library(tidyverse)
Registered S3 method overwritten by 'dplyr':
method from
print.rowwise_df
Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
[30m── [1mAttaching packages[22m ───────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──[39m
[30m[32m✓[30m [34mggplot2[30m 3.3.0 [32m✓[30m [34mpurrr [30m 0.3.3
[32m✓[30m [34mtibble [30m 2.1.3 [32m✓[30m [34mdplyr [30m 0.8.5
[32m✓[30m [34mtidyr [30m 1.0.2 [32m✓[30m [34mstringr[30m 1.4.0
[32m✓[30m [34mreadr [30m 1.3.1 [32m✓[30m [34mforcats[30m 0.5.0[39m
[30m── [1mConflicts[22m ──────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
[31mx[30m [34mdplyr[30m::[32mfilter()[30m masks [34mstats[30m::filter()
[31mx[30m [34mdplyr[30m::[32mlag()[30m masks [34mstats[30m::lag()[39m
library(ggbeeswarm)
dados_clima = read.csv("../data/clima_cg_jp-semanal.csv")
glimpse(dados_clima)
Observations: 2,748
Variables: 8
$ cidade [3m[38;5;246m<fct>[39m[23m Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Gran…
$ semana [3m[38;5;246m<fct>[39m[23m 1992-12-27T00:00:00Z, 1993-01-03T00:00:00Z, 1993-01-10T00:00:00Z, 1993-01-31T00:00:00Z, 1993-02-07T00:00:00Z, 1993-02-14T00:…
$ tmedia [3m[38;5;246m<dbl>[39m[23m 26.13333, 26.11905, 25.76667, 25.74000, 26.31429, 26.28571, 26.47143, 26.56667, 25.76667, 25.22857, 25.72381, 25.59048, 26.2…
$ tmax [3m[38;5;246m<dbl>[39m[23m 30.4, 32.4, 32.2, 32.0, 32.7, 32.7, 32.3, 32.3, 32.1, 31.2, 32.2, 31.7, 32.7, 31.5, 31.9, 32.4, 32.6, 32.3, 32.4, 32.9, 32.3…
$ tmin [3m[38;5;246m<dbl>[39m[23m 20.7, 19.3, 19.7, 19.9, 19.6, 20.0, 20.4, 21.2, 19.0, 19.0, 19.3, 19.9, 19.9, 20.0, 20.0, 20.0, 20.2, 20.9, 20.5, 20.8, 20.8…
$ chuva [3m[38;5;246m<dbl>[39m[23m 0.0, 0.0, 0.0, 0.4, 0.3, 0.0, 4.9, 0.0, 0.0, 6.1, 0.4, 1.2, 0.0, 1.6, 0.0, 1.8, 0.8, 8.3, 2.4, 6.2, 1.3, 0.3, 2.4, 14.0, 0.0…
$ mes [3m[38;5;246m<int>[39m[23m 12, 1, 1, 1, 2, 2, 2, 2, 10, 11, 11, 11, 11, 12, 12, 12, 12, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 1, 1, 1, 1, …
$ ano [3m[38;5;246m<int>[39m[23m 1992, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1994, 1994, 1994, 1994…
dados_clima %>%
ggplot(mapping = aes(y = tmax, x = cidade, color = cidade)) +
geom_quasirandom()
clima_jp = dados_clima %>%
filter(cidade == "João Pessoa")
clima_cg = dados_clima %>%
filter(cidade == "Campina Grande")
glimpse(dados_clima)
Observations: 2,748
Variables: 8
$ cidade [3m[38;5;246m<fct>[39m[23m Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Grande, Campina Gran…
$ semana [3m[38;5;246m<fct>[39m[23m 1992-12-27T00:00:00Z, 1993-01-03T00:00:00Z, 1993-01-10T00:00:00Z, 1993-01-31T00:00:00Z, 1993-02-07T00:00:00Z, 1993-02-14T00:…
$ tmedia [3m[38;5;246m<dbl>[39m[23m 26.13333, 26.11905, 25.76667, 25.74000, 26.31429, 26.28571, 26.47143, 26.56667, 25.76667, 25.22857, 25.72381, 25.59048, 26.2…
$ tmax [3m[38;5;246m<dbl>[39m[23m 30.4, 32.4, 32.2, 32.0, 32.7, 32.7, 32.3, 32.3, 32.1, 31.2, 32.2, 31.7, 32.7, 31.5, 31.9, 32.4, 32.6, 32.3, 32.4, 32.9, 32.3…
$ tmin [3m[38;5;246m<dbl>[39m[23m 20.7, 19.3, 19.7, 19.9, 19.6, 20.0, 20.4, 21.2, 19.0, 19.0, 19.3, 19.9, 19.9, 20.0, 20.0, 20.0, 20.2, 20.9, 20.5, 20.8, 20.8…
$ chuva [3m[38;5;246m<dbl>[39m[23m 0.0, 0.0, 0.0, 0.4, 0.3, 0.0, 4.9, 0.0, 0.0, 6.1, 0.4, 1.2, 0.0, 1.6, 0.0, 1.8, 0.8, 8.3, 2.4, 6.2, 1.3, 0.3, 2.4, 14.0, 0.0…
$ mes [3m[38;5;246m<int>[39m[23m 12, 1, 1, 1, 2, 2, 2, 2, 10, 11, 11, 11, 11, 12, 12, 12, 12, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 1, 1, 1, 1, …
$ ano [3m[38;5;246m<int>[39m[23m 1992, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1994, 1994, 1994, 1994…
dados_clima %>%
filter(ano > 2018) %>%
ggplot(mapping = aes(x = semana, y = tmax, color = cidade, group = cidade)) +
geom_line()
Sobreposição da chuva entre JP e CG
dados_clima %>%
ggplot(mapping = aes(y = chuva, x = semana, color = cidade)) +
geom_point()
clima_jp %>%
filter(ano > 2010) %>%
ggplot(mapping = aes(x = semana, y = tmax, group = ano, color = as.factor(ano))) +
geom_line()
clima_jp %>%
ggplot(mapping = aes(x = tmax)) +
geom_histogram(binwidth = 1, fill = "white", color = "brown")
clima_cg %>%
ggplot(mapping = aes(x = tmax)) +
geom_histogram(binwidth = 1, fill = "white", color = "brown")
clima_cg %>%
ggplot(mapping = aes(x = chuva)) +
geom_histogram(binwidth = 10, fill = "white", color = "brown")
dados_clima %>%
ggplot(mapping = aes(x = chuva, fill = cidade)) +
geom_histogram(binwidth = 10)
dados_clima %>%
ggplot(mapping = aes(x = chuva, color = cidade)) +
geom_histogram(binwidth = 10, fill = "white") +
facet_grid(cidade ~ .)
dados_clima %>%
filter(ano > 2015, ano < 2019) %>%
ggplot(mapping = aes(x = tmax, color = cidade)) +
geom_histogram(fill = "white", binwidth = 1) +
facet_grid(cidade ~ ano)
dados_clima %>%
filter(ano > 2010) %>%
ggplot(mapping = aes(x = tmax, color = cidade)) +
geom_density(fill = "white") +
facet_wrap(~ ano)
dados_clima %>%
filter(ano > 2014) %>%
ggplot(mapping = aes(x = chuva, color = cidade)) +
geom_density(fill = "white") +
facet_wrap(~ ano)
dados_clima %>%
filter(ano == 2014) %>%
ggplot(mapping = aes(x = tmax, color = cidade)) +
geom_density(fill = "white") +
facet_wrap(~ mes)
clima_cg %>%
filter(ano > 2014) %>%
ggplot(mapping = aes(y = tmax, group = mes)) +
geom_boxplot()
sumariza_cidade = function(dataset, funcao) {
dataset %>%
group_by(cidade) %>%
summarise(calor_medio = funcao(tmax))
}
dados_clima %>%
sumariza_cidade(mean)
dados_clima %>%
sumariza_cidade(min)
dados_clima %>%
sumariza_cidade(max)