The Coronavirus Dashboard: the case of Belgium
This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this dashboard by Rami Krispin.
Code
The code behind this dashboard is available on GitHub.
Data
The input data for this dashboard is the dataset available from the {coronavirus} R package. Make sure to download the development version of the package to have the latest data:
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
The data and dashboard are refreshed on a daily basis.
The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus repository.
Contact
For any question or feedback, you can contact me. More information about this dashboard can be found in this article.
Update
The data is as of Monday March 23, 2020 and the dashboard has been updated on Thursday March 26, 2020.
Go back to www.statsandr.com (blog) or www.antoinesoetewey.com (personal website).
Subbagian Registrasi dan Statistik
This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this dashboard by Rami Krispin.
Data
Data yang digunakan pada dashboard ini diambil dari data yang ditampilkan pada regstat.netlify.com.
The data and dashboard are refreshed on a daily basis.
The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus repository.
Contact
For any question or feedback, you can contact me. More information about this dashboard can be found in this article.
Pembaharuan Data
Data yang disajikan diambil data setiap 6 bulan (per semester), kecuali data Sumber Daya Manusia (Dosen dan Tenaga Kependidikan) yang selalu diperbaharui ketika terjadi perubahan
Data yang lebih lengkap bisa diakses di regstat.netlify.com (blog).
---
title: "Untirta dalam Data"
author: "Registrasi dan Statistik"
output:
flexdashboard::flex_dashboard:
orientation: rows
source_code: embed
vertical_layout: fill
html_document:
df_print: paged
---
```{r setup, include=FALSE}
#------------------ Packages ------------------
library(flexdashboard)
# install.packages("devtools")
# devtools::install_github("RamiKrispin/coronavirus")
library(coronavirus)
data(coronavirus)
# update_datasets()
# View(coronavirus)
`%>%` <- magrittr::`%>%`
#------------------ Parameters ------------------
# Set colors
# https://www.w3.org/TR/css-color-3/#svg-color
confirmed_color <- "purple"
active_color <- "#1f77b4"
recovered_color <- "forestgreen"
death_color <- "red"
#------------------ Data ------------------
df <- coronavirus %>%
# dplyr::filter(date == max(date)) %>%
dplyr::filter(Country.Region == "Indonesia") %>%
dplyr::group_by(Country.Region, type) %>%
dplyr::summarise(total = sum(cases)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>% # ifelse(is.na(recovered), 0, recovered) -
dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
dplyr::arrange(-confirmed) %>%
dplyr::ungroup() %>%
dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
dplyr::mutate(country = trimws(country)) %>%
dplyr::mutate(country = factor(country, levels = country))
df_daily <- coronavirus %>%
dplyr::filter(Country.Region == "Indonesia") %>%
dplyr::group_by(date, type) %>%
dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
dplyr::arrange(date) %>%
dplyr::ungroup() %>%
dplyr::mutate(active = confirmed - death) %>% #- recovered
dplyr::mutate(
confirmed_cum = cumsum(confirmed),
death_cum = cumsum(death),
#recovered_cum = cumsum(recovered),
active_cum = cumsum(active)
)
df1 <- coronavirus %>% dplyr::filter(date == max(date))
```
Ringkasan
=======================================================================
Row {data-width=400}
-----------------------------------------------------------------------
### terkonfirmasi {.value-box}
```{r}
valueBox(
#value = paste(format(sum(df$confirmed), big.mark = ","), "", sep = " "),
value = paste(format(17582, big.mark = "."), "", sep = " "),
caption = "Mahasiswa Aktif",
icon = "fas fa-university",
color = "purple"
)
```
### active {.value-box}
```{r}
valueBox(
value = paste(format(618, big.mark = "."), "", sep = " "),
caption = "Dosen PNS", icon = "fas fa-ambulance",
color = active_color
)
```
### recovered {.value-box}
```{r}
valueBox(
value = paste(format(150, big.mark = "."), "", sep = " "),
caption = "Dosen non PNS", icon = "fas fa-ambulance",
color = recovered_color
)
```
### death {.value-box}
```{r}
valueBox(
value = paste(format(227, big.mark = "."), "", sep = " "),
caption = "Tenaga Kependidikan",
icon = "fas fa-heart-broken",
color = death_color
)
```
Row
-----------------------------------------------------------------------
### **Sebaran mahasiswa aktif di tiap Program Studi**
```{r}
plotly::plot_ly(data = df_daily) %>%
plotly::add_trace(
x = ~date,
y = ~active_cum,
type = "scatter",
mode = "lines+markers",
name = "Aktif",
line = list(color = active_color),
marker = list(color = active_color)
) %>%
plotly::add_trace(
x = ~date,
y = ~death_cum,
type = "scatter",
mode = "lines+markers",
name = "Meninggal",
line = list(color = death_color),
marker = list(color = death_color)
) %>%
plotly::add_annotations(
x = as.Date("2020-03-02"),
y = 1,
text = paste("Kasus Pertama"),
xref = "x",
yref = "y",
arrowhead = 5,
arrowhead = 3,
arrowsize = 1,
showarrow = TRUE,
ax = -10,
ay = -90
) %>%
plotly::add_annotations(
x = as.Date("2020-03-11"),
y = 3,
text = paste("Kematian Pertama"),
xref = "x",
yref = "y",
arrowhead = 5,
arrowhead = 3,
arrowsize = 1,
showarrow = TRUE,
ax = -90,
ay = -90
) %>%
plotly::layout(
title = "",
yaxis = list(title = "Banyaknya kasus (kumulatif)"),
xaxis = list(title = "Tanggal"),
legend = list(x = 0.1, y = 0.9),
hovermode = "compare"
)
```
Perbandingan
=======================================================================
Column {data-width=400}
-------------------------------------
### **Kasus baru per hari**
```{r}
daily_confirmed <- coronavirus %>%
dplyr::filter(type == "confirmed") %>%
dplyr::filter(date >= "2020-02-29") %>%
dplyr::mutate(country = Country.Region) %>%
dplyr::group_by(date, country) %>%
dplyr::summarise(total = sum(cases)) %>%
dplyr::ungroup() %>%
tidyr::pivot_wider(names_from = country, values_from = total)
#----------------------------------------
# Plotting the data
daily_confirmed %>%
plotly::plot_ly() %>%
plotly::add_trace(
x = ~date,
y = ~Belgium,
type = "scatter",
mode = "lines+markers",
name = "Belgium"
) %>%
plotly::add_trace(
x = ~date,
y = ~France,
type = "scatter",
mode = "lines+markers",
name = "France"
) %>%
plotly::add_trace(
x = ~date,
y = ~Spain,
type = "scatter",
mode = "lines+markers",
name = "Spain"
) %>%
plotly::add_trace(
x = ~date,
y = ~Italy,
type = "scatter",
mode = "lines+markers",
name = "Italy"
) %>%
plotly::layout(
title = "",
legend = list(x = 0.1, y = 0.9),
yaxis = list(title = "Number of new cases"),
xaxis = list(title = "Date"),
# paper_bgcolor = "black",
# plot_bgcolor = "black",
# font = list(color = 'white'),
hovermode = "compare",
margin = list(
# l = 60,
# r = 40,
b = 10,
t = 10,
pad = 2
)
)
```
### **Cases distribution by type**
```{r daily_summary}
df_EU <- coronavirus %>%
# dplyr::filter(date == max(date)) %>%
dplyr::filter(Country.Region == "Belgium" |
Country.Region == "France" |
Country.Region == "Italy" |
Country.Region == "Spain") %>%
dplyr::group_by(Country.Region, type) %>%
dplyr::summarise(total = sum(cases)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>% #- ifelse(is.na(recovered), 0, recovered)
dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
dplyr::arrange(confirmed) %>%
dplyr::ungroup() %>%
dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
dplyr::mutate(country = trimws(country)) %>%
dplyr::mutate(country = factor(country, levels = country))
plotly::plot_ly(
data = df_EU,
x = ~country,
y = ~unrecovered,
# text = ~ confirmed,
# textposition = 'auto',
type = "bar",
name = "Active",
marker = list(color = active_color)
) %>%
plotly::add_trace(
y = ~death,
# text = ~ death,
# textposition = 'auto',
name = "Death",
marker = list(color = death_color)
) %>%
plotly::layout(
barmode = "stack",
yaxis = list(title = "Total cases"),
xaxis = list(title = ""),
hovermode = "compare",
margin = list(
# l = 60,
# r = 40,
b = 10,
t = 10,
pad = 2
)
)
```
Map
=======================================================================
### **World map of cases** (*use + and - icons to zoom in/out*)
```{r}
# map tab added by Art Steinmetz
library(leaflet)
library(leafpop)
library(purrr)
cv_data_for_plot <- coronavirus %>%
# dplyr::filter(Country.Region == "Belgium") %>%
dplyr::filter(cases > 0) %>%
dplyr::group_by(Country.Region, Province.State, Lat, Long, type) %>%
dplyr::summarise(cases = sum(cases)) %>%
dplyr::mutate(log_cases = 2 * log(cases)) %>%
dplyr::ungroup()
cv_data_for_plot.split <- cv_data_for_plot %>% split(cv_data_for_plot$type)
pal <- colorFactor(c("orange", "red", "green"), domain = c("confirmed", "death", "recovered"))
map_object <- leaflet() %>% addProviderTiles(providers$Stamen.Toner)
names(cv_data_for_plot.split) %>%
purrr::walk(function(df) {
map_object <<- map_object %>%
addCircleMarkers(
data = cv_data_for_plot.split[[df]],
lng = ~Long, lat = ~Lat,
label=~as.character(cases),
color = ~ pal(type),
stroke = FALSE,
fillOpacity = 0.8,
radius = ~log_cases,
popup = leafpop::popupTable(cv_data_for_plot.split[[df]],
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("type", "cases", "Country.Region", "Province.State")
),
group = df,
clusterOptions = markerClusterOptions(removeOutsideVisibleBounds = F),
labelOptions = labelOptions(
noHide = F,
direction = "auto"
)
)
})
map_object %>%
addLayersControl(
overlayGroups = names(cv_data_for_plot.split),
options = layersControlOptions(collapsed = FALSE)
)
```
About
=======================================================================
**The Coronavirus Dashboard: the case of Belgium**
This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this [dashboard](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} by Rami Krispin.
**Code**
The code behind this dashboard is available on [GitHub](https://github.com/AntoineSoetewey/coronavirus_dashboard){target="_blank"}.
**Data**
The input data for this dashboard is the dataset available from the [`{coronavirus}`](https://github.com/RamiKrispin/coronavirus){target="_blank"} R package. Make sure to download the development version of the package to have the latest data:
```
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
```
The data and dashboard are refreshed on a daily basis.
The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus [repository](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.
**Contact**
For any question or feedback, you can [contact me](https://www.statsandr.com/contact/). More information about this dashboard can be found in this [article](https://www.statsandr.com/blog/how-to-create-a-simple-coronavirus-dashboard-specific-to-your-country-in-r/).
**Update**
The data is as of `r format(max(coronavirus$date), "%A %B %d, %Y")` and the dashboard has been updated on `r format(Sys.time(), "%A %B %d, %Y")`.
*Go back to [www.statsandr.com](https://www.statsandr.com/) (blog) or [www.antoinesoetewey.com](https://www.antoinesoetewey.com/) (personal website)*.
Tentang Kami
=======================================================================
**Subbagian Registrasi dan Statistik**
This Coronavirus dashboard: the case of Belgium provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Belgium. This dashboard is built with R using the R Markdown framework and was adapted from this [dashboard](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} by Rami Krispin.
**Data**
Data yang digunakan pada *dashboard* ini diambil dari data yang ditampilkan pada [regstat.netlify.com](https://regstat.netlify.com/){target="_blank"}.
The data and dashboard are refreshed on a daily basis.
The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus [repository](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.
**Contact**
For any question or feedback, you can [contact me](https://www.statsandr.com/contact/). More information about this dashboard can be found in this [article](https://www.statsandr.com/blog/how-to-create-a-simple-coronavirus-dashboard-specific-to-your-country-in-r/).
**Pembaharuan Data**
Data yang disajikan diambil data setiap 6 bulan (per semester), kecuali data Sumber Daya Manusia (Dosen dan Tenaga Kependidikan) yang selalu diperbaharui ketika terjadi perubahan
*Data yang lebih lengkap bisa diakses di [regstat.netlify.com](https://www.statsandr.com/) (blog)*.