library(tidyverse)
## ── Attaching packages ──────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.0 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.5
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ─────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggbeeswarm)
spotify = read_csv("../data/playlists-spotify.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## playlist_id = col_character(),
## playlist_name = col_character(),
## track_id = col_character(),
## track_explicit = col_logical(),
## track_href = col_character(),
## track_is_local = col_logical(),
## track_name = col_character(),
## track_preview_url = col_character(),
## track_uri = col_character(),
## track_album_id = col_character(),
## track_album_name = col_character(),
## track_album_release_date = col_character(),
## track_album_release_date_precision = col_character(),
## key_name = col_character(),
## mode_name = col_character(),
## key_mode = col_character()
## )
## See spec(...) for full column specifications.
Popularidade por playlist
spotify %>%
ggplot(aes(y = reorder(playlist_name, track_popularity), x = track_popularity, color = playlist_name)) +
geom_boxplot()
Popularidade por modo
spotify %>%
ggplot(aes(x = mode_name, y = track_popularity, color = mode_name)) +
geom_quasirandom() +
geom_hline(yintercept = 25, linetype = "dashed", color = "brown")
Não existe um tom preferido
spotify %>%
ggplot(aes(x = track_popularity, color = key_name)) +
geom_density() +
geom_vline(xintercept = 37.5, linetype = "dashed", color = "brown") +
geom_vline(xintercept = 87.5, linetype = "dashed", color = "brown")
spotify %>%
ggplot(aes(x = track_popularity, color = key_name)) +
geom_density() +
geom_vline(xintercept = 37.5, linetype = "dashed", color = "brown") +
geom_vline(xintercept = 87.5, linetype = "dashed", color = "brown") +
facet_wrap(~ key_name)
Quao felizes são as musicas de uma certa playlist
spotify %>%
ggplot(aes(y = valence, color = playlist_name)) +
geom_histogram(fill = "white", binwidth = 0.1) +
facet_wrap(~ playlist_name)
Como é a distribuicao de popularidade de acordo com o parametro track_explicit
spotify %>%
ggplot(aes(x = track_popularity, color = track_explicit)) +
geom_histogram(fill = "white", bins = 15) +
facet_wrap(~ track_explicit)