arcanut (Processed)" "Atcanut (Raw)"
[89] "Cashewnut Processed" "Cashewnut Raw"
[91] "Cardamom" "Rubber"
[93] "Bitter Gourd" "Drum Stick"
[95] "Jack Fruit" "Snak Guard"
[97] "Pump Kin" "Tea"
[99] "Coffee" "Cauliflower"
[101] "Other Citrus Fruit" "Water Melon"
[103] "Total foodgrain" "Kapas"
[105] "Colocosia" "Lentil"
[107] "Bean" "Jobster"
[109] "Perilla" "Rajmash Kholar"
[111] "Ricebean (nagadal)" "Ash Gourd"
[113] "Beet Root" "Lab-Lab"
[115] "Ribed Guard" "Yam"
[117] "Apple" "Peach"
[119] "Pear" "Plums"
[121] "Litchi" "Ber"
[123] "Other Dry Fruit" "Jute & mesta"
This Flexdashboard is based on the data provided on Indian Agriculture by open data platform–
The data on agriculture contains data from 1997-2015. As the data source doesn’t explain about how variables like Production and Cultivation Area is measured, the interpretation of data analysis should be done with caution.
There are many missing values in data. The missing values are replaced by zeros for smooth mathematical operations on the data.
*Author have not cross checked the validity of data. There may be misreported and not reported data which can affect data analysis presented in the dashboard.
Dr AMITA SHARMA Post Doc from Erasmus University, Rotterdam, the Netherlands Assistant Professor Institute of Agri Business Management, Swami Keshwanand Rajasthan Agricultural University, Bikaner (Raj),India Blog: www.thinkingai.in
ARUN KUMAR SHARMA Machine Learning Enthusiast 13 Years of Financial Services Marketing Exp Blogger, Writer and Machine Learning Consutlant Certified Business Analytics Professional Certified in Predictive Analytics, Indian Institute of Mnamagement,IIMx Bangalore Certified in Macroeconomic Forecasting, International Monetary Fund(IMFx) Certified in Text Analytics, openSAP Email: aks10000@gmail.com Tel:9468567418
---
title: "ML Dashboard"
output:
flexdashboard::flex_dashboard:
theme: cerulean
orientation: rows
vertical_layout: fill
social: ["twitter","facebook", "menu"]
source_code: embed
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(error = TRUE)
library(plotly)
library(flexdashboard)
library(knitr)
library(DT)
library(Rcpp)
library(rpivotTable)
library(ggplot2)
library(dplyr)
library(openintro)
library(highcharter)
library(plotrix)
library(tis)
library(sp)
library(maptools)
library(rgeos)
library(ggmap)
library(scales)
library(RColorBrewer)
library(gganimate)
library(gapminder)
library(gifski)
library(gridExtra)
set.seed(8888)
```
```{r}
data<-read.csv("agriculture.csv", header=TRUE, stringsAsFactors = FALSE)
```
```{r}
mycolors=c("blue","darkgreen","pink","darkorange","red","grey","yellow","brown")
```
Interactive Data Visualization {data-navmenu="Project Sections"}
================================================================
Row
------------------------------------------------------------------------
### INDIAN AGRICULTURE 1997-2015
```{r}
valueBox(paste("INDIAN AGRICULTURE 1997-2015"),icon="fa-pencil")
```
### Total Production from 1997 to 2015
```{r}
data[is.na(data)]=0
valueBox(round(sum(data$Production/1000000000, na.rm=TRUE),digits = 0),
icon="fa-random",
caption = "Total Production (in INR Billon) 1997-2015",
color="info")
```
### Total Area under Cultivation
```{r}
valueBox(round(sum(data$Area/1000000, na.rm=TRUE),digits = 0),
icon="fa-random",
color="success",
caption="Cultivation Area (in Million Ha) 1997-2015")
```
### Crop Production Per Unit Area of Cultivation
```{r}
valueBox(round(((sum(data$Production, na.rm=TRUE))/(sum(data$Area, na.rm=TRUE))),digits = 2),
icon="fa-random",
color="success",
caption="Agriculuture Production INR Per Unit Area 1997-2015")
```
### Agriculture Growth 1997-2015
```{r}
YearProduction=as.data.frame(aggregate(data$Production, by=list(data$Crop_Year),FUN=sum, na.rm=TRUE))
YearProduction$Year=YearProduction$Group.1
YearProduction$Production=YearProduction$x
YearProduction$Group.1=NULL
YearProduction$x=NULL
GrowthRateProd=round(mean(100*diff(log(YearProduction$Production))),digits = 2)
valueBox(round(GrowthRateProd,digits = 2),
icon="fa-random",
color="success",
caption="Agriculture Production Mean Growth Rate 1997-2015")
```
### Cultivation Area Growth 1997-2015
```{r}
YearArea=as.data.frame(aggregate(data$Area, by=list(data$Crop_Year),FUN=sum, na.rm=TRUE))
YearArea$Year=YearArea$Group.1
YearArea$Area=YearArea$x
YearArea$Group.1=NULL
YearArea$x=NULL
GrowthRateArea=round(mean(100*diff(log(YearArea$Area))),digits = 2)
valueBox(round(GrowthRateArea,digits = 2),
icon="fa-random",
color="success",
caption="Cultivation Area Mean Growth Rate 1997-2015")
```
Row
---------------------------------
### Production Across 1997-2015
```{r}
g1=ggplot(YearProduction,aes(x=Year,y=Production))+geom_line()
ggplotly(g1)
```
### Cultivation Area across 1997-2015
```{r}
g2=ggplot(YearArea,aes(x=Year,y=Area))+geom_line()
fig2=ggplotly(g2)
fig2
```
MAP {data-navmenu="Project Sections"}
======================================
Column {.tabset}
---------------------------------------
### MAP PRODUCTION STATEWISE
```{r}
conts <-data%>%group_by(State_Name)%>%summarise(totalProd=sum(Production,na.rm = TRUE))
conts=as.data.frame(conts)
conts$State_Name=toupper(conts$State_Name)
shp <- rgdal::readOGR('C:\\Users\\arunkumar\\Desktop\\R\\indiaMap\\India Shape\\india_st.shp',verbose = FALSE)
shp.f <- fortify(shp, region = "STATE")
conts[is.na(conts$totalProd)]=0
merge.shp.coef<-merge(shp.f,conts, by.x="id", by.y="State_Name", all.x=TRUE)
final.plot<-merge.shp.coef[order(merge.shp.coef$order), ]
cnames <- aggregate(cbind(long, lat) ~ id, data=final.plot, FUN=function(x) mean(range(x)))
require(ggplot2)
require(plotly)
g1=ggplot(final.plot)+geom_polygon(final.plot,mapping=aes(x = long, y = lat, group = group, fill = totalProd),color = "green", size = 0.25)+coord_map()+scale_fill_gradient(name="TotalProduction",limits=c(0,100000000000), low="white",high="green")+labs(title="Total Agriculture Production Statewise 1997-2015")+xlab('Longitude')+ylab('Latitude')
g1
```
### MAP CULTIVATION AREA STATEWISE
```{r}
conts1 <-data%>%group_by(State_Name)%>%summarise(totalArea=sum(Area,na.rm = TRUE))
conts1=as.data.frame(conts1)
shp <- rgdal::readOGR('C:\\Users\\arunkumar\\Desktop\\R\\indiaMap\\India Shape\\india_st.shp',verbose = FALSE)
shp.f <- fortify(shp, region = "STATE")
conts1[is.na(conts1$totalProd)]=0
conts1$State_Name=toupper(conts1$State_Name)
merge.shp.coef1<-merge(shp.f,conts1, by.x="id", by.y="State_Name", all.x=TRUE)
merge.shp.coef1[is.na(merge.shp.coef1)]=0
final.plot1<-merge.shp.coef1[order(merge.shp.coef1$order), ]
cnames1 <- aggregate(cbind(long, lat) ~ id, data=final.plot1, FUN=function(x) mean(range(x)))
require(ggplot2)
require(plotly)
g2=ggplot()+geom_polygon(final.plot1,mapping=aes(x = long, y = lat, group = group, fill = totalArea),color = "green", size = 0.25)+coord_map()+scale_fill_gradient(name="Total Cultivation Area",limits=c(0,1000000000), low="white",high="brown")+labs(title="Total Cultivation Area Statewise 1997-2015")+xlab('Longitude')+ylab('Latitude')
g2
```
Animated Graph {data-navmenu="Project Sections"}
================================================
Column{.tabset}
----------------------------------
### THE PRODUCTION STATEWISE Time Lapse
```{r }
state1=data[data$State_Name=="Andaman and Nicobar Islands",]
Year_Prod1=aggregate(state1$Production,by=list(state1$Crop_Year), FUN=sum)
UYear1=unique(Year_Prod1$Group.1)
state2=data[data$State_Name=="Andhra Pradesh",]
Year_Prod2=aggregate(state2$Production,by=list(state2$Crop_Year), FUN=sum)
UYear2=unique(Year_Prod2$Group.1)
state3=data[data$State_Name=="Arunachal Pradesh",]
Year_Prod3=aggregate(state3$Production,by=list(state3$Crop_Year), FUN=sum)
UYear3=unique(Year_Prod3$Group.1)
state4=data[data$State_Name=="Assam",]
Year_Prod4=aggregate(state4$Production,by=list(state4$Crop_Year), FUN=sum)
UYear4=unique(Year_Prod4$Group.1)
state5=data[data$State_Name=="Bihar",]
Year_Prod5=aggregate(state5$Production,by=list(state5$Crop_Year), FUN=sum)
UYear5=unique(Year_Prod5$Group.1)
state6=data[data$State_Name=="Chandigarh",]
Year_Prod6=aggregate(state6$Production,by=list(state6$Crop_Year), FUN=sum)
UYear6=unique(Year_Prod6$Group.1)
state7=data[data$State_Name=="Chhattisgarh",]
Year_Prod7=aggregate(state7$Production,by=list(state7$Crop_Year), FUN=sum)
UYear7=unique(Year_Prod7$Group.1)
state8=data[data$State_Name=="Dadra and Nagar Haveli",]
Year_Prod8=aggregate(state8$Production,by=list(state8$Crop_Year), FUN=sum)
UYear8=unique(Year_Prod8$Group.1)
state9=data[data$State_Name=="Goa",]
Year_Prod9=aggregate(state9$Production,by=list(state9$Crop_Year), FUN=sum)
UYear9=unique(Year_Prod9$Group.1)
state10=data[data$State_Name=="Gujarat",]
Year_Prod10=aggregate(state10$Production,by=list(state10$Crop_Year), FUN=sum)
UYear10=unique(Year_Prod10$Group.1)
state11=data[data$State_Name=="Haryana",]
Year_Prod11=aggregate(state11$Production,by=list(state11$Crop_Year), FUN=sum)
UYear11=unique(Year_Prod11$Group.1)
state12=data[data$State_Name=="Himachal Pradesh",]
Year_Prod12=aggregate(state12$Production,by=list(state12$Crop_Year), FUN=sum)
UYear12=unique(Year_Prod12$Group.1)
state13=data[data$State_Name=="Jammu and Kashmir ",]
Year_Prod13=aggregate(state13$Production,by=list(state13$Crop_Year), FUN=sum)
UYear13=unique(Year_Prod13$Group.1)
state14=data[data$State_Name=="Jharkhand",]
Year_Prod14=aggregate(state14$Production,by=list(state14$Crop_Year), FUN=sum)
UYear14=unique(Year_Prod14$Group.1)
state15=data[data$State_Name=="Karnataka",]
Year_Prod15=aggregate(state15$Production,by=list(state15$Crop_Year), FUN=sum)
UYear15=unique(Year_Prod15$Group.1)
state16=data[data$State_Name=="Kerala",]
Year_Prod16=aggregate(state16$Production,by=list(state16$Crop_Year), FUN=sum)
UYear16=unique(Year_Prod16$Group.1)
state17=data[data$State_Name=="Madhya Pradesh",]
Year_Prod17=aggregate(state17$Production,by=list(state17$Crop_Year), FUN=sum)
UYear17=unique(Year_Prod17$Group.1)
state18=data[data$State_Name=="Maharashtra",]
Year_Prod18=aggregate(state18$Production,by=list(state18$Crop_Year), FUN=sum)
UYear18=unique(Year_Prod18$Group.1)
state19=data[data$State_Name=="Manipur",]
Year_Prod19=aggregate(state19$Production,by=list(state19$Crop_Year), FUN=sum)
UYear19=unique(Year_Prod19$Group.1)
state20=data[data$State_Name=="Meghalaya",]
Year_Prod20=aggregate(state20$Production,by=list(state20$Crop_Year), FUN=sum)
UYear20=unique(Year_Prod20$Group.1)
state21=data[data$State_Name=="Mizoram",]
Year_Prod21=aggregate(state21$Production,by=list(state21$Crop_Year), FUN=sum)
UYear21=unique(Year_Prod21$Group.1)
state22=data[data$State_Name=="Nagaland",]
Year_Prod22=aggregate(state22$Production,by=list(state22$Crop_Year), FUN=sum)
UYear22=unique(Year_Prod22$Group.1)
state23=data[data$State_Name=="Odisha",]
Year_Prod23=aggregate(state23$Production,by=list(state23$Crop_Year), FUN=sum)
UYear23=unique(Year_Prod23$Group.1)
state24=data[data$State_Name=="Puducherry",]
Year_Prod24=aggregate(state24$Production,by=list(state24$Crop_Year), FUN=sum)
UYear24=unique(Year_Prod24$Group.1)
state25=data[data$State_Name=="Punjab",]
Year_Prod25=aggregate(state25$Production,by=list(state25$Crop_Year), FUN=sum)
UYear25=unique(Year_Prod25$Group.1)
state26=data[data$State_Name=="Rajasthan",]
Year_Prod26=aggregate(state26$Production,by=list(state26$Crop_Year), FUN=sum)
UYear26=unique(Year_Prod26$Group.1)
state27=data[data$State_Name=="Sikkim",]
Year_Prod27=aggregate(state27$Production,by=list(state27$Crop_Year), FUN=sum)
UYear27=unique(Year_Prod27$Group.1)
state28=data[data$State_Name=="Tamil Nadu",]
Year_Prod28=aggregate(state28$Production,by=list(state28$Crop_Year), FUN=sum)
UYear28=unique(Year_Prod28$Group.1)
state29=data[data$State_Name=="Telangana ",]
Year_Prod29=aggregate(state29$Production,by=list(state29$Crop_Year), FUN=sum)
UYear29=unique(Year_Prod29$Group.1)
state30=data[data$State_Name=="Tripura",]
Year_Prod30=aggregate(state30$Production,by=list(state30$Crop_Year), FUN=sum)
UYear30=unique(Year_Prod30$Group.1)
state31=data[data$State_Name=="Uttar Pradesh",]
Year_Prod31=aggregate(state31$Production,by=list(state31$Crop_Year), FUN=sum)
UYear31=unique(Year_Prod31$Group.1)
state32=data[data$State_Name=="Uttarakhand",]
Year_Prod32=aggregate(state32$Production,by=list(state32$Crop_Year), FUN=sum)
UYear32=unique(Year_Prod32$Group.1)
state33=data[data$State_Name=="West Bengal",]
Year_Prod33=aggregate(state33$Production,by=list(state33$Crop_Year), FUN=sum)
UYear33=unique(Year_Prod33$Group.1)
ListUYear=list(UYear1,UYear2,UYear3,UYear4,UYear5,UYear6,UYear7,UYear8,UYear9,UYear10,UYear11,UYear12,UYear13,UYear14,UYear15,UYear16,UYear17,UYear18,UYear19,UYear20,UYear21,UYear22,UYear23,UYear24,UYear25,UYear26,UYear27,UYear28,UYear29,UYear30,UYear31,UYear32,UYear33)
VectorYear=seq.int(1997,2015,1)
VectorYear=rep(VectorYear,33)
VectorYear=as.data.frame(VectorYear)
StateName=unique(data$State_Name)
StateName=rep(StateName,19)
StateName=as.data.frame(StateName)
newdf=cbind.data.frame(StateName,VectorYear)
Prod=aggregate(data$Production, by=list(data$State_Name,data$Crop_Year), FUN=sum)
Area=aggregate(data$Area, by=list(data$State_Name,data$Crop_Year), FUN=sum)
Prod$Group.1=toupper(Prod$Group.1)
Area$Group.1=toupper(Area$Group.1)
newdf$StateName=toupper(newdf$StateName)
newdf$StateYear=paste(newdf$StateName, newdf$VectorYear)
Prod$StateYear=paste(Prod$Group.1,Prod$Group.2)
Area$StateYear=paste(Area$Group.1,Area$Group.2)
newdf$Prod <- Prod$x[match(newdf$StateYear, Prod$StateYear)]
newdf$Prod[is.na(newdf$Prod)]=0
newdf$Area=Area$x[match(newdf$StateYear,Area$StateYear)]
newdf$Area[is.na(newdf$Area)]=0
newdf$Prod=round(newdf$Prod,digits = 0)
newdf$Area=round(newdf$Area, digits = 0)
newdf$StateName=as.factor(newdf$StateName)
newdf=newdf[order(newdf$StateName),]
newdf=newdf[order(newdf$VectorYear),]
```
```{r, dev="png", interval=1}
theme_set(theme_bw())
newdf$VectorYear=round(newdf$VectorYear,digits = 0)
p2=ggplot(newdf,aes(x=StateName, y=Prod, label=StateName,color=StateName))+
geom_point(stat = 'identity', size=5, shape=3)+geom_segment(aes(
y=6.5*10^9,
x=StateName,
yend=Prod,
xend=StateName))+
geom_text(color="black",size=3)+
coord_flip()+
theme(legend.position = "none")+
labs(title="Year: {frame_time}",x="State Name",y="Prod")+
transition_time(VectorYear)+
ease_aes("linear")
animate(p2)
```
### Cultivation Area Statewise Timelapse (1997-2015)
```{r}
p3=ggplot(newdf,aes(x=StateName, y=Area, label=StateName,color=StateName))+
geom_point(stat = 'identity', size=5, shape=3)+geom_segment(aes(
y=80000000,
x=StateName,
yend=Area,
xend=StateName))+
geom_text(color="black",size=3)+
coord_flip()+
theme(legend.position = "none")+
labs(title="Year: {frame_time}",x="State Name",y="Area")+
transition_time(VectorYear)+
ease_aes("linear")
animate(p3)
```
Column {.tabset}
-------------------------------------
### AGRICULTURE PRODUCTION STATEWISE without AP, Kerala & Tamilnadu 1997-2015
```{r}
newdfwoKTN=newdf[!(newdf$StateName=="KERALA"),]
newdfwoKTN=newdf[!(newdf$StateName=="TAMIL NADU"),]
newdfwoKTN=newdf[!(newdf$StateName=="ANDHRA PRADESH"),]
p4=ggplot(newdfwoKTN,aes(x=StateName, y=Prod, label=StateName,color=StateName))+
geom_point(stat = 'identity', size=5, shape=3)+geom_segment(aes(
y=1000000,
x=StateName,
yend=Prod,
xend=StateName))+
geom_text(color="black",size=3)+
coord_flip()+
theme(legend.position = "none")+
labs(title="Year: {frame_time}",x="State Name",y="Prod")+
transition_time(VectorYear)+
ease_aes("linear")
animate(p4)
```
### Cultivation Area Statewise without West Bengal 1997-2015
```{r}
newdfwoWB=newdf[!(newdf$StateName=="WEST BENGAL"),]
p5=ggplot(newdfwoWB,aes(x=StateName, y=Area, label=StateName,color=StateName))+
geom_point(stat = 'identity', size=5, shape=3)+geom_segment(aes(
y=1000000,
x=StateName,
yend=Area,
xend=StateName))+
geom_text(color="black",size=3)+
coord_flip()+
theme(legend.position = "none")+
labs(title="Year: {frame_time}",x="State Name",y="Area")+
transition_time(VectorYear)+
ease_aes("linear")
animate(p5)
```
Cropwise Production {data-navmenu="Project Sections"}
==========================================
Column{.tabset}
---------------------------------------------
### CROPWISE PRODUCTION (1997-2015)
```{r}
CropSum=aggregate(data$Production, by=list(data$Crop), FUN=sum)
CropSum$Crop=CropSum$Group.1
CropSum$Prod=CropSum$x
CropSum$Group.1=NULL
CropSum$x=NULL
CropSum[is.na(CropSum)]=0
CropSum=CropSum[order(-CropSum$Prod),]
CropSum[CropSum$Prod==0,]=NA
CropSum=na.omit(CropSum)
CropSum=CropSum[1:10,]
pie3D(x=CropSum$Prod,labels=CropSum$Crop,explode=0.3,main = "Crop Wise Production 1997-2015", col = rainbow(length(CropSum$Crop)))
```
### CROPWISE CULTIVATION AREA 1997-2015
```{r}
CropSumA=aggregate(data$Area, by=list(data$Crop), FUN=sum)
CropSumA$Crop=CropSumA$Group.1
CropSumA$Area=CropSumA$x
CropSumA$Group.1=NULL
CropSumA$x=NULL
CropSumA[is.na(CropSumA)]=0
CropSumA=CropSumA[order(-CropSumA$Area),]
CropSumA[CropSumA$Area==0,]=NA
CropSumA=na.omit(CropSumA)
CropSumA=CropSumA[1:10,]
pie3D(x=CropSumA$Area, labels=CropSumA$Crop,explode=0.3, main = "Crop Wise Cultivation Area 1997-2015", col = rainbow(length(CropSumA$Crop)),radius = 1)
```
Crop Type Production & Area {data-navmenu="Project Sections"}
==============================================================
Column {.tabset}
----------------------------------------------------------
### Production Vs Season 1997-2015
```{r}
CropType=aggregate(data$Production, by=list(data$Season), FUN=sum, na.rm=TRUE)
CropType$Crop=CropType$Group.1
CropType$Prod=CropType$x
CropType$Group.1=NULL
CropType$x=NULL
CropType=CropType[order(-CropType$Prod),]
pie(x=CropType$Prod, labels=CropType$Crop, main = "Production Vs Season 1997-2015", col = rainbow(length(CropType$Crop)),radius = 1)
```
### Cultivation Area Vs Season 1997-2015
```{r}
CropTypeA=aggregate(data$Area, by=list(data$Season), FUN=sum, na.rm=TRUE)
CropTypeA$Crop=CropTypeA$Group.1
CropTypeA$Area=CropTypeA$x
CropTypeA$Group.1=NULL
CropTypeA$x=NULL
CropTypeA=CropTypeA[order(-CropTypeA$Area),]
pie(x=CropTypeA$Area, labels=CropTypeA$Crop, main = "Cultiavation Area Vs Season 1997-2015", col = rainbow(length(CropTypeA$Crop)),radius = 1)
```
Top Districts Production {data-navmenu="Project Sections"}
===========================================================
### Districtwise Production
```{r}
DistPro=aggregate(data$Production, by=list(data$District_Name), FUN=sum, na.rm=TRUE)
DistPro$District=DistPro$Group.1
DistPro$Prod=DistPro$x
DistPro$Group.1=NULL
DistPro$x=NULL
DistTop=DistProTop50$District
DistPro=DistPro[order(-DistPro$Prod),]
DistPro=DistPro[!(DistPro$Prod==0),]
DistProTop50=DistPro[1:50,]
ggplot(DistProTop50, aes(x=reorder(District,-Prod), y=Prod,fill=as.factor(District)))+geom_bar(stat = "identity")+geom_text(aes(label=round(Prod,digits = 0)), hjust=-0.01, color="black", size=1.5)+coord_flip()+theme(legend.position ="none",text = element_text(size=7),axis.text.x = element_text(angle=45, vjust=1))
```
Data Table {data-navmenu="Project Sections"}
============================================
### Data Table
```{r}
datatable(final.plot,
caption="Statewise Agriculture Production (Value) 1997-2015",
rownames = T,
filter="top",
options = list(pageLength=25))
```
Summary Report {data-navmenu="Project Sections"}
=========================================================================
Column {.tabset}
-----------------------------------------
```{r}
summary(data)
```
Column
------------------------------------
```{r}
unique(data$State_Name)
unique(data$District_Name)
unique(data$Crop_Year)
unique(data$Season)
unique(data$Crop)
```
Acknowledgement & Disclaimer
=========================================
Column
---------------------------------------
### ACKNOWLEDGEMENT & DISCLAIMER
* This Flexdashboard is based on the data provided on Indian Agriculture
by open data platform--
* The data on agriculture contains data from 1997-2015. As the data source doesn't explain about how variables like Production and Cultivation Area is measured, the interpretation of data analysis should be done with caution.
* There are many missing values in data. The missing values are replaced by zeros for smooth mathematical operations on the data.
*Author have not cross checked the validity of data. There may be misreported and not reported data which can affect data analysis presented in the dashboard.
* The dashboard should be used only for "how to make a dashboard" purpose, not for agriculture education due to data source limitations.
About Us {data-navmenu="Project Sections"}
==============================================
### DASHBOARD PREPARED BY (CONTACT FOR MACHINE LEARNING TRAINING, COACHING & CONSULTING)
* Dr AMITA SHARMA
Post Doc from Erasmus University, Rotterdam, the Netherlands
Assistant Professor
Institute of Agri Business Management,
Swami Keshwanand Rajasthan Agricultural University,
Bikaner (Raj),India
Blog: www.thinkingai.in
* ARUN KUMAR SHARMA
Machine Learning Enthusiast
13 Years of Financial Services Marketing Exp
Blogger, Writer and Machine Learning Consutlant
Certified Business Analytics Professional
Certified in Predictive Analytics, Indian Institute of Mnamagement,IIMx Bangalore
Certified in Macroeconomic Forecasting, International Monetary Fund(IMFx)
Certified in Text Analytics, openSAP
Email: aks10000@gmail.com
Tel:9468567418