主成分分析

https://stats.biopapyrus.jp/stats/pca/

https://data-science.gr.jp/implementation/ida_r_pca.html

library(car)
## Loading required package: carData
library(caret)
## Warning: package 'caret' was built under R version 3.6.2
## Loading required package: lattice
library(cluster)
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(data.table)
## Warning: package 'data.table' was built under R version 3.6.2
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(e1071)
## Warning: package 'e1071' was built under R version 3.6.2
library(epitools)
library(effects)
## Warning: package 'effects' was built under R version 3.6.3
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
## Use the command
##     lattice::trellis.par.set(effectsTheme())
##   to customize lattice options for effects plots.
## See ?effectsTheme for details.
library(ggplot2)
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 3.6.2
library(randomForest)
## Warning: package 'randomForest' was built under R version 3.6.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
## 
##     combine
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(ranger)
## Warning: package 'ranger' was built under R version 3.6.2
## 
## Attaching package: 'ranger'
## The following object is masked from 'package:randomForest':
## 
##     importance
library(rgl)
library(rattle)
## Warning: package 'rattle' was built under R version 3.6.2
## Rattle: A free graphical interface for data science with R.
## バージョン 5.3.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## 'rattle()' と入力して、データを多角的に分析します。
## 
## Attaching package: 'rattle'
## The following object is masked from 'package:ranger':
## 
##     importance
## The following object is masked from 'package:randomForest':
## 
##     importance
library(readr)
## Warning: package 'readr' was built under R version 3.6.2
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 3.6.2
## Loading required package: rpart
library(rpart)
library(readr)
library(reshape)
## Warning: package 'reshape' was built under R version 3.6.2
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename
## The following object is masked from 'package:data.table':
## 
##     melt
library(rsconnect)
## Warning: package 'rsconnect' was built under R version 3.6.2
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following objects are masked from 'package:reshape':
## 
##     colsplit, melt, recast
## The following objects are masked from 'package:data.table':
## 
##     dcast, melt
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
## 
##     smiths
## The following objects are masked from 'package:reshape':
## 
##     expand, smiths
library(xtable)
library(nnet)
## Warning: package 'nnet' was built under R version 3.6.2
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(randomForest)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.2
## -- Attaching packages ------------------------------------------------------------------------------ tidyverse 1.3.0 --
## √ tibble  2.1.3     √ stringr 1.4.0
## √ purrr   0.3.3     √ forcats 0.4.0
## Warning: package 'stringr' was built under R version 3.6.2
## Warning: package 'forcats' was built under R version 3.6.2
## -- Conflicts --------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::between()        masks data.table::between()
## x randomForest::combine() masks dplyr::combine()
## x tidyr::expand()         masks reshape::expand()
## x dplyr::filter()         masks stats::filter()
## x dplyr::first()          masks data.table::first()
## x dplyr::lag()            masks stats::lag()
## x dplyr::last()           masks data.table::last()
## x purrr::lift()           masks caret::lift()
## x randomForest::margin()  masks ggplot2::margin()
## x dplyr::recode()         masks car::recode()
## x reshape::rename()       masks dplyr::rename()
## x purrr::some()           masks car::some()
## x purrr::transpose()      masks data.table::transpose()
library(nnet)
library(ggplot2)
library(MASS, lib.loc = "C:/Program Files/R/R-3.6.1/library")
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
library(MASS)
library(VGAM)
## Warning: package 'VGAM' was built under R version 3.6.3
## Loading required package: stats4
## Loading required package: splines
## 
## Attaching package: 'VGAM'
## The following object is masked from 'package:tidyr':
## 
##     fill
## The following object is masked from 'package:rattle':
## 
##     wine
## The following object is masked from 'package:caret':
## 
##     predictors
## The following object is masked from 'package:car':
## 
##     logit
library(maptools)
## Warning: package 'maptools' was built under R version 3.6.2
## Loading required package: sp
## Warning: package 'sp' was built under R version 3.6.2
## Checking rgeos availability: FALSE
##      Note: when rgeos is not available, polygon geometry     computations in maptools depend on gpclib,
##      which has a restricted licence. It is disabled by default;
##      to enable gpclib, type gpclibPermit()
## 
## Attaching package: 'maptools'
## The following object is masked from 'package:xtable':
## 
##     label
gesui = read_csv("enbi.csv")
## Parsed with column specification:
## cols(
##   OBJECTID = col_double(),
##   sys_name = col_double(),
##   slope = col_double(),
##   uedokaburi = col_double(),
##   masuhonsuu = col_double(),
##   long = col_double(),
##   kubun = col_double(),
##   did = col_double(),
##   kouhou = col_double(),
##   nendo = col_double(),
##   ekijyouka = col_double(),
##   kyouyounensuu = col_double(),
##   kansyu = col_double(),
##   kei = col_double(),
##   kinkyuudo = col_double(),
##   taisyo = col_double()
## )
gesui <- data.frame(gesui) # 教科書ではlogit
gesui <- gesui[-1:-2] #OBJECTID,sys_name列をデータから削除
gesui <- gesui[-13]
gesui <- gesui[-8]
gesui <- gesui[-10]
sapply(gesui, class)
##         slope    uedokaburi    masuhonsuu          long         kubun 
##     "numeric"     "numeric"     "numeric"     "numeric"     "numeric" 
##           did        kouhou     ekijyouka kyouyounensuu           kei 
##     "numeric"     "numeric"     "numeric"     "numeric"     "numeric" 
##        taisyo 
##     "numeric"
summary(gesui)
##      slope         uedokaburi       masuhonsuu          long      
##  Min.   :0.000   Min.   : 1.009   Min.   : 0.000   Min.   : 0.97  
##  1st Qu.:1.900   1st Qu.: 2.462   1st Qu.: 0.000   1st Qu.:21.32  
##  Median :2.685   Median : 3.402   Median : 1.000   Median :30.06  
##  Mean   :3.309   Mean   : 4.218   Mean   : 1.284   Mean   :31.30  
##  3rd Qu.:4.100   3rd Qu.: 5.397   3rd Qu.: 2.000   3rd Qu.:40.49  
##  Max.   :9.900   Max.   :13.385   Max.   :11.000   Max.   :96.82  
##      kubun            did            kouhou         ekijyouka     
##  Min.   :1.000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.000   Median :1.000   Median :0.0000   Median :0.0000  
##  Mean   :1.209   Mean   :0.766   Mean   :0.3369   Mean   :0.2021  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :2.000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##  kyouyounensuu        kei            taisyo      
##  Min.   :10.00   Min.   :200.0   Min.   :0.0000  
##  1st Qu.:25.00   1st Qu.:250.0   1st Qu.:0.0000  
##  Median :25.00   Median :250.0   Median :0.0000  
##  Mean   :27.51   Mean   :390.2   Mean   :0.3121  
##  3rd Qu.:27.00   3rd Qu.:600.0   3rd Qu.:1.0000  
##  Max.   :40.00   Max.   :900.0   Max.   :1.0000
train <- gesui[1:200,]
test <- gesui[201:284,]
stargazer(as.data.frame(gesui),type = "html")
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
slope 282 3.309 2.017 0.000 1.900 4.100 9.900
uedokaburi 282 4.218 2.570 1.009 2.462 5.397 13.385
masuhonsuu 282 1.284 1.765 0 0 2 11
long 282 31.300 15.309 0.970 21.325 40.492 96.820
kubun 282 1.209 0.407 1 1 1 2
did 282 0.766 0.424 0 1 1 1
kouhou 282 0.337 0.473 0 0 1 1
ekijyouka 282 0.202 0.402 0 0 0 1
kyouyounensuu 282 27.514 5.204 10 25 27 40
kei 282 390.248 162.287 200 250 600 900
taisyo 282 0.312 0.464 0 0 1 1
p <- gesui[, 1:11]
p = prcomp(p,scale=T)
biplot(p)

names(p)
## [1] "sdev"     "rotation" "center"   "scale"    "x"
head(p$x)
##           PC1        PC2         PC3         PC4        PC5         PC6
## [1,] 1.960450 -3.2538385  1.25672320  1.11169748 -0.8878810 -0.29564148
## [2,] 2.373785  0.4462211 -0.22091070  1.41079958  0.3757950  0.07642351
## [3,] 2.344151 -2.5545670  0.12761088  1.18826691  0.7769509 -0.70570562
## [4,] 2.314187 -2.3646064 -0.06605524  0.54216676 -1.4410115  0.19143922
## [5,] 1.188562 -1.5669850 -1.48961539  0.88516841  0.4390677  0.92392702
## [6,] 2.345249 -2.6507858  0.04553914 -0.03347243  2.1719620 -1.71439586
##              PC7         PC8       PC9       PC10        PC11
## [1,] -1.83129878 -1.17026549 1.4446072 0.10785612 -0.46657870
## [2,] -0.25880726 -1.58152480 0.9192206 0.68096255 -0.16243490
## [3,] -0.45375899 -0.03808309 0.7138217 0.21063539 -0.04502874
## [4,] -0.43204429  0.01976629 1.1005621 0.15081153 -0.12524461
## [5,] -1.10168122 -0.80722080 2.3602793 0.02694101 -1.19557888
## [6,] -0.04947104  0.08809693 0.3562377 0.09266457  0.12152994

princomp変数による解析

p <- princomp(gesui, cor = TRUE)
names(p)
## [1] "sdev"     "loadings" "center"   "scale"    "n.obs"    "scores"   "call"
head(p$scores)
##        Comp.1     Comp.2      Comp.3      Comp.4     Comp.5      Comp.6
## [1,] 1.963935  3.2596231  1.25895737 -1.11367383 -0.8894594  0.29616706
## [2,] 2.378005 -0.4470144 -0.22130343 -1.41330767  0.3764631 -0.07655937
## [3,] 2.348319  2.5591085  0.12783774 -1.19037938  0.7783322  0.70696021
## [4,] 2.318301  2.3688102 -0.06617267 -0.54313061 -1.4435733 -0.19177955
## [5,] 1.190675  1.5697707 -1.49226360 -0.88674204  0.4398483 -0.92556956
## [6,] 2.349419  2.6554983  0.04562009  0.03353194  2.1758233  1.71744367
##           Comp.7      Comp.8     Comp.9    Comp.10    Comp.11
## [1,] -1.83455442 -1.17234597 -1.4471754 0.10804786 -0.4674082
## [2,] -0.25926737 -1.58433640 -0.9208547 0.68217315 -0.1627237
## [3,] -0.45456567 -0.03815080 -0.7150907 0.21100985 -0.0451088
## [4,] -0.43281237  0.01980143 -1.1025186 0.15107963 -0.1254673
## [5,] -1.10363976 -0.80865586 -2.3644754 0.02698891 -1.1977044
## [6,] -0.04955898  0.08825355 -0.3568711 0.09282930  0.1217460

標準偏差

head(p$sdev)
##    Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6 
## 1.7958143 1.1417211 1.1171777 1.0487125 0.9829994 0.9784615

固有ベクトル

head(p$loadings)
## [1]  0.1199789 -0.3794388  0.2098338 -0.2865882  0.3410772  0.2963940

特徴量平均値

head(p$center)
##      slope uedokaburi masuhonsuu       long      kubun        did 
##  3.3089007  4.2180089  1.2836879 31.2998227  1.2092199  0.7659574

正規化パラメーター

head(p$scale)
##      slope uedokaburi masuhonsuu       long      kubun        did 
##  2.0131238  2.5653834  1.7617941 15.2818480  0.4067517  0.4233989

主成分スコア

head(p$scores)
##        Comp.1     Comp.2      Comp.3      Comp.4     Comp.5      Comp.6
## [1,] 1.963935  3.2596231  1.25895737 -1.11367383 -0.8894594  0.29616706
## [2,] 2.378005 -0.4470144 -0.22130343 -1.41330767  0.3764631 -0.07655937
## [3,] 2.348319  2.5591085  0.12783774 -1.19037938  0.7783322  0.70696021
## [4,] 2.318301  2.3688102 -0.06617267 -0.54313061 -1.4435733 -0.19177955
## [5,] 1.190675  1.5697707 -1.49226360 -0.88674204  0.4398483 -0.92556956
## [6,] 2.349419  2.6554983  0.04562009  0.03353194  2.1758233  1.71744367
##           Comp.7      Comp.8     Comp.9    Comp.10    Comp.11
## [1,] -1.83455442 -1.17234597 -1.4471754 0.10804786 -0.4674082
## [2,] -0.25926737 -1.58433640 -0.9208547 0.68217315 -0.1627237
## [3,] -0.45456567 -0.03815080 -0.7150907 0.21100985 -0.0451088
## [4,] -0.43281237  0.01980143 -1.1025186 0.15107963 -0.1254673
## [5,] -1.10363976 -0.80865586 -2.3644754 0.02698891 -1.1977044
## [6,] -0.04955898  0.08825355 -0.3568711 0.09282930  0.1217460

関数実行コマンドログ

head(p$call)
## princomp(x = gesui, cor = TRUE)

#主成分回帰分析 https://toukeier.hatenablog.com/entry/2018/09/25/221232

#多重共線性の確認

library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.3
library(pls)
## Warning: package 'pls' was built under R version 3.6.3
## 
## Attaching package: 'pls'
## The following object is masked from 'package:caret':
## 
##     R2
## The following object is masked from 'package:stats':
## 
##     loadings
round(1/(1-cor(gesui[-1,-4])^2))
##               slope uedokaburi masuhonsuu kubun did kouhou ekijyouka
## slope           Inf          1          1     1   1      1         1
## uedokaburi        1        Inf          1     1   1      2         1
## masuhonsuu        1          1        Inf     1   1      1         1
## kubun             1          1          1   Inf   1      1         1
## did               1          1          1     1 Inf      1         1
## kouhou            1          2          1     1   1    Inf         1
## ekijyouka         1          1          1     1   1      1       Inf
## kyouyounensuu     1          1          1     1   1      1         1
## kei               1          1          1     1   1      2         1
## taisyo            1          1          1     1   1      1         1
##               kyouyounensuu kei taisyo
## slope                     1   1      1
## uedokaburi                1   1      1
## masuhonsuu                1   1      1
## kubun                     1   1      1
## did                       1   1      1
## kouhou                    1   2      1
## ekijyouka                 1   1      1
## kyouyounensuu           Inf   1      1
## kei                       1 Inf      1
## taisyo                    1   1    Inf
set.seed(20180924)
sub <- sample(1:282, round(282*4/5))
sub
##   [1] 223  15 180 214  57 192  63 132 149 215 267 245 168  30  47  32  97 225
##  [19] 130 178  22  92 176 107  79 139 212  18 241 200  64  20 183  16  99  34
##  [37] 156 113 125 274 169 144 106 211 166 161  82 184 242 114  69 121  19 185
##  [55] 278   1 252 170 164 126 240 153 205  46 150 210 115 135 108 181 254  21
##  [73] 231 155 187  91 197  40 140 162  86 190 206 202 237  85  41 186 148 272
##  [91]  71 110 281 261  61 276 136 262 188  93 266 165 228  56 233 250 255  26
## [109] 173 277  44 201 247 217 249 204 172 251  29  14 159  65   3 163  53 112
## [127]  67  49 220 208 128   9 157   6 101  58 244 138 119 131 105  39 117  52
## [145] 189 265  37 207  68 263  66 103 258  23  84 142  62 280  43 243  28   4
## [163] 268  54  88 174 198 279 143 175  78 182  74 118  83 222 196 218 273 264
## [181] 271 100 160 224 253   2 221 145 151 124  77 256  96  11 232  73  50 171
## [199]  33  90  35 116  75 236  38  70 104  55 282 167 227 102  10 270 146 179
## [217] 158 234 111  72  89 248 239 120  13  24
data=gesui[sub,]
data
##     slope uedokaburi masuhonsuu  long kubun did kouhou ekijyouka kyouyounensuu
## 223 1.340   3.484858          4 20.20     1   1      0         0            25
## 15  1.740   1.436539          3  9.25     2   1      0         1            39
## 180 2.130   2.660371          2 29.31     1   1      0         0            40
## 214 2.320   4.574894          1 30.18     2   1      0         0            40
## 57  3.900   2.796943          2 30.01     2   1      0         1            37
## 192 2.300   2.346045          2 29.68     1   1      0         0            40
## 63  4.100   1.694001          1 31.01     2   1      0         0            37
## 132 1.100  10.907328          0 22.06     1   1      1         0            25
## 149 3.200   3.916999          0 40.78     1   0      1         0            25
## 215 5.600   2.498483          5 26.90     1   1      0         0            25
## 267 2.450   2.518753          2 26.93     1   1      0         0            25
## 245 1.010   3.850776          1 24.86     1   1      0         1            24
## 168 3.300  10.594034          0 30.59     1   1      1         0            25
## 30  5.000   6.649337          0 14.13     1   1      1         0            26
## 47  1.610   9.463612          1 15.54     1   1      0         0            25
## 32  1.580   4.386176          0  5.96     1   1      0         0            17
## 97  3.600   5.855999          1 55.42     1   0      0         0            27
## 225 1.990   2.754591          3 34.95     2   1      0         0            25
## 130 1.000   6.382495          0 31.11     1   1      1         1            26
## 178 2.100   5.403999          0 54.79     1   0      1         0            25
## 22  1.500   3.253370          0 13.00     1   0      0         0            25
## 92  1.400   6.330505          0 19.13     1   1      1         0            27
## 176 3.000   6.259277          0 58.39     1   0      1         0            25
## 107 3.300   4.910003          2 65.07     1   1      1         0            27
## 79  1.820   1.366309          0 23.59     2   1      0         1            24
## 139 2.100   4.224999          0 50.09     1   0      1         0            25
## 212 2.120   2.557118          5 32.00     1   1      0         0            40
## 18  2.200   6.027199          0 10.12     1   0      1         0            24
## 241 3.300   2.621705          3 33.74     1   1      0         0            25
## 200 3.400   5.916304          0 63.02     1   1      1         1            26
## 64  2.500   1.617001          3 24.86     2   1      0         0            37
## 20  5.000   3.847243          1 15.15     1   0      0         0            25
## 183 2.040   2.161000          0 29.91     1   1      0         0            40
## 16  4.270   1.472376          0  7.86     2   1      0         1            39
## 99  2.100   3.525528          1 63.57     1   0      0         0            27
## 34  6.500   4.590000          0  9.95     1   0      1         0            34
## 156 1.800   3.661790          2 28.05     1   0      1         1            28
## 113 4.900   3.828565         11 51.83     2   1      0         0            24
## 125 2.100  10.516000          0 42.60     1   1      1         0            25
## 274 2.670   2.685897          0 27.49     1   1      0         0            25
## 169 4.600  10.591164          1 26.39     1   0      1         0            25
## 144 4.100   3.810922          0 48.17     1   0      1         0            25
## 106 1.900   3.748734          0 42.66     2   0      0         0            27
## 211 1.480   1.864272          0 20.00     1   1      0         0            40
## 166 6.900   2.981946          0 34.58     1   1      0         0            26
## 161 2.800   2.990898          0 54.94     1   0      0         0            10
## 82  4.500   6.974002          0 96.82     1   1      1         1            27
## 184 2.030   2.351002          0 30.00     1   1      0         0            26
## 242 6.800   4.806221          0 29.86     1   1      0         0            25
## 114 3.500   3.400039         10 52.24     2   1      0         0            24
## 69  5.500   1.486400          3 26.99     2   1      0         1            37
## 121 1.700  12.168823          0 30.58     1   1      1         0            25
## 19  5.000   6.957029          1 15.65     1   0      1         0            25
## 185 1.730   1.838435          1 27.80     1   1      0         0            26
## 278 3.710   2.891690          3 27.74     1   1      0         0            25
## 1   1.220   1.054575          1  3.39     2   1      0         1            12
## 252 3.190   9.491322          4 19.56     1   1      0         0            24
## 170 3.200   8.921724          1 52.98     1   1      1         0            25
## 164 4.100   3.150200          1 50.89     1   0      0         0            26
## 126 2.500   9.882314          0 41.64     1   1      1         0            25
## 240 1.250   2.002232          6 26.20     1   1      0         0            25
## 153 2.100   4.563110          0 38.55     1   0      1         0            25
## 205 4.060   1.982026          4 25.49     1   1      0         0            26
## 46  7.720   9.556511          5 11.01     1   1      0         0            25
## 150 2.700   3.925999          0 41.25     1   0      1         0            25
## 210 9.700   2.816253          3 31.90     1   1      0         0            25
## 115 4.120   4.084854          7 51.90     2   1      1         0            24
## 135 1.000   4.740499          0 24.86     1   1      1         1            26
## 108 9.600   2.481001          3 39.08     2   1      0         0            26
## 181 2.300   1.660551          1 19.08     1   1      0         0            40
## 254 2.590   9.356372          0 19.97     1   0      0         0            25
## 21  1.500   2.211840          0 14.47     1   0      0         0            25
## 231 5.400  10.806235          0 40.03     1   0      1         0            34
## 155 2.400   4.211381          4 59.97     1   0      1         1            28
## 187 1.880   2.855000          2 30.04     1   1      0         1            26
## 91  1.000   6.574005          1 22.79     1   1      1         0            27
## 197 2.420   4.470321          1 29.94     2   1      0         0            40
## 40  4.100   2.749357          0 10.02     1   1      0         0            25
## 140 1.900   4.243001          0 50.01     1   0      1         0            25
## 162 3.200   2.937999          0 36.44     1   0      0         0            26
## 86  1.400   7.042785          1 40.03     1   1      1         1            27
## 190 9.200   2.236709          3 33.61     1   1      0         0            26
## 206 3.230   1.742547          3 30.95     1   1      0         0            26
## 202 4.020   2.240832          2 31.20     1   1      0         0            26
## 237 4.210   2.289566          1 23.22     2   1      0         0            25
## 85  1.100   4.548029          0 42.85     1   0      1         0            27
## 41  1.760   2.432278          0  7.87     1   1      0         0            25
## 186 1.820   2.143259          2 29.91     1   1      0         1            26
## 148 4.200   4.861001          0 40.29     1   0      1         0            25
## 272 1.960   2.694672          3 27.25     1   1      0         0            25
## 71  1.060   2.725467          1 29.09     2   1      0         0            26
## 110 3.500   3.403083          4 37.96     2   1      0         0            21
## 281 4.400   4.937003          0 39.80     1   1      1         0            25
## 261 3.210   3.068203          6 46.50     1   1      0         0            25
## 61  2.400   1.956000          2 25.15     2   1      0         1            37
## 276 4.800   4.976580          0 55.17     1   1      1         0            25
## 136 1.100   6.537330          0 47.24     1   1      1         1            26
## 262 4.300   6.827301          0 51.84     1   1      1         0            25
## 188 1.790   2.212618          2 30.12     1   1      0         1            26
## 93  5.000   3.920159          1 32.19     1   1      0         1            27
## 266 2.280   2.663494          2 27.46     1   1      0         0            25
## 165 3.100   3.199907          0 44.39     1   0      0         0            26
## 228 2.590   2.475453          0 32.61     1   1      0         0            40
## 56  5.700   3.024835          3 36.10     2   1      0         1            40
## 233 2.060   4.124568          0 77.03     1   1      1         0            25
## 250 1.710   9.652271          2 18.98     1   1      0         0            25
## 255 2.600   9.327517          1 28.02     1   0      0         0            25
## 26  1.690   1.824348          0 10.00     1   1      0         0            26
## 173 3.000   5.177794          1 18.24     1   0      0         0            25
## 277 3.670   2.667007          0 27.45     1   1      0         0            25
## 44  2.440   3.414251          0 14.07     2   1      0         0            24
## 201 3.900   2.064381          2 29.98     1   1      0         0            26
## 247 4.100   6.122001          0 46.81     1   1      1         1            25
## 217 8.000   2.589767          3 19.90     1   1      0         0            25
## 249 3.130   9.776862          2 19.94     1   1      0         0            25
## 204 4.070   1.891763          1 24.00     1   1      0         0            26
## 172 3.300   5.519844          1 21.85     1   0      1         0            25
## 251 1.630   9.552125          2 29.99     1   1      0         0            25
## 29  1.895   3.646695          0  2.71     1   1      0         0            27
## 14  1.300   6.858791          0  2.79     1   1      1         0            25
## 159 2.900   2.635552          1 48.85     1   0      0         0            26
## 65  3.600   1.572562          1 24.52     2   1      0         0            37
## 3   4.710   1.414000          0  5.02     2   1      0         1            24
## 163 3.800   2.868704          1 37.59     1   0      0         0            26
## 53  3.580   2.603039          1 16.04     1   1      0         0            25
## 112 2.500   3.922952          3 40.56     1   1      1         0            32
## 67  4.300   1.739730          0 24.93     2   1      0         0            37
## 49  2.730   2.860160          1  7.52     1   1      0         0            25
## 220 1.600   2.942733          3 31.80     1   1      0         0            25
## 208 4.010   1.798224          2 29.92     1   1      0         0            26
## 128 3.300   7.612320          0 38.28     1   1      1         0            26
## 9   1.300   1.819819          1  9.12     1   0      0         0            27
## 157 6.100   3.115186          0 43.01     1   0      0         0            26
## 6   8.900   1.738222          0 15.72     2   1      0         1            24
## 101 5.500   3.339510          0 36.44     1   0      0         0            27
## 58  4.400   2.611828          3 26.75     2   1      0         1            37
## 244 1.030   5.408001          0 41.07     1   1      1         1            24
## 138 1.800   4.652454          0 50.20     1   0      1         0            25
## 119 2.300  10.198399          3 45.18     1   1      1         0            25
## 131 8.700   1.926552          4 31.86     2   1      0         1            26
## 105 9.500   1.942961          0 39.40     1   1      0         0            27
## 39  3.900   2.736001          1 12.99     1   1      0         0            25
## 117 2.400   7.072001          2 51.09     1   1      1         0            25
## 52  3.280   3.394147          1 15.78     1   1      0         0            25
## 189 2.630   1.843763          2 27.15     1   1      0         0            40
## 265 2.280   2.499810          2 27.46     1   1      0         0            25
## 37  8.700   2.607048          1  8.70     1   1      0         0            25
## 207 3.830   1.909999          2 28.60     1   1      0         0            27
## 68  4.900   1.586905          2 24.91     2   1      0         0            37
## 263 5.400   5.521916          0 54.91     1   1      1         0            25
## 66  6.200   1.243001          4 46.92     2   1      0         1            28
## 103 2.600   5.532493          0 31.99     1   0      1         0            27
## 258 2.960   3.700743          3 26.81     1   1      0         0            25
## 23  1.400   3.677926          1 13.85     1   0      0         0            25
## 84  1.200   4.675212          0 45.45     1   0      1         0            27
## 142 3.400   4.247999          0 52.10     1   0      1         0            25
## 62  4.500   1.664466          1 26.14     2   1      0         0            37
## 280 3.710   1.889743          4 31.13     1   1      0         0            25
## 43  3.380   3.460195          1 12.04     2   1      0         0            25
## 243 5.300   5.008060          0 21.81     1   1      0         0            25
## 28  1.720   2.119883          0 17.00     1   1      0         0            40
## 4   1.100   1.544714          3 13.17     2   1      0         1            24
## 268 2.900   7.568516          0 54.50     1   1      1         0            25
## 54  1.630   2.476748          4 45.65     1   1      0         0            25
## 88  3.000   6.631325          0 45.98     1   1      1         1            27
## 174 3.400   2.611999          2 25.26     1   0      0         0            25
## 198 2.370   3.777865          0 29.87     2   1      0         0            40
## 279 2.380   4.197623          5 40.25     1   1      0         0            25
## 143 2.300   4.438878          0 46.81     1   0      1         0            25
## 175 4.000   3.250242          0 17.93     1   0      0         0            25
## 78  2.120   1.008538          2 30.99     2   1      0         1            24
## 182 2.140   1.856014          1 29.30     1   1      0         0            40
## 74  4.600   2.853477          0 39.85     2   1      0         1            26
## 118 7.000   7.090262          0 31.00     1   1      1         0            25
## 83  3.000   5.669425          9 40.00     1   1      1         0            33
## 222 7.800   7.650076          1 21.90     1   1      0         0            25
## 196 2.940   2.054423          2 28.86     1   1      0         0            40
## 218 9.900   2.596578          4 32.30     1   1      0         0            25
## 273 4.700   6.140733          1 54.96     1   1      1         0            25
## 264 1.990   2.896992          2 27.42     1   1      0         0            25
## 271 3.350   2.644891          2 36.92     1   1      0         0            25
## 100 4.700   3.494682          1 33.71     1   0      0         0            27
## 160 1.100   2.491678          1 54.95     1   0      0         0            26
## 224 2.500   3.318911          4 40.96     1   1      0         0            25
## 253 1.660   9.424565          4 31.98     1   1      0         0            25
## 2   2.500   1.533001          0  7.78     2   1      0         0            28
## 221 1.400   7.191373          1 32.10     1   1      0         0            25
## 145 2.800   5.456998          0 21.43     1   0      1         0            25
## 151 1.400   4.105612          0 37.92     1   0      1         0            25
## 124 2.400  11.925139          0 34.16     1   1      1         0            25
## 77  1.220   1.225071          0 25.56     2   1      0         1            24
## 256 3.990   1.993982          1 28.02     1   0      0         0            25
## 96  3.300   3.213998          1 29.89     1   1      0         0            27
## 11  1.300   3.583047          0 10.86     2   1      0         0            40
## 232 5.200  11.221190          0 44.00     1   0      1         0            34
## 73  4.500   2.714951          0 39.87     2   1      0         1            26
## 50  4.190   2.680456          0  3.50     1   1      0         0            25
## 171 2.100   8.576775          0 52.11     1   1      1         0            25
## 33  1.428   2.864370          0  7.68     1   1      0         0            25
## 90  3.700   6.981265          0 26.86     1   1      1         0            27
## 35  3.030   6.923674          0  9.21     1   0      1         0            34
## 116 2.700   7.091002          1 41.88     1   1      1         0            25
## 75  1.200   1.428993          0 27.22     2   1      0         1            24
## 236 3.690   4.178999          2 24.00     1   1      0         0            25
## 38  3.620   3.316654          0 11.03     1   1      0         0            25
## 70  6.300   1.578893          1 20.45     2   1      0         1            37
## 104 2.560   5.077001          0 61.47     1   0      1         0            27
## 55  1.787   2.453790          0  6.24     1   1      0         0            25
## 282 4.500   5.842998          0 39.55     1   1      1         0            25
## 167 2.600   8.277668          0 28.97     1   1      1         0            25
## 227 6.250   2.031941          3 19.73     2   1      0         0            25
## 102 2.300   5.376960          0 39.12     1   0      1         0            27
## 10  1.240   3.505754          0  9.42     2   1      0         0            40
## 270 1.940   2.559030          1 28.36     1   0      0         0            25
## 146 2.600   5.497247          0 49.16     1   0      1         0            25
## 179 7.070   3.457646          1 30.09     1   1      0         1            27
## 158 4.200   2.784306          0 42.89     1   0      0         0            26
## 234 2.010   2.395267          1 38.81     1   1      0         0            25
## 111 2.400   3.824999          0 38.06     2   1      0         0            21
## 72  6.700   2.457513          0 28.08     2   1      0         1            26
## 89  1.900   6.749645          0 50.18     1   1      1         1            27
## 248 2.000   6.358178          0 49.37     1   1      1         1            24
## 239 8.000   2.291207          0 19.86     1   1      0         0            25
## 120 1.600  11.327685          1 52.05     1   1      1         0            25
## 13  3.200   3.852999          1  9.97     1   1      1         0            32
## 24  7.000   3.632331          0  9.98     1   1      0         1            27
##     kei taisyo
## 223 250      0
## 15  250      0
## 180 250      1
## 214 250      1
## 57  250      1
## 192 250      1
## 63  250      1
## 132 600      0
## 149 600      0
## 215 250      1
## 267 250      0
## 245 300      0
## 168 600      0
## 30  400      0
## 47  250      0
## 32  400      0
## 97  600      1
## 225 250      0
## 130 600      0
## 178 600      0
## 22  600      0
## 92  600      1
## 176 600      1
## 107 350      0
## 79  250      0
## 139 600      0
## 212 250      1
## 18  600      0
## 241 250      1
## 200 600      1
## 64  250      1
## 20  600      0
## 183 250      1
## 16  250      0
## 99  600      0
## 34  300      0
## 156 500      0
## 113 250      0
## 125 600      0
## 274 250      0
## 169 600      1
## 144 600      1
## 106 300      0
## 211 250      1
## 166 600      0
## 161 600      0
## 82  400      0
## 184 250      1
## 242 250      0
## 114 250      0
## 69  250      0
## 121 600      1
## 19  600      1
## 185 250      1
## 278 250      0
## 1   200      0
## 252 250      0
## 170 600      0
## 164 600      0
## 126 600      0
## 240 250      0
## 153 600      0
## 205 250      1
## 46  250      0
## 150 600      0
## 210 250      1
## 115 250      0
## 135 600      0
## 108 250      0
## 181 250      1
## 254 250      0
## 21  600      0
## 231 350      0
## 155 500      1
## 187 250      1
## 91  600      0
## 197 250      1
## 40  250      0
## 140 600      0
## 162 600      0
## 86  600      0
## 190 250      1
## 206 250      1
## 202 250      1
## 237 250      0
## 85  600      1
## 41  250      0
## 186 250      0
## 148 600      0
## 272 250      0
## 71  250      0
## 110 250      0
## 281 450      0
## 261 450      0
## 61  250      1
## 276 450      0
## 136 600      0
## 262 450      0
## 188 250      1
## 93  600      0
## 266 250      0
## 165 600      0
## 228 450      0
## 56  250      1
## 233 500      0
## 250 250      0
## 255 250      0
## 26  250      1
## 173 600      0
## 277 250      0
## 44  250      0
## 201 250      1
## 247 450      0
## 217 250      1
## 249 250      0
## 204 250      1
## 172 600      0
## 251 250      0
## 29  250      0
## 14  600      0
## 159 600      0
## 65  250      1
## 3   250      0
## 163 600      0
## 53  450      0
## 112 700      0
## 67  250      1
## 49  300      0
## 220 250      1
## 208 250      1
## 128 600      0
## 9   250      0
## 157 600      0
## 6   250      0
## 101 600      1
## 58  250      1
## 244 300      0
## 138 600      1
## 119 600      0
## 131 250      0
## 105 250      0
## 39  250      0
## 117 600      1
## 52  450      0
## 189 250      1
## 265 250      0
## 37  250      0
## 207 250      1
## 68  250      1
## 263 450      0
## 66  250      0
## 103 600      0
## 258 300      0
## 23  600      0
## 84  600      0
## 142 600      1
## 62  250      1
## 280 450      1
## 43  250      0
## 243 250      0
## 28  250      1
## 4   250      0
## 268 450      0
## 54  250      0
## 88  600      0
## 174 600      0
## 198 250      1
## 279 450      0
## 143 600      1
## 175 600      0
## 78  250      0
## 182 250      1
## 74  250      0
## 118 600      1
## 83  900      0
## 222 250      1
## 196 250      1
## 218 250      1
## 273 450      0
## 264 250      0
## 271 450      0
## 100 600      1
## 160 600      0
## 224 250      1
## 253 250      0
## 2   250      1
## 221 250      1
## 145 600      0
## 151 600      0
## 124 600      0
## 77  250      0
## 256 250      0
## 96  600      0
## 11  250      0
## 232 350      0
## 73  250      0
## 50  300      0
## 171 600      0
## 33  400      0
## 90  600      0
## 35  350      0
## 116 600      0
## 75  250      0
## 236 250      0
## 38  250      0
## 70  250      0
## 104 350      0
## 55  450      0
## 282 450      0
## 167 600      1
## 227 250      0
## 102 600      1
## 10  250      0
## 270 250      0
## 146 600      1
## 179 300      0
## 158 600      0
## 234 250      0
## 111 250      0
## 72  250      1
## 89  600      0
## 248 500      0
## 239 250      0
## 120 600      0
## 13  700      0
## 24  300      0
pcr.res.cv <- pcr(taisyo ~ ., data=gesui, validation="CV")