Ringkasan

Row

terkonfirmasi

17.582

active

618

recovered

150

death

227

Row

Sebaran mahasiswa aktif di tiap Program Studi

Perbandingan

Column

Kasus baru per hari

Cases distribution by type

Map

World map of cases (use + and - icons to zoom in/out)

About

The Coronavirus Dashboard: the case of Belgium

This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this dashboard by Rami Krispin.

Code

The code behind this dashboard is available on GitHub.

Data

The input data for this dashboard is the dataset available from the {coronavirus} R package. Make sure to download the development version of the package to have the latest data:

install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")

The data and dashboard are refreshed on a daily basis.

The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus repository.

Contact

For any question or feedback, you can contact me. More information about this dashboard can be found in this article.

Update

The data is as of Monday March 23, 2020 and the dashboard has been updated on Thursday March 26, 2020.

Go back to www.statsandr.com (blog) or www.antoinesoetewey.com (personal website).

Tentang Kami

Subbagian Registrasi dan Statistik

This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this dashboard by Rami Krispin.

Data

Data yang digunakan pada dashboard ini diambil dari data yang ditampilkan pada regstat.netlify.com.

The data and dashboard are refreshed on a daily basis.

The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus repository.

Contact

For any question or feedback, you can contact me. More information about this dashboard can be found in this article.

Pembaharuan Data

Data yang disajikan diambil data setiap 6 bulan (per semester), kecuali data Sumber Daya Manusia (Dosen dan Tenaga Kependidikan) yang selalu diperbaharui ketika terjadi perubahan

Data yang lebih lengkap bisa diakses di regstat.netlify.com (blog).

---
title: "Untirta dalam Data"
author: "Registrasi dan Statistik"
output:
  flexdashboard::flex_dashboard:
    orientation: rows
    source_code: embed
    vertical_layout: fill
  html_document:
    df_print: paged
---

```{r setup, include=FALSE}
#------------------ Packages ------------------
library(flexdashboard)
# install.packages("devtools")
# devtools::install_github("RamiKrispin/coronavirus")
library(coronavirus)
data(coronavirus)
# update_datasets()
# View(coronavirus)

`%>%` <- magrittr::`%>%`
#------------------ Parameters ------------------
# Set colors
# https://www.w3.org/TR/css-color-3/#svg-color
confirmed_color <- "purple"
active_color <- "#1f77b4"
recovered_color <- "forestgreen"
death_color <- "red"
#------------------ Data ------------------
df <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::filter(Country.Region == "Indonesia") %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%  # ifelse(is.na(recovered), 0, recovered) - 
  dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
  dplyr::arrange(-confirmed) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
  dplyr::mutate(country = trimws(country)) %>%
  dplyr::mutate(country = factor(country, levels = country))

df_daily <- coronavirus %>%
  dplyr::filter(Country.Region == "Indonesia") %>%
  dplyr::group_by(date, type) %>%
  dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  dplyr::arrange(date) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(active = confirmed - death) %>% #- recovered
  dplyr::mutate(
    confirmed_cum = cumsum(confirmed),
    death_cum = cumsum(death),
    #recovered_cum = cumsum(recovered),
    active_cum = cumsum(active)
  )

df1 <- coronavirus %>% dplyr::filter(date == max(date))
```

Ringkasan
=======================================================================

Row {data-width=400}
-----------------------------------------------------------------------

### terkonfirmasi {.value-box}

```{r}

valueBox(
  #value = paste(format(sum(df$confirmed), big.mark = ","), "", sep = " "),
  value = paste(format(17582, big.mark = "."), "", sep = " "),
  caption = "Mahasiswa Aktif",
  icon = "fas fa-university",
  color = "purple"
)
```


### active {.value-box}

```{r}
valueBox(
  value = paste(format(618, big.mark = "."), "", sep = " "),
  caption = "Dosen PNS", icon = "fas fa-ambulance",
  color = active_color
)
```

### recovered {.value-box}

```{r}
valueBox(
  value = paste(format(150, big.mark = "."), "", sep = " "),
  caption = "Dosen non PNS", icon = "fas fa-ambulance",
  color = recovered_color
)
```

### death {.value-box}

```{r}

valueBox(
  value = paste(format(227, big.mark = "."), "", sep = " "),
  caption = "Tenaga Kependidikan",
  icon = "fas fa-heart-broken",
  color = death_color
)
```


Row
-----------------------------------------------------------------------

### **Sebaran mahasiswa aktif di tiap Program Studi**
    
```{r}
plotly::plot_ly(data = df_daily) %>%
  plotly::add_trace(
    x = ~date,
    y = ~active_cum,
    type = "scatter",
    mode = "lines+markers",
    name = "Aktif",
    line = list(color = active_color),
    marker = list(color = active_color)
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~death_cum,
    type = "scatter",
    mode = "lines+markers",
    name = "Meninggal",
    line = list(color = death_color),
    marker = list(color = death_color)
  ) %>%
  plotly::add_annotations(
    x = as.Date("2020-03-02"),
    y = 1,
    text = paste("Kasus Pertama"),
    xref = "x",
    yref = "y",
    arrowhead = 5,
    arrowhead = 3,
    arrowsize = 1,
    showarrow = TRUE,
    ax = -10,
    ay = -90
  ) %>%
  plotly::add_annotations(
    x = as.Date("2020-03-11"),
    y = 3,
    text = paste("Kematian Pertama"),
    xref = "x",
    yref = "y",
    arrowhead = 5,
    arrowhead = 3,
    arrowsize = 1,
    showarrow = TRUE,
    ax = -90,
    ay = -90
  ) %>%
  plotly::layout(
    title = "",
    yaxis = list(title = "Banyaknya kasus (kumulatif)"),
    xaxis = list(title = "Tanggal"),
    legend = list(x = 0.1, y = 0.9),
    hovermode = "compare"
  )
```

Perbandingan
=======================================================================


Column {data-width=400}
-------------------------------------


### **Kasus baru per hari**
    
```{r}
daily_confirmed <- coronavirus %>%
  dplyr::filter(type == "confirmed") %>%
  dplyr::filter(date >= "2020-02-29") %>%
  dplyr::mutate(country = Country.Region) %>%
  dplyr::group_by(date, country) %>%
  dplyr::summarise(total = sum(cases)) %>%
  dplyr::ungroup() %>%
  tidyr::pivot_wider(names_from = country, values_from = total)

#----------------------------------------
# Plotting the data

daily_confirmed %>%
  plotly::plot_ly() %>%
  plotly::add_trace(
    x = ~date,
    y = ~Belgium,
    type = "scatter",
    mode = "lines+markers",
    name = "Belgium"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~France,
    type = "scatter",
    mode = "lines+markers",
    name = "France"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~Spain,
    type = "scatter",
    mode = "lines+markers",
    name = "Spain"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~Italy,
    type = "scatter",
    mode = "lines+markers",
    name = "Italy"
  ) %>%
  plotly::layout(
    title = "",
    legend = list(x = 0.1, y = 0.9),
    yaxis = list(title = "Number of new cases"),
    xaxis = list(title = "Date"),
    # paper_bgcolor = "black",
    # plot_bgcolor = "black",
    # font = list(color = 'white'),
    hovermode = "compare",
    margin = list(
      # l = 60,
      # r = 40,
      b = 10,
      t = 10,
      pad = 2
    )
  )
```
 
### **Cases distribution by type**

```{r daily_summary}
df_EU <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::filter(Country.Region == "Belgium" |
    Country.Region == "France" |
    Country.Region == "Italy" |
    Country.Region == "Spain") %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>% #- ifelse(is.na(recovered), 0, recovered) 
  dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
  dplyr::arrange(confirmed) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
  dplyr::mutate(country = trimws(country)) %>%
  dplyr::mutate(country = factor(country, levels = country))

plotly::plot_ly(
  data = df_EU,
  x = ~country,
  y = ~unrecovered,
  # text =  ~ confirmed,
  # textposition = 'auto',
  type = "bar",
  name = "Active",
  marker = list(color = active_color)
) %>%
  plotly::add_trace(
    y = ~death,
    # text =  ~ death,
    # textposition = 'auto',
    name = "Death",
    marker = list(color = death_color)
  ) %>%
  plotly::layout(
    barmode = "stack",
    yaxis = list(title = "Total cases"),
    xaxis = list(title = ""),
    hovermode = "compare",
    margin = list(
      # l = 60,
      # r = 40,
      b = 10,
      t = 10,
      pad = 2
    )
  )
```


Map
=======================================================================

### **World map of cases** (*use + and - icons to zoom in/out*)

```{r}
# map tab added by Art Steinmetz
library(leaflet)
library(leafpop)
library(purrr)
cv_data_for_plot <- coronavirus %>%
  # dplyr::filter(Country.Region == "Belgium") %>%
  dplyr::filter(cases > 0) %>%
  dplyr::group_by(Country.Region, Province.State, Lat, Long, type) %>%
  dplyr::summarise(cases = sum(cases)) %>%
  dplyr::mutate(log_cases = 2 * log(cases)) %>%
  dplyr::ungroup()
cv_data_for_plot.split <- cv_data_for_plot %>% split(cv_data_for_plot$type)
pal <- colorFactor(c("orange", "red", "green"), domain = c("confirmed", "death", "recovered"))
map_object <- leaflet() %>% addProviderTiles(providers$Stamen.Toner)
names(cv_data_for_plot.split) %>%
  purrr::walk(function(df) {
    map_object <<- map_object %>%
      addCircleMarkers(
        data = cv_data_for_plot.split[[df]],
        lng = ~Long, lat = ~Lat,
                         label=~as.character(cases),
        color = ~ pal(type),
        stroke = FALSE,
        fillOpacity = 0.8,
        radius = ~log_cases,
        popup = leafpop::popupTable(cv_data_for_plot.split[[df]],
          feature.id = FALSE,
          row.numbers = FALSE,
          zcol = c("type", "cases", "Country.Region", "Province.State")
        ),
        group = df,
        clusterOptions = markerClusterOptions(removeOutsideVisibleBounds = F),
        labelOptions = labelOptions(
          noHide = F,
          direction = "auto"
        )
      )
  })

map_object %>%
  addLayersControl(
    overlayGroups = names(cv_data_for_plot.split),
    options = layersControlOptions(collapsed = FALSE)
  )
```





About
=======================================================================

**The Coronavirus Dashboard: the case of Belgium**

This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this [dashboard](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} by Rami Krispin.

**Code**

The code behind this dashboard is available on [GitHub](https://github.com/AntoineSoetewey/coronavirus_dashboard){target="_blank"}.

**Data**

The input data for this dashboard is the dataset available from the [`{coronavirus}`](https://github.com/RamiKrispin/coronavirus){target="_blank"} R package. Make sure to download the development version of the package to have the latest data:

```
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
```

The data and dashboard are refreshed on a daily basis.

The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus [repository](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.

**Contact**

For any question or feedback, you can [contact me](https://www.statsandr.com/contact/). More information about this dashboard can be found in this [article](https://www.statsandr.com/blog/how-to-create-a-simple-coronavirus-dashboard-specific-to-your-country-in-r/).

**Update**

The data is as of `r format(max(coronavirus$date), "%A %B %d, %Y")` and the dashboard has been updated on `r format(Sys.time(), "%A %B %d, %Y")`.



*Go back to [www.statsandr.com](https://www.statsandr.com/) (blog) or [www.antoinesoetewey.com](https://www.antoinesoetewey.com/) (personal website)*.


Tentang Kami
=======================================================================

**Subbagian Registrasi dan Statistik**

This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this [dashboard](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} by Rami Krispin.

**Data**

Data yang digunakan pada *dashboard* ini diambil dari data yang ditampilkan pada [regstat.netlify.com](https://regstat.netlify.com/){target="_blank"}.


The data and dashboard are refreshed on a daily basis.

The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus [repository](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.

**Contact**

For any question or feedback, you can [contact me](https://www.statsandr.com/contact/). More information about this dashboard can be found in this [article](https://www.statsandr.com/blog/how-to-create-a-simple-coronavirus-dashboard-specific-to-your-country-in-r/).

**Pembaharuan Data**

Data yang disajikan diambil data setiap 6 bulan (per semester), kecuali data Sumber Daya Manusia (Dosen dan Tenaga Kependidikan) yang selalu diperbaharui ketika terjadi perubahan



*Data yang lebih lengkap bisa diakses di [regstat.netlify.com](https://www.statsandr.com/) (blog)*.