library(tidyverse)
[30m-- [1mAttaching packages[22m --------------------------------------- tidyverse 1.3.0 --[39m
[30m[32mv[30m [34mggplot2[30m 3.3.0 [32mv[30m [34mpurrr [30m 0.3.3
[32mv[30m [34mtibble [30m 2.1.3 [32mv[30m [34mdplyr [30m 0.8.4
[32mv[30m [34mtidyr [30m 1.0.2 [32mv[30m [34mstringr[30m 1.4.0
[32mv[30m [34mreadr [30m 1.3.1 [32mv[30m [34mforcats[30m 0.5.0[39m
[30m-- [1mConflicts[22m ------------------------------------------ tidyverse_conflicts() --
[31mx[30m [34mdplyr[30m::[32mfilter()[30m masks [34mstats[30m::filter()
[31mx[30m [34mdplyr[30m::[32mlag()[30m masks [34mstats[30m::lag()[39m
library(sf)
Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
deptos<-read_sf("./santander/COL_adm/COL_adm1.shp")
head(deptos)
Simple feature collection with 6 features and 9 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -77.149 ymin: -4.228429 xmax: -69.36835 ymax: 11.10792
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs
##luego usamos la funcion ggplot para graficar los datos almacenados en la variable deptos
ggplot()+geom_sf(data=deptos)
ggplot() + geom_sf(data = deptos) + coord_sf(crs=st_crs(3978))
deptos.UTM<-st_transform(deptos,crs=st_crs(32618))
deptos.UTM
Simple feature collection with 32 features and 9 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -245935.3 ymin: -469204.3 xmax: 1407491 ymax: 1763314
epsg (SRID): 32618
proj4string: +proj=utm +zone=18 +datum=WGS84 +units=m +no_defs
ggplot() + geom_sf(data = deptos.UTM)
Santander <- deptos %>% filter(NAME_1 == "Santander")
ggplot()+geom_sf(data=Santander)
municipios <- read_sf("./santander/COL_adm/COL_adm2.shp")
mun_santander <- municipios %>% filter(NAME_1 == "Santander")
ggplot() + geom_sf(data = mun_santander)
##aqui vemos los datos almacenados en esta variable
mun_santander
Simple feature collection with 87 features and 11 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -74.55179 ymin: 5.705701 xmax: -72.5161 ymax: 8.120555
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs
puntos_santander <- cbind(mun_santander, st_coordinates(st_centroid(mun_santander$geometry)))
ggplot(Santander) +
geom_sf() +
geom_sf(data = puntos_santander, fill = "antiquewhite") +
geom_text(data = puntos_santander, aes(x=X, y=Y,label = ID_2), size = 2) +
coord_sf(xlim = c(-74.7, -72.4), ylim = c(5.6, 8.15), expand = FALSE)+labs(title="Santander")
##esta nueva libreria, servira para darle color al mapa en base a una escala especifica
library(scales)
##este ploteo nos muestra una variante donde los diferentes municipios estan identificados con su codigo y pintados de colores en base a una escala determinada
ggplot(Santander) +
geom_sf(data=puntos_santander, aes(x=X, y=Y, fill = ID_2), color = "black", size = 0.3) +
geom_text(data = puntos_santander, aes(x=X, y=Y,label = ID_2), size = 2) +
theme(aspect.ratio=1)+
scale_fill_distiller(name="ID_2", palette = "YlGn", breaks = pretty_breaks(n = 10))+
labs(title="otro estilo de mapa para Santander")
Ignoring unknown aesthetics: x, y
ggsave("Santander_municipios.pdf")
ggsave("map_santander.png", width = 6, height = 6, dpi = "screen")
install.packages("leaflet")
library(leaflet)
ant_points <- as(puntos_santander, 'Spatial')
head(ant_points)
install.packages("lwgeom")
library(lwgeom)
mun_santander$area <- st_area(mun_santander)
mun_santander$km2 <- mun_santander$area/(1000000)
mun_santander$km2
sant_municipios <- as(mun_santander, 'Spatial')
head(sant_municipios)
bins <- c(0, 50, 100, 200, 300, 500, 1000, 2000, Inf)
pal <- colorBin("YlOrRd", domain = ant_municipios$km2, bins = bins)
labels <- mun_santander$NAME_2
labels
[1] "Aguada" "Albania"
[3] "Aratoca" "Barbosa"
[5] "Barichara" "Barrancabermeja"
[7] "Betulia" "Bolívar"
[9] "Bucaramanga" "Cabrera"
[11] "California" "Capitanejo"
[13] "Carcasí" "Cepitá"
[15] "Cerrito" "Charalá"
[17] "Charta" "Chimá"
[19] "Chipatá" "Cimitarra"
[21] "Concepción" "Confines"
[23] "Contratación" "Coromoro"
[25] "Curití" "El Carmen de Chucurí"
[27] "El Guacamayo" "El Peñon"
[29] "El Playón" "Encino"
[31] "Enciso" "Florián"
[33] "Floridablanca" "Gámbita"
[35] "Güepsa" "Galán"
[37] "Girón" "Guaca"
[39] "Guadalupe" "Guapotá"
[41] "Guavatá" "Hato"
[43] "Jesús María" "Jordán"
[45] "La Belleza" "La Paz"
[47] "Landázuri" "Lebrija"
[49] "Los Santos" "Málaga"
[51] "Macaravita" "Matanza"
[53] "Mogotes" "Molagavita"
[55] "Ocamonte" "Oiba"
[57] "Onzaga" "Páramo"
[59] "Palmar" "Palmas del Socorro"
[61] "Piedecuesta" "Pinchote"
[63] "Puente Nacional" "Puerto Parra"
[65] "Puerto Wilches" "Rionegro"
[67] "Sabana de Torres" "San Andrés de Cuerquia"
[69] "San Benito" "San Gil"
[71] "San Joaquín" "San José de Miranda"
[73] "San Miguel" "San Vicente de Chucurí"
[75] "Santa Bárbara" "Santa Helena del Opón"
[77] "Simacota" "Socorro"
[79] "Suaita" "Sucre"
[81] "Suratá" "Tona"
[83] "Vélez" "Valle de San José"
[85] "Vetas" "Villanueva"
[87] "Zapatoca"
m <- leaflet(sant_municipios) %>%
setView(-73.5, 6.5, 7.45) %>% addPolygons(
fillColor = ~pal(km2),
weight = 2,
opacity = 1,
color = "white",
dashArray = "3",
fillOpacity = 0.7,
highlight = highlightOptions(
weight = 5,
color = "#555",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),
label = labels) %>%
addLegend(pal = pal, values = ~km2, opacity = 0.7, title = NULL,
position = "bottomright")
m
a<-leaflet() %>%
addProviderTiles(providers$Esri.WorldImagery, options= providerTileOptions(opacity = 0.99)) %>%
addPolygons(data = sant_municipios, popup= sant_municipios$NAME_2,
stroke = TRUE, fillOpacity = 0.1, smoothFactor = 0.25)
a